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Abstract. In this paper it is shown that the spectrum σ, a set valued function, is continuous when the
function is restricted to the set of all ‘quasi-n-hyponormal’ operators acting on an infinite-dimensional
separable Hilbert space, where a quasi-n-hyponormal operator is defined to be unitarily equivalent to an
n× n upper triangular operator matrix whose diagonal entries are hyponormal operators.

1 Introduction

Throughout the paper, H denotes an infinite-dimensional separable Hilbert space. We write B(H)
for the algebra of bounded linear operators on H and K(H) for the ideal of compact operators on H.
An operator T ∈ B(H) is called an n-normal operator if there exists a maximal abelian self-adjoint
algebra R such that T is in the commutant of R(n), where R(n) denotes the direct sum of n copies of
R. The class of n-normal operators was first studied by A. Brown [Br] and have been much studied
(see, for example, [Br], [Fo], [Hoo], [Pe], [RR1], [RR2]). From the definition we can see that T ∈ B(H)
is n-normal if and only if it is unitarily equivalent to an n× n operator matrix (Nij) acting on K(n),
where {Nij} is a collection of commuting normal operators on a separable Hilbert space K (cf. [RR2,
Theorem 7.17]). In fact, the notion of n-normality was chosen as to be a generalization in operator
form of the n×n complex-valued matrices in a way parallel to the way in which a normal operator is a
generalization of a complex number (cf.[Br]). Moreover it was well known ([Fo], [RR2, Theorem 7.2])
that each n-normal operator has an upper triangular form: i.e., if T is n-normal then T is unitarily
equivalent to

(1,1)




N11 N12 . . . N1n

0 N22 . . . N2n
...

. . . . . .
...

0 . . . 0 Nnn


 ,

where {Nij}1≤i≤j≤n consists of mutually commuting normal operators on a separable Hilbert space
K. Evidently, the classes of normal and 1-normal operators coincide.

We now introduce a class of operators which contains the class of hyponormal operators as well
as n-normal operators.

Definition 1. Let K be a separable complex Hilbert space. An operator T ∈ B(H) is called a quasi-
n-hyponormal operator (for n ∈ N) if it is unitarily equivalent to an n× n upper triangular operator
matrix (Nij) acting on K(n), where the diagonal entries Njj (j = 1, 2, · · · , n) are hyponormal operators
in B(K).
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Clearly, the classes of hyponormal and quasi-1-hyponormal operators coincide. The term “n-
hyponormal” operators is reserved for n × n upper triangular operator matrices (Nij) whose all
entries are commuting hyponormal operators. So evidently, n-normal ⇒ n-hyponormal ⇒ quasi-
n-hyponormal. For example, every algebraic operator (i.e., an operator T for which p(T ) = 0 for a
non-zero polynomial p) is quasi-n-hyponormal (see [Pe, Theorem 6.11]).

Let K denote the set, equipped with the Hausdorff metric, of all compact subsets of the complex
plane C. Then the spectrum σ can be viewed as a function σ : B(H) → K, mapping each operator T
to its spectrum σ(T ). It is well-known that the function σ is upper semicontinuous, and that σ does
have points of discontinuity. J. Newburgh [Ne] gave the fundamental results on spectral continuity
in general Banach algebras. J. Conway and B. Morrel [CoM] have undertaken a detailed study of
spectral continuity in the case where the Banach algebra is the C∗-algebra of all operators acting on
a complex separable Hilbert space. Of interest is the identification of classes C of operators for which
σ becomes continuous when restricted to C. In [Ne] it was shown that σ is continuous on the set of
normal operators (also see [Hal, Solution 105]). This argument can be easily extended to the set of
hyponormal operators. In [FaL], the continuity of σ was considered when the function is restricted
to certain subsets of Toeplitz operators on the Hardy space of the unit circle. Also it was shown in
[BGS] that σ is discontinuous on the entire manifold of Toeplitz operators. Recently it was shown
in [HwL] that σ is continuous on the set of p-hyponormal operators (i.e., (T ∗T )p ≥ (TT ∗)p for some
0 < p ≤ 1). The purpose of the present paper is to show that the function σ is continuous when
restricted to the set of all quasi-n-hyponormal operators.

