HYPONORMAL TOEPLITZ OPERATORS WITH RATIONAL SYMBOLS

In Sung Hwang*, Woo Young Lee ${ }^{\dagger}$
* Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea (e-mail:ihwang@skku.edu)
\dagger Department of Mathematics, Seoul National University, Seoul 151-742, Korea (e-mail:wylee@math.snu.ac.kr)

Mathematics Subject Classification (2000): 47B20, 47B35

Abstract

In this paper we consider the self-commutators of Toeplitz operators T_{φ} with rational symbols φ using the classical Hermite-Fejér interpolation problem. Our main theorem is as follows. Let $\varphi=\bar{g}+f \in L^{\infty}$ and let $f=\theta \bar{a}$ and $g=\theta \bar{b}$, where θ is a finite Blaschke product of degree d and $a, b \in \mathcal{H}(\theta):=H^{2} \ominus \theta H^{2}$. Then $\mathcal{H}(\theta)$ is a reducing subspace of $\left[T_{\varphi}^{*}, T_{\varphi}\right]$, and $\left[T_{\varphi}^{*}, T_{\varphi}\right]$ has the following representation relative to the direct sum $\mathcal{H}(\theta) \oplus \mathcal{H}(\theta)^{\perp}:$ $$
\left[T_{\varphi}^{*}, T_{\varphi}\right]=A(a)^{*} W M(\varphi) W^{*} A(a) \bigoplus 0_{\infty},
$$ where $A(a):=\left.P_{\mathcal{H}(\theta)} M_{a}\right|_{\mathcal{H}(\theta)}\left(M_{a}\right.$ is the multiplication operator with symbol $\left.a\right)$, W is the unitary operator from \mathbb{C}^{d} onto $\mathcal{H}(\theta)$ defined by $W:=\left(\phi_{1}, \cdots, \phi_{d}\right)\left(\left\{\phi_{j}\right\}\right.$ is an orthonormal basis for $\mathcal{H}(\theta)$), and $M(\varphi)$ is a matrix associated with the classical Hermite-Fejér interpolation problem. Hence, in particular, T_{φ} is hyponormal if and only if $M(\varphi)$ is positive. Moreover the rank of the self-commutator $\left[T_{\varphi}^{*}, T_{\varphi}\right]$ is given by $\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right]=\operatorname{rank} M(\varphi)$.

1 Introduction

For φ in $L^{\infty}(\mathbb{T})$ of the unit circle $\mathbb{T}=\partial \mathbb{D}$, the Toeplitz operator with symbol φ is the operator T_{φ} on the Hardy space $H^{2}(\mathbb{T})$ of the unit circle given by

$$
T_{\varphi} f:=P(\varphi f) \quad\left(f \in H^{2}(\mathbb{T})\right),
$$

where P denotes the orthogonal projection that maps $L^{2}(\mathbb{T})$ onto $H^{2}(\mathbb{T})$. A bounded linear operator A is called hyponormal if its self-commutator $\left[A^{*}, A\right]:=A^{*} A-A A^{*}$ is positive (semidefinite). Normal Toeplitz operators were characterized by a property of their symbols in the early 1960 's by A. Brown and P. Halmos [BH] and 25 years passed before the exact nature of the relationship between the symbol $\varphi \in L^{\infty}$ and the positivity of the self-commutator $\left[T_{\varphi}^{*}, T_{\varphi}\right]$ was understood (via Cowen's theorem [Co]). We shall employ an equivalent variant of Cowen's theorem [Co], that was first proposed by Nakazi and Takahashi [NT].

[^0]Cowen's Theorem. For $\varphi \in L^{\infty}$, write

$$
\mathcal{E}(\varphi):=\left\{k \in H^{\infty}:\|k\|_{\infty} \leq 1 \text { and } \varphi-k \bar{\varphi} \in H^{\infty}\right\} .
$$

Then T_{φ} is hyponormal if and only if $\mathcal{E}(\varphi)$ is nonempty.

Cowen's theorem is to recast the operator-theoretic problem of hyponormality for Toeplitz operators into the problem of finding a solution with specified properties to a certain functional equation involving the operator's symbol. This approach has been put to use in the works [CL], [FL], [Gu1], [Gu2], [GS], [HL], [NT], [Zhu] to study Toeplitz operators on $H^{2}(\mathbb{T})$. Particular attention has been paid to Toeplitz operators with polynomial symbols. In particular, K. Zhu [Zhu] has applied Cowen's criterion and Schur's algorithm [Sch] to the Schur function Φ_{N} to obtain an abstract characterization of those polynomial symbols that correspond to hyponormal Toeplitz operators.

On the other hand, a function $\varphi \in L^{\infty}$ is said to be of bounded type (or in the Nevanlinna class) if there are functions ψ_{1}, ψ_{2} in $H^{\infty}(\mathbb{D})$ such that

$$
\varphi(z)=\frac{\psi_{1}(z)}{\psi_{2}(z)}
$$

for almost all z in \mathbb{T}. Evidently, rational functions in L^{∞} are of bounded type. In this paper we present an explicit description of the self-commutators of Toeplitz operators with bounded type symbols associated with a finite Blaschke product (or equivalently, rational symbols).

