THE SPECTRUM IS CONTINUOUS ON THE
SET OF QUASI-n-HYPONORMAL OPERATORS

IN HYOUN KIM AND WOO YOUNG LEE

Abstract. In this paper it is shown that the spectrum σ, a set valued function, is continuous when the function is restricted to the set of all ‘quasi-n-hyponormal’ operators acting on an infinite-dimensional separable Hilbert space, where a quasi-n-hyponormal operator is defined to be unitarily equivalent to an $n \times n$ upper triangular operator matrix whose diagonal entries are hyponormal operators.

1 Introduction

Throughout the paper, \mathcal{H} denotes an infinite-dimensional separable Hilbert space. We write $\mathcal{B}(\mathcal{H})$ for the algebra of bounded linear operators on \mathcal{H} and $\mathcal{K}(\mathcal{H})$ for the ideal of compact operators on \mathcal{H}. An operator $T \in \mathcal{B}(\mathcal{H})$ is called an n-normal operator if there exists a maximal abelian self-adjoint algebra \mathcal{R} such that T is in the commutant of $\mathcal{R}^{(n)}$, where $\mathcal{R}^{(n)}$ denotes the direct sum of n copies of \mathcal{R}. The class of n-normal operators was first studied by A. Brown [Br] and have been much studied (see, for example, [Br], [Fo], [Hoo], [Pe], [RR1], [RR2]). From the definition we can see that $T \in \mathcal{B}(\mathcal{H})$ is n-normal if and only if it is unitarily equivalent to an $n \times n$ operator matrix (N_{ij}) acting on $\mathcal{K}^{(n)}$, where $\{N_{ij}\}$ is a collection of commuting normal operators on a separable Hilbert space \mathcal{K} (cf. [RR2, Theorem 7.17]). In fact, the notion of n-normality was chosen as to be a generalization in operator form of the $n \times n$ complex-valued matrices in a way parallel to the way in which a normal operator is a generalization of a complex number (cf. [Br]). Moreover it was well known ([Fo], [RR2, Theorem 7.2]) that each n-normal operator has an upper triangular form: i.e., if T is n-normal then T is unitarily equivalent to

$$
\begin{pmatrix}
N_{11} & N_{12} & \cdots & N_{1n} \\
0 & N_{22} & \cdots & N_{2n} \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & N_{nn}
\end{pmatrix}
$$

where $\{N_{ij}\}_{1 \leq i \leq j \leq n}$ consists of mutually commuting normal operators on a separable Hilbert space \mathcal{K}. Evidently, the classes of normal and 1-normal operators coincide.

We now introduce a class of operators which contains the class of hyponormal operators as well as n-normal operators.

Definition 1. Let \mathcal{K} be a separable complex Hilbert space. An operator $T \in \mathcal{B}(\mathcal{H})$ is called a quasi-n-hyponormal operator (for $n \in \mathbb{N}$) if it is unitarily equivalent to an $n \times n$ upper triangular operator matrix (N_{ij}) acting on $\mathcal{K}^{(n)}$, where the diagonal entries N_{jj} ($j = 1, 2, \cdots, n$) are hyponormal operators in $\mathcal{B}(\mathcal{K})$.

2000 Mathematics Subject Classification. Primary 47A10, 47B20
Key words and phrases. Spectrum, quasi-n-hyponormal.
This work was supported by a grant (R14-2003-006-01001-0) from the Korea Research Foundation

Typeset by \LaTeX
Clearly, the classes of hyponormal and quasi-1-hyponormal operators coincide. The term “n-hyponormal” operators is reserved for \(n \times n\) upper triangular operator matrices \((N_{ij})\) whose all entries are commuting hyponormal operators. So evidently, \(n\)-normal \(\Rightarrow n\)-hyponormal \(\Rightarrow\) quasi-\(n\)-hyponormal. For example, every algebraic operator (i.e., an operator \(T\) for which \(p(T) = 0\) for a non-zero polynomial \(p\)) is quasi-\(n\)-hyponormal (see [Pe, Theorem 6.11]).

