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Abstract. Cowen’s theorem states that if ϕ ∈ L∞(T) then the Toeplitz operator Tϕ

is hyponormal if and only if the following ‘Cowen’ set E(ϕ) is nonempty:

E(ϕ) = {k ∈ H∞(T) : ||k||∞ ≤ 1 and ϕ− kϕ ∈ H∞(T)} .

In this paper, we give a complete description on the Cowen set E(ϕ) if the selfcommu-
tator [T ∗ϕ, Tϕ] is of finite rank. In particular, it is shown that the solution for the cases
where ϕ is of bounded type has a connection with a H∞ optimization problem.

1. Introduction

A bounded linear operator A on a Hilbert space H is said to be hyponormal if its
selfcommutator [A∗, A] = A∗A − AA∗ is positive semidefinite. Recall that given
ϕ ∈ L∞(T), the Toeplitz operator with symbol ϕ is the operator Tϕ on the Hardy
space H2(T) of the unit circle T = ∂D in the complex plane C defined by

Tϕf = P (ϕ · f),

where f ∈ H2(T) and P denotes the orthogonal projection that maps L2(T) onto
H2(T). Relationships between hyponormal operators and Toeplitz-like operators
were discovered in papers [NF] and [Cla]. More recently, the problem of determining
which symbols induce hyponormal Toeplitz operators was completely solved by C.
Cowen [Co] in 1988. Here we shall employ an equivalent variant of Cowen’s theorem
that was proposed by T. Nakazi and K. Takahashi in [NT].
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Cowen’s theorem. [Co], [NT] Suppose that ϕ ∈ L∞(T) is arbitrary and put

E(ϕ) := {k ∈ H∞(T) : ||k||∞ ≤ 1 and ϕ− kϕ ∈ H∞(T)} .

Then Tϕ is hyponormal if and only if the set E(ϕ) is nonempty.

Cowen’s method is to recast the operator-theoretic problem of hyponormality for
Toeplitz operators into the problem of finding a solution of a certain functional equa-
tion involving its symbol. This approach has been put to use in the works [CL1],
[CL2], [FL], [GS], [HKL], [HL], [NT], [Zhu] to study Toeplitz operators on the Hardy
space of the unit circle.

Now the set E(ϕ) will be called the Cowen set for the function ϕ ∈ L∞(T). The
question about the Cowen set E(ϕ) is of great interest. Indeed, E(ϕ) has been studied
intensively in recent literature because when ϕ is of bounded type (i.e., quotient of two
bounded analytic functions), it has a connection with the following H∞ optimization
problem which naturally arise in robust control theory (cf. [FF]):

H∞ optimization problem. Let k0 ∈ L∞(T) and θ a fixed inner function in
H∞(T). Find µ where

µ = dist (k0, θH∞) ≡ inf
h∈H∞

||k0 − θh||∞.

In this paper it is shown that via Nehari’s theorem and Adamyan-Arov-Krein theo-
rem, a solution of a H∞ optimization problem provides information on E(ϕ) when ϕ
is of bounded type and Tϕ has finite rank selfcommutator.

2. Main Results

We begin with the connection between Hankel and Toeplitz operators. For ϕ in
L∞(T), the Hankel operator Hϕ : H2 → H2 is defined by

Hϕf = J(I − P )(ϕf),

where J : (H2)⊥ → H2 is given by Jz−n = zn−1 for n ≥ 1. For ζ ∈ L∞(T), we
define

ζ̃ = ζ(z).

The following is a basic connection between Hankel and Toeplitz operators:

Tϕψ − TϕTψ = H∗
ϕHψ (ϕ,ψ ∈ L∞) and HϕTh = Hϕh = T ∗ehHϕ (h ∈ H∞).
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From this we can see that if k ∈ E(ϕ) then

(1) [T ∗ϕ, Tϕ] = H∗
ϕHϕ −H∗

ϕHϕ = H∗
ϕHϕ −H∗

k ϕHk ϕ = H∗
ϕ(1− TekT ∗ek )Hϕ.

