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Abstract. If Tϕ is a hyponormal Toeplitz operator with polynomial symbol ϕ = ḡ + f

(f, g ∈ H∞(T)) such that g divides f , and if ψ := f
g

then

����
X

ζ∈Z(ψ)

ζ

���� ≤ |µ| − 1

|µ| ,

where µ is the leading coefficient of ψ and Z(ψ) denotes the set of zeros of ψ. In this paper
we present a necessary and sufficient condition for Tϕ to be hyponormal when ϕ enjoys an
extremal case in the above inequality, that is, equality holds in the above inequality.

1. Introduction

A bounded linear operator A on a Hilbert space H with inner product (·, ·) is said to
be hyponormal if its selfcommutator [A∗, A] = A∗A− AA∗ induces a positive semidefinite
quadratic form on H via ξ 7→ ([A∗, A]ξ, ξ), for ξ ∈ H. The purpose of this paper is to study
hyponormality for Toeplitz operators acting on the Hardy space H2(T) of the unit circle
T = ∂D in the complex plane. In particular, our interest is with Toeplitz operators with
polynomial symbols which satisfy certain constraints.

Recall that given ϕ ∈ L∞(T), the Toeplitz operator with symbol ϕ is the operator Tϕ on
H2(T) defined by Tϕf = P (ϕ·f), where f ∈ H2(T) and P denotes the projection that maps
L2(T) onto H2(T). The problem of determining which symbols induce hyponormal Toeplitz
operators was solved by Cowen in [2], however here we shall employ an equivalent variant
of Cowen’s theorem that was first proposed by Nakazi and Takahashi in [10]. Suppose that
ϕ ∈ L∞(T) is arbitrary and consider the following subset of the closed unit ball of H∞(T):

E(ϕ) = {k ∈ H∞(T) : ||k||∞ ≤ 1 and ϕ− kϕ ∈ H∞(T)} .
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The criterion is that Tϕ is hyponormal if and only if the set E(ϕ) is nonempty [2,10]. This
theorem is referred to the Cowen’s theorem. Cowen’s method is to recast the operator-
theoretic problem of hyponormality for Toeplitz operators into the problem of finding a
solution of a certain functional equation involving its symbol. This approach has been put
to use in the works [3,5,6,7,9,10,12] to study Toeplitz operators on the Hardy space of
the unit circle.

If ϕ is a trigonometric polynomial, say ϕ(z) =
∑N

n=−m anzn, where a−m and aN are
nonzero, then the nonnegative integers N and m denote the analytic and co-analytic degrees
of ϕ. For arbitrary trigonometric polynomials, Zhu [12] has applied Cowen’s criterion and
adopted a method based on the classical interpolation theorems of Schur to obtain an
abstract characterization of those trigonometric polynomial symbols that correspond to
hyponormal Toeplitz operators. Furthermore, he was able to use this characterization to
give explicit necessary and sufficient conditions for hyponormality in terms of the coefficients
of the polynomial ϕ whenever m ≤ 3. Also, in [5], the hyponormality of Tϕ was completely
characterized for the cases of |a−m| = |aN |. However, with polynomials of higher degree
with |a−m| < |aN |, the analogous explicit necessary and sufficient conditions (via properties
of coefficients) are not known and in fact would be too complicated to be of much value.

On the other hand, whenever we consider hyponormality of Tϕ with polynomial symbols
ϕ = ḡ + f (f, g ∈ H∞(T)), we may assume, without loss of generality, that g divides f
(see Lemma 4 below). If ψ is in H∞(T), write Z(ψ) for the set of zeros of ψ. Then we
can show that if Tϕ is a hyponormal Toeplitz operator with polynomial symbol ϕ = ḡ + f

(f, g ∈ H∞(T)) such that g divides f , and if ψ := f
g then

(0.1)
∣∣∣∣

∑

ζ∈Z(ψ)