Let \(K\) denote the set, equipped with the Hausdorff metric, of all compact subsets of the complex plane \(C\). Then the spectrum \(\sigma\) can be viewed as a function \(\sigma: \mathcal{B}(\mathcal{H}) \to K\), mapping each operator \(T\) to its spectrum \(\sigma(T)\). It is well-known that the function \(\sigma\) is upper semicontinuous, and that \(\sigma\) does have points of discontinuity. J. Newburgh [Ne] gave the fundamental results on spectral continuity in general Banach algebras. J. Conway and B. Morrel [CoM] have undertaken a detailed study of spectral continuity in the case where the Banach algebra is the \(C^*\)-algebra of all operators acting on a complex separable Hilbert space. Of interest is the identification of classes \(E\) of operators for which \(\sigma\) becomes continuous when restricted to \(E\). In [Ne] it was shown that \(\sigma\) is continuous on the set of normal operators (also see [Hal, Solution 105]). This argument can be easily extended to the set of hyponormal operators. In [FaL], the continuity of \(\sigma\) was considered when the function is restricted to certain subsets of Toeplitz operators on the Hardy space of the unit circle. Also it was shown in [BGS] that \(\sigma\) is discontinuous on the entire manifold of Toeplitz operators. Recently it was shown in [HwL] that \(\sigma\) is continuous on the set of \(p\)-hyponormal operators (i.e., \((T^*T)^p \geq (TT^*)^p\) for some \(0 < p \leq 1\)). The purpose of the present paper is to show that the function \(\sigma\) is continuous when restricted to the set of all quasi-\(n\)-hyponormal operators.

Theorem 1. The spectrum \(\sigma\) is continuous on the set of all quasi-\(n\)-hyponormal operators.

In Section 2 we provide auxiliary lemmas needed to prove the main theorem and Section 3 devotes a proof of the main theorem.

2 Auxiliary lemmas

If \(T \in \mathcal{B}(\mathcal{H})\), we write \(\rho(T)\) for the resolvent of \(T\); \(\sigma(T)\) for the spectrum of \(T\); \(\pi_0(T)\) for the eigenvalues of \(T\); \(\pi_{00}(T)\) for the isolated points of \(\sigma(T)\) which are eigenvalues of finite multiplicity. An operator \(T \in \mathcal{B}(\mathcal{H})\) is called left-Fredholm if it has closed range with finite-dimensional null space and right-Fredholm if it has closed range with its range of finite co-dimension. If \(T\) is either left- or right-Fredholm we call it semi-Fredholm and Fredholm if it is both. The index of a semi-Fredholm operator \(T\), denoted by \(\text{ind}(T)\), is given by the integer \(\text{ind}(T) := \dim T^{-1}(0) - \dim T(\mathcal{H})\)\(^{-1}\). An operator \(T \in \mathcal{B}(\mathcal{H})\) is called Weyl if it is Fredholm of index zero. The essential spectrum, \(\sigma_e(T)\), and the Weyl spectrum, \(\omega(T)\), of \(T \in \mathcal{B}(\mathcal{H})\) are defined by

\[
\sigma_e(T) := \{\lambda \in C : T - \lambda \text{ is not Fredholm}\};
\]

\[
\omega(T) := \{\lambda \in C : T - \lambda \text{ is not Weyl}\}.
\]

H. Weyl [We] has shown that every hermitian operator \(T \in \mathcal{B}(\mathcal{H})\) satisfies the equality

\[
\sigma(T) \setminus \omega(T) = \pi_{00}(T).
\]

Today we say that *Weyl’s theorem holds for T* if \(T\) satisfies the equality (2.1). Weyl’s theorem has been extended from hermitian operator to hyponormal operators, to Toeplitz operators by L. Coburn [Co] and to several classes of operators including hyponormal operators by many authors.

If \(T \in \mathcal{B}(\mathcal{H})\), a hole in \(\sigma_e(T)\) is a bounded component of \(C \setminus \sigma_e(T)\) and a pseudohole in \(\sigma_e(T)\) is a component of \(\sigma_e(T) \setminus \sigma_{le}(T)\) or \(\sigma_e(T) \setminus \sigma_{re}(T)\). The spectral picture, \(\mathcal{SP}(T)\), of \(T \in \mathcal{B}(\mathcal{H})\) is
the structure consisting of the set \(\sigma_e(T) \), the collection of holes and pseudoholes in \(\sigma_e(T) \), and the indices associated with these holes and pseudoholes. Recall (see [Pe, Definition 4.8]) that an operator \(T \in \mathcal{B}(\mathcal{H}) \) is called *quasitriangular* if there exists a sequence \(\{P_n\}_{n=1}^\infty \) of projections of finite rank in \(\mathcal{B}(\mathcal{H}) \) that converges strongly to 1 and satisfies \(\|P_nTP_n - TP_n\| \to 0 \). An operator \(T \in \mathcal{B}(\mathcal{H}) \) is called *coquasitriangular* if \(T^* \) is quasitriangular. By Apostol, Foias, and Voiculescu [AFV], \(T \) is quasitriangular [coquasitriangular] if and only if for \(\lambda \in \mathbb{C} \), \(\mathcal{SP}(T) \) contains no hole or pseudohole associated with a positive number.

