COWEN SETS FOR TOEPLITZ OPERATORS WITH FINITE RANK SELFCOMMUTATORS

Woo Young Lee

ABSTRACT. Cowen's theorem states that if $\varphi \in L^{\infty}(\mathbb{T})$ then the Toeplitz operator T_{φ} is hyponormal if and only if the following 'Cowen' set $\mathcal{E}(\varphi)$ is nonempty:

$$\mathcal{E}(\varphi) = \{ k \in H^{\infty}(\mathbb{T}) : ||k||_{\infty} \le 1 \text{ and } \varphi - k\overline{\varphi} \in H^{\infty}(\mathbb{T}) \}.$$

In this paper, we give a complete description on the Cowen set $\mathcal{E}(\varphi)$ if the selfcommutator $[T_{\varphi}^*, T_{\varphi}]$ is of finite rank. In particular, it is shown that the solution for the cases where φ is of bounded type has a connection with a H^{∞} optimization problem.

1. Introduction

A bounded linear operator A on a Hilbert space \mathfrak{H} is said to be hyponormal if its selfcommutator $[A^*,A]=A^*A-AA^*$ is positive semidefinite. Recall that given $\varphi\in L^\infty(\mathbb{T})$, the Toeplitz operator with symbol φ is the operator T_φ on the Hardy space $H^2(\mathbb{T})$ of the unit circle $\mathbb{T}=\partial\mathbb{D}$ in the complex plane \mathbb{C} defined by

$$T_{\varphi}f = P(\varphi \cdot f),$$

where $f \in H^2(\mathbb{T})$ and P denotes the orthogonal projection that maps $L^2(\mathbb{T})$ onto $H^2(\mathbb{T})$. Relationships between hyponormal operators and Toeplitz-like operators were discovered in papers [NF] and [Cla]. More recently, the problem of determining which symbols induce hyponormal Toeplitz operators was completely solved by C. Cowen [Co] in 1988. Here we shall employ an equivalent variant of Cowen's theorem that was proposed by T. Nakazi and K. Takahashi in [NT].

²⁰⁰⁰ Mathematics Subject Classification. Primary 47B20, 47B35

Key words and phrases. Cowen sets, H^{∞} optimization problem, Toeplitz operators, Hankel operators, hyponormal, bounded type, Carathéodory–Schur interpolation problem.

Cowen's theorem. [Co], [NT] Suppose that $\varphi \in L^{\infty}(\mathbb{T})$ is arbitrary and put

$$\mathcal{E}(\varphi) := \{ k \in H^{\infty}(\mathbb{T}) : ||k||_{\infty} \le 1 \text{ and } \varphi - k\overline{\varphi} \in H^{\infty}(\mathbb{T}) \}.$$

Then T_{φ} is hyponormal if and only if the set $\mathcal{E}(\varphi)$ is nonempty.

Cowen's method is to recast the operator-theoretic problem of hyponormality for Toeplitz operators into the problem of finding a solution of a certain functional equation involving its symbol. This approach has been put to use in the works [CL1], [CL2], [FL], [GS], [HKL], [HL], [NT], [Zhu] to study Toeplitz operators on the Hardy space of the unit circle.

Now the set $\mathcal{E}(\varphi)$ will be called the *Cowen set* for the function $\varphi \in L^{\infty}(\mathbb{T})$. The question about the Cowen set $\mathcal{E}(\varphi)$ is of great interest. Indeed, $\mathcal{E}(\varphi)$ has been studied intensively in recent literature because when φ is of bounded type (i.e., quotient of two bounded analytic functions), it has a connection with the following H^{∞} optimization problem which naturally arise in robust control theory (cf. [FF]):

 H^{∞} optimization problem. Let $k_0 \in L^{\infty}(\mathbb{T})$ and θ a fixed inner function in $H^{\infty}(\mathbb{T})$. Find μ where

$$\mu = \operatorname{dist}(k_0, \, \theta H^{\infty}) \equiv \inf_{h \in H^{\infty}} ||k_0 - \theta h||_{\infty}.$$

In this paper it is shown that via Nehari's theorem and Adamyan-Arov-Krein theorem, a solution of a H^{∞} optimization problem provides information on $\mathcal{E}(\varphi)$ when φ is of bounded type and T_{φ} has finite rank selfcommutator.