ζ

∣∣∣∣ ≤ |µ| − 1
|µ| ,

where µ is the leading coefficient of ψ (see Lemma 6 below). In this paper we are concerned
with hyponormality of Tϕ when ϕ enjoys an extremal case in (0.1), in the sense that equality
holds in (0.1). By the preceding consideration it suffices to focus on the cases where m ≥ 3
and |µ| > 1 (note that if |µ| = 1 then |a−m| = |aN |). Our main result of this paper is
as follows. Let ϕ = ḡ + f , where f and g are analytic polynomials of degrees N and m
(m ≥ 3), respectively. Suppose that g divides f and the leading coefficient of ψ := f

g is µ

with |µ| > 1. If
∣∣∣∑ζ∈Z(ψ) ζ

∣∣∣ = |µ| − 1
|µ| then we have:

(i) If N < 2m− 1 then Tϕ is never hyponormal;
(ii) If N ≥ 2m − 1 then Tϕ is hyponormal if and only if the Fourier coefficients ψ̂(j)

(N − 2m + 1 ≤ j ≤ N −m) of ψ satisfy the following equation:



ψ̂(N − 2m + 2)
ψ̂(N − 2m + 3)

...

...
ψ̂(N −m− 1)




=
µ− 1

µ̄

ψ̂(N −m− 1)




ψ̂(N − 2m + 1)
ψ̂(N − 2m + 2)

...

...
ψ̂(N −m− 2)




.
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We will also use this result to show that if ϕ(z) =
∑N

n=−m anzn (3 ≤ m ≤ N and |a−m| <
|aN |) satisfies the equality |aN |2 − |a−m|2 =

∣∣∣det
(

a−m a−m+1

aN aN−1

)∣∣∣, then

Tϕ hyponormal ⇐⇒ dj+1 =


 |aN |2 − |a−m|2

det
(

a−m a−m+1

aN aN−1

)
(

a−m

aN

)
 · dj (j = 1, · · · ,m− 2),

where the dj are given by




d1

d2
...
...

dm




:=




a−m a−m+1 . . . a−2 a−1

a−m a−m+1 . . . a−2

. . . . . .
...

0
. . . a−m+1

a−m




−1 


aN−m+1

aN−m+2

...

...
aN




.

2. Main Results

We review Schur’s algorithm, due to K. Zhu [12], determining hyponormality for Toeplitz
operators with polynomial symbols. Suppose that k(z) =

∑∞
j=0 cjz

j is in the closed unit
ball of H∞(T). If k0 = k, define by induction a sequence {kn} of functions in the closed
unit ball of H∞(T) as follows:

kn+1(z) =
kn(z)− kn(0)

z
(
1− kn(0) kn(z)

) , |z| < 1, n = 0, 1, 2, · · · .

We write
kn(0) = Φn(c0, · · · , cn), n = 0, 1, 2, · · · ,

where Φn is a function of n + 1 complex variables. We call the Φn’s Schur’s functions.
Then Zhu’s theorem can be written as follows: if ϕ(z) =

∑N
n=−N anzn, where aN 6= 0 and

if

(0.2)




c0

c1
...

cN−1


 =




a1 a2 . . . aN−1 aN

a2 a3 . . . aN 0
...

...
. . .

...
...

aN 0 . . . 0 0




−1 


a−1

a−2

...
a−N


 ,

then Tϕ is hyponormal if and only if |Φn(c0, · · · , cn)| ≤ 1 for every n = 0, 1, · · · , N − 1.
If k(z) =

∑∞
j=0 cjz

j is a function in H∞ such that ϕ − kϕ ∈ H∞, then c0, · · · , cN−1 are
just the values given in (0.2). Thus Zhu’s theorem shows that if k(z) =

∑∞
j=0 cjz

j satisfies
ϕ−kϕ ∈ H∞, then the hyponormality of Tϕ is independent of the values of cj ’s for j ≥ N .
On the other hand, Zhu’s theorem can be reformulated as follows:
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Lemma 1 (Zhu’s Theorem [12]). If ϕ(z) =
∑N

n=−m anzn, where m ≤ N and aN 6= 0,
then Tϕ is hyponormal if and only if |Φn(c0, · · · , cn)| ≤ 1 for every n = 0, 1, · · · , N − 1,
where the cn are given by the following recurrence relation:

(1.1)





c0 = c1 = · · · = cN−m−1 = 0
cN−m = a−m(aN )−1

cn = (aN )−1
(
a−N+n −

∑n−1
j=N−m cjaN−n+j

)
for n = N −m + 1, · · · , N − 1.

