HYPONORMAL TOEPLITZ OPERATORS WITH RATIONAL SYMBOLS

In Sung Hwang^{*}, Woo Young Lee[†]

- * Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea (e-mail:ihwang@skku.edu)
- † Department of Mathematics, Seoul National University, Seoul 151-742, Korea (e-mail:wylee@math.snu.ac.kr)

Mathematics Subject Classification (2000): 47B20, 47B35

Abstract. In this paper we consider the self-commutators of Toeplitz operators T_{φ} with rational symbols φ using the classical Hermite-Fejér interpolation problem. Our main theorem is as follows. Let $\varphi = \overline{g} + f \in L^{\infty}$ and let $f = \theta \overline{a}$ and $g = \theta \overline{b}$, where θ is a finite Blaschke product of degree d and $a, b \in \mathcal{H}(\theta) := H^2 \ominus \theta H^2$. Then $\mathcal{H}(\theta)$ is a reducing subspace of $[T^*_{\varphi}, T_{\varphi}]$, and $[T^*_{\varphi}, T_{\varphi}]$ has the following representation relative to the direct sum $\mathcal{H}(\theta) \oplus \mathcal{H}(\theta)^{\perp}$:

$$[T_{\varphi}^*, T_{\varphi}] = A(a)^* W M(\varphi) W^* A(a) \bigoplus 0_{\infty},$$

where $A(a) := P_{\mathcal{H}(\theta)}M_a \mid_{\mathcal{H}(\theta)} (M_a \text{ is the multiplication operator with symbol } a)$, W is the unitary operator from \mathbb{C}^d onto $\mathcal{H}(\theta)$ defined by $W := (\phi_1, \cdots, \phi_d)$ ($\{\phi_j\}$ is an orthonormal basis for $\mathcal{H}(\theta)$), and $M(\varphi)$ is a matrix associated with the classical Hermite-Fejér interpolation problem. Hence, in particular, T_{φ} is hyponormal if and only if $M(\varphi)$ is positive. Moreover the rank of the self-commutator $[T^*_{\varphi}, T_{\varphi}]$ is given by rank $[T^*_{\varphi}, T_{\varphi}] = \operatorname{rank} M(\varphi)$.

1 Introduction

For φ in $L^{\infty}(\mathbb{T})$ of the unit circle $\mathbb{T} = \partial \mathbb{D}$, the *Toeplitz operator with symbol* φ is the operator T_{φ} on the Hardy space $H^2(\mathbb{T})$ of the unit circle given by

$$T_{\varphi}f := P(\varphi f) \quad (f \in H^2(\mathbb{T})),$$

where P denotes the orthogonal projection that maps $L^2(\mathbb{T})$ onto $H^2(\mathbb{T})$. A bounded linear operator A is called hyponormal if its self-commutator $[A^*, A] := A^*A - AA^*$ is positive (semidefinite). Normal Toeplitz operators were characterized by a property of their symbols in the early 1960's by A. Brown and P. Halmos [BH] and 25 years passed before the exact nature of the relationship between the symbol $\varphi \in L^{\infty}$ and the positivity of the self-commutator $[T^*_{\varphi}, T_{\varphi}]$ was understood (via Cowen's theorem [Co]). We shall employ an equivalent variant of Cowen's theorem [Co], that was first proposed by Nakazi and Takahashi [NT].

This work was supported by a grant (R14-2003-006-01000-0) from the Korea Research Foundation.

Cowen's Theorem. For $\varphi \in L^{\infty}$, write

$$\mathcal{E}(\varphi) := \left\{ k \in H^{\infty} : ||k||_{\infty} \le 1 \text{ and } \varphi - k\overline{\varphi} \in H^{\infty} \right\}.$$

Then T_{φ} is hyponormal if and only if $\mathcal{E}(\varphi)$ is nonempty.

Cowen's theorem is to recast the operator-theoretic problem of hyponormality for Toeplitz operators into the problem of finding a solution with specified properties to a certain functional equation involving the operator's symbol. This approach has been put to use in the works [CL], [FL], [Gu1], [Gu2], [GS], [HL], [NT], [Zhu] to study Toeplitz operators on $H^2(\mathbb{T})$. Particular attention has been paid to Toeplitz operators with polynomial symbols. In particular, K. Zhu [Zhu] has applied Cowen's criterion and Schur's algorithm [Sch] to the Schur function Φ_N to obtain an abstract characterization of those polynomial symbols that correspond to hyponormal Toeplitz operators.

On the other hand, a function $\varphi \in L^{\infty}$ is said to be of *bounded type* (or in the Nevanlinna class) if there are functions ψ_1, ψ_2 in $H^{\infty}(\mathbb{D})$ such that

$$\varphi(z) = \frac{\psi_1(z)}{\psi_2(z)}$$

for almost all z in \mathbb{T} . Evidently, rational functions in L^{∞} are of bounded type. In this paper we present an explicit description of the self-commutators of Toeplitz operators with bounded type symbols associated with a finite Blaschke product (or equivalently, rational symbols).