For an inner function θ, we write

H(θ) ≡ H2 ª θH2.

If ϕ ∈ L∞, write

ϕ+ ≡ P (ϕ) ∈ H2 and ϕ− ≡ (I − P )(ϕ) ∈ zH2.

Thus we can write ϕ = ϕ+ + ϕ−. Assume that ϕ is of bounded type, i.e., there are
functions ψ1, ψ2 in H∞(D) such that

ϕ(z) =
ψ1(z)
ψ2(z)

for almost all z ∈ T. Since TzHϕ = HϕTz it follows from Beurling’s theorem that
kerHϕ− = θH2 and kerHϕ+ = θ+H2 for some inner functions θ, θ+. If Tϕ is hy-
ponormal then by (1), ||Hϕ+f || ≥ ||Hϕ−f || for all f ∈ H2, so that

θ+H2 = kerHϕ+ ⊆ kerHϕ− = θH2,

which implies that θ divides θ+, i.e., θ+ = θ0θ for some inner function θ0. Thus if
ϕ = ϕ+ + ϕ− is of bounded type and Tϕ is hyponormal then we can write (cf. [GS])

ϕ+ = θ0θā and ϕ− = θb̄,

where a ∈ H(θ0θ) and b ∈ H(θ). If k0 ∈ H∞ is a solution of equation

(2) b− k0a = θh for some h ∈ H2

then E(ϕ) can be written as

E(ϕ) = {θ0(k0 + θf) : f ∈ H∞ and ||k0 + θf ||∞ ≤ 1}.
By Nehari’s Theorem [Ne], we have

(3) dist (k0, θH∞) = inf
f∈H∞

||θ̄k0 + f ||∞ = ||Hθ̄k0
||.

Thus we have (see [GS, Theorem 8])

(4) Tϕ is hyponormal ⇐⇒ ||Hθ̄k0
|| ≤ 1.

The following theorem is our main result, which gives a description on the Cowen
set E(ϕ) when the selfcommutator [T ∗ϕ, Tϕ] is of finite rank. In fact we can prove
more:
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Theorem 1. If ϕ is of bounded type then we have that:

(a) If kerHϕ * ker [T ∗ϕ, Tϕ] then E(ϕ) is empty;
(b) If kerHϕ = ker [T ∗ϕ, Tϕ] and rank [T ∗ϕ, Tϕ] < ∞ then E(ϕ) contains infinitely

many inner functions;
(c) If ker Hϕ ( ker [T ∗ϕ, Tϕ] then E(ϕ) contains a unique function which is inner.

If instead ϕ is not of bounded type such that Tϕ is hyponormal then E(ϕ) contains a
unique function.

To prove Theorem 1 we need auxiliary lemmas.

The following lemma is another version of Cowen’s theorem.

Lemma 2. [CL1], [CL2, Lemma 1] If ϕ ≡ ϕ+ + ϕ− ∈ L∞, then E(ϕ) 6= ∅ if and
only if the equation Hϕ+k = zϕ̃− admits a solution k satisfying ||k||∞ ≤ 1.

T. Nakazi and K. Takahashi [NT] noticed that if Tϕ is a hyponormal operator such
that its selfcommutator is of finite rank then E(ϕ) contains a finite Blaschke product.

Lemma 3. (Nakazi-Takahashi Theorem) [NT] A Toeplitz operator Tϕ is hyponormal
and the rank of the selfcommutator [T ∗ϕ, Tϕ] is finite if and only if there exists a finite
Blaschke product k in E(ϕ) of the form

k(z) = eiθ
n∏

j=1

z − βj

1− βjz
(|βj | < 1 for j = 1, · · · , n).

such that deg (k) = rank [T ∗ϕ, Tϕ], where deg (k) denotes the degree of k – meaning
the number of zeros of k in the open unit disk D.