Proof. See [9, Proposition 1]. ¤

The following lemma provides a useful criterion of hyponormality for Toeplitz operators
Tϕ with polynomial symbols ϕ.

Lemma 2 (Nakazi-Takahashi Theorem [10]). A Toeplitz operator Tϕ is hyponormal
and the rank of the selfcommutator [T ∗ϕ, Tϕ] is finite (e.g., ϕ is a trigonometric polynomial)
if and only if there exists a finite Blaschke product k ∈ E(ϕ) of the form

k(z) = eiθ
n∏

j=1

z − βj

1− βjz
(|βj | < 1 for j = 1, · · · , n).

such that deg (k) = rank [T ∗ϕ, Tϕ], where deg (k) denotes the degree of k – meaning the
number of zeros of k in the open unit disk D.

To prove the main result we need several auxiliary lemmas. First of all, we record
results on the hyponormality of Toeplitz operators with polynomial symbols, which have
been recently developed in the literature.

Lemma 3. Suppose that ϕ is a trigonometric polynomial of the form ϕ(z) =
∑N

n=−m anzn,
where a−m and aN are nonzero.

(i) If Tϕ is hyponormal then m ≤ N , |a−m| ≤ |aN | and N −m ≤ rank [T ∗ϕ, Tϕ] ≤ N .
(ii) If ϕ := ḡ + f , where f and g are in H∞(T) and if ϕ̃ := ḡ + Tz̄rf (r ≤ N −m) then

Tϕ is hyponormal if and only if Tϕ̃ is.
(iii) If |a−m| = |aN |, then Tϕ is hyponormal if and only if the following symmetric

condition holds:

(3.1) aNa−j = a−maN−m+j (1 ≤ j ≤ m).

In this case, the rank of [T ∗ϕ, Tϕ] is N − m and E(ϕ) = {a−m(aN )−1 zN−m}. In
particular, Tϕ is normal if and only if m = N, |a−m| = |aN |, and (3.1) holds with
m = N .

(iv) If Tϕ is hyponormal then the finite Blaschke product k ∈ E(ϕ) is of the form

(3.2) k(z) = eiθ zN−m
r∏

j=1

z − βj

1− βjz
(r ≤ m; βj 6= 0) with

r∏

j=1

|βj | =
∣∣∣∣
a−m

aN

∣∣∣∣ .
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Proof. The statements (i), (ii) and (iii) are known from [3,5,6,7,8,9,10,12]. Thus it suffices
to focus on the assertion (iv). For (iv) suppose k(z) =

∑∞
j=0 cjz

j is the finite Blaschke
product in E(ϕ). Then by Lemma 1, c0 = · · · = cN−m−1 = 0. Therefore k is of the form

k(z) = eiθ zN−m
r∏

j=1

z − βj

1− βjz
(r ≤ m; βj 6= 0).

But since
a−m

aN
= cN−m = eiθ

r∏

j=1

(−βj),

it follows that
∏r

j=1 |βj | = |a−m(aN )−1|, which proves (iv). ¤

Suppose ϕ = ḡ + f , where f =
∑N

n=1 anzn and g =
∑N

n=1 bnzn. If Tϕ is normal then
g divides f : indeed, by Lemma 3 (iii), g = eiθ

∑N
n=1 anzn for some θ ∈ [0, 2π), so that g

divides f . But if Tϕ is hyponormal then g need not divide f . For example, consider the
polynomials g(z) = z2 +2z and f(z) = 3z2 +5z. Using an argument of P. Fan [4, Theorem
1] – for every trigonometric polynomial ϕ of the form ϕ(z) =

∑2
n=−2 anzn,

(3.3) Tϕ is hyponormal ⇐⇒
∣∣∣det

(
a−2 a−1

a2 a1

)∣∣∣ ≤ |a2|2 − |a−2|2,
a straightforward calculation shows that if ϕ = ḡ + f then Tϕ is hyponormal, while g does
not divide f .

In view of the preceding example, when ϕ = ḡ + f (f and g are analytic polynomials),
the condition “g divides f” seems to be so rigid. However the following lemma shows
that we may assume, without loss of generality, that g divides f whenever we consider
hyponormality of Tϕ.