2 Preliminaries and auxiliary lemmas

Let J be the unitary operator on L^{2} defined by

$$
J(f)(z)=\bar{z} f(\bar{z})
$$

For $\varphi \in L^{\infty}$, the operator on H^{2} defined by

$$
H_{\varphi} f=J(I-P)(\varphi f)
$$

is called the Hankel operator H_{φ} with symbol φ. If we define the function \widetilde{v} by $\widetilde{v}(z):=\overline{v(\bar{z})}$, then H_{φ} can be viewed as the operator on H^{2} defined by

$$
\begin{equation*}
\langle z u v, \bar{\varphi}\rangle=\left\langle H_{\varphi} u, \widetilde{v}\right\rangle \quad \text { for all } v \in H^{\infty} . \tag{1.1}
\end{equation*}
$$

The following is a basic connection between Hankel and Toeplitz operators ([Ni]):

$$
T_{\varphi \psi}-T_{\varphi} T_{\psi}=H_{\varphi}^{*} H_{\psi} \quad\left(\varphi, \psi \in L^{\infty}\right) \quad \text { and } \quad H_{\varphi} T_{h}=H_{\varphi h}=T_{\overparen{h}}^{*} H_{\varphi} \quad\left(h \in H^{\infty}\right) .
$$

From this we can see that if $k \in \mathcal{E}(\varphi)$ then

$$
\left[T_{\varphi}^{*}, T_{\varphi}\right]=H_{\bar{\varphi}}^{*} H_{\bar{\varphi}}-H_{\varphi}^{*} H_{\varphi}=H_{\bar{\varphi}}^{*} H_{\bar{\varphi}}-H_{k \bar{\varphi}}^{*} H_{k \bar{\varphi}}=H_{\bar{\varphi}}^{*}\left(1-T_{\widetilde{k}} T_{\widehat{k}}^{*}\right) H_{\bar{\varphi}} .
$$

If θ is an inner function, the degree of θ, denoted by $\operatorname{deg}(\theta)$, is defined as n if θ is a finite Blaschke product of the form

$$
\theta(z)=e^{i \xi} \prod_{j=1}^{n} \frac{z-\beta_{j}}{1-\overline{\beta_{j}} z} \quad\left(\left|\beta_{j}\right|<1 \text { for } j=1, \cdots, n\right)
$$

otherwise the degree of θ is infinite. For an inner function θ, write

$$
\mathcal{H}(\theta):=H^{2} \ominus \theta H^{2} .
$$

Note that $\operatorname{ker} H_{\bar{\theta}}=\theta H^{2}$ and $\operatorname{ran} H_{\bar{\theta}}^{*}=\mathcal{H}(\theta)$. It was shown [Ab, Lemma 6] that if T_{φ} is hyponormal and φ is not in H^{∞} then

$$
\varphi \text { is of bounded type } \Longleftrightarrow \bar{\varphi} \text { is of bounded type. }
$$

In [Ab], it was also shown that

$$
\varphi \text { is of bounded type } \Longleftrightarrow \operatorname{ker} H_{\varphi} \neq\{0\} \Longleftrightarrow \varphi=\bar{\theta} b,
$$

where θ is an inner function and $b \in H^{\infty}$ satisfies that the inner parts of b and θ are coprime. So we have

$$
\begin{equation*}
\operatorname{ker} H_{\bar{\theta} b}=\theta H^{2} \quad \text { and } \quad \operatorname{clran} H_{\bar{\theta} b}=\mathcal{H}(\widetilde{\theta}) \tag{1.2}
\end{equation*}
$$

On the other hand, when we study the hyponormality of Toeplitz operators T_{φ} with symbols φ, we may assume that $\varphi(0)=0$ because the hyponormality of an operator is invariant under translation by scalars. Thus if $\varphi=\bar{g}+f \in L^{\infty}\left(f, g \in H^{2}\right)$, then we will assume that $f(0)=g(0)=0$ throughout the paper. Therefore we can see (cf. [GS], [Gu2]) that if $\varphi=\bar{g}+f \in L^{\infty}\left(f, g \in H^{2}\right)$ is of bounded type and T_{φ} is hyponormal then we can write

$$
\begin{equation*}
f=\theta_{1} \theta_{2} \bar{a} \quad \text { and } \quad g=\theta_{1} \bar{b} \tag{1.3}
\end{equation*}
$$

for some inner functions θ_{1} and θ_{2}, where $a \in \mathcal{H}\left(\theta_{1} \theta_{2}\right)$ and $b \in \mathcal{H}\left(\theta_{1}\right)$.
To prove the main result we need several auxiliary lemmas. The first lemma gives a way to compute the rank of a product of two Hankel operators.
Lemma 2.1 (Axler-Chang-Sarason Theorem [ACS]). For $\varphi, \psi \in L^{\infty}$,

$$
\operatorname{rank}\left(H_{\varphi}^{*} H_{\psi}\right)=\min \left\{\operatorname{rank}\left(H_{\varphi}\right), \operatorname{rank}\left(H_{\psi}\right)\right\} .
$$

The next result is a characterization of hyponormal Toeplitz operators whose self-commutator is of finite rank.

Lemma 2.2 (Nakazi-Takahashi Theorem [NT]). A Toeplitz operator T_{φ} is hyponormal and $\left[T_{\varphi}^{*}, T_{\varphi}\right]$ is a finite rank operator if and only if there exits a finite Blaschke product k in $\mathcal{E}(\varphi)$. In this case, we can choose k such that $\operatorname{deg}(k)=\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right]$.

For a subspace \mathcal{M} of H^{2}, let $P_{\mathcal{M}}$ be the orthogonal projection onto \mathcal{M}. Then we have:

Lemma 2.3. If $f=\theta_{1} \theta_{2} \bar{a}$ for $a \in \mathcal{H}\left(\theta_{1} \theta_{2}\right)$ then

$$
\overline{\theta_{2}} P_{\theta_{2} H^{2}}(f)=P\left(\theta_{1} \bar{a}\right)=\theta_{1} \overline{P_{\mathcal{H}\left(\theta_{1}\right)}(a)}+c \quad \text { for some constant } c .
$$

Proof. Let $g \in H^{2}$ be arbitrary. Then

$$
\left\langle\overline{\theta_{2}} P_{\theta_{2} H^{2}}(f), g\right\rangle=\left\langle P_{\theta_{2} H^{2}}\left(\theta_{1} \theta_{2} \bar{a}\right), \theta_{2} g\right\rangle=\left\langle\theta_{1} \theta_{2} \bar{a}, \theta_{2} g\right\rangle=\left\langle P\left(\theta_{1} \bar{a}\right), g\right\rangle .
$$

