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The present note concerns subnormality and k–hyponormality of Toeplitz opera-
tors. We begin with a brief survey of research related to P.R. Halmos’s Problem 5 (cf.
[Ha1],[Ha2]):

(Prob 5) Is every subnormal Toeplitz operator either normal or analytic ?

As we know, (Prob 5) was answered in the negative by C. Cowen and J. Long [CoL];
directly connected with it is the following problem:

(0.1) Which Toeplitz operators are subnormal ?

LetH and K be complex Hilbert spaces, let L(H,K) be the set of bounded linear operators
from H to K and write L(H) := L(H,H). An operator T ∈ L(H) is said to be normal if
T ∗T = TT ∗, hyponormal if T ∗T ≥ TT ∗, and subnormal if T = N |H, where N is normal
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on some Hilbert space K ⊇ H. If T is subnormal then T is also hyponormal. Recall that
the Hilbert space L2(T) has a canonical orthonormal basis given by the trigonometric
functions en(z) = zn, for all n ∈ Z, and that the Hardy space H2(T) is the closed linear
span of {en : n = 0, 1, · · ·}. An element f ∈ L2(T) is said to be analytic if f ∈ H2(T),
and co-analytic if f ∈ L2(T)ªH2(T). If P denotes the orthogonal projection from L2(T)
to H2(T), then for every ϕ ∈ L∞(T) the operators Tϕ and Hϕ on H2(T) defined by

Tϕg := P (ϕg) and Hϕ(g) := (I − P )(ϕg) (g ∈ H2(T))

are called the Toeplitz operator and the Hankel operator, respectively, with symbol ϕ.
(Prob 5) has been answered in the affirmative for trigonometric Toeplitz operators

[ItW], and for quasinormal Toeplitz operators [AIW]. In 1976, M. Abrahamse [Abr] gave
a general sufficient condition for the answer to (Prob 5) to be affirmative.

Theorem 1 ([Abr]). If
(i) Tϕ is hyponormal;
(ii) ϕ or ϕ̄ is of bounded type (i.e., ϕ or ϕ̄ is a quotient of two analytic functions);
(iii) ker [T ∗ϕ, Tϕ] is invariant for Tϕ,

then Tϕ is normal or analytic.

Since ker [T ∗, T ] is invariant for every subnormal operator T , Theorem 1 answers (Prob
5) affirmatively when ϕ or ϕ̄ is of bounded type. Also, in [Abr], Abrahamse proposed the
following question, as a strategy to answer (Prob 5):

(Abr) Is the Bergman shift unitarily equivalent to a Toeplitz operator ?

To study this question, recall that given a bounded sequence of positive numbers α :
α0, α1, · · · (called weights), the (unilateral) weighted shift Wα associated with α is the
operator on `2(Z+) defined by Wαen := αnen+1 for all n ≥ 0, where {en}∞n=0 is the
canonical orthonormal basis for `2. It is straightforward to check that Wα can never be
normal, and that Wα is hyponormal if and only if αn ≤ αn+1 for all n ≥ 0. The Bergman

shift is a weighted shift Wα with weights α :=
{√

n
n+1

}∞
n=1

; it is well known that the

Bergman shift is subnormal. In 1983, S. Sun [Sun] showed that if a Toeplitz operator Tϕ

is unitarily equivalent to a hyponormal weighted shift Wα with weight sequence α, then
α must be of the form

(1.1) α =
{

(1− β2n+2)
1
2 ||Tϕ||

}∞
n=0

for some β (0 < β < 1), thus answering (Abr) in the negative. Cowen and Long [CoL]
showed that a unilateral weighted shift with weight sequence of the form (1.1) must be
subnormal (see also [Fa2]). Consequently, we have:

Theorem 2 ([Sun], [Cow2]). Every hyponormal Toeplitz operator which is unitarily
equivalent to a weighted shift must be subnormal.