Lemma 4. Let ϕ = ḡ + f , where g and f are analytic polynomials of degrees m and N
(m ≤ N), respectively. If we let

f̃(z) := −
m−1∑

j=0

djz
j + zmTz̄N−mf,

where
∑m−1

j=0 djz
j is the remainder in the division of zmTz̄N−mf by g, put ϕ̃ := ḡ+ f̃ . Then

we have:
(i) Tϕ is hyponormal if and only if Teϕ is;
(ii) g divides f̃ .

Moreover, if ψ :=
ef
g , then the Fourier coefficients ψ̂(j) (0 ≤ j ≤ m) of ψ can be obtained

from the following equation:

(4.1)




ψ̂(0)
ψ̂(1)

...

...
ψ̂(m)




=




a−m a−m+1 . . . a−1 b0

a−m a−m+1 . . . a−1

. . . . . .
...

0
. . . a−m+1

a−m




−1 


aN−m

aN−m+1

...

...
aN




,
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where f(z) =
∑N

n=0 anzn and g(z) = b0 +
∑m

n=1 a−nzn.

Proof. The assertion (i) follows at once from Lemma 3 (ii). For the assertion (ii), observe
that by the division algorithm, there exist unique polynomials ψ and r of degrees m and `

(` ≤ m− 1), respectively, satisfying that zmTz̄N−mf = gψ + r. Letting f̃ := zmTz̄N−mf − r

proves (ii). For (4.1), observe that if g divides f̃ and if ψ(z) :=
∑m

n=0 ψ̂(n)zn then





aN = a−mψ̂(m)

aN−1 = a−mψ̂(m− 1) + a−m+1ψ̂(m)
...

aN−m = a−mψ̂(0) + a−m+1ψ̂(1) + · · ·+ b0ψ̂(m),

which gives (4.1). ¤

Note that if ϕ = ḡ + f (f and g are analytic polynomials), if g divides f and if Tϕ is
hyponormal then by Lemma 3 (i), the leading coefficient of f

g has modulus ≥ 1. But if
its modulus is exactly 1 then this case reduces to the case of Lemma 3 (iii). Therefore if
ϕ = ḡ + f (f and g are analytic polynomials) then it will suffice to consider hyponormality
of Tϕ under the assumption “g divides f and the leading coefficient of f

g has modulus bigger
than 1.”

Lemma 5. Suppose that k(z) =
∑∞

j=0 cjz
j is in the closed unit ball of H∞(T) and that

{Φn} is a sequence of Schur’s functions associated with {cn}. If c0 = · · · = cn−1 = 0 and
0 < |cn| < 1, then we have that Φ0 = · · · = Φn−1 = 0, Φn = cn,

(5.1) Φn+1 =
cn+1

1− |cn|2 and Φn+2 =
(1− |cn|2)cn+2 + cnc2

n+1(
1− |cn|2

)2 − |cn+1|2
.

Moreover if |Φn+1| = 1, then k(z) is uniquely determined as follows:

(5.2) k(z) =
cn+1

1− |cn|2 zn z − α

1− ᾱ z
with α = −cncn+1

|cn+1| .

Proof. Suppose k(z) =
∑∞

j=0 cjz
j . Then Φ0 = k(0) = c0 = 0 and

k1(z) =
k(z)− k(0)

z
(
1− c0k(z)

) =
∞∑

j=1

cjz
j−1,

so that Φ1 = c1 = 0. Inductively, km(z) =
∑∞

j=m cjz
j−m for m = 2, · · · , n − 1, so that

Φm = cm = 0 (m = 2, · · · , n− 1). Then

kn(z) =
kn−1(z)− kn−1(0)

z
(
1− kn−1(0)kn−1(z)

) =
∞∑

j=n

cjz
j−n,
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so that Φn = cn. Also we have

kn+1(z) =
kn(z)− kn(0)

z
(
1− kn(0)kn(z)

) =

∑∞
j=n cjz

j−n − cn

z
(
1− kn(0)kn(z)

) =

∑∞
j=n+1 cjz

j−n−1

1− kn(0)kn(z)
,

so that
Φn+1 =

cn+1

1− |kn(0)|2 =
cn+1

1− |cn|2 .