2 Preliminaries and auxiliary lemmas

Let J be the unitary operator on L^2 defined by

$$J(f)(z) = \overline{z}f(\overline{z}).$$

For $\varphi \in L^{\infty}$, the operator on H^2 defined by

$$H_{\varphi}f = J(I - P)(\varphi f)$$

is called the *Hankel operator* H_{φ} with symbol φ . If we define the function \tilde{v} by $\tilde{v}(z) := \overline{v(\overline{z})}$, then H_{φ} can be viewed as the operator on H^2 defined by

(1.1)
$$\langle zuv, \overline{\varphi} \rangle = \langle H_{\varphi}u, \widetilde{v} \rangle$$
 for all $v \in H^{\infty}$

The following is a basic connection between Hankel and Toeplitz operators ([Ni]):

$$T_{\varphi\psi} - T_{\varphi}T_{\psi} = H^*_{\overline{\varphi}}H_{\psi} \quad (\varphi, \psi \in L^{\infty}) \quad \text{and} \quad H_{\varphi}T_h = H_{\varphi h} = T^*_{\widetilde{h}}H_{\varphi} \quad (h \in H^{\infty}).$$

From this we can see that if $k \in \mathcal{E}(\varphi)$ then

$$[T_{\varphi}^*, T_{\varphi}] = H_{\overline{\varphi}}^* H_{\overline{\varphi}} - H_{\varphi}^* H_{\varphi} = H_{\overline{\varphi}}^* H_{\overline{\varphi}} - H_{k_{\overline{\varphi}}}^* H_{k_{\overline{\varphi}}} = H_{\overline{\varphi}}^* (1 - T_{\widetilde{k}} T_{\widetilde{k}}^*) H_{\overline{\varphi}}.$$

If θ is an inner function, the degree of θ , denoted by deg (θ) , is defined as n if θ is a finite Blaschke product of the form

$$\theta(z) = e^{i\xi} \prod_{j=1}^{n} \frac{z - \beta_j}{1 - \overline{\beta_j} z} \qquad (|\beta_j| < 1 \text{ for } j = 1, \cdots, n),$$

otherwise the degree of θ is infinite. For an inner function θ , write

$$\mathcal{H}(\theta) := H^2 \ominus \theta H^2.$$

Note that ker $H_{\overline{\theta}} = \theta H^2$ and ran $H_{\overline{\theta}}^* = \mathcal{H}(\theta)$. It was shown [Ab, Lemma 6] that if T_{φ} is hyponormal and φ is not in H^{∞} then

 φ is of bounded type $\iff \overline{\varphi}$ is of bounded type.

In [Ab], it was also shown that

$$\varphi$$
 is of bounded type $\iff \ker H_{\varphi} \neq \{0\} \iff \varphi = \overline{\theta}b_{\varphi}$

where θ is an inner function and $b \in H^{\infty}$ satisfies that the inner parts of b and θ are coprime. So we have

(1.2)
$$\ker H_{\overline{\theta}b} = \theta H^2 \quad \text{and} \quad \operatorname{clran} H_{\overline{\theta}b} = \mathcal{H}(\theta).$$

On the other hand, when we study the hyponormality of Toeplitz operators T_{φ} with symbols φ , we may assume that $\varphi(0) = 0$ because the hyponormality of an operator is invariant under translation by scalars. Thus if $\varphi = \overline{g} + f \in L^{\infty}$ $(f, g \in H^2)$, then we will assume that f(0) = g(0) = 0 throughout the paper. Therefore we can see (cf. [GS], [Gu2]) that if $\varphi = \overline{g} + f \in L^{\infty}$ $(f, g \in H^2)$ is of bounded type and T_{φ} is hyponormal then we can write

(1.3)
$$f = \theta_1 \theta_2 \overline{a} \quad \text{and} \quad g = \theta_1 b$$

for some inner functions θ_1 and θ_2 , where $a \in \mathcal{H}(\theta_1, \theta_2)$ and $b \in \mathcal{H}(\theta_1)$.

To prove the main result we need several auxiliary lemmas. The first lemma gives a way to compute the rank of a product of two Hankel operators.

Lemma 2.1 (Axler-Chang-Sarason Theorem [ACS]). For $\varphi, \psi \in L^{\infty}$,

 $\operatorname{rank}(H_{\omega}^{*}H_{\psi}) = \min\{\operatorname{rank}(H_{\varphi}), \operatorname{rank}(H_{\psi})\}.$

The next result is a characterization of hyponormal Toeplitz operators whose self-commutator is of finite rank.

Lemma 2.2 (Nakazi-Takahashi Theorem [NT]). A Toeplitz operator T_{φ} is hyponormal and $[T_{\varphi}^*, T_{\varphi}]$ is a finite rank operator if and only if there exits a finite Blaschke product k in $\mathcal{E}(\varphi)$. In this case, we can choose k such that deg $(k) = \operatorname{rank}[T_{\varphi}^*, T_{\varphi}]$.

For a subspace \mathcal{M} of H^2 , let $P_{\mathcal{M}}$ be the orthogonal projection onto \mathcal{M} . Then we have:

Lemma 2.3. If $f = \theta_1 \theta_2 \overline{a}$ for $a \in \mathcal{H}(\theta_1 \theta_2)$ then

$$\overline{\theta_2}P_{\theta_2H^2}(f) = P(\theta_1\overline{a}) = \theta_1\overline{P_{\mathcal{H}(\theta_1)}(a)} + c \quad \text{for some constant } c.$$

Proof. Let $g \in H^2$ be arbitrary. Then

$$\langle \overline{\theta_2} P_{\theta_2 H^2}(f), g \rangle = \langle P_{\theta_2 H^2}(\theta_1 \theta_2 \overline{a}), \theta_2 g \rangle = \langle \theta_1 \theta_2 \overline{a}, \theta_2 g \rangle = \langle P(\theta_1 \overline{a}), g \rangle.$$