Finally, in 1984 Cowen and Long [CoL] constructed a symbol ϕ for which Tϕ is
unitarily equivalent to a weighted shift with weight sequence (1.1). This helped answer
(Prob 5) in the negative.
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Theorem 3 ([CoL],[Cow2]). Let 0 < α < 1 and let ψ be a conformal map of the
unit disk onto the interior of the ellipse with vertices ±(1 + α)i and passing through
±(1 − α). If ϕ := (1 − α2)−1(ψ + αψ̄), then Tϕ is a weighted shift with weight sequence
αn = (1− α2n+2)−

1
2 . Therefore, Tϕ is subnormal but neither normal nor analytic.

In view of Theorem 3, it is worth turning one’s attention to hyponormality of Toeplitz
operators, which has been studied by M. Abrahamse [Abr], C. Cowen [Cow1],[Cow2],
P. Fan [Fa1], C. Gu [Gu], T. Ito and T. Wong [ItW], T. Nakazi and K. Takahashi
[NaT], D. Yu [Yu], K. Zhu [Zhu], D. Farenick, the authors, and their collaborators (cf.
[FaL1],[FaL2],[CuL1],[HKL],[KiL]). An elegant theorem of C. Cowen [Cow3] character-
izes the hyponormality of a Toeplitz operator Tϕ on H2(T) by properties of the symbol
ϕ ∈ L∞(T). K. Zhu [Zhu] reformulated Cowen’s criterion and then showed that the hy-
ponormality of Tϕ with polynomial symbols ϕ can be decided by a method based on the
classical interpolation theorem of I. Schur [Sch]. Here, we shall use a variant of Cowen’s
theorem [Cow3] that was first proposed by Nakazi and Takahashi [NaT].

Cowen’s Theorem . Suppose ϕ ∈ L∞(T) is arbitrary and write

E(ϕ) = {k ∈ H∞(T) : ||k||∞ ≤ 1 and ϕ− kϕ ∈ H∞(T)} .

Then Tϕ is hyponormal if and only if the set E(ϕ) is nonempty.

On the other hand, the Bram–Halmos criterion for subnormality states that an oper-
ator T is subnormal if and only if

∑

i,j

(T ixj , T
jxi) ≥ 0

for all finite collections x0, x1, · · · , xk ∈ H ([Bra],[Con, II.1.9]). It is easy to see that this
is equivalent to the following positivity test:

(3.1)




I T ∗ . . . T ∗k

T T ∗T . . . T ∗kT
...

...
. . .

...
T k T ∗T k . . . T ∗kT k


 ≥ 0 (all k ≥ 1).

Condition (3.1) provides a measure of the gap between hyponormality and subnormality.
In fact, the positivity condition (3.1) for k = 1 is equivalent to the hyponormality of
T , while subnormality requires the validity of (3.1) for all k. If we denote by [A,B] :=
AB − BA the commutator of two operators A and B, and if we define T to be k–
hyponormal whenever the k × k operator matrix

(3.2) Mk(T ) := ([T ∗j , T i])k
i,j=1

is positive, or equivalently, the (k + 1)× (k + 1) operator matrix in (3.1) is positive (via
the operator version of Choleski’s Algorithm), then the Bram–Halmos criterion can be
rephrased as saying that T is subnormal if and only if T is k–hyponormal for every k ≥ 1
([CMX]).
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Recall now ([Ath],[Cu2],[CMX]) that T ∈ L(H) is said to be weakly k–hyponormal if

LS(T, T 2, · · · , T k) :=





k∑

j=1

αjT
j : α = (α1, · · · , αk) ∈ Ck





consists entirely of hyponormal operators, or equivalently, Mk(T ) is weakly positive, i.e.,

(Mk(T )




λ0x
...

λkx


 ,




λ0x
...

λkx


) ≥ 0 for x ∈ H and λ0, · · · , λk ∈ C ([CMX]).

If k = 2 then T is said to be quadratically hyponormal. Similarly, T is said to be polyno-
mially hyponormal if p(T ) is hyponormal for every polynomial p ∈ C[z]. It is known that
k–hyponormal ⇒ weakly k–hyponormal, but the converse is not true in general.