On the other hand, we have

kn+2(z) =
kn+1(z)− kn+1(0)

z
(
1− kn+1(0)kn+1(z)

)

=
1

1−cnkn(z)

∑∞
j=n+1 cjz

j−n−1 − cn+1
1−|cn|2

z
(
1− kn+1(0)kn+1(z)

)(5.3)

=
(1− |cn|2)

∑∞
j=n+2 cjz

j−n−2 + cn+1cn

∑∞
j=n+1 cjz

j−n−1

(1− |cn|2)
(
1− cnkn(z)

)(
1− kn+1(0)kn+1(z)

) ,

so that

(5.4) Φn+2 =
(1− |cn|2)cn+2 + c2

n+1cn

(1− |cn|2)2(1− |kn+1(0)|2) =
(1− |cn|2)cn+2 + c2

n+1cn

(1− |cn|2)2 − |cn+1|2 ,

which proves the first assertion. For the second assertion suppose that |Φn+1| = 1, so that
1− |cn|2 = |cn+1|. Remember ([11,12]) that if k(z) =

∑∞
j=0 cjz

j is in the closed unit ball
of H∞ then for any m ∈ Z+, |Φj(c0, · · · , cj)| ≤ 1 for each j = 0, · · · ,m. Thus from (5.4)
we must have that 1− |cn|2cn+2 + c2

n+1cn = 0, or equivalently,

(5.5) cn+2 = −cn+1cn

|cn+1| cn+1.

Substituting (5.5) into (5.3) and multiplying on the denominator and the numerator by
z−1 give that

(5.6) kn+2(z) =
(1− |cn|2)

∑∞
j=n+3 cjz

j−n−3 + cn+1cn

∑∞
j=n+2 cjz

j−n−2

−(1− |cn|2)cn

∑∞
j=n+1 cjzj−n−1 − cn+1

∑∞
j=n+2 cjzj−n−2

,

which forces that (1− |cn|2)cn+3 + cn+1cncn+2 = 0 because the denominator of kn+2(0) is
0. Thus we have

(5.7) cn+3 = −cn+1cn

|cn+1| cn+2 =
(

cn+1cn

|cn+1|
)2

cn+1.

Repeating this process gives

(5.8) cn+j =
(
−cn+1cn

|cn+1|
)j−1

cn+1 for j = 2, 3, · · · .
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Thus each cj (j = 0, 1, 2, · · · ) is uniquely determined. Therefore k should be exactly of the
form

k(z) = cnzn + cn+1z
n+1 + cn+1

∞∑

j=2

(
−cn+1cn

|cn+1|
)j−1

zn+j .

Put α := − cncn+1
|cn+1| . Then |α| = |cn| < 1 and a straightforward calculation shows

k(z) =
cn+1

1− |cn|2 zn z − α

1− ᾱ z
with α = −cncn+1

|cn+1| .

This completes the proof. ¤

Lemma 6. Let ϕ = ḡ + f , where f and g are analytic polynomials of degrees N and m,
respectively. Suppose that g divides f and the leading coefficient of ψ := f

g is µ. Then

(6.1) Tϕ hyponormal =⇒
∣∣∣∣

∑

ζ∈Z(ψ)

ζ

∣∣∣∣ ≤ |µ| − 1
|µ| .

In particular, if |µ| = 1 and if Tϕ is hyponormal then
∑

ζ∈Z(ψ) ζ = 0.

Proof. If g divides f , we can write g(z) = b0 +
∑m

n=1 a−nzn = a−m

∏m
j=1(z − ζj) and

f(z) =
∑N

n=0 anzn = aN

∏N
j=1(z − ζj). A straightforward calculation shows that aN−1 =

−aN

∑N
j=1 ζj and a−m+1 = −a−m

∑m
j=1 ζj . By the recurrence relation (1.1) we have

(6.2)





c0 = · · · = cN−m−1 = 0; cN−m = a−m

aN
;

cN−m+1 = (aN )−1
(
a−m+1 − cN−maN−1

)

= (aN )−1
(
−a−m

∑m
j=1 ζj + a−m

aN
· aN

∑N
j=1 ζj

)

= a−m

aN

∑N
j=m+1 ζj .

Applying Lemma 5 with n = N −m, we have

(6.3)





Φ0 = · · · = ΦN−m−1 = 0;
ΦN−m = cN−m = a−m

aN
;

ΦN−m+1 = cN−m+1
1−|cN−m|2 =

a−m
aN

PN
j=m+1 ζj

1−
��� a−m

aN

���2
.