Therefore we have that $P(\theta_1 \overline{a}) = \overline{\theta_2} P_{\theta_2 H^2}(f)$. For the second equality, let $a_1 := P_{\mathcal{H}(\theta_1)}(a)$ and $a_2 := a - a_1$. Then we have

$$P(\theta_1 \overline{a}) = P(\theta_1 \overline{a_1}) + P(\theta_1 \overline{a_2}) = \theta_1 \overline{a_1} + P(\theta_1 \overline{a_2}).$$

But since $\mathcal{H}(\theta_1\theta_2) = \mathcal{H}(\theta_1) \oplus \theta_1 \mathcal{H}(\theta_2)$ for inner functions θ_1 and θ_2 , it follows that $a_2 \in \theta_1 \mathcal{H}(\theta_2)$. Therefore we can conclude that $P(\theta_1 \overline{a_2}) \in P(\overline{\mathcal{H}(\theta_2)}) \in \mathbb{C}$. This completes the proof.

Lemma 2.4. Let $\varphi = \overline{g} + f \in L^{\infty}$. If $f = \theta_1 \theta_2 \overline{a}$ and $g = \theta_1 \overline{b}$ for $a \in \mathcal{H}(\theta_1 \theta_2)$ and $b \in \mathcal{H}(\theta_1)$, then $\theta_1 \mathcal{H}(\theta_2) \subseteq ran[T^*_{\varphi}, T_{\varphi}] \subseteq \mathcal{H}(\theta_1 \theta_2)$.

Proof. Observe that

(2.1)
$$[T_{\varphi}^*, T_{\varphi}] = H_{\overline{f}}^* H_{\overline{f}} - H_{\overline{g}}^* H_{\overline{g}} = H_{\overline{\theta_1 \theta_2 a}}^* H_{\overline{\theta_1 \theta_2 a}} - H_{\overline{\theta_1 b}}^* H_{\overline{\theta_1 b}}$$

Since $\operatorname{clran}(H^*_{\overline{\theta_1}\theta_2 a}H_{\overline{\theta_1}\theta_2 a}) = \operatorname{clran}H^*_{\overline{\theta_1}\theta_2 a} = \mathcal{H}(\theta_1\theta_2)$ and $\operatorname{clran}(H^*_{\overline{\theta_1}b}H_{\overline{\theta_1}b}) = \mathcal{H}(\theta_1)$, we can see that $\theta_1\mathcal{H}(\theta_2) \subseteq \operatorname{ran}[T^*_{\varphi},T_{\varphi}] \subseteq \mathcal{H}(\theta_1\theta_2)$.

Lemma 2.5. Let $\varphi = \overline{g} + f \in L^{\infty}$, where f and g are in H^2 . If φ is of bounded type and T_{φ} is hyponormal then

$$\operatorname{rank} [T_{\varphi}^*, T_{\varphi}] = \min \left\{ \operatorname{deg}(k) : k \text{ is an inner function in } \mathcal{E}(\varphi) \right\}.$$

Proof. If φ is of bounded type such that T_{φ} is hyponormal then $\mathcal{E}(\varphi)$ contains at least an inner function (see [Le]). If $\mathcal{E}(\varphi)$ has no finite Blaschke product then by Lemma 2.2 we have that for all k in $\mathcal{E}(\varphi)$, rank $[T_{\varphi}^*, T_{\varphi}] = \infty = \deg(k)$. If instead $\mathcal{E}(\varphi)$ has a finite Blaschke product then it suffices to show that there exists an inner function k in $\mathcal{E}(\varphi)$ such that rank $(H_{\overline{k}}) \leq \operatorname{rank}(H_{\overline{f}})$. We assume to the contrary that rank $(H_{\overline{f}}) < \operatorname{rank}(H_{\overline{k}})$ for all inner functions k in $\mathcal{E}(\varphi)$. Since k is an inner function we have that

$$[T_{\varphi}^*, T_{\varphi}] = H_{\overline{f}}^* H_{\overline{f}} - H_{\overline{g}}^* H_{\overline{g}} = H_{\overline{f}}^* H_{\overline{f}} - H_{k\overline{f}}^* H_{k\overline{f}} = H_{\overline{f}}^* H_{\overline{k}} H_{\overline{k}}^* H_{\overline{f}}.$$

By Lemma 2.1 we see that

$$\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] = \operatorname{rank}\left(H_{\overline{f}}^{*}H_{\overline{k}}\right) = \min\left\{\operatorname{rank}\left(H_{\overline{f}}\right), \operatorname{rank}\left(H_{\overline{k}}\right)\right\}.$$

But since rank $(H_{\overline{f}}) < \deg(k)$, it follows that rank $[T_{\varphi}^*, T_{\varphi}] < \deg(k)$, which contradicts Lemma 2.2. This completes the proof.

The following lemma is a slight extension of [Gu2, Corollary 3.5], in which the rank of the self-commutator is finite.