It is now natural to try to understand the gap between k–hyponormality and sub-
normality for Toeplitz operators. As a first inquiry in this line of thought we pose the
following ([CuL1]):

Question A. Is every 2–hyponormal Toeplitz operator subnormal ?

In [CuL1], the following was shown:

Theorem 4 ([CuL1]). Every trigonometric Toeplitz operator whose square is hyponor-
mal must be normal or analytic. Hence, in particular, every 2-hyponormal trigonometric
Toeplitz operator is subnormal.

It is well known ([Cu1],[Cu2]) that, for weighted shifts, there are gaps between hy-
ponormality and quadratic hyponormality, and between quadratic hyponormality and 2–
hyponormality. Note that Theorem 4 says more: every quadratically hyponormal trigono-
metric Toeplitz operator is subnormal. Thus Theorem 4 shows that there is a big gap
between hyponormality and quadratic hyponormality for Toeplitz operators. For exam-
ple, if

ϕ(z) ≡
N∑

n=−m

anzn (m < N)

is such that Tϕ is hyponormal, then by Theorem 4 Tϕ is never quadratically hyponormal,
since Tϕ is neither analytic nor normal. (Recall that if such a Tϕ is normal then m = N

(cf. [FaL1]).)
In view of Theorem 4, the following question arises naturally:

Question B. Is every quadratically hyponormal Toeplitz operator 2–hyponormal ?

An affirmative answer to Question B would show that there exists no gap between
quadratic hyponormality and 2–hyponormality for Toeplitz operators. A negative answer
would give rise to a challenging problem: Characterize non–2–hyponormal quadratically
hyponormal Toeplitz operators; more generally, characterize non–k–hyponormal weakly
k–hyponormal Toeplitz operators.

We can extend Theorem 4. First we observe:
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Proposition 5 ([CuL2]). If T ∈ L(H) is 2–hyponormal then

(5.1) T
(
ker [T ∗, T ]

) ⊆ ker [T ∗, T ].

Proof. Suppose that [T ∗, T ]f = 0. Since T is 2–hyponormal, it follows from (3.2)
that (cf. [CMX, Lemma 1.4])

|([T ∗2, T ]g, f)|2 ≤ ([T ∗, T ]f, f)([T ∗2, T 2]g, g) for all g ∈ H.

By assumption, we have that for all g ∈ H, 0 = ([T ∗2, T ]g, f) = (g, [T ∗2, T ]∗f), so that
[T ∗2, T ]∗f = 0, i.e., T ∗T 2f = T 2T ∗f . Therefore,

[T ∗, T ]Tf = (T ∗T 2 − TT ∗T )f = (T 2T ∗ − TT ∗T )f = T [T ∗, T ]f = 0,

which proves (5.1).

Corollary 6. If Tϕ is 2–hyponormal and if ϕ or ϕ̄ is of bounded type then Tϕ is
normal or analytic, so that Tϕ is subnormal.

Proof. This follows at once from Theorem 1 and Proposition 5.

Corollary 7. If Tϕ is a 2–hyponormal operator such that E(ϕ) contains at least two
elements then Tϕ is normal or analytic, so that Tϕ is subnormal.

Proof. This follows from Corollary 6 and the fact, shown in [NaT, Proposition 8],
that if E(ϕ) contains at least two elements then ϕ is of bounded type.

From Corollaries 6 and 7, we can see that if Tϕ is 2–hyponormal but not subnormal
then ϕ is not of bounded type and E(ϕ) consists of exactly one element.

From Corollary 6 we can see that if Tϕ is a 2–hyponormal operator such that ϕ or ϕ̄

is of bounded type then Tϕ has a nontrivial invariant subspace. The following question
arises naturally:

Question C. Does every 2–hyponormal Toeplitz operator have a nontrivial invariant
subspace ? More generally, does every 2–hyponormal operator have a nontrivial invariant
subspace ?