2. Main Results

We begin with the connection between Hankel and Toeplitz operators. For φ in $L^{\infty}(\mathbb{T})$, the Hankel operator $H_{\varphi}: H^2 \to H^2$ is defined by

$$H_{\varphi}f = J(I - P)(\varphi f),$$

where $J:(H^2)^{\perp}\to H^2$ is given by $Jz^{-n}=z^{n-1}$ for $n\geq 1$. For $\zeta\in L^{\infty}(\mathbb{T}),$ we define

$$\widetilde{\zeta} = \overline{\zeta(\overline{z})}.$$

The following is a basic connection between Hankel and Toeplitz operators:

$$T_{\varphi\psi} - T_{\varphi}T_{\psi} = H_{\overline{\varphi}}^* H_{\psi} \quad (\varphi, \psi \in L^{\infty}) \quad \text{and} \quad H_{\varphi}T_h = H_{\varphi h} = T_{\widetilde{h}}^* H_{\varphi} \quad (h \in H^{\infty}).$$

From this we can see that if $k \in \mathcal{E}(\varphi)$ then

$$(1) [T_{\varphi}^*, T_{\varphi}] = H_{\overline{\varphi}}^* H_{\overline{\varphi}} - H_{\varphi}^* H_{\varphi} = H_{\overline{\varphi}}^* H_{\overline{\varphi}} - H_{k_{\overline{\varphi}}}^* H_{k_{\overline{\varphi}}} = H_{\overline{\varphi}}^* (1 - T_{\widetilde{k}} T_{\widetilde{k}}^*) H_{\overline{\varphi}}.$$

For an inner function θ , we write

$$\mathcal{H}(\theta) \equiv H^2 \ominus \theta H^2$$
.

If $\varphi \in L^{\infty}$, write

$$\varphi_+ \equiv P(\varphi) \in H^2$$
 and $\varphi_- \equiv \overline{(I-P)(\varphi)} \in zH^2$.

Thus we can write $\varphi = \varphi_+ + \overline{\varphi_-}$. Assume that φ is of bounded type, i.e., there are functions ψ_1, ψ_2 in $H^{\infty}(\mathbb{D})$ such that

$$\varphi(z) = \frac{\psi_1(z)}{\psi_2(z)}$$

for almost all $z \in \mathbb{T}$. Since $T_{\overline{z}}H_{\varphi} = H_{\varphi}T_z$ it follows from Beurling's theorem that $\ker H_{\overline{\varphi_-}} = \theta H^2$ and $\ker H_{\overline{\varphi_+}} = \theta_+ H^2$ for some inner functions θ, θ_+ . If T_{φ} is hyponormal then by (1), $||H_{\overline{\varphi_+}}f|| \geq ||H_{\overline{\varphi_-}}f||$ for all $f \in H^2$, so that

$$\theta_+ H^2 = \ker H_{\overline{\varphi_+}} \subseteq \ker H_{\overline{\varphi_-}} = \theta H^2,$$

which implies that θ divides θ_+ , i.e., $\theta_+ = \theta_0 \theta$ for some inner function θ_0 . Thus if $\varphi = \varphi_+ + \overline{\varphi_-}$ is of bounded type and T_{φ} is hyponormal then we can write (cf. [GS])

$$\varphi_+ = \theta_0 \theta \bar{a} \quad \text{and} \quad \varphi_- = \theta \bar{b},$$

where $a \in \mathcal{H}(\theta_0 \theta)$ and $b \in \mathcal{H}(\theta)$. If $k_0 \in H^{\infty}$ is a solution of equation

(2)
$$b - k_0 a = \theta h \quad \text{for some } h \in H^2$$

then $\mathcal{E}(\varphi)$ can be written as

$$\mathcal{E}(\varphi) = \{ \theta_0(k_0 + \theta f) : f \in H^{\infty} \text{ and } ||k_0 + \theta f||_{\infty} \le 1 \}.$$

By Nehari's Theorem [Ne], we have

(3)
$$\operatorname{dist}(k_0, \ \theta H^{\infty}) = \inf_{f \in H^{\infty}} ||\bar{\theta}k_0 + f||_{\infty} = ||H_{\bar{\theta}k_0}||.$$

Thus we have (see [GS, Theorem 8])

(4)
$$T_{\varphi}$$
 is hyponormal $\iff ||H_{\bar{\theta}k_0}|| \leq 1$.