Lemma 2.6. Let $\varphi = \overline{g} + f \in L^{\infty}$, where f and g are in H^2 . Assume that

(2.2)
$$f = \theta_1 \theta_2 \overline{a} \quad and \quad g = \theta_1 \overline{b}$$

for $a \in \mathcal{H}(\theta_1\theta_2)$ and $b \in \mathcal{H}(\theta_1)$. Let $\psi := \theta_1 \overline{P_{\mathcal{H}(\theta_1)}(a)} + \overline{g}$. Then T_{φ} is hyponormal if and only if T_{ψ} is. Moreover, in the cases where T_{φ} is hyponormal,

$$\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] = \operatorname{deg}\left(\theta_{2}\right) + \operatorname{rank}\left[T_{\psi}^{*}, T_{\psi}\right].$$

Proof. The first assertion follows at once from [Gu2, Corollary 3.5] together with Lemma 2.3.

For the rank formula, note that $\mathcal{E}(\varphi) = \{k_1\theta_2 : k_1 \in \mathcal{E}(\psi)\}$. Therefore by Lemma 2.5 we have that rank $[T_{\varphi}^*, T_{\varphi}] = \deg(\theta_2) + \operatorname{rank}[T_{\psi}^*, T_{\psi}]$.

3 Main results

In view of Lemma 2.6, when we study the hyponormality of Toeplitz operators with bounded type symbols φ , we may assume that the symbol $\varphi = \overline{g} + f \in L^{\infty}$ is of the form

(3.1)
$$f = \theta \overline{a} \quad \text{and} \quad g = \theta \overline{b},$$

where θ is an inner function and $a, b \in \mathcal{H}(\theta)$ such that the inner parts of a, b and θ are coprime.

On the other hand, if $\varphi = \overline{g} + f \in L^{\infty}$, where f and g are rational functions then we can show that φ can be written in the form (3.1) with a finite Blaschke product θ . C. Gu [Gu1] showed that if $\varphi = \overline{g} + f \in L^{\infty}$, where f and g are rational functions then the problem determining the hyponormality of T_{φ} is exactly the tangential Hermite-Fejér interpolation problem. By comparison, using the classical Hermite-Fejér interpolation problem, we will give an explicit description of the self-commutator $[T^*_{\varphi}, T_{\varphi}]$.

To begin with, let θ be a finite Blaschke product of degree d. We can write

(3.2)
$$\theta = e^{i\xi} \prod_{k=1}^{n} \left(\widetilde{B_k}\right)^{m_k} \quad (\text{where } \widetilde{B_k} := \frac{z - \alpha_k}{1 - \overline{\alpha_k}z}).$$

So $d = \sum_{k=1}^{n} m_k$. For our purpose, rewrite θ as in the form $\theta = e^{i\xi} \prod_{j=1}^{d} B_j$, where

$$B_j := \widetilde{B_k}$$
 if $\sum_{l=0}^{k-1} m_l < j \le \sum_{l=0}^k m_l$

and, for notational convenience, $m_0 := 0$. For example, the first Balschke product $\widetilde{B_1}$ is repeated m_1 times and so on. Let

(3.3)
$$\phi_j := \frac{q_j}{1 - \overline{\alpha_j} z} B_{j-1} B_{j-2} \cdots B_1 \quad (1 \le j \le d),$$

where $\phi_1 := q_1(1 - \overline{\alpha_1}z)^{-1}$ and $q_j := (1 - |\alpha_j|^2)^{\frac{1}{2}}$. It is well known that $\{\phi_j\}_1^d$ is an orthonormal basis for $\mathcal{H}(\theta)$ (cf. [FF, Theorem X.1.5]).

Let $\varphi = \overline{g} + f \in L^{\infty}$, where $g = \theta \overline{b}$ and $f = \theta \overline{a}$ for $a, b \in \mathcal{H}(\theta)$ and write $\mathcal{C}(\varphi) := \{k \in H^{\infty} : \varphi - k \overline{\varphi} \in H^{\infty}\}.$

Then k is in $\mathcal{C}(\varphi)$ if and only if $\overline{\theta}b - k\overline{\theta}a \in H^2$, or equivalently,

$$(3.4) b - ka \in \theta H^2.$$

Note that $\theta^{(n)}(\alpha_i) = 0$ for all $0 \le n < m_i$. Thus the condition (3.4) is equivalent to the following equation: for all $1 \le i \le n$,

$$(3.5) \qquad \begin{pmatrix} k_{i,0} \\ k_{i,1} \\ k_{i,2} \\ \vdots \\ k_{i,m_i-2} \\ k_{i,m_i-1} \end{pmatrix} = \begin{pmatrix} a_{i,0} & 0 & 0 & 0 & \cdots & 0 \\ a_{i,1} & a_{i,0} & 0 & 0 & \cdots & 0 \\ a_{i,2} & a_{i,1} & a_{i,0} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ a_{i,m_i-2} & a_{i,m_i-3} & \ddots & \ddots & a_{i,0} & 0 \\ a_{i,m_i-1} & a_{i,m_i-2} & \dots & a_{i,2} & a_{i,1} & a_{i,0} \end{pmatrix}^{-1} \begin{pmatrix} b_{i,0} \\ b_{i,1} \\ b_{i,2} \\ \vdots \\ b_{i,m_i-2} \\ b_{i,m_i-1} \end{pmatrix},$$

where

$$k_{i,j} := \frac{k^{(j)}(\alpha_i)}{j!}, \quad a_{i,j} := \frac{a^{(j)}(\alpha_i)}{j!} \text{ and } b_{i,j} := \frac{b^{(j)}(\alpha_i)}{j!}.$$

Thus k is in $\mathcal{C}(\varphi)$ if and only if k is a function in H^{∞} for which

(3.6)
$$\frac{k^{(j)}(\alpha_i)}{j!} = k_{i,j} \qquad (1 \le i \le n, \ 0 \le j < m_i),$$

where the $k_{i,j}$ are determined by the equation (3.5). If in addition $||k||_{\infty} \leq 1$ is required then this is exactly the classical Hermite-Fejér interpolation problem.