Theorem 1. The spectrum σ is continuous on the set of all quasi-n-hyponormal operators.

In Section 2 we provide auxiliary lemmas needed to prove the main theorem and Section 3 devotes
a proof of the main theorem.

2 Auxiliary lemmas

If T ∈ B(H), we write ρ(T ) for the resolvent of T ; σ(T ) for the spectrum of T ; π0(T ) for the
eigenvalues of T ; π00(T ) for the isolated points of σ(T ) which are eigenvalues of finite multiplicity.
An operator T ∈ B(H) is called left-Fredholm if it has closed range with finite-dimensional null space
and right-Fredholm if it has closed range with its range of finite co-dimension. If T is either left- or
right-Fredholm we call it semi-Fredholm and Fredholm if it is both. The index of a semi-Fredholm
operator T , denoted by ind(T ), is given by the integer ind (T ) := dim T−1(0) − dim T (H)⊥. An
operator T ∈ B(H) is called Weyl if it is Fredholm of index zero. The essential spectrum, σe(T ), and
the Weyl spectrum, ω(T ), of T ∈ B(H) are defined by

σe(T ) := {λ ∈ C : T − λ is not Fredholm};
ω(T ) := {λ ∈ C : T − λ is not Weyl}.

H. Weyl [We] has shown that every hermitian operator T ∈ B(H) satisfies the equality

(2.1) σ(T ) \ ω(T ) = π00(T ).

Today we say that Weyl’s theorem holds for T if T satisfies the equality (2.1). Weyl’s theorem has
been extended from hermitian operator to hyponormal operators, to Toeplitz operators by L. Coburn
[Co] and to several classes of operators including hyponormal operators by many authors.

If T ∈ B(H), a hole in σe(T ) is a bounded component of C \ σe(T ) and a pseudohole in σe(T )
is a component of σe(T ) \ σle(T ) or σe(T ) \ σre(T ). The spectral picture, SP(T ), of T ∈ B(H) is
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the structure consisting of the set σe(T ), the collection of holes and pseudoholes in σe(T ), and the
indices associated with these holes and pseudoholes. Recall ([Pe, Definition 4.8]) that an operator
T ∈ B(H) is called quasitriangular if there exists a sequence {Pn}∞n=1 of projections of finite rank
in B(H) that converges strongly to 1 and satisfies ||PnTPn − TPn|| → 0. An operator T ∈ B(H)
is called coquasitriangular if T ∗ is quasitriangular. By Apostol, Foias, and Voiculescu [AFV], T is
quasitriangular [coquasitriangular] if and only if for λ ∈ C, SP(T ) contains no hole or pseudohole
associated with a negative [positive] number.

Lemma 1. If T ∈ B(H) is quasi-n-hyponormal then it is coquasitriangular.

Proof. If n = 1, this statement is clear. Assume that this is true for n = k. Suppose that T is
quasi-(k + 1)-hyponormal. So we can write T =

(
S A

0 N

)
, where S is quasi-k-hyponormal and N is

hyponormal. We first show that SP(T ) contains no pseudohole associated with a positive number,
that is, for λ ∈ C,

(2.2) T − λ is right-Fredholm =⇒ T − λ is Fredholm.

Towards (2.2) suppose that T−λ is right-Fredholm. We may assume λ = 0. Then N is right-Fredholm.
Since N is hyponormal, N must be Fredholm. On the other hand, by the Atkinson’s theorem, there
exist operators X, Y, Z and W such that

(
1 0
0 1

)
−

(
S A
0 N

)(
X Y
Z W

)
∈ K(H).