Therefore if Tϕ is hyponormal then by Lemma 1, |ΦN−m+1| ≤ 1, i.e.,
∣∣∣∣
a−m

aN

∣∣∣∣
∣∣∣∣

N∑

j=m+1

ζj

∣∣∣∣ ≤ 1−
∣∣∣∣
a−m

aN

∣∣∣∣
2

or equivalently, since ψ = aN

a−m

∏N
j=m+1(z − ζj),

(6.4)
∣∣∣∣

∑

ζ∈Z(ψ)

ζ

∣∣∣∣ ≤
∣∣∣∣

aN

a−m

∣∣∣∣−
∣∣∣∣
a−m

aN

∣∣∣∣ = |µ| − 1
|µ| .

which proves (6.1). The second assertion is straightforward from (6.1). ¤

We are ready for:
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Theorem 7. Let ϕ = ḡ + f , where f and g are analytic polynomials of degrees N and m
(m ≥ 3), respectively. Suppose that g divides f and the leading coefficient of ψ := f

g is µ

with |µ| > 1. If
∣∣∣∑ζ∈Z(ψ) ζ

∣∣∣ = |µ| − 1
|µ| then we have:

(i) If N < 2m− 1 then Tϕ is never hyponormal;
(ii) If N ≥ 2m − 1 then Tϕ is hyponormal if and only if the Fourier coefficients ψ̂(j)

(N − 2m + 1 ≤ j ≤ N −m) of ψ satisfy the following equation:

(7.1)




ψ̂(N − 2m + 2)
ψ̂(N − 2m + 3)

...

...
ψ̂(N −m− 1)




=
µ− 1

µ̄

ψ̂(N −m− 1)




ψ̂(N − 2m + 1)
ψ̂(N − 2m + 2)

...

...
ψ̂(N −m− 2)




.

In particular, the hyponormality of Tϕ is independent of the particular values of the Fourier
coefficients ψ̂(0), ψ̂(1), · · · , ψ̂(N − 2m) of ψ.

Proof. We first claim that if Tϕ is hyponormal then

(7.2) rank [T ∗ϕ, Tϕ] = N −m + 1 ⇐⇒
∣∣∣∣

∑

ζ∈Z(ψ)

ζ

∣∣∣∣ = |µ| − 1
|µ| .

Indeed if rank [T ∗ϕ, Tϕ] = N − m + 1, then in view of Lemma 3 (iv), the finite Blaschke
product k ∈ E(ϕ) is of the form

k(z) = eiθzN−m z − ξ

1− ξ̄z
(0 < |ξ| < 1, θ ∈ [0, 2π)).

But by (1.1), kp(z) = cN−mzN−m + cN−m+1z
N−m+1 is the unique analytic polynomial of

degree less that N −m + 2 satisfying ϕ− kpϕ̄ ∈ H∞. A straightforward calculation shows
that k(z) should be of the form

k(z) = eiθ(−ξ)zN−m + eiθ(1− |ξ|2)zN−m+1 +
∞∑

j=N−m+2

cjz
j .

By the uniqueness of kp, we have that cN−m = −eiθξ and cN−m+1 = eiθ(1 − |ξ|2), which
implies that |cN−m+1| = 1 − |cN−m|2. Thus by (6.3) we have that |ΦN−m+1| = 1, or
equivalently,

∣∣∣∑ζ∈Z(ψ) ζ
∣∣∣ = |µ| − 1

|µ| . Conversely, suppose
∣∣∣∑ζ∈Z(ψ) ζ

∣∣∣ = |µ| − 1
|µ| , i.e.,

|ΦN−m+1| = 1. Then by Lemma 5, E(ϕ) consists of only one element as the following finite
Blaschke product:

k(z) =
cN−m+1

1− |cN−m|2 zN−m z − α

1− α z
with α = −cN−mcN−m+1

|cN−m+1| .
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Since deg(k) = N −m + 1, it follows that rank [T ∗ϕ, Tϕ] = N −m + 1. This proves (7.2).
Write

ψ(z) := µ
N−m∏

j=1

(z − γj).