To construct a polynomial k(z) = p(z) satisfying (3.6), let $p_i(z)$ be the polynomial of order $d - m_i$ defined by

$$p_i(z) := \prod_{\substack{k=1\\k\neq i}}^n \left(\frac{z-\alpha_k}{\alpha_i - \alpha_k}\right)^{m_k}$$

Also consider the polynomial p(z) of degree d-1 defined by

(3.7)
$$p(z) := \sum_{i=1}^{n} \left(k_{i,0}' + k_{i,1}'(z - \alpha_i) + k_{i,2}'(z - \alpha_i)^2 + \dots + k_{i,m_i-1}'(z - \alpha_i)^{m_i-1} \right) p_i(z),$$

where the $k'_{i,j}$ are obtained by the following equations:

$$k'_{i,j} = k_{ij} - \sum_{k=0}^{j-1} \frac{k'_{i,k} p_i^{(j-k)}(\alpha_i)}{(j-k)!} \quad (1 \le i \le n; \ 0 \le j < m_i) \quad \text{and} \quad k'_{i,0} = k_{i,0} \quad (1 \le i \le n).$$

Then p(z) satisfies (3.6) (See [FF]). But p(z) may not be contractive.

On the other hand, if ψ is a function in H^{∞} , let $A(\psi)$ be the operator on $\mathcal{H}(\theta)$ defined dy

(3.8)
$$A(\psi) := P_{\mathcal{H}(\theta)} M_{\psi} \mid_{\mathcal{H}(\theta)}$$

where M_{ψ} is the multiplication operator with symbol ψ . Now let W be the unitary operator from \mathbb{C}^d onto $\mathcal{H}(\theta)$ defined by

$$W := (\phi_1, \phi_2, \cdots, \phi_d),$$

where the ϕ_j are the functions in (3.3).

We then have:

Lemma 3.1. ([FF, Theorems X.1.5 and X.5.6]) Let θ be the Blaschke product in (3.2) and let $\{\phi_j\}_1^d$ be the orthonormal basis for $\mathcal{H}(\theta)$ in (3.3). Then $A(z) = P_{\mathcal{H}(\theta)}M_z \mid_{\mathcal{H}(\theta)} is$ unitarily equivalent to the lower triangular matrix M on \mathbb{C}^d defined by

α_1	0	0	0	0		0 \	
q_1q_2	$lpha_2$	0	0	0		0	
$-q_1\overline{lpha_1}q_3$	$q_2 q_3$	$lpha_3$	0	0		0	
$q_1 \overline{lpha_2 lpha_3} q_4$	$-q_2\overline{lpha_3}q_4$	q_3q_4	α_4	0		0	
$-q_1\overline{lpha_2lpha_3lpha_4}q_5$	$q_2\overline{lpha_3lpha_4}q_5$	$-q_3\overline{\alpha_4}q_5$	q_4q_5	$lpha_5$	۰.	0	
•		:	·	·	·	0	
$\left((-1)^d q_1 \left(\prod_{j=2}^{d-1} \overline{\alpha_j} \right) q_d \right)$	$(-1)^{d-1}q_2\left(\prod_{j=3}^{d-1}\overline{\alpha_j}\right)q_d$	•••	•••	$-q_{d-2}\overline{\alpha_{d-1}}q_d$	$q_{d-1}q_d$	α_d	

Moreover, if p is a polynomial defined in (3.7) then A(p)W = Wp(M).

Our main theorem now follows:

Theorem 3.2. Let $\varphi = \overline{g} + f \in L^{\infty}$ and let $f = \theta \overline{a}$ and $g = \theta \overline{b}$, where θ is a finite Blaschke product and $a, b \in \mathcal{H}(\theta)$. Then $\mathcal{H}(\theta)$ is a reducing subspace of $[T_{\varphi}^*, T_{\varphi}]$, and $[T_{\varphi}^*, T_{\varphi}]$ has the following representation relative to the direct sum $\mathcal{H}(\theta) \oplus \mathcal{H}(\theta)^{\perp}$:

(3.9)
$$[T_{\varphi}^*, T_{\varphi}] = A(a)^* W M(\varphi) W^* A(a) \bigoplus 0_{\infty},$$

where A(a) is invertible and $M(\varphi) := I_{\mathcal{H}(\theta)} - p(M)^* p(M)$. Hence, in particular, T_{φ} is hyponormal if and only if $M(\varphi)$ is positive. Moreover the rank of the self-commutator $[T_{\varphi}^*, T_{\varphi}]$ is given by

$$\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] = \operatorname{rank} M(\varphi).$$

Proof. From the proof of Lemma 2.4 we can see that ran $[T_{\varphi}^*, T_{\varphi}] \subseteq \mathcal{H}(\theta)$. Therefore $\mathcal{H}(\theta)$ is a reducing subspace of $[T_{\varphi}^*, T_{\varphi}]$.