The following theorem is our main result, which gives a description on the Cowen set $\mathcal{E}(\varphi)$ when the selfcommutator $[T_{\varphi}^*, T_{\varphi}]$ is of finite rank. In fact we can prove more:

Theorem 1. If φ is of bounded type then we have that:

- (a) If $\ker H_{\overline{\varphi}} \nsubseteq \ker [T_{\varphi}^*, T_{\varphi}]$ then $\mathcal{E}(\varphi)$ is empty;
- (b) If $\ker H_{\overline{\varphi}} = \ker [T_{\varphi}^*, T_{\varphi}]$ and $\operatorname{rank} [T_{\varphi}^*, T_{\varphi}] < \infty$ then $\mathcal{E}(\varphi)$ contains infinitely many inner functions;
- (c) If $\ker H_{\overline{\varphi}} \subsetneq \ker [T_{\varphi}^*, T_{\varphi}]$ then $\mathcal{E}(\varphi)$ contains a unique function which is inner. If instead φ is not of bounded type such that T_{φ} is hyponormal then $\mathcal{E}(\varphi)$ contains a unique function.

To prove Theorem 1 we need auxiliary lemmas.

The following lemma is another version of Cowen's theorem.

Lemma 2. [CL1], [CL2, Lemma 1] If $\varphi \equiv \varphi_+ + \overline{\varphi_-} \in L^{\infty}$, then $\mathcal{E}(\varphi) \neq \emptyset$ if and only if the equation $H_{\overline{\varphi_+}}k = \overline{z}\widetilde{\varphi_-}$ admits a solution k satisfying $||k||_{\infty} \leq 1$.

T. Nakazi and K. Takahashi [NT] noticed that if T_{φ} is a hyponormal operator such that its selfcommutator is of finite rank then $\mathcal{E}(\varphi)$ contains a finite Blaschke product.

Lemma 3. (Nakazi-Takahashi Theorem) [NT] A Toeplitz operator T_{φ} is hyponormal and the rank of the selfcommutator $[T_{\varphi}^*, T_{\varphi}]$ is finite if and only if there exists a finite Blaschke product k in $\mathcal{E}(\varphi)$ of the form

$$k(z) = e^{i\theta} \prod_{j=1}^{n} \frac{z - \beta_j}{1 - \overline{\beta_j}z}$$
 $(|\beta_j| < 1 \text{ for } j = 1, \dots, n).$

such that $\deg(k) = \operatorname{rank}[T_{\varphi}^*, T_{\varphi}]$, where $\deg(k)$ denotes the degree of k – meaning the number of zeros of k in the open unit disk \mathbb{D} .

The following lemma is a solution of a H^{∞} optimization problem.

Lemma 4. If b and q are finite Blaschke products then

(5)
$$\deg(b) \ge \deg(q) \iff \operatorname{dist}(b, qH^{\infty}) < 1.$$

Proof. In general, for a continuous function u on \mathbb{T} with $|u| \equiv 1$,

(6)
$$\operatorname{dist}(u, H^{\infty}) < 1 \iff \operatorname{wind}(u) \ge 0,$$

where wind(\cdot) denotes the winding number with respect to the origin: indeed, this follows from the fact that (see [Ni, Appendix 4, Theorem 41])

$$\operatorname{dist}(u, H^{\infty}) < 1 \iff T_u \text{ is left invertible } \iff \operatorname{wind}(u) \geq 0,$$

where the second implication comes from the observation that T_u is Fredholm and hence, by Coburn's theorem T_u is left or right invertible and the Fredholm index of T_u is equal to -wind(u). Applying (6) to $u = \frac{b}{a}$ gives that

$$\operatorname{dist}\left(b,\ q\,H^{\infty}\right)<1\iff \operatorname{wind}\left(\frac{b}{q}\right)\geq 0\iff \operatorname{deg}\left(b\right)\geq\operatorname{deg}\left(q\right).$$

We are ready for:

Proof of Theorem 1. From (1) we can see that if T_{φ} is hyponormal then

$$\ker H_{\overline{\varphi}} \subseteq \ker [T_{\varphi}^*, T_{\varphi}],$$

which proves statement (a).