Therefore we have that $P\left(\theta_{1} \bar{a}\right)=\overline{\theta_{2}} P_{\theta_{2} H^{2}}(f)$. For the second equality, let $a_{1}:=P_{\mathcal{H}\left(\theta_{1}\right)}(a)$ and $a_{2}:=a-a_{1}$. Then we have

$$
P\left(\theta_{1} \bar{a}\right)=P\left(\theta_{1} \overline{a_{1}}\right)+P\left(\theta_{1} \overline{a_{2}}\right)=\theta_{1} \overline{a_{1}}+P\left(\theta_{1} \overline{a_{2}}\right)
$$

But since $\mathcal{H}\left(\theta_{1} \theta_{2}\right)=\mathcal{H}\left(\theta_{1}\right) \oplus \theta_{1} \mathcal{H}\left(\theta_{2}\right)$ for inner functions θ_{1} and θ_{2}, it follows that $a_{2} \in$ $\theta_{1} \mathcal{H}\left(\theta_{2}\right)$. Therefore we can conclude that $P\left(\theta_{1} \overline{a_{2}}\right) \in P\left(\overline{\mathcal{H}\left(\theta_{2}\right)}\right) \in \mathbb{C}$. This completes the proof.

Lemma 2.4. Let $\varphi=\bar{g}+f \in L^{\infty}$. If $f=\theta_{1} \theta_{2} \bar{a}$ and $g=\theta_{1} \bar{b}$ for $a \in \mathcal{H}\left(\theta_{1} \theta_{2}\right)$ and $b \in \mathcal{H}\left(\theta_{1}\right)$, then $\theta_{1} \mathcal{H}\left(\theta_{2}\right) \subseteq \operatorname{ran}\left[T_{\varphi}^{*}, T_{\varphi}\right] \subseteq \mathcal{H}\left(\theta_{1} \theta_{2}\right)$.
Proof. Observe that

$$
\begin{equation*}
\left[T_{\varphi}^{*}, T_{\varphi}\right]=H_{f}^{*} H_{\bar{f}}-H_{\bar{g}}^{*} H_{\bar{g}}=H_{\overline{\theta_{1} \theta_{2}} a}^{*} H_{\overline{\theta_{1} \theta_{2}} a}-H_{\overline{\theta_{1} b}}^{*} H_{\overline{\theta_{1} b}} . \tag{2.1}
\end{equation*}
$$

Since $\operatorname{cl} \operatorname{ran}\left(H_{\overline{\theta_{1} \theta_{2}} a}^{*} H_{\overline{\theta_{1} \theta_{2} a} a}\right)=\operatorname{cl} \operatorname{ran} H_{\theta_{1} \theta_{2} a}^{*}=\mathcal{H}\left(\theta_{1} \theta_{2}\right)$ and $\operatorname{cl} \operatorname{ran}\left(H_{\overline{\theta_{1} b}}^{*} H_{\overline{\theta_{1} b}}\right)=\mathcal{H}\left(\theta_{1}\right)$, we can see that $\theta_{1} \mathcal{H}\left(\theta_{2}\right) \subseteq \operatorname{ran}\left[T_{\varphi}^{*}, T_{\varphi}\right] \subseteq \mathcal{H}\left(\theta_{1} \theta_{2}\right)$.

Lemma 2.5. Let $\varphi=\bar{g}+f \in L^{\infty}$, where f and g are in H^{2}. If φ is of bounded type and T_{φ} is hyponormal then

$$
\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right]=\min \{\operatorname{deg}(k): k \text { is an inner function in } \mathcal{E}(\varphi)\}
$$

Proof. If φ is of bounded type such that T_{φ} is hyponormal then $\mathcal{E}(\varphi)$ contains at least an inner function (see [Le]). If $\mathcal{E}(\varphi)$ has no finite Blaschke product then by Lemma 2.2 we have that for all k in $\mathcal{E}(\varphi), \operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right]=\infty=\operatorname{deg}(k)$. If instead $\mathcal{E}(\varphi)$ has a finite Blaschke product then it suffices to show that there exists an inner function k in $\mathcal{E}(\varphi)$ such that $\operatorname{rank}\left(H_{\bar{k}}\right) \leq \operatorname{rank}\left(H_{\bar{f}}\right)$. We assume to the contrary that $\operatorname{rank}\left(H_{\bar{f}}\right)<\operatorname{rank}\left(H_{\bar{k}}\right)$ for all inner functions k in $\mathcal{E}(\varphi)$. Since k is an inner function we have that

$$
\left[T_{\varphi}^{*}, T_{\varphi}\right]=H_{f}^{*} H_{\bar{f}}-H_{\bar{g}}^{*} H_{\bar{g}}=H_{\bar{f}}^{*} H_{\bar{f}}-H_{k \bar{f}}^{*} H_{k \bar{f}}=H_{f}^{*} H_{\bar{k}} H_{\bar{k}}^{*} H_{\bar{f}} .
$$

By Lemma 2.1 we see that

$$
\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right]=\operatorname{rank}\left(H_{f}^{*} H_{\bar{k}}\right)=\min \left\{\operatorname{rank}\left(H_{\bar{f}}\right), \operatorname{rank}\left(H_{\bar{k}}\right)\right\}
$$

But since $\operatorname{rank}\left(H_{\bar{f}}\right)<\operatorname{deg}(k)$, it follows that $\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right]<\operatorname{deg}(k)$, which contradicts Lemma 2.2. This completes the proof.

The following lemma is a slight extension of [Gu2, Corollary 3.5], in which the rank of the self-commutator is finite.

Lemma 2.6. Let $\varphi=\bar{g}+f \in L^{\infty}$, where f and g are in H^{2}. Assume that

$$
\begin{equation*}
f=\theta_{1} \theta_{2} \bar{a} \quad \text { and } \quad g=\theta_{1} \bar{b} \tag{2.2}
\end{equation*}
$$

for $a \in \mathcal{H}\left(\theta_{1} \theta_{2}\right)$ and $b \in \mathcal{H}\left(\theta_{1}\right)$. Let $\psi:=\theta_{1} \overline{P_{\mathcal{H}\left(\theta_{1}\right)}(a)}+\bar{g}$. Then T_{φ} is hyponormal if and only if T_{ψ} is. Moreover, in the cases where T_{φ} is hyponormal,

$$
\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right]=\operatorname{deg}\left(\theta_{2}\right)+\operatorname{rank}\left[T_{\psi}^{*}, T_{\psi}\right]
$$

Proof. The first assertion follows at once from [Gu2, Corollary 3.5] together with Lemma 2.3.