The following lemma is a solution of a H∞ optimization problem.

Lemma 4. If b and q are finite Blaschke products then

(5) deg(b) ≥ deg(q) ⇐⇒ dist (b, qH∞) < 1.

Proof. In general, for a continuous function u on T with |u| ≡ 1,

(6) dist (u, H∞) < 1 ⇐⇒ wind (u) ≥ 0,
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where wind(·) denotes the winding number with respect to the origin: indeed, this
follows from the fact that (see [Ni, Appendix 4, Theorem 41])

dist (u, H∞) < 1 ⇐⇒ Tu is left invertible ⇐⇒ wind (u) ≥ 0,

where the second implication comes from the observation that Tu is Fredholm and
hence, by Coburn’s theorem Tu is left or right invertible and the Fredholm index of
Tu is equal to −wind (u). Applying (6) to u = b

q gives that

dist (b, q H∞) < 1 ⇐⇒ wind
(

b

q

)
≥ 0 ⇐⇒ deg (b) ≥ deg (q).

¤

We are ready for:

Proof of Theorem 1. From (1) we can see that if Tϕ is hyponormal then

kerHϕ ⊆ ker [T ∗ϕ, Tϕ],

which proves statement (a).
Towards statement (b), suppose ϕ is of bounded type. So we can write ϕ =

θ0θā + θ̄b for a ∈ H(θ0θ) and b ∈ H(θ). Now suppose kerHϕ = ker [T ∗ϕ, Tϕ] and
rank [T ∗ϕ, Tϕ] < ∞. Since kerHϕ = θ0θH

2 it follows that

ran [T ∗ϕ, Tϕ] =
(
ker [T ∗ϕ, Tϕ]

)⊥ = (kerHϕ)⊥ = H2 ª θ0θH
2,

which implies that θ0θ is a finite Blaschke product since ran [T ∗ϕ, Tϕ] is finite di-
mensional. Also, by Lemma 3 there exists a finite Blaschke product θ0k0 in E(ϕ)
such that deg (θ0k0) = rank [T ∗ϕ, Tϕ]. Thus k0 is a finite Blaschke product such that
deg(θ0k0) = rank Hϕ = deg(θ0θ), and hence deg(k0) = deg(θ). So by Lemma 4,
we have that dist (k0, θH∞) < 1, and hence by (3), ||Hθ̄k0

|| < 1. Remembering
Adamyan-Arov-Krein theorem which states that if f ∈ L∞ and dist (f, H∞) < 1
then f + H∞ contains a unimodular function, we can see that if ||Hθk0

|| < 1, then
k0+θH∞ contains an inner function. Thus θ0k0+θ0θH

∞ contains an inner function,
and in turn, E(ϕ) contains an inner function. Since

1 > dist (θ̄ k0, H∞) = dist (z̄θ̄k0, z̄ H∞)

= dist (z̄θ̄k0 + z̄c, H∞) for a suitable c

= ||Hz̄θ̄(k0+θc)||,
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we can choose different constants αn (n ∈ Z+) such that ||Hz̄θ̄(k0+θαn)|| < 1. Apply-
ing again Adamyan-Arov-Krein theorem to Hz̄θ̄(k0+θαn), there exists qn ∈ H∞ such
that k0 + θαn + zθqn are inner functions. Evidently, θ0k0 + θ0θ(αn + zθqn) ∈ E(ϕ)
and are different. This proves statement (b).