Towards statement (b), suppose φ is of bounded type. So we can write $\varphi = \theta_0 \theta \bar{a} + \bar{\theta} b$ for $a \in \mathcal{H}(\theta_0 \theta)$ and $b \in \mathcal{H}(\theta)$. Now suppose $\ker H_{\overline{\varphi}} = \ker [T_{\varphi}^*, T_{\varphi}]$ and $\operatorname{rank}[T_{\varphi}^*, T_{\varphi}] < \infty$. Since $\ker H_{\overline{\varphi}} = \theta_0 \theta H^2$ it follows that

$$\operatorname{ran}\left[T_{\varphi}^{*}, T_{\varphi}\right] = \left(\ker\left[T_{\varphi}^{*}, T_{\varphi}\right]\right)^{\perp} = \left(\ker H_{\overline{\varphi}}\right)^{\perp} = H^{2} \ominus \theta_{0} \theta H^{2},$$

which implies that $\theta_0\theta$ is a finite Blaschke product since $\operatorname{ran}\left[T_{\varphi}^*,T_{\varphi}\right]$ is finite dimensional. Also, by Lemma 3 there exists a finite Blaschke product θ_0k_0 in $\mathcal{E}(\varphi)$ such that $\operatorname{deg}(\theta_0k_0)=\operatorname{rank}\left[T_{\varphi}^*,T_{\varphi}\right]$. Thus k_0 is a finite Blaschke product such that $\operatorname{deg}(\theta_0k_0)=\operatorname{rank}H_{\overline{\varphi}}=\operatorname{deg}(\theta_0\theta)$, and hence $\operatorname{deg}(k_0)=\operatorname{deg}(\theta)$. So by Lemma 4, we have that $\operatorname{dist}(k_0,\ \theta H^{\infty})<1$, and hence by (3), $||H_{\overline{\theta}k_0}||<1$. Remembering Adamyan-Arov-Krein theorem which states that if $f\in L^{\infty}$ and $\operatorname{dist}(f,H^{\infty})<1$ then $f+H^{\infty}$ contains a unimodular function, we can see that if $||H_{\overline{\theta}k_0}||<1$, then $k_0+\theta H^{\infty}$ contains an inner function. Thus $\theta_0k_0+\theta_0\theta H^{\infty}$ contains an inner function, and in turn, $\mathcal{E}(\varphi)$ contains an inner function. Since

$$1 > \operatorname{dist}(\bar{\theta} k_0, H^{\infty}) = \operatorname{dist}(\bar{z}\bar{\theta}k_0, \bar{z}H^{\infty})$$
$$= \operatorname{dist}(\bar{z}\bar{\theta}k_0 + \bar{z}c, H^{\infty}) \quad \text{for a suitable } c$$
$$= ||H_{\bar{z}\bar{\theta}(k_0 + \theta c)}||,$$

we can choose different constants α_n $(n \in \mathbb{Z}_+)$ such that $||H_{\bar{z}\bar{\theta}(k_0+\theta\alpha_n)}|| < 1$. Applying again Adamyan-Arov-Krein theorem to $H_{\bar{z}\bar{\theta}(k_0+\theta\alpha_n)}$, there exists $q_n \in H^{\infty}$ such that $k_0 + \theta\alpha_n + z\theta q_n$ are inner functions. Evidently, $\theta_0 k_0 + \theta_0 \theta(\alpha_n + z\theta q_n) \in \mathcal{E}(\varphi)$ and are different. This proves statement (b).