For the rank formula, note that $\mathcal{E}(\varphi)=\left\{k_{1} \theta_{2}: k_{1} \in \mathcal{E}(\psi)\right\}$. Therefore by Lemma 2.5 we have that $\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right]=\operatorname{deg}\left(\theta_{2}\right)+\operatorname{rank}\left[T_{\psi}^{*}, T_{\psi}\right]$.

3 Main results

In view of Lemma 2.6, when we study the hyponormality of Toeplitz operators with bounded type symbols φ, we may assume that the $\operatorname{symbol} \varphi=\bar{g}+f \in L^{\infty}$ is of the form

$$
\begin{equation*}
f=\theta \bar{a} \quad \text { and } \quad g=\theta \bar{b} \tag{3.1}
\end{equation*}
$$

where θ is an inner function and $a, b \in \mathcal{H}(\theta)$ such that the inner parts of a, b and θ are coprime.

On the other hand, if $\varphi=\bar{g}+f \in L^{\infty}$, where f and g are rational functions then we can show that φ can be written in the form (3.1) with a finite Blaschke product θ. C. Gu [Gu1] showed that if $\varphi=\bar{g}+f \in L^{\infty}$, where f and g are rational functions then the problem determining the hyponormality of T_{φ} is exactly the tangential Hermite-Fejér interpolation problem. By comparison, using the classical Hermite-Fejér interpolation problem, we will give an explicit description of the self-commutator $\left[T_{\varphi}^{*}, T_{\varphi}\right]$.

To begin with, let θ be a finite Blaschke product of degree d. We can write

$$
\begin{equation*}
\theta=e^{i \xi} \prod_{k=1}^{n}\left(\widetilde{B_{k}}\right)^{m_{k}} \quad\left(\text { where } \widetilde{B_{k}}:=\frac{z-\alpha_{k}}{1-\overline{\alpha_{k}} z}\right) \tag{3.2}
\end{equation*}
$$

So $d=\sum_{k=1}^{n} m_{k}$. For our purpose, rewrite θ as in the form $\theta=e^{i \xi} \prod_{j=1}^{d} B_{j}$, where

$$
B_{j}:=\widetilde{B_{k}} \quad \text { if } \sum_{l=0}^{k-1} m_{l}<j \leq \sum_{l=0}^{k} m_{l}
$$

and, for notational convenience, $m_{0}:=0$. For example, the first Balschke product $\widetilde{B_{1}}$ is repeated m_{1} times and so on. Let

$$
\begin{equation*}
\phi_{j}:=\frac{q_{j}}{1-\overline{\alpha_{j}} z} B_{j-1} B_{j-2} \cdots B_{1} \quad(1 \leq j \leq d) \tag{3.3}
\end{equation*}
$$

where $\phi_{1}:=q_{1}\left(1-\overline{\alpha_{1}} z\right)^{-1}$ and $q_{j}:=\left(1-\left|\alpha_{j}\right|^{2}\right)^{\frac{1}{2}}$. It is well known that $\left\{\phi_{j}\right\}_{1}^{d}$ is an orthonormal basis for $\mathcal{H}(\theta)$ (cf. [FF,Theorem X.1.5]).

Let $\varphi=\bar{g}+f \in L^{\infty}$, where $g=\theta \bar{b}$ and $f=\theta \bar{a}$ for $a, b \in \mathcal{H}(\theta)$ and write

$$
\mathcal{C}(\varphi):=\left\{k \in H^{\infty}: \varphi-k \bar{\varphi} \in H^{\infty}\right\} .
$$

Then k is in $\mathcal{C}(\varphi)$ if and only if $\bar{\theta} b-k \bar{\theta} a \in H^{2}$, or equivalently,

$$
\begin{equation*}
b-k a \in \theta H^{2} . \tag{3.4}
\end{equation*}
$$

Note that $\theta^{(n)}\left(\alpha_{i}\right)=0$ for all $0 \leq n<m_{i}$. Thus the condition (3.4) is equivalent to the following equation: for all $1 \leq i \leq n$,

$$
\left(\begin{array}{c}
k_{i, 0} \tag{3.5}\\
k_{i, 1} \\
k_{i, 2} \\
\vdots \\
k_{i, m_{i}-2} \\
k_{i, m_{i}-1}
\end{array}\right)=\left(\begin{array}{cccccc}
a_{i, 0} & 0 & 0 & 0 & \cdots & 0 \\
a_{i, 1} & a_{i, 0} & 0 & 0 & \cdots & 0 \\
a_{i, 2} & a_{i, 1} & a_{i, 0} & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
a_{i, m_{i}-2} & a_{i, m_{i}-3} & \ddots & \ddots & a_{i, 0} & 0 \\
a_{i, m_{i}-1} & a_{i, m_{i}-2} & \ldots & a_{i, 2} & a_{i, 1} & a_{i, 0}
\end{array}\right)^{-1}\left(\begin{array}{c}
b_{i, 0} \\
b_{i, 1} \\
b_{i, 2} \\
\vdots \\
b_{i, m_{i}-2} \\
b_{i, m_{i}-1}
\end{array}\right),
$$

where

$$
k_{i, j}:=\frac{k^{(j)}\left(\alpha_{i}\right)}{j!}, \quad a_{i, j}:=\frac{a^{(j)}\left(\alpha_{i}\right)}{j!} \quad \text { and } \quad b_{i, j}:=\frac{b^{(j)}\left(\alpha_{i}\right)}{j!} .
$$

Thus k is in $\mathcal{C}(\varphi)$ if and only if k is a function in H^{∞} for which

$$
\begin{equation*}
\frac{k^{(j)}\left(\alpha_{i}\right)}{j!}=k_{i, j} \quad\left(1 \leq i \leq n, 0 \leq j<m_{i}\right) \tag{3.6}
\end{equation*}
$$

where the $k_{i, j}$ are determined by the equation (3.5). If in addition $\|k\|_{\infty} \leq 1$ is required then this is exactly the classical Hermite-Fejér interpolation problem.