It is well known ([Bro]) that if T is a hyponormal operator such that R(σ(T )) 6=
C(σ(T )) then T has a nontrivial invariant subspace. But it remains still open whether
every hyponormal operator with R(σ(T )) = C(σ(T )) (i.e., with a thin spectrum) has a
nontrivial invariant subspace. Recall that T ∈ L(H) is called a von Neumann operator if
σ(T ) is a spectral set for T ; as shown by J. Agler [Agl], every von Neumann operator has
a nontrivial invariant subspace. Recently, B. Prunaru [Pru] established that polynomially
hyponormal operators also possess the same property. The following is a sub-question of
Question C.

Question D. Is every 2–hyponormal operator with thin spectrum a von Neumann
operator ?

Recall that ϕ ∈ L∞(T) is called almost analytic if zn ϕ is analytic for some positive
n and is called almost coanalytic if ϕ̄ is almost analytic. Observe that if ϕ is real–valued
and almost analytic, then ϕ is constant. It is easy to check that if ϕ is almost coanalytic
and Tϕ is hyponormal then ϕ must be a trigonometric polynomial. But this is not the
case for almost analytic functions ϕ. To see this, we reformulate Cowen’s Theorem.
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Suppose ϕ ∈ L∞(T) is of the form ϕ(z) =
∑∞

n=−∞ anzn and k(z) =
∑∞

n=0 cnzn is in
H2(T). Then ϕ− k ϕ̄ ∈ H∞ has a solution k ∈ H∞ if and only if

(7.1)




ā1 ā2 ā3 . . . ān . . .
ā2 ā3 . . . ān . . .
ā3 . . . . . . . . .
... ān . . .

ān . . .
...







c0

c1

c2
...
...
...




=




a−1

a−2

a−3

...

...

...




,

that is, Hϕ̄k = Hϕe0, where e0 = (1, 0, 0, · · ·). Thus, by Cowen’s Theorem, Tϕ is hy-
ponormal if and only if there exists a solution k ∈ H∞(T) of the equation (7.1) such that
||k||∞ ≤ 1.

Now suppose ϕ ∈ L∞(T) is a function of the form

ϕ(z) =
1
6

z−1 +
∞∑

n=2

1
2n−1

zn.

Then k(z) =
∑∞

n=0 cnzn satisfies ϕ− k ϕ̄ ∈ H∞ if and only if



0 1
2

1
4

1
8 . . .

1
2

1
4

1
8 . . .

1
4

1
8 . . .

1
8 . . .
...







c0

c1

c2
...
...




=




1
6

0

0
...
...




.

A straightforward calculation shows that

k(z) = −1
6

+
∞∑

n=1

1
2n+1

zn

satisfies (7.1). Also, it is easy to see that k(z) = 1
3

z− 1
2

1− 1
2 z

, so ||k||∞ = 1
3 . Therefore Tϕ is

hyponormal (cf. [CuL1, Example 2.3]).
However we have:

Theorem 8. If Tϕ is 2–hyponormal with non–analytic almost analytic symbol ϕ then
ϕ must be a trigonometric polynomial.

Proof. Since almost analytic functions are of bounded type it follows from Corollary
6 that if Tϕ is 2–hyponormal with non–analytic almost analytic symbol ϕ then Tϕ must
be normal. Since by the Brown–Halmos Theorem [BrH], every normal Toeplitz operator
is a rotation and a translation of a hermitian Toeplitz operator, it follows that ϕ must
be a trigonometric polynomial.

Although the existence of a non–subnormal polynomially hyponormal weighted shift
was established in [CuP1] and [CuP2], it is still an open question whether the implication
“polynomially hyponormal ⇒ subnormal” can be disproved with a Toeplitz operator.
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Question E. Does there exist a Toeplitz operator which is polynomially hyponormal
but not subnormal ?