Suppose Tϕ is hyponormal. By our assumption and (7.2), [T ∗ϕ, Tϕ] is of rank N −m + 1.
Thus by Lemma 3 (iv), the finite Blaschke product k ∈ E(ϕ) should be of the form

(7.3) k(z) = eiωzN−m z − ξ

1− ξ̄z
(0 < |ξ| < 1, ω ∈ [0, 2π)).

Thus we have

Tϕ hyponormal ⇐⇒ ϕ− k ϕ̄ ∈ H∞ with k in (7.3)

⇐⇒ ḡ − eiωzN−m z − ξ

1− ξ̄z
f̄ ∈ H∞

⇐⇒ ḡ − eiωzN−m z − ξ

1− ξ̄z
ḡ µ̄

N−m∏

j=1

(z̄ − γj) ∈ H∞ (because f = gψ)

⇐⇒ ḡ


1− eiω z − ξ

1− ξ̄z
µ̄

N−m∏

j=1

(1− γjz)


 ∈ H∞

⇐⇒ 1− eiω z − ξ

1− ξ̄z
µ̄

N−m∏

j=1

(1− γjz) ∈ zm H∞(7.4)

Substituting z = 0 into (7.4) gives that 1− eiω(−ξ)µ̄ = 0, and hence eiω = −(µ̄ξ)−1. Thus
Tϕ is hyponormal if and only if

z − ξ

1− ξ̄z
µ̄

N−m∏

j=1

(1− γjz) = −µ̄ξ +
∞∑

j=m

cjz
j for some cj (j = m,m + 1, · · · )

or equivalently,

(7.5) (z−ξ) µ̄
N−m∏

j=1

(1−γjz) = (1−ξ̄z)


−µ̄ξ +

∞∑

j=m

cjz
j


 for some cj (j = m,m+1, · · · ).

Note that

µ̄
N−m∏

j=1

(1− γjz) = zN−mψ(z) = ψ̂(N −m) + ψ̂(N −m− 1) z + · · ·+ ψ̂(0) zN−m.
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Thus solving (7.5) gives
(7.6)



µ̄ |ξ|2 = µ̄− ξ ψ̂(N −m− 1)

0 = ψ̂(j)− ξ ψ̂(j − 1) (j = N −m− 1, · · · , N − 2m + 2)

cm = ψ̂(N − 2m + 1)− ξ ψ̂(N − 2m)

cm+j − ξ̄ cm+j−1 = ψ̂(N − 2m + 1− j)− ξ ψ̂(N − 2m− j) (j = 1, · · · , N − 2m + 1)
cm+j − ξ̄ cm+j−1 = 0 (j = N − 2m + 2, N − 2m + 3, · · · ),

where for notational convenience, we let ψ̂(j) := 0 for j < 0. If N < 2m − 1 then
a telescoping argument with the second equation of (7.6) gives that ψ̂(j) = 0 for all j =
N−2m+2, · · · , N−m−1, so that from the first equation of (7.6) we have that µ̄ |ξ|2 = µ̄ and
hence |ξ| = 1, a contradiction. Therefore, if N < 2m−1 then Tϕ is never hyponormal. Now

suppose that N ≥ 2m−1. Since
∣∣∣ cm+j

cm+j−1

∣∣∣ = |ξ| < 1 for all j = N −2m+2, N −2m+3, · · · ,
we must have that

∑∞
j=m |cj |2 < ∞, i.e.,

∑∞
j=m cjz

j ∈ H∞. Therefore the solutions of
(7.6) equal those of the first two equations of (7.6), i.e.,

(7.7)





ψ̂(N−m−1)

ψ̂(N−m−2)
= ψ̂(N−m−2)

ψ̂(N−m−3)
= · · · = ψ̂(N−2m+2)

ψ̂(N−2m+1)
= ξ̄ = − eiω

µ

µ
∣∣∣ ψ̂(N−m−1)

ψ̂(N−m−2)

∣∣∣
2

= µ− ψ̂(N−m−1)2

ψ̂(N−m−2)
.

But the second equality in (7.7) is equivalent to

(7.8)
1
µ̄

= µ +
eiω

µ
ψ̂(N −m− 1),

which implies

(7.9) −eiω

µ
=

1

ψ̂(N −m− 1)
(µ− 1

µ̄
).