To construct a polynomial $k(z)=p(z)$ satisfying (3.6), let $p_{i}(z)$ be the polynomial of order $d-m_{i}$ defined by

$$
p_{i}(z):=\prod_{\substack{k=1 \\ k \neq i}}^{n}\left(\frac{z-\alpha_{k}}{\alpha_{i}-\alpha_{k}}\right)^{m_{k}} .
$$

Also consider the polynomial $p(z)$ of degree $d-1$ defined by

$$
\begin{equation*}
p(z):=\sum_{i=1}^{n}\left(k_{i, 0}^{\prime}+k_{i, 1}^{\prime}\left(z-\alpha_{i}\right)+k_{i, 2}^{\prime}\left(z-\alpha_{i}\right)^{2}+\cdots+k_{i, m_{i}-1}^{\prime}\left(z-\alpha_{i}\right)^{m_{i}-1}\right) p_{i}(z) \tag{3.7}
\end{equation*}
$$

where the $k_{i, j}^{\prime}$ are obtained by the following equations:

$$
k_{i, j}^{\prime}=k_{i j}-\sum_{k=0}^{j-1} \frac{k_{i, k}^{\prime} p_{i}^{(j-k)}\left(\alpha_{i}\right)}{(j-k)!} \quad\left(1 \leq i \leq n ; 0 \leq j<m_{i}\right) \quad \text { and } \quad k_{i, 0}^{\prime}=k_{i, 0} \quad(1 \leq i \leq n) .
$$

Then $p(z)$ satisfies (3.6) (See [FF]). But $p(z)$ may not be contractive.
On the other hand, if ψ is a function in H^{∞}, let $A(\psi)$ be the operator on $\mathcal{H}(\theta)$ defined dy

$$
\begin{equation*}
A(\psi):=\left.P_{\mathcal{H}(\theta)} M_{\psi}\right|_{\mathcal{H}(\theta)}, \tag{3.8}
\end{equation*}
$$

where M_{ψ} is the multiplication operator with symbol ψ. Now let W be the unitary operator from \mathbb{C}^{d} onto $\mathcal{H}(\theta)$ defined by

$$
W:=\left(\phi_{1}, \phi_{2}, \cdots, \phi_{d}\right),
$$

where the ϕ_{j} are the functions in (3.3).
We then have:

Lemma 3.1. ([FF, Theorems X.1.5 and X.5.6]) Let θ be the Blaschke product in (3.2) and let $\left\{\phi_{j}\right\}_{1}^{d}$ be the orthonormal basis for $\mathcal{H}(\theta)$ in (3.3). Then $A(z)=\left.P_{\mathcal{H}(\theta)} M_{z}\right|_{\mathcal{H}(\theta)}$ is unitarily equivalent to the lower triangular matrix M on \mathbb{C}^{d} defined by

$$
\left(\begin{array}{ccccccc}
\alpha_{1} & 0 & 0 & 0 & 0 & \cdots & 0 \\
q_{1} q_{2} & \alpha_{2} & 0 & 0 & 0 & \cdots & 0 \\
-q_{1} \overline{\alpha_{1}} q_{3} & q_{2} q_{3} & \alpha_{3} & 0 & 0 & \cdots & 0 \\
q_{1} \overline{\alpha_{2} \alpha_{3}} q_{4} & -q_{2} \overline{\alpha_{3}} q_{4} & q_{3} q_{4} & \alpha_{4} & 0 & \cdots & 0 \\
-q_{1} \overline{\alpha_{2} \alpha_{3} \alpha_{4}} q_{5} & q_{2} \overline{\alpha_{3} \alpha_{4}} q_{5} & -q_{3} \overline{\alpha_{4}} q_{5} & q_{4} q_{5} & \alpha_{5} & \ddots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\
(-1)^{d} q_{1}\left(\prod_{j=2}^{d-1} \overline{\alpha_{j}}\right) q_{d} & (-1)^{d-1} q_{2}\left(\prod_{j=3}^{d-1} \overline{\alpha_{j}}\right) q_{d} & \cdots & \cdots & -q_{d-2} \overline{\alpha_{d-1} q_{d}} & q_{d-1} q_{d} & \alpha_{d}
\end{array}\right)
$$

Moreover, if p is a polynomial defined in (3.7) then $A(p) W=W p(M)$.

Our main theorem now follows:
Theorem 3.2. Let $\varphi=\bar{g}+f \in L^{\infty}$ and let $f=\theta \bar{a}$ and $g=\theta \bar{b}$, where θ is a finite Blaschke product and $a, b \in \mathcal{H}(\theta)$. Then $\mathcal{H}(\theta)$ is a reducing subspace of $\left[T_{\varphi}^{*}, T_{\varphi}\right]$, and $\left[T_{\varphi}^{*}, T_{\varphi}\right]$ has the following representation relative to the direct sum $\mathcal{H}(\theta) \oplus \mathcal{H}(\theta)^{\perp}$:

$$
\begin{equation*}
\left[T_{\varphi}^{*}, T_{\varphi}\right]=A(a)^{*} W M(\varphi) W^{*} A(a) \bigoplus 0_{\infty} \tag{3.9}
\end{equation*}
$$

where $A(a)$ is invertible and $M(\varphi):=I_{\mathcal{H}(\theta)}-p(M)^{*} p(M)$. Hence, in particular, T_{φ} is hyponormal if and only if $M(\varphi)$ is positive. Moreover the rank of the self-commutator $\left[T_{\varphi}^{*}, T_{\varphi}\right.$] is given by

$$
\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right]=\operatorname{rank} M(\varphi)
$$

Proof. From the proof of Lemma 2.4 we can see that $\operatorname{ran}\left[T_{\varphi}^{*} \cdot T_{\varphi}\right] \subseteq \mathcal{H}(\theta)$. Therefore $\mathcal{H}(\theta)$ is a reducing subspace of $\left[T_{\varphi}^{*}, T_{\varphi}\right]$.