Towards the equality (3.9), let u and v be in $\mathcal{H}(\theta)$. Suppose k = p is a polynomial in (3.7). Since ker $H_{\overline{\theta}} = \theta H^2$, we have that $H_{\overline{\theta}k}u = H_{\overline{\theta}}(P_{\mathcal{H}(\theta)}(ku))$. Note that $H_{\overline{\theta}}^*H_{\overline{\theta}}$ is the projection onto $\mathcal{H}(\theta)$. Thus we have that

(3.10)
$$\langle H_{\overline{\partial}\widetilde{k}}H_{\overline{\partial}k}u,v\rangle = \langle H_{\overline{\partial}k}u,H_{\overline{\partial}k}v\rangle$$
$$= \langle P_{\mathcal{H}(\theta)}ku,P_{\mathcal{H}(\theta)}kv\rangle$$
$$= \langle A(k)u,A(k)v\rangle.$$

Thus by Lemma 3.1 we have that

(3.11)
$$H_{\overline{\theta}k}H_{\overline{\theta}k}|_{\mathcal{H}(\theta)} = A(k)^*A(k) = Wk(M)^*k(M)W^*.$$

Hence by (3.11) we get

$$\left(H_{\overline{\theta}}^*H_{\overline{\theta}} - H_{\overline{\widetilde{\theta}}\widetilde{k}}H_{\overline{\theta}k}\right)|_{\mathcal{H}(\theta)} = W\left(I_{\mathcal{H}(\theta)} - k(M)^*k(M)\right)W^*.$$

Since k satisfies the equality (3.5) and hence $\varphi - k\overline{\varphi} \in H^{\infty}$, it follows that

$$\begin{split} [T_{\varphi}^*, T_{\varphi}]|_{\mathcal{H}(\theta)} &= \left(H_{\overline{f}}^* H_{\overline{f}} - H_{\overline{g}}^* H_{\overline{g}}\right)|_{\mathcal{H}(\theta)} \\ &= \left(H_{\overline{f}}^* H_{\overline{f}} - H_{k\overline{f}}^* H_{k\overline{f}}\right)|_{\mathcal{H}(\theta)} \\ &= \left(H_{\overline{\theta}a}^* H_{\overline{\theta}a} - H_{k\overline{\theta}a}^* H_{k\overline{\theta}a}\right)|_{\mathcal{H}(\theta)} \\ &= T_a^* (H_{\overline{\theta}}^* H_{\overline{\theta}} - H_{\overline{\theta}k}^* H_{\overline{\theta}k}) T_a|_{\mathcal{H}(\theta)} \\ &= A(a)^* W \big(I_{\mathcal{H}(\theta)} - p(M)^* p(M) \big) W^* A(a) \\ &= A(a)^* W M(\varphi) W^* A(a), \end{split}$$

which gives (3.9).

For the invertibility of A(a), suppose $A(a)^* f = 0$ for some $f \in \mathcal{H}(\theta)$. Then $P_{\mathcal{H}(\theta)}(\overline{a}f) = 0$ and hence

$$\overline{a}f = \theta g$$
 for some $g \in H^2$,

or equivalently, $\overline{a}\overline{\theta}f = g$. Note that $\overline{\theta}f \in H^{2^{\perp}}$ and hence $\overline{a}\overline{\theta}f \in H^{2^{\perp}} \cap H^2 = \{0\}$. Thus we have f = 0, which implies that $A(a)^*$ is 1-1. Since A(a) is a finite dimensional operator, A(a) is invertible. This completes the proof.

Example 3.3. C. Gu [Gu1] showed that if $\varphi = f + \overline{g} \in L^{\infty}$, where f and g are rational functions then the problem determining the hyponormality of T_{φ} is exactly the tangential Hermite-Fejér interpolation problem. In fact we can show that this problem is equivalent to our problem. However our solution has an advantage which gives an explicit description of the self-commutator $[T_{\varphi}^*, T_{\varphi}]$ even though this method is not simpler than the method of [Gu1]. To see this consider the function $\varphi = \overline{g} + f$, where

$$f(z) := 3\frac{z - \frac{1}{2}}{1 - \frac{1}{2}z} + 2\frac{z - \frac{1}{3}}{1 - \frac{1}{3}z} + \frac{13}{6} \quad \text{and} \quad g(z) := \frac{z - \frac{1}{2}}{1 - \frac{1}{2}z} + \frac{z - \frac{1}{3}}{1 - \frac{1}{3}z} + \frac{5}{6}$$

Thus if $\theta := \frac{z - \frac{1}{2}}{1 - \frac{1}{2}z} \cdot \frac{z - \frac{1}{3}}{1 - \frac{1}{3}z}$ then

$$a := 3\frac{z - \frac{1}{3}}{1 - \frac{1}{3}z} + 2\frac{z - \frac{1}{2}}{1 - \frac{1}{2}z} + \frac{13}{6}\frac{z - \frac{1}{2}}{1 - \frac{1}{2}z} \cdot \frac{z - \frac{1}{3}}{1 - \frac{1}{3}z} \quad \text{and} \quad b := \frac{z - \frac{1}{3}}{1 - \frac{1}{3}z} + \frac{z - \frac{1}{2}}{1 - \frac{1}{2}z} + \frac{5}{6}\frac{z - \frac{1}{2}}{1 - \frac{1}{2}z} \cdot \frac{z - \frac{1}{3}}{1 - \frac{1}{3}z}$$

are in $\mathcal{H}(\theta)$, and $f = \theta \overline{a}$ and $g = \theta \overline{b}$. So a straightforward calculation shows that p(z) satisfying (3.8) is given by $p(z) = -z + \frac{5}{6}$ and $M = \begin{pmatrix} \frac{1}{2} & 0\\ \frac{\sqrt{6}}{3} & \frac{1}{3} \end{pmatrix}$. Thus we have that

$$M(\varphi) := I - p(M)^* p(M) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} \frac{7}{9} & -\frac{\sqrt{6}}{6} \\ -\frac{\sqrt{6}}{6} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{2}{9} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & \frac{3}{4} \end{pmatrix}$$