Therefore by the first equation of (7.7) and (7.9), Tϕ is hyponormal if and only if

ψ̂(N −m− 1)

ψ̂(N −m− 2)
=

ψ̂(N −m− 2)

ψ̂(N −m− 3)
= · · · = ψ̂(N − 2m + 2)

ψ̂(N − 2m + 1)
=

1

ψ̂(N −m− 1)
(µ− 1

µ̄
).

This completes the proof. ¤

The following is an immediate result of Theorem 7.



12

Corollary 8. Suppose that ϕ(z) =
∑N

n=−m anzn, where 3 ≤ m ≤ N and |a−m| < |aN |. If

|aN |2 − |a−m|2 =
∣∣∣det

(
a−m a−m+1

aN aN−1

)∣∣∣, then

Tϕ hyponormal ⇐⇒ dj+1 =


 |aN |2 − |a−m|2

det
(

a−m a−m+1

aN aN−1

)
(

a−m

aN

)
 · dj (j = 1, · · · , m− 2),

where the dj are given by

(8.1)




d1

d2
...
...

dm




:=




a−m a−m+1 . . . a−2 a−1

a−m a−m+1 . . . a−2

. . . . . .
...

0
. . . a−m+1

a−m




−1 


aN−m+1

aN−m+2

...

...
aN




.

Proof. Write ϕ = ḡ + f , where f = Pϕ. Applying Lemma 4 shows that there exists a
trigonometric polynomial ϕ̃ of the form ϕ̃ := ḡ + f̃ , where f̃ is an analytic polynomial of
degree 2m such that g divides f̃ and Tϕ is hyponormal if and only if Teϕ is. Note that if

ψ :=
ef
g then from (4.1) we can see that the Fourier coefficients ψ̂(j) are given by the values

dj in (8.1). A straightforward calculation shows that

ψ̂(m) =
aN

a−m
and ψ̂(m− 1) =

aN−1a−m − a−m+1aN

a−m
2 ,

so ∣∣∣∣
∑

ζ∈Z(ψ)

ζ

∣∣∣∣ =
∣∣∣∣
ψ̂(m− 1)

ψ̂(m)

∣∣∣∣ =
∣∣∣∣
aN−1a−m − a−m+1aN

a−maN

∣∣∣∣.

Therefore we have

|aN |2 − |a−m|2 =
∣∣∣det

(
a−m a−m+1

aN aN−1

)∣∣∣ ⇐⇒
∣∣∣∣

∑

ζ∈Z(ψ)

ζ

∣∣∣∣ = |ψ̂(m)| − 1

|ψ̂(m)| .

Now applying Theorem 7 with N = 2m and ψ̂(n) = dn (n = 1, · · · ,m) gives the result. ¤

Example 9. Consider the trigonometric polynomial

(9.1) ϕ(z) = z−3 + 2z−2 + αz−1 + βz + z2 + 2z3 (α, β ∈ C).

Then ϕ satisfies the assumptions of Corollary 8. By (8.1),
(

d1

d2

d3

)
=

(
1 2 ᾱ

0 1 2

0 0 1

)−1 (
β

1

2

)
=

(
β−2ᾱ+6

−3

2

)
.

Thus by Corollary 8, Tϕ is hyponormal if and only if

d2 = −1
2

d1, i.e., 2ᾱ− β = 0.

Therefore we have

(9.2) {(α, β) ∈ C2 : Tϕ is hyponormal} = {(α, β) ∈ C2 : β = 2ᾱ}.
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Example 10. Consider the trigonometric polynomial

ϕ(z) = z−4 + 2z−3 + αz−2 + βz2 + z3 + 2z4 (α, β ∈ C).

We are tempted to guess that (9.2) is still true. But this is not the case. To see this observe
that ϕ satisfies the assumptions of Corollary 8. By (8.1),

( d1

d2

d3

d4

)
=

( 1 2 ᾱ 0

0 1 2 ᾱ

0 0 1 2

0 0 0 1

)−1 ( 0

β

1

2

)
=

(−2β+7ᾱ−12

β−2ᾱ+6

−3

2

)
.

Thus by Corollary 8, Tϕ is hyponormal if and only if dj+1 = − 1
2 dj (j = 1, 2). Therefore

Tϕ is hyponormal if and only if α = β = 0.
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