Towards the equality (3.9), let u and v be in $\mathcal{H}(\theta)$. Suppose $k=p$ is a polynomial in (3.7). Since ker $H_{\bar{\theta}}=\theta H^{2}$, we have that $H_{\bar{\theta} k} u=H_{\bar{\theta}}\left(P_{\mathcal{H}(\theta)}(k u)\right)$. Note that $H_{\bar{\theta}}^{*} H_{\bar{\theta}}$ is the projection onto $\mathcal{H}(\theta)$. Thus we have that

$$
\begin{align*}
\left\langle H_{\widetilde{\bar{\theta} k}} H_{\bar{\theta} k} u, v\right\rangle & =\left\langle H_{\bar{\theta} k} u, H_{\bar{\theta} k} v\right\rangle \\
& =\left\langle P_{\mathcal{H}(\theta)} k u, P_{\mathcal{H}(\theta)} k v\right\rangle \tag{3.10}\\
& =\langle A(k) u, A(k) v\rangle .
\end{align*}
$$

Thus by Lemma 3.1 we have that

$$
\begin{equation*}
\left.H_{\widetilde{\theta} \overparen{k}} H_{\bar{\theta} k}\right|_{\mathcal{H}(\theta)}=A(k)^{*} A(k)=W k(M)^{*} k(M) W^{*} \tag{3.11}
\end{equation*}
$$

Hence by (3.11) we get

$$
\left.\left(H_{\bar{\theta}}^{*} H_{\bar{\theta}}-H_{\widetilde{\widehat{\theta}}} H_{\bar{\theta} k}\right)\right|_{\mathcal{H}(\theta)}=W\left(I_{\mathcal{H}(\theta)}-k(M)^{*} k(M)\right) W^{*} .
$$

Since k satisfies the equality (3.5) and hence $\varphi-k \bar{\varphi} \in H^{\infty}$, it follows that

$$
\begin{aligned}
{\left.\left[T_{\varphi}^{*}, T_{\varphi}\right]\right|_{\mathcal{H}(\theta)} } & =\left.\left(H_{\bar{f}}^{*} H_{\bar{f}}-H_{\bar{g}}^{*} H_{\bar{g}}\right)\right|_{\mathcal{H}(\theta)} \\
& =\left.\left(H_{\bar{f}}^{*} H_{\bar{f}}-H_{k \bar{f}}^{*} H_{k \bar{f}}\right)\right|_{\mathcal{H}(\theta)} \\
& =\left.\left(H_{\bar{\theta} a}^{*} H_{\overline{\bar{\theta}} a}-H_{k \bar{\theta} a}^{*} H_{k \bar{\theta} a}\right)\right|_{\mathcal{H}(\theta)} \\
& =\left.T_{a}^{*}\left(H_{\bar{\theta}}^{*} H_{\bar{\theta}}-H_{\bar{\theta} k}^{*} H_{\bar{\theta} k}\right) T_{a}\right|_{\mathcal{H}(\theta)} \\
& =A(a)^{*} W\left(I_{\mathcal{H}(\theta)}-p(M)^{*} p(M)\right) W^{*} A(a) \\
& =A(a)^{*} W M(\varphi) W^{*} A(a),
\end{aligned}
$$

which gives (3.9).
For the invertibility of $A(a)$, suppose $A(a)^{*} f=0$ for some $f \in \mathcal{H}(\theta)$. Then $P_{\mathcal{H}(\theta)}(\bar{a} f)=0$ and hence

$$
\bar{a} f=\theta g \quad \text { for some } g \in H^{2}
$$

or equivalently, $\bar{a} \bar{\theta} f=g$. Note that $\bar{\theta} f \in H^{2 \perp}$ and hence $\bar{a} \bar{\theta} f \in H^{2 \perp} \cap H^{2}=\{0\}$. Thus we have $f=0$, which implies that $A(a)^{*}$ is 1-1. Since $A(a)$ is a finite dimensional operator, $A(a)$ is invertible. This completes the proof.

Example 3.3. C. Gu [Gu1] showed that if $\varphi=f+\bar{g} \in L^{\infty}$, where f and g are rational functions then the problem determining the hyponormality of T_{φ} is exactly the tangential Hermite-Fejér interpolation problem. In fact we can show that this problem is equivalent to our problem. However our solution has an advantage which gives an explicit description of the self-commutator $\left[T_{\varphi}^{*}, T_{\varphi}\right]$ even though this method is not simpler than the method of [Gu1]. To see this consider the function $\varphi=\bar{g}+f$, where

$$
f(z):=3 \frac{z-\frac{1}{2}}{1-\frac{1}{2} z}+2 \frac{z-\frac{1}{3}}{1-\frac{1}{3} z}+\frac{13}{6} \quad \text { and } \quad g(z):=\frac{z-\frac{1}{2}}{1-\frac{1}{2} z}+\frac{z-\frac{1}{3}}{1-\frac{1}{3} z}+\frac{5}{6} .
$$