Thus 1−(SX +AZ) and NZ are both compact. But since N is Fredholm it follows that Z is compact.
Therefore 1 − SX is compact, and hence S is right-Fredholm. By the inductive hypothesis on S we
can see that S is Fredholm. Therefore T is Fredholm, which proves (2.2). Furthermore if λ /∈ σe(T )
then

ind (T − λ) = ind (S − λ) + ind (N − λ) ≤ 0,

which shows that SP(T ) has no hole associated with a positive number. Hence T is coquasitriangular.
¤

Lemma 2. Weyl’s theorem holds for quasi-n-hyponormal operators.

Proof. We use an induction. If n = 1, this is true. Assume that Weyl’s theorem holds for quasi-
k-hyponormal operators. Suppose T is quasi-(k + 1)-hyponormal. Then we can write T =

(
S A

0 N

)
,

where S is quasi-k-hyponormal and N is hyponormal. Thus we can see that (cf. [HLL,Corollary 11])
σ(S ⊕N) = σ(S) ∪ σ(N) = σ(T ). On the other hand, remember ([Le, Corollary 5]) that if T is weyl
then (i) S is left-Fredholm; (ii) N is right-Fredholm; and (iii) S−1(0)⊕N−1(0) ∼= (ran S)⊥⊕(ranN)⊥.
But since N is hyponormal, we have that N is Fredholm, and hence by (iii), S is also Fredholm. Since
by Lemma 1, S and N are coquasitriangular, and 0 = ind(T ) = ind(S) + ind(N), we can see that
ind(S) = ind(N) = 0, i.e., S and N are both Weyl. Applying this for T − λ in place of T gives
that ω(S ⊕N) = ω(S) ∪ ω(N) = ω(T ). On the other hand, we argue that every quasi-n-hyponormal
operator is isoloid, in the sense that all isolated points of the spectrum are eigenvalues. To see this,
suppose R is quasi-n-hyponormal. Then R is unitarily equivalent to




N1 ∗ . . . ∗
0 N2

. . .
...

...
. . . . . . ∗

0 . . . 0 Nn


 , (Nj is hyponormal for 1 ≤ j ≤ n).
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Then σ(R) =
⋃n

j=1 σ(Nj) since the Nj are all hyponormal (see [HLL, Corollary 11]). Let λ ∈
isoσ(T ). We assume, without loss of generality, that λ = 0. Then 0 ∈ iso

⋃n
j=1 σ(Nj), so that

0 ∈ iso σ(Nj) ∪ ρ(Nj) for j (1 ≤ j ≤ n). Suppose k is the first integer such that 0 ∈ iso σ(Nk) (there
exists such an integer since 0 ∈ σ(R)). But since Nk is isoloid, Nk is not one-one. So there exists
a vector x := (x1, · · · , xk, 0 · · · , 0)T belongs to R−1(0), so 0 is an eigenvalue of R. This shows that
every quasi-n-hyponormal operator is isoloid. Thus since S and N are isoloid and Weyl’s theorem
holds for S and N by the inductive hypothesis, we have that

π00(S ⊕N) =
(
π00(S) ∩ ρ(N)

) ∪ (
ρ(S) ∩ π00(N)

) ∪ (
π00(S) ∩ π00(N)

)

=
(
σ(S) ∪ σ(N)

) \ (
ω(S) ∪ ω(N)

)

= σ(S ⊕N) \ ω(S ⊕N),

which says that Weyl’s theorem holds for S⊕N . Thus we have that σ(T )\ω(T ) = σ(S⊕N)\ω(S⊕N) =
π00(S ⊕N). But since iso σ(T ) = isoσ(S ⊕N), it follows at once that σ(T ) \ ω(T ) ⊂ π00(T ). For the
reverse inclusion, suppose λ ∈ π00(T ). We must show that λ ∈ π00(S⊕N). Since S and N are isoloid,
it will suffice to show that (S−λ)−1(0)⊕(N−λ)−1(0) is finite-dimensional. Evidently, (S−λ)−1(0) is
finite-dimensional because (S−λ)−1(0)⊕{0} ⊂ (T−λ)−1(0). Thus λ ∈ π00(S). We now assume to the
contrary that (N −λ)−1(0) is infinite-dimensional. Thus A