Towards statement (c), suppose $\ker H_{\overline{\varphi}} \subsetneq \ker [T_{\varphi}^*, T_{\varphi}]$. If $\mathcal{E}(\varphi)$ contains a function k which is not inner then $\ker (1 - T_{\widetilde{k}} T_{\widetilde{k}}^*) = \{0\}$: indeed if $g = T_{\widetilde{k}} T_{\widetilde{k}}^* g$ then $||g||^2 = ||T_{\widetilde{k}}^* g||^2$, and hence

$$\int |g|^2 d\mu = ||g||^2 = ||T_{\widetilde{k}}^* g||^2 \le ||\overline{\widetilde{k}} g||^2 = \int |\widetilde{k}|^2 |g|^2 d\mu,$$

which implies that g=0 a.e. if \widetilde{k} is not inner. Thus by (1) we have that $\ker [T_{\varphi}^*, T_{\varphi}] \subseteq \ker H_{\overline{\varphi}}$, which forces that $\ker H_{\overline{\varphi}} = \ker [T_{\varphi}^*, T_{\varphi}]$, a contradiction. If instead $\mathcal{E}(\varphi)$ contains two different inner functions then $\mathcal{E}(\varphi)$ has a function which is not inner: for if k_1 and k_2 ($k_1 \neq k_2$) are inner functions in $\mathcal{E}(\varphi)$ then we can easily see that $\frac{k_1+k_2}{2} \in \mathcal{E}(\varphi)$ and $\frac{k_1+k_2}{2}$ is not an inner function since every inner function is an extreme point of the unit ball of H^{∞} . Thus $\mathcal{E}(\varphi)$ contains a unique inner function. This proves statement (c).

For the second assertion write $\varphi = \varphi_+ + \overline{\varphi_-}$. If φ is not of bounded type then by an argument of Abrahamse [Ab, Lemma 3], we have that $\ker H_{\overline{\varphi_+}} = \ker H_{\overline{\varphi}} = \{0\}$. Thus the solution k of the equation $H_{\overline{\varphi_+}}k = \overline{z}\widetilde{\varphi_-}$ should be unique. Thus the second assertion follows at once from Lemma 2.

We would like to remark that if $H_{\overline{\theta}k_0}$ attains its norm (e.g., it is of finite rank) then dist $(k_0, \theta H^{\infty}) = 1$ implies that $\mathcal{E}(\varphi)$ contains a unique inner function. To see this, recall (cf. [Ni, p.202]) that if $f \in L^{\infty}$ and H_f attains its norm then $f + H^{\infty}$ contains a unique element of least norm which is of the form $\lambda \frac{\overline{h}}{h\nu}$, where $\lambda \in \mathbb{C}$, h is an outer function and ν is an inner function. So if $||H_{\overline{\theta}k_0}|| = 1$ and $H_{\overline{\theta}k_0}$ attains its norm then by (3), $\overline{\theta}k_0 + H^{\infty}$ contains a unique unimodular function. Thus $\mathcal{E}(\varphi)$ contains a unique inner function.

We now turn our attention to the cases of Toelplitz operators with symbols that are trigonometric polynomials. If φ is a trigonometric polynomial of the form $\varphi(z) = \sum_{n=-m}^{N} a_n z^n$, where a_{-m} and a_N are nonzero, then the rank of the selfcommutator $[T_{\varphi}^*, T_{\varphi}]$ is finite. Thus if T_{φ} is hyponormal then by Lemma 3, $\mathcal{E}(\varphi)$ contains a finite Blaschke product.

We now have:

Corollary 5. Let $\varphi(z) = \sum_{n=-m}^{N} a_n z^n$ be such that T_{φ} is a hyponormal operator.

- (a) If rank $[T_{\varphi}^*, T_{\varphi}] < N$ then $\mathcal{E}(\varphi)$ contains a unique finite Blaschke product;
- (b) If rank $[T_{\varphi}^*, T_{\varphi}] = N$ then $\mathcal{E}(\varphi)$ contains infinitely many inner functions. Furthermore if $b \in \mathcal{E}(\varphi)$ is a finite Blaschke product then $\deg(b) \geq N$.