Thus if $\theta:=\frac{z-\frac{1}{2}}{1-\frac{1}{2} z} \cdot \frac{z-\frac{1}{3}}{1-\frac{1}{3} z}$ then
$a:=3 \frac{z-\frac{1}{3}}{1-\frac{1}{3} z}+2 \frac{z-\frac{1}{2}}{1-\frac{1}{2} z}+\frac{13}{6} \frac{z-\frac{1}{2}}{1-\frac{1}{2} z} \cdot \frac{z-\frac{1}{3}}{1-\frac{1}{3} z} \quad$ and $\quad b:=\frac{z-\frac{1}{3}}{1-\frac{1}{3} z}+\frac{z-\frac{1}{2}}{1-\frac{1}{2} z}+\frac{5}{6} \frac{z-\frac{1}{2}}{1-\frac{1}{2} z} \cdot \frac{z-\frac{1}{3}}{1-\frac{1}{3} z}$
are in $\mathcal{H}(\theta)$, and $f=\theta \bar{a}$ and $g=\theta \bar{b}$. So a straightforward calculation shows that $p(z)$ satisfying (3.8) is given by $p(z)=-z+\frac{5}{6}$ and $M=\left(\begin{array}{cc}\frac{1}{2} & 0 \\ \frac{\sqrt{6}}{3} & \frac{1}{3}\end{array}\right)$. Thus we have that

$$
M(\varphi):=I-p(M)^{*} p(M)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{cc}
\frac{7}{9} & -\frac{\sqrt{6}}{6} \\
-\frac{\sqrt{6}}{6} & \frac{1}{4}
\end{array}\right)=\left(\begin{array}{cc}
\frac{2}{9} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} & \frac{3}{4}
\end{array}\right) .
$$

Since $\phi_{1}=\frac{\sqrt{3}}{2} \frac{1}{1-\frac{1}{2} z}$ and $\phi_{2}=\frac{2 \sqrt{2}}{3} \frac{1}{1-\frac{1}{3} z} \cdot \frac{z-\frac{1}{2}}{1-\frac{1}{2} z}$ form a basis for $\mathcal{H}(\theta)$, we have that

$$
\begin{aligned}
{\left[T_{\varphi}^{*}, T_{\varphi}\right] } & =A(a)^{*} W M_{\varphi} W^{*} A(a) \bigoplus 0_{\infty} \\
& =\left(\begin{array}{cc}
\frac{3}{5} & 2 \sqrt{6} \\
0 & -\frac{2}{5}
\end{array}\right)\left(\begin{array}{cc}
\frac{2}{9} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} & \frac{3}{4}
\end{array}\right)\left(\begin{array}{cc}
\frac{3}{5} & 0 \\
2 \sqrt{6} & -\frac{2}{5}
\end{array}\right) \bigoplus 0_{\infty} \\
& =\left(\begin{array}{cc}
\frac{512}{25} & -\frac{16 \sqrt{6}}{25} \\
-\frac{16 \sqrt{6}}{25} & \frac{3}{25}
\end{array}\right) \bigoplus 0_{\infty} .
\end{aligned}
$$

By comparison, the tangential Hermite-Fejér matrix induced by φ is given by (using the notations in [Gu1])

$$
A^{*} \Gamma A-B^{*} \Gamma B=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 24 & 24 \\
0 & 24 & 24
\end{array}\right) .
$$

Corollary 3.4. Let $\varphi=\bar{g}+f \in L^{\infty}$ and let $f=\theta \bar{a}$ and $g=\theta \bar{b}$, where θ is a finite Blaschke product and $a, b \in \mathcal{H}(\theta)$. If T_{φ} is hyponormal and $\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right]<\operatorname{deg}(\theta)$ then $\mathcal{E}(\varphi)$ has exactly one element.

Proof. Suppose $\operatorname{rank}\left(\left[T_{\varphi}^{*}, T_{\varphi}\right]\right)<\operatorname{deg}(\theta)$. By Theorem 3.2 we have that

$$
\operatorname{rank}\left(I_{\mathcal{H}(\theta)}-p(M)^{*} p(M)\right)<\operatorname{deg}(\theta) .
$$

Therefore the norm of $p(M)$ should be one. By an argument of [FF, p.302] - there exists a unique solution k to (3.7) such that $\|k\|_{\infty} \leq 1$ if and only if $\|p(M)\|=1, \mathcal{E}(\varphi)$ has exactly one element.

Theorem 3.5. Let $\varphi=\bar{g}+f \in L^{\infty}$ and let $f=\theta \bar{a}$ and $g=\theta \bar{b}$, where θ is a finite Blaschke product and $a, b \in \mathcal{H}(\theta)$. Let θ_{1} be a factor of θ and let

$$
\varphi_{\theta_{1}}:=\overline{\theta_{1}} P_{\mathcal{H}\left(\theta_{1}\right)}(b)+\theta_{1} \overline{P_{\mathcal{H}\left(\theta_{1}\right)}}(a) .
$$

If T_{φ} is hyponormal then $T_{\varphi_{\theta_{1}}}$ is. Moreover, in the cases where T_{φ} is hyponormal, the rank of $\left[T_{\varphi_{\theta_{1}}}^{*}, T_{\varphi_{\theta_{1}}}\right]$ is given by

$$
\operatorname{rank}\left[T_{\varphi_{\theta_{1}}}^{*}, T_{\varphi_{\theta_{1}}}\right]= \begin{cases}\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] & \text { if } \operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right]<\operatorname{deg}\left(\theta_{1}\right) \\ \operatorname{deg}\left(\theta_{1}\right) & \text { if } \operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] \geq \operatorname{deg}\left(\theta_{1}\right)\end{cases}
$$

Proof. Let $a_{1}:=P_{\mathcal{H}\left(\theta_{1}\right)}(a), b_{1}:=P_{\mathcal{H}\left(\theta_{1}\right)}(b), a_{2}:=a-a_{1}$ and $b_{2}:=b-b_{1}$. If T_{φ} is hyponormal then by Cowen's theorem there exists a function $k \in H^{\infty}$ with $\|k\|_{\infty} \leq 1$ for which

$$
\bar{\theta} b-k \bar{\theta} a=h \quad \text { for some } h \in H^{2},
$$

or equivalently,

$$
\begin{aligned}
\bar{\theta}\left(b_{1}+b_{2}-k\left(a_{1}+a_{2}\right)\right)=h & \Longleftrightarrow \bar{\theta}\left(b_{1}-k a_{1}\right)-\bar{\theta}\left(b_{2}-k a_{2}\right)=h \\
& \Longleftrightarrow \overline{\theta_{1}}\left(b_{1}-k a_{1}\right)-\overline{\theta_{1}}\left(b_{2}-k a_{2}\right)=\theta_{2} h,
\end{aligned}
$$

where $\theta:=\theta_{1} \theta_{2}$. Since b_{1} and b_{2} are orthogonal and $b_{1} \in \mathcal{H}\left(\theta_{1}\right)$, it follows that $b_{2} \in \theta_{1} H^{2}$. Thus $\overline{\theta_{1}} b_{2} \in H^{2}$. Similarly, we have that $\overline{\theta_{1}} a_{2} \in H^{2}$. Therefore we have that

$$
\overline{\theta_{1}}\left(b_{1}-k a_{1}\right)=\overline{\theta_{1}}\left(b_{2}-k a_{2}\right)+\theta_{2} h \in H^{2}
$$

or

$$
\overline{\theta_{1}} P_{\mathcal{H}\left(\theta_{1}\right)}(b)-k \overline{\theta_{1}} P_{\mathcal{H}\left(\theta_{1}\right)}(a) \in H^{2} .
$$