Since $\phi_1 = \frac{\sqrt{3}}{2} \frac{1}{1 - \frac{1}{2}z}$ and $\phi_2 = \frac{2\sqrt{2}}{3} \frac{1}{1 - \frac{1}{3}z} \cdot \frac{z - \frac{1}{2}}{1 - \frac{1}{2}z}$ form a basis for $\mathcal{H}(\theta)$, we have that

$$\begin{aligned} T_{\varphi}^{*}, T_{\varphi}] &= A(a)^{*} W M_{\varphi} W^{*} A(a) \bigoplus 0_{\infty} \\ &= \left(\frac{\frac{3}{5}}{2} \frac{2\sqrt{6}}{0}\right) \left(\frac{\frac{2}{9}}{\frac{1}{\sqrt{6}}} \frac{\frac{1}{\sqrt{6}}}{\frac{3}{4}}\right) \left(\frac{\frac{3}{5}}{2\sqrt{6}} - \frac{2}{5}\right) \bigoplus 0_{\infty} \\ &= \left(\frac{\frac{512}{25}}{-\frac{16\sqrt{6}}{25}} - \frac{\frac{16\sqrt{6}}{25}}{\frac{3}{25}}\right) \bigoplus 0_{\infty}. \end{aligned}$$

By comparison, the tangential Hermite-Fejér matrix induced by φ is given by (using the notations in [Gu1])

$$A^*\Gamma A - B^*\Gamma B = \begin{pmatrix} 0 & 0 & 0\\ 0 & 24 & 24\\ 0 & 24 & 24 \end{pmatrix}.$$

Corollary 3.4. Let $\varphi = \overline{g} + f \in L^{\infty}$ and let $f = \theta \overline{a}$ and $g = \theta \overline{b}$, where θ is a finite Blaschke product and $a, b \in \mathcal{H}(\theta)$. If T_{φ} is hyponormal and rank $[T_{\varphi}^*, T_{\varphi}] < \deg(\theta)$ then $\mathcal{E}(\varphi)$ has exactly one element.

Proof. Suppose rank($[T_{\varphi}^*, T_{\varphi}]$) < deg(θ). By Theorem 3.2 we have that

$$\operatorname{rank}\left(I_{\mathcal{H}(\theta)} - p(M)^* p(M)\right) < \operatorname{deg}\left(\theta\right)$$

Therefore the norm of p(M) should be one. By an argument of [FF, p.302] - there exists a unique solution k to (3.7) such that $||k||_{\infty} \leq 1$ if and only if ||p(M)|| = 1, $\mathcal{E}(\varphi)$ has exactly one element.

Theorem 3.5. Let $\varphi = \overline{g} + f \in L^{\infty}$ and let $f = \theta \overline{a}$ and $g = \theta \overline{b}$, where θ is a finite Blaschke product and $a, b \in \mathcal{H}(\theta)$. Let θ_1 be a factor of θ and let

$$\varphi_{\theta_1} := \overline{\theta_1} P_{\mathcal{H}(\theta_1)}(b) + \theta_1 \overline{P_{\mathcal{H}(\theta_1)}}(a)$$

If T_{φ} is hyponormal then $T_{\varphi_{\theta_1}}$ is. Moreover, in the cases where T_{φ} is hyponormal, the rank of $[T^*_{\varphi_{\theta_1}}, T_{\varphi_{\theta_1}}]$ is given by

$$\operatorname{rank}\left[T_{\varphi_{\theta_{1}}}^{*}, T_{\varphi_{\theta_{1}}}\right] = \begin{cases} \operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] & \text{if } \operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] < \operatorname{deg}\left(\theta_{1}\right) \\ \operatorname{deg}\left(\theta_{1}\right) & \text{if } \operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] \ge \operatorname{deg}\left(\theta_{1}\right). \end{cases}$$

Proof. Let $a_1 := P_{\mathcal{H}(\theta_1)}(a), b_1 := P_{\mathcal{H}(\theta_1)}(b), a_2 := a - a_1 \text{ and } b_2 := b - b_1$. If T_{φ} is hyponormal then by Cowen's theorem there exists a function $k \in H^{\infty}$ with $||k||_{\infty} \leq 1$ for which

$$\overline{\theta}b - k\overline{\theta}a = h$$
 for some $h \in H^2$,

or equivalently,

$$\overline{\theta}(b_1 + b_2 - k(a_1 + a_2)) = h \iff \overline{\theta}(b_1 - ka_1) - \overline{\theta}(b_2 - ka_2) = h$$
$$\iff \overline{\theta_1}(b_1 - ka_1) - \overline{\theta_1}(b_2 - ka_2) = \theta_2 h,$$

where $\theta := \theta_1 \theta_2$. Since b_1 and b_2 are orthogonal and $b_1 \in \mathcal{H}(\theta_1)$, it follows that $b_2 \in \theta_1 H^2$. Thus $\overline{\theta_1} b_2 \in H^2$. Similarly, we have that $\overline{\theta_1} a_2 \in H^2$. Therefore we have that

$$\overline{\theta_1}(b_1 - ka_1) = \overline{\theta_1}(b_2 - ka_2) + \theta_2 h \in H^2,$$

or

$$\overline{\theta_1}P_{\mathcal{H}(\theta_1)}(b) - k\overline{\theta_1}P_{\mathcal{H}(\theta_1)}(a) \in H^2.$$

Therefore by Cowen's theorem $T_{\varphi_{\theta_1}}$ is hyponormal.