It is well known that T is a von Neumann operator if and only if q(T ) is normaloid
(i.e., norm equals spectral radius) for every rational function q with poles outside σ(T ).
Thus if T is rationally hyponormal, i.e., q(T ) is hyponormal for every rational function q

with poles outside σ(T ), then T is a von Neumann operator. Thus the following question
arises naturally:

Question F. Does there exist a polynomially hyponormal operator which is not a
von Neumann operator ? And within the class of Toeplitz operators ?

An affirmative answer to Question F guarantees the existence of polynomially hy-
ponormal operators which are not rationally hyponormal (and hence not subnormal).
Within the class of trigonometric Toeplitz operators we have, by Theorem 4, that if Tϕ

is polynomially hyponormal then Tϕ is a von Neumann operator.
In [CuL2] it was shown that every pure 2–hyponormal operator with rank-one self–

commutator is a linear function of the unilateral shift. On the other hand, J.E. McCarthy
and L. Yang [McCY] have classified all rationally cyclic subnormal operators with finite
rank self–commutators. However, it is still open which are the pure subnormal operators
with finite rank self–commutator. Related to this, we formulate the following:

Question G. If Tϕ is a 2–hyponormal Toeplitz operator with nonzero finite rank
self-commutator, does it follow that Tϕ is analytic ? If the answer is affirmative, is ϕ

either an analytic polynomial or a linear function of a finite Blaschke product ?

We shall give a partial positive answer to Question G. To do this we recall Theorem
15 in [NaT], which states that if Tϕ is subnormal and ϕ = qϕ̄, where q is a finite Blaschke
product, then Tϕ is normal or analytic. A careful examination of the proof of that theorem
reveals that it uses the subnormality assumption only for the fact that ker [T ∗ϕ, Tϕ] is
invariant under Tϕ. Thus in view of Proposition 5, the theorem is still valid for “2–
hyponormal” in place of “subnormal”. We thus have:

Lemma 9. If Tϕ is 2–hyponormal and ϕ = qϕ̄, where q is a finite Blaschke product,
then Tϕ is normal or analytic.

We now give a partial answer to Question G.

Theorem 10. Suppose log |ϕ| is not integrable. If Tϕ is a 2–hyponormal operator
with nonzero finite rank self–commutator then Tϕ is analytic.

Proof. If Tϕ is hyponormal such that log |ϕ| is not integrable then, by an argument
of [NaT, Theorem 4], ϕ = qϕ̄ for some inner function q. Also if Tϕ has a finite rank self–
commutator then, by [NaT, Theorem 10], there exists a finite Blaschke product b ∈ E(ϕ).
If q 6= b, so that E(ϕ) contains at least two elements, then by Corollary 7, Tϕ is normal
or analytic. If instead q = b then, by Lemma 9, Tϕ is also normal or analytic.

Theorem 10 reduces Question G to the class of Toeplitz operators such that log |ϕ| is
integrable. If log |ϕ| is integrable then there exists an outer function e such that |ϕ| = |e|.
Thus we may write ϕ = ue, where u is a unimodular function. Since by the Douglas–Rudin



8 R.E. CURTO AND W.Y. LEE

Theorem (cf. [Gar, p.192]), every unimodular function can be approximated by quotients
of inner functions, it follows that if log |ϕ| is integrable then ϕ can be approximated by
functions of bounded type. Therefore if we could obtain a sequence ψn converging to
ϕ such that Tψn

is 2–hyponormal with finite rank self–commutator for each n, then we
would answer Question G affirmatively. On the other hand, if Tϕ attains its norm, then
by a result of Brown and Douglas [BrD] ϕ is of the form ϕ = λψ

θ with λ > 0 and ψ, θ

inner. Thus ϕ is of bounded type. Therefore, by Corollary 7, if Tϕ is 2–hyponormal and
attains its norm then Tϕ is normal or analytic. However we have not been able to decide
that if Tϕ is a 2–hyponormal operator with finite rank self–commutator then Tϕ attains
its norm.
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