Therefore by Cowen's theorem $T_{\varphi_{\theta_{1}}}$ is hyponormal.
For the rank formula, suppose that $\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right]<\operatorname{deg}\left(\theta_{1}\right)$. By the Nakazi-Takahashi theorem, there exists a finite Blaschke product $k \in H^{\infty} \operatorname{such}$ that $\operatorname{deg}(k)=\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right]<$ $\operatorname{deg}\left(\theta_{1}\right)$. Since $\mathcal{E}(\varphi) \subseteq \mathcal{E}\left(\varphi_{\theta_{1}}\right)$ it follows $k \in \mathcal{E}\left(\varphi_{\theta_{1}}\right)$. By Lemma 2.5 and Corollary 3.4 we have that

$$
\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right]=\operatorname{deg}(k)=\operatorname{rank}\left[T_{\varphi_{\theta_{1}}}^{*}, T_{\varphi_{\theta_{1}}}\right] .
$$

For the other case we will show that if $\operatorname{rank}\left[T_{\varphi_{\theta_{1}}}^{*}, T_{\varphi_{\theta_{1}}}\right]<\operatorname{deg}\left(\theta_{1}\right)$ then $\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right]<$ $\operatorname{deg}\left(\theta_{1}\right)$. To prove this suppose $\operatorname{rank}\left[T_{\varphi_{\theta_{1}}}^{*}, T_{\varphi_{\theta_{1}}}\right]<\operatorname{deg}\left(\theta_{1}\right)$. By Corollary 3.4, $\mathcal{E}\left(\varphi_{\theta_{1}}\right)$ has exactly one element. Since $\mathcal{E}(\varphi) \subseteq \mathcal{E}\left(\varphi_{\theta_{1}}\right), \mathcal{E}(\varphi)$ also consists of one element and hence by Lemma 2.5 we have that

$$
\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right]=\operatorname{rank}\left[T_{\varphi_{\theta_{1}}}^{*}, T_{\varphi_{\theta_{1}}}\right]<\operatorname{deg}\left(\theta_{1}\right)
$$

This completes the proof.

Corollary 3.6. Suppose that φ is a trigonometric polynomial of the form $\varphi(z)=\sum_{n=-N}^{N} a_{n} z^{n}$, where a_{-N} and a_{N} are nonzero. Let $\varphi_{j}:=T_{\bar{z}^{j}} \varphi+\overline{T_{\bar{z}^{j}} \bar{\varphi}}$. If T_{φ} is hyponormal then $T_{\varphi_{j}}$ is hyponormal for each $j=0,1,2, \cdots, N$. In the cases where T_{φ} is hyponormal we have

$$
\operatorname{rank}\left[T_{\varphi_{j}}^{*}, T_{\varphi_{j}}\right]= \begin{cases}N-j & \text { if } \operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] \geq N-j \\ \operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] & \text { if } \operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right]<N-j .\end{cases}
$$

Proof. This follows at once from Theorem 3.5.

Acknowledgement. The authors are grateful to the referee for several helpful suggestions.

References

[Ab] M. B. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke Math. J. 43 (1976), 597-604.
[BH] A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/64), 89-102.
[ACS] S. Axler, S.-Y. A. Chang and D. Sarason, Products of Toeplitz operators, Integral Equations Operator Theory 1 (1978), 285-309.
[Co] C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), 809-812.
[CL] R.E. Curto and W.Y. Lee, Joint hyponormality of Toeplitz pairs, Memoirs Amer. Math. Soc. 150, No 712 (2001).
[FL] D.R. Farenick and W.Y. Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348 (1996), 4153-4174.
[FF] C. Foias and A. Frazho, The commutant lifting approach to interpolation problems, Operator Theory: Adv. Appl. vol 44, Birkhäuser, Basel, 1990.
[Gu1] C. Gu, A generalization of Cowen's characterization of hyponormal Toeplitz operators, J. Funct. Anal. 124 (1994), 135-148.
[Gu2] C. Gu, On a class of jointly hyponormal Toeplitz operators, Trans. Amer. Math. Soc. 354 (2002), 3275-3298.
[GS] C. Gu and J.E. Shapiro, Kernels of Hankel operators and hyponormality of Toeplitz operators, Math. Ann. 319 (2001), 553-572.
[HL] I.S. Hwang and W.Y. Lee, Hyponormality of trigonometric Toeplitz operators, Trans. Amer. Math. Soc. 354 (2002), 2461-2474.
[Le] W.Y. Lee, Cowen sets for Toeplitz operators with finite rank self-commutators, J. Operator Theory (to appear).
[NT] T. Nakazi and K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc. 338 (1993), 753-769.
[Ni] N. K. Nikolskii, Treatise on the shift operator, Springer, New York, 1986.
[Sch] I. Schur, Über Potenzreihen die im Innern des Einheitskreises beschränkt sind, J. Reine Angew. Math. 147 (1917), 205-232.
[Zhu] K. Zhu, Hyponormal Toeplitz operators with polynomial symbols, Integral Equations Operator Theory 21 (1995), 376-381.

[^0]: This work was supported by a grant (R14-2003-006-01000-0) from the Korea Research Foundation.