(
(N −λ)−1(0)

)
is also infinite-dimensional;

if it were not so then
(
A|(N−λ)−1(0)

)−1 (0) is infinite-dimensional and hence, so is (T − λ)−1(0), a
contradiction. On the other hand, since λ ∈ π00(S) and Weyl’s theorem holds for S, we have that
S − λ is Weyl, so that (S − λ)(H)⊥ is finite-dimensional. Therefore A

(
(N − λ)−1(0)

) ∩ (S − λ)(H)
is infinite-dimensional. Then there exist an orthonormal sequence {yj} in (N − λ)−1(0) and an
orthonormal sequence {xj} in H such that Ayj = (S − λ)xj . Thus we have

(
S − λ A

0 N − λ

)(
xj

−yj

)
=

(
0
0

)
for each j = 1, 2, · · · ,

which implies that (T − λ)−1(0) is infinite-dimensional, a contradiction. Thus (N − λ)−1(0) is finite-
dimensional, which completes the proof. ¤

If T ∈ B(H) then the reduced minimum modulus, denoted γ(T ), of T is defined by

γ(T ) := inf
x∈H

||Tx||
dist (x, T−1(0))

,

where 0
0 is defined to be ∞. If T ∈ B(H) is a non-zero operator then we can see that γ(T ) =

inf (σ(|T |) \ {0}). In particular if T is invertible then γ(T ) = ||T−1||−1. On the other hand, if we
write r(A) for the spectral radius of an operator A then

dist (λ, σ(T )) = dist (0, σ(T − λ)) = min
µ∈σ(T−λ)

|µ| = 1
max 1

ν∈σ(T−λ) |ν|
=

1
r((T − λ)−1)

.

Thus if T is hyponormal and λ /∈ σ(T ) then since (T − λ)−1 is normaloid, i.e., norm equals radius, it
follows that

(2.3) dist (λ, σ(T )) =
1

r((T − λ)−1)
=

1
||(T − λ)−1|| = γ(T − λ).

By comparison we have:
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Lemma 3. If T is quasi-n-hyponormal and λ /∈ σ(T ) then

(2.4) ||(T − λ)−1|| ≤ (1 + ||T ||)n−1

min
{

1,
[
dist (λ, σ(T ))

]n
} .

Proof. Note that if n = 1, then (2.4) is obvious from (2.3). We also use an induction. It is easy to
see that if A,B ∈ B(H) and A is invertible then γ(AB) ≥ γ(A)γ(B). We suppose that T is quasi-2-
hyponormal. So we can write T =

(
N1 N3

0 N2

)
, where N1 and N2 are hyponormal operators. If λ /∈ σ(T )

then N2 − λ is right invertible. But since N2 is hyponormal it follows that N2 − λ is invertible. We
thus have that

γ(T − λ) = γ

(
N1 − λ N3

0 N2 − λ

)
≥ γ

(
1 0
0 N2 − λ

)
γ

(
1 N3

0 1

)
γ

(
N1 − λ 0

0 1

)

= γ

(
1 N3

0 1

)
min

{
1, γ(N2 − λ)

}
min

{
1, γ(N1 − λ)

}
.

But since

γ

(
1 N3

0 1

)
=

1

||
(

1 N3

0 1

)−1

||
=

1

||
(

1 −N3

0 1

)
||
≥ 1

1 + ||N3|| ≥
1

1 + ||T || ,

it follows that

(2.5) γ(T − λ) ≥ (1 + ||T ||)−1 min
{

1, γ(N1 − λ), γ(N2 − λ), γ(N1 − λ)γ(N2 − λ)
}

.