Proof. Since $\ker H_{\overline{\varphi}} = z^N H^2$, Part (a) corresponds to the case where $\ker H_{\overline{\varphi}} \subsetneq \ker [T_{\varphi}^*, T_{\varphi}]$ and Part (b) corresponds to the case where $\ker H_{\overline{\varphi}} = \ker [T_{\varphi}^*, T_{\varphi}]$. Thus the statment (a) and the first assertion of statement (b) follow at once from Theorem 1 together with Lemma 3.

For the second assertion of statement (b), assume to the contrary that $b \in \mathcal{E}(\varphi)$ is a finite Blaschke product of degree less than N. By Lemma 3, there exists a finite Blaschke product $k \in \mathcal{E}(\varphi)$ of degree N. Then we have

$$\widehat{k}(j) = \widehat{b}(j)$$
 for $j = 1, \dots, N - 1$,

where $\widehat{f}(j)$ means the j-th Fourier coefficients of $f \in H^{\infty}$. Thus by the uniqueness argument of [HL, Lemma 1] we should have that b = k, a contradiction.

Corollary 5(a) is an extended result of [HKL, Corollary 4]. The following is an immediate result from Corollary 5.

Corollary 6. Suppose that $\varphi(z) = \sum_{n=-m}^{N} a_n z^n$ and that k is a finite Blaschke product in $\mathcal{E}(\varphi)$.

- (a) If $\deg(k) < N$ then $\operatorname{rank}[T_{\varphi}^*, T_{\varphi}] = \deg(k)$;
- (b) If $deg(k) \ge N$ then $rank[T_{\varphi}^*, T_{\varphi}] = N$.

Acknowledgments. The author is grateful to Professors Caixing Gu, Young-One Kim and the referee for several helpful suggestions concerning the topics in this paper. This work was supported by SNU foundation in 2003.

References

- [Ab] M. B. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke Math. J. 43 (1976), 597–604.
- [Cla] K. F. Clancey, Toeplitz models for operators with one-dimensional self-commutators. Dilation theory, Toeplitz operators, and other topics (Timişoara/Herculane, 1982), 81–107, Oper. Theory Adv. Appl., 11, Birkhäuser, Basel, 1983.

- [Co] C. C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), 809–812.
- [CL1] R. E. Curto and W. Y. Lee, Joint hyponormality of Toeplitz pairs, Mem. Amer. Math. Soc. no. 712, Amer. Math. Soc., Providence, 2001.
- [CL2] _____, Reduced Cowen sets, New York J. Math. 7 (2001), 217–222.
- [FL] D. R. Farenick and W. Y. Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348 (1996), 4153–4174.
- [FF] C. Foiaş and A. Frazho, *The Commutant Lifting Approach to Interpolation Problems*, Operator Theory: Adv. Appl., vol **44**, Birkhäuser-Verlag, Boston, 1990.
- [GS] C. Gu and J. E. Shapiro, Kernels of Hankel operators and hyponormality of Toeplitz operators, Math. Ann. **319** (2001), 553–572.
- [HKL] I. S. Hwang, I. H. Kim and W. Y. Lee, Hyponormality of Toeplitz operators with polynomial symbols, Math. Ann. **313** (1999), 247–261.
- [HL] I. S. Hwang and W. Y. Lee, Hyponormality of trigonometric Toeplitz operators, Trans. Amer. Math. Soc. **354** (2002), 2461–2474.
- [NF] B. Sz.-Nagy and C. Foiaş, An application of dilation theory to hyponormal operators, Acta Sci. Math. (Szeged) 37 (1975), 155-159.
- [NT] T. Nakazi and K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc. **338** (1993), 753–769.
- [Ne] Z. Nehari, On bounded bilinear forms, Ann. of Math. 65 (1957), 153–162.
- [Ni] N. K. Nikolskii, Treatise on the shift operator, Springer, New York, 1986.
- [Zhu] K. Zhu, Hyponormal Toeplitz operators with polynomial symbols, Integral Equations Operator Theory 21 (1995), 376–381.

DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL 151-742, KOREA $E\text{-}mail\ address:}$ wylee@math.snu.ac.kr