Towards statement (c), suppose ker Hϕ ( ker [T ∗ϕ, Tϕ]. If E(ϕ) contains a function
k which is not inner then ker (1 − TekT ∗ek ) = {0}: indeed if g = TekT ∗ek g then ||g||2 =
||T ∗ek g||2, and hence

∫
|g|2dµ = ||g||2 = ||T ∗ek g||2 ≤ ||k̃g||2 =

∫
|k̃|2|g|2dµ,

which implies that g = 0 a.e. if k̃ is not inner. Thus by (1) we have that ker [T ∗ϕ, Tϕ] ⊆
kerHϕ, which forces that kerHϕ = ker [T ∗ϕ, Tϕ], a contradiction. If instead E(ϕ)
contains two different inner functions then E(ϕ) has a function which is not inner:
for if k1 and k2 (k1 6= k2) are inner functions in E(ϕ) then we can easily see that
k1+k2

2 ∈ E(ϕ) and k1+k2
2 is not an inner function since every inner function is an

extreme point of the unit ball of H∞. Thus E(ϕ) contains a unique inner function.
This proves statement (c).

For the second assertion write ϕ = ϕ+ + ϕ−. If ϕ is not of bounded type then by
an argument of Abrahamse [Ab, Lemma 3], we have that kerHϕ+ = kerHϕ = {0}.
Thus the solution k of the equation Hϕ+k = zϕ̃− should be unique. Thus the second
assertion follows at once from Lemma 2. ¤

We would like to remark that if Hθk0
attains its norm (e.g., it is of finite rank)

then dist (k0, θH∞) = 1 implies that E(ϕ) contains a unique inner function. To see
this, recall (cf. [Ni, p.202]) that if f ∈ L∞ and Hf attains its norm then f + H∞

contains a unique element of least norm which is of the form λ h
hν , where λ ∈ C, h

is an outer function and ν is an inner function. So if ||Hθk0
|| = 1 and Hθk0

attains
its norm then by (3), θk0 + H∞ contains a unique unimodular function. Thus E(ϕ)
contains a unique inner function.

We now turn our attention to the cases of Toelplitz operators with symbols that
are trigonometric polynomials. If ϕ is a trigonometric polynomial of the form ϕ(z) =∑N

n=−m anzn, where a−m and aN are nonzero, then the rank of the selfcommutator
[T ∗ϕ, Tϕ] is finite. Thus if Tϕ is hyponormal then by Lemma 3, E(ϕ) contains a finite
Blaschke product.

We now have:
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Corollary 5. Let ϕ(z) =
∑N

n=−m anzn be such that Tϕ is a hyponormal operator.

(a) If rank [T ∗ϕ, Tϕ] < N then E(ϕ) contains a unique finite Blaschke product;
(b) If rank [T ∗ϕ, Tϕ] = N then E(ϕ) contains infinitely many inner functions. Fur-

thermore if b ∈ E(ϕ) is a finite Blaschke product then deg (b) ≥ N .

Proof. Since kerHϕ = zNH2, Part (a) corresponds to the case where kerHϕ (
ker [T ∗ϕ, Tϕ] and Part (b) corresponds to the case where kerHϕ = ker [T ∗ϕ, Tϕ]. Thus
the statment (a) and the first assertion of statement (b) follow at once from Theorem
1 together with Lemma 3.

For the second assertion of statement (b), assume to the contrary that b ∈ E(ϕ)
is a finite Blaschke product of degree less than N . By Lemma 3, there exists a finite
Blaschke product k ∈ E(ϕ) of degree N . Then we have

k̂(j) = b̂(j) for j = 1, · · · , N − 1,

where f̂(j) means the j-th Fourier coefficients of f ∈ H∞. Thus by the uniqueness
argument of [HL, Lemma 1] we should have that b = k, a contradiction. ¤

Corollary 5(a) is an extended result of [HKL, Corollary 4].
The following is an immediate result from Corollary 5.

Corollary 6. Suppose that ϕ(z) =
∑N

n=−m anzn and that k is a finite Blaschke
product in E(ϕ).

(a) If deg (k) < N then rank [T ∗ϕ, Tϕ] = deg (k);
(b) If deg (k) ≥ N then rank [T ∗ϕ, Tϕ] = N .
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