By (2.3) and the fact that σ(T ) = σ(N1) ∪ σ(N2), we have that γ(Nj − λ) = dist (λ, σ(Nj)) ≥
dist (λ, σ(T )) for each j = 1, 2, and hence, γ(T − λ) ≥ (1 + ||T ||)−1 min

{
1,

[
dist (λ, σ(T ))

]2}. So if
λ /∈ σ(T ) then

||(T − λ)−1|| = 1
γ(T − λ)

≤ 1 + ||T ||
min

{
1,

[
(dist (λ, σ(T ))

]2} .

Thus (2.4) holds for n = 2. We assume that (2.4) holds for n = k. Suppose T is quasi-(k + 1)-
hyponormal. Then we can write T =

(
A C

0 B

)
, where A is quasi-k-hyponormal and B is hyponormal.

If λ /∈ σ(T ), write

T − λ =
(

1 0
0 B − λ

)(
1 C
0 1

)(
A− λ 0

0 1

)
.

Then B − λ is right invertible. But since B is hyponormal, it follows that B − λ is invertible. Thus
by the same argument as (2.5) we have that

(2.6) γ(T − λ) ≥ (1 + ||T ||)−1 min
{

1, γ(A− λ), γ(B − λ), γ(A− λ)γ(B − λ)
}

.

By the inductive hypothesis on A, we have

γ(A− λ) ≥
min

{
1,

[
dist (λ, σ(A))

]k
}

(1 + ||T ||)k−1
.
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But since γ(B − λ) = dist (λ, σ(B)) ≥ dist (λ, σ(T )), it follows from (2.6) that

γ(T − λ) ≥
min

{
1,

[
dist (λ, σ(T ))

]k+1
}

(1 + ||T ||)k
,

which implies that (2.4) holds for n = k + 1. This completes the proof. ¤

3 Proof of Theorem 1

We are ready for:

Proof of Theorem 1. We write (Qn)(H) for the set of all quasi-n-hyponormal operators. If T ∈ B(H),
define me(T ) for the essential minimum modulus of T (cf.[Bo]): i.e., me(T ) := inf σe(|T |). Obviously,

(3.1) me(T ) > 0 ⇐⇒ T is left-Fredholm.

On the other hand, me can be viewed as a function from B(H) to R, mapping each operator T
to its essential minimum modulus me(T ). We claim that me is a continuous function: indeed, if
T, Tn ∈ B(H) (n ∈ Z+) are such that Tn converges to T in norm then |Tn| converges to |T | in norm
(cf.[HwL, Lemma 1]) and lim σe(|Tn|) = σe(|T |) because σe is continuous on the set of normal elements
in a unital C∗-algebra (cf. [Ne, Corollary 2]), which implies that lim me(Tn) = me(T ). We also claim
that there exists a constant c > 0 such that if T ∈ (Qn)(H) then

(3.2) me(T − λ) ≥ c min
{

1,
[
dist (λ, σe(T ))

]n
}

for λ /∈ σe(T ).

To prove (3.2) suppose T ∈ (Qn)(H) and 0 /∈ σe(T ). If π : B(H) → B(H)/K(H) is the Calkin
homomorphism then we have that me(T ) = inf σ(|π(T )|). We thus argue that if B(H)/K(H) is
regarded as a C∗-subalgebra of B(K) for some Hilbert space K then since π(T ) is quasi-n-hyponormal,
we have that by Lemma 3,

me(T ) = inf σ(|π(T )|)

= inf
{
||π(T )x|| : ||x|| = 1, x ∈ K

}

=
1

||π(T )−1||
≥ c min

{
1,

[
dist (0, σ(π(T ))

]n
}

with c :=
1

(1 + ||π(T )||)n−1

= c min
{

1,
[
dist (0, σe(T ))

]n
}

.