For the rank formula, suppose that rank $[T_{\varphi}^*, T_{\varphi}] < \deg(\theta_1)$. By the Nakazi-Takahashi theorem, there exists a finite Blaschke product $k \in H^{\infty}$ such that $\deg(k) = \operatorname{rank}[T_{\varphi}^*, T_{\varphi}] < \deg(\theta_1)$. Since $\mathcal{E}(\varphi) \subseteq \mathcal{E}(\varphi_{\theta_1})$ it follows $k \in \mathcal{E}(\varphi_{\theta_1})$. By Lemma 2.5 and Corollary 3.4 we have that

$$\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] = \operatorname{deg}(k) = \operatorname{rank}\left[T_{\varphi_{\theta_{1}}}^{*}, T_{\varphi_{\theta_{1}}}\right].$$

For the other case we will show that if $\operatorname{rank}[T^*_{\varphi_{\theta_1}}, T_{\varphi_{\theta_1}}] < \operatorname{deg}(\theta_1)$ then $\operatorname{rank}[T^*_{\varphi}, T_{\varphi}] < \operatorname{deg}(\theta_1)$. To prove this suppose $\operatorname{rank}[T^*_{\varphi_{\theta_1}}, T_{\varphi_{\theta_1}}] < \operatorname{deg}(\theta_1)$. By Corollary 3.4, $\mathcal{E}(\varphi_{\theta_1})$ has exactly one element. Since $\mathcal{E}(\varphi) \subseteq \mathcal{E}(\varphi_{\theta_1})$, $\mathcal{E}(\varphi)$ also consists of one element and hence by Lemma 2.5 we have that

$$\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] = \operatorname{rank}\left[T_{\varphi_{\theta_{1}}}^{*}, T_{\varphi_{\theta_{1}}}\right] < \operatorname{deg}(\theta_{1}).$$

This completes the proof.

Corollary 3.6. Suppose that φ is a trigonometric polynomial of the form $\varphi(z) = \sum_{n=-N}^{N} a_n z^n$, where a_{-N} and a_N are nonzero. Let $\varphi_j := T_{\overline{z}^j} \varphi + \overline{T_{\overline{z}^j} \overline{\varphi}}$. If T_{φ} is hyponormal then T_{φ_j} is hyponormal for each $j = 0, 1, 2, \dots, N$. In the cases where T_{φ} is hyponormal we have

$$\operatorname{rank}\left[T_{\varphi_{j}}^{*}, T_{\varphi_{j}}\right] = \begin{cases} N-j & \text{if } \operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] \ge N-j \\ \operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] & \text{if } \operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] < N-j. \end{cases}$$

Proof. This follows at once from Theorem 3.5.

Acknowledgement. The authors are grateful to the referee for several helpful suggestions.

References

- [Ab] M. B. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke Math. J. 43 (1976), 597–604.
- [BH] A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/64), 89–102.
- [ACS] S. Axler, S.-Y. A. Chang and D. Sarason, Products of Toeplitz operators, Integral Equations Operator Theory 1 (1978), 285–309.
- [Co] C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), 809–812.
- [CL] R.E. Curto and W.Y. Lee, Joint hyponormality of Toeplitz pairs, Memoirs Amer. Math. Soc. 150, No 712 (2001).
- [FL] D.R. Farenick and W.Y. Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348 (1996), 4153–4174.
- [FF] C. Foias and A. Frazho, The commutant lifting approach to interpolation problems, Operator Theory: Adv. Appl. vol 44, Birkhäuser, Basel, 1990.
- [Gu1] C. Gu, A generalization of Cowen's characterization of hyponormal Toeplitz operators, J. Funct. Anal. 124 (1994), 135-148.
- [Gu2] C. Gu, On a class of jointly hyponormal Toeplitz operators, Trans. Amer. Math. Soc. **354** (2002), 3275–3298.
- [GS] C. Gu and J.E. Shapiro, Kernels of Hankel operators and hyponormality of Toeplitz operators, Math. Ann. 319 (2001), 553–572.
- [HL] I.S. Hwang and W.Y. Lee, Hyponormality of trigonometric Toeplitz operators, Trans. Amer. Math. Soc. 354 (2002), 2461–2474.

- [Le] W.Y. Lee, Cowen sets for Toeplitz operators with finite rank self-commutators, J. Operator Theory (to appear).
- [NT] T. Nakazi and K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc. 338 (1993), 753–769.
- [Ni] N. K. Nikolskii, Treatise on the shift operator, Springer, New York, 1986.
- [Sch] I. Schur, Über Potenzreihen die im Innern des Einheitskreises beschränkt sind, J. Reine Angew. Math. 147 (1917), 205–232.
- [Zhu] K. Zhu, Hyponormal Toeplitz operators with polynomial symbols, Integral Equations Operator Theory 21 (1995), 376–381.