Applying this result with T − λ in place of T proves (3.2). Now suppose that Tn, T ∈ (Qn)(H), for
n ∈ Z+, are such that Tn converges to T in norm. Since σ is upper semicontinuous and lim infn σ(Tn) ⊂
σ(T ), it suffices to show that σ(T ) ⊂ lim infn σ(Tn). We first claim that isoσ(T ) ⊂ lim inf σ(Tn):
indeed this follows at once from an argument of Newburgh [Ne. Lemma 3]: if λ ∈ iso σ(T ) then for
every neighborhood N(λ) of λ there exists an N ∈ Z+ such that n > N implies σ(Tn) ∩ N(λ) 6= ∅.
This shows that λ ∈ lim infn σ(Tn). So it suffices to show that acc σ(T ) ⊂ lim inf σ(Tn). To show
this let λ ∈ acc σ(T ) and assume to the contrary that λ /∈ lim infn σ(Tn). Then there exists a
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neighborhood N(λ) of λ which does not intersect infinitely many σ(Tn). Thus we can choose a
subsequence {Tnk

}k of {Tn}n such that for some ε > 0, dist (λ, σ(Tnk
)) > ε for all k ∈ Z+. Since

dist (λ, σ(Tnk
)) ≤ dist (λ, σe(Tnk

)), it follows that me(Tnk
− λ) > δ for some δ > 0 and all k ∈ Z+.

Since me is continuous, we have that me(T−λ) ≥ δ, which by (3.1), implies that T−λ is left-Fredholm.
By the continuity of the semi-Fredholm index, ind (T −λ) = limk→∞ ind (Tnk

−λ) = 0, which implies
that T −λ is Weyl. Since by Lemma 2, Weyl’s theorem holds for every quasi-n-hyponormal operator,
it follows λ ∈ π00(T ), which implies λ ∈ iso σ(T ), a contradiction. Therefore λ ∈ lim infn σ(Tn) and
this completes the proof. ¤
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[BGS] A. Böttcher, S. Grudsky and I. Spitkovsky, The spectrum is discontinuous on the manifold of Toeplitz operators,

Arch. Math. 75 (2000), 46–52.
[Br] A. Brown, Unitary equivalence of binormal operators, Amer. J. Math. 76 (1954), 413–434.
[Co] L.A. Coburn, Weyl’s theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285–288.
[CoM] J.B. Conway and B.B. Morrel, Operators that are points of spectral continuity, Integral Equations Operator

Theory 2 (1979), 174–198.
[FaL] D.R. Farenick and W.Y. Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348

(1996), 4153–4174.
[Fo] S.R. Foguel, Normal operators of finite multiplicity, Comm. Pure Appl. Math. 11 (1958), 297–313.
[Hal] P. R. Halmos, A Hilbert Space Problem Book, Springer, New York, 1982.
[HLL] J.K. Han, H.Y. Lee and W.Y. Lee, Invertible completions of 2×2 upper triangular matrices, Proc. Amer. Math.

Soc. 128(1) (2000), 119–123.
[Har] R.E. Harte, Invertibility and singularity for bounded linear operators, Dekker, New York, 1988.
[Hoo] T.B. Hoover, Hyperinvariant subspaces for n-normal operators, Acta Sci. Math. (Szeged) 32 (1971), 109–119.
[HwL] I.S. Hwang and W.Y. Lee, The spectrum is continuous on the set of p-hyponormal operators, Math. Z. 235

(2000), 151–157.
[Le] W.Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129(1) (2001), 131–138.
[Ne] J. D. Newburgh, The variation of spectra, Duke Math. J. 18 (1951), 165–176.
[Pe] C. Pearcy, Some recent developments in operator theory, C.B.M.S. Regional Conference Series in Mathematics,

No. 36, Amer. Math. Soc., Providence, 1978.
[RR1] H. Radjavi and P. Rosenthal, Hyperinvariant subspaces for spectral and n-normal operators, Acta Sci. Math.

(Szeged) 32 (1971), 121–126.
[RR2] H. Radjavi and P. Rosenthal, Invariant Subspaces, Second edition, Dover Publications, Mineda, NY, 2003.
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