Lemma 1. If \(T \in \mathcal{B}(\mathcal{H}) \) is quasi-\(n \)-hyponormal then it is coquasitriangular.

Proof. If \(n = 1 \), this statement is clear. Assume that this is true for \(n = k \). Suppose that \(T \) is quasi-\((k + 1)\)-hyponormal. So we can write \(T = \begin{pmatrix} S & A \\ 0 & N \end{pmatrix} \), where \(S \) is quasi-\(k \)-hyponormal and \(N \) is hyponormal. We first show that \(\mathcal{SP}(T) \) contains no pseudohole associated with a positive number, that is, for \(\lambda \in \mathbb{C} \),

\[
T - \lambda \text{ is right-Fredholm } \Rightarrow T - \lambda \text{ is Fredholm.}
\]

Towards (2.2) suppose that \(T - \lambda \) is right-Fredholm. We may assume \(\lambda = 0 \). Then \(N \) is right-Fredholm. Since \(N \) is hyponormal, \(N \) must be Fredholm. On the other hand, by the Atkinson’s theorem, there exist operators \(X, Y, Z \) and \(W \) such that

\[
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} S & A \\ 0 & N \end{pmatrix} \begin{pmatrix} X & Y \\ Z & W \end{pmatrix} \in \mathcal{K}(\mathcal{H}).
\]

Thus \(1 - (SX + AZ) \) and \(NZ \) are both compact. But since \(N \) is Fredholm it follows that \(Z \) is compact. Therefore \(1 - SX \) is compact, and hence \(S \) is right-Fredholm. By the inductive hypothesis on \(S \) we can see that \(S \) is Fredholm. Therefore \(T \) is Fredholm, which proves (2.2). Furthermore if \(\lambda \notin \sigma_e(T) \) then

\[
\text{ind}(T - \lambda) = \text{ind}(S - \lambda) + \text{ind}(N - \lambda) \leq 0,
\]

which shows that \(\mathcal{SP}(T) \) has no hole associated with a positive number. Hence \(T \) is coquasitriangular.

Lemma 2. Weyl’s theorem holds for quasi-\(n \)-hyponormal operators.

Proof. We use an induction. If \(n = 1 \), this is true. Assume that Weyl’s theorem holds for quasi-\(k \)-hyponormal operators. Suppose \(T \) is quasi-\((k + 1)\)-hyponormal. Then we can write \(T = \begin{pmatrix} S & A \\ 0 & N \end{pmatrix} \), where \(S \) is quasi-\(k \)-hyponormal and \(N \) is hyponormal. Thus we can see that (cf. [HLL, Corollary 11]) \(\sigma(S \oplus N) = \sigma(S) \cup \sigma(N) = \sigma(T) \). On the other hand, remember ([Le, Corollary 5]) that if \(T \) is weyl then (i) \(S \) is left-Fredholm; (ii) \(N \) is right-Fredholm; and (iii) \(S^{-1}(0) \oplus N^{-1}(0) \cong (\text{ran } S)^\perp \oplus (\text{ran } N)^\perp \). But since \(N \) is hyponormal, we have that \(N \) is Fredholm, and hence by (iii), \(S \) is also Fredholm. Since by Lemma 1, \(S \) and \(N \) are coquasitriangular, and \(0 = \text{ind}(T) = \text{ind}(S) + \text{ind}(N) \), we can see that \(\text{ind}(S) = \text{ind}(N) = 0 \), i.e., \(S \) and \(N \) are both Weyl. Applying this for \(T - \lambda \) in place of \(T \) gives that \(\omega(S \oplus N) = \omega(S) \cup \omega(N) = \omega(T) \). On the other hand, we argue that every quasi-\(n \)-hyponormal operator is isolated, in the sense that all isolated points of the spectrum are eigenvalues. To see this, suppose \(R \) is quasi-\(n \)-hyponormal. Then \(R \) is unitarily equivalent to

\[
\begin{pmatrix} N_1 & * & \cdots & * \\ 0 & N_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & N_n \end{pmatrix}, \quad (N_j \text{ is hyponormal for } 1 \leq j \leq n).
\]
Then $\sigma(R) = \bigcup_{j=1}^{n} \sigma(N_j)$ since the N_j are all hyponormal (see [HLL, Corollary 11]). Let $\lambda \in \sigma(T)$. We assume, without loss of generality, that $\lambda = 0$. Then $0 \in \sigma(N_j)$ for $j (1 \leq j \leq n)$. Suppose k is the first integer such that $0 \in \sigma(N_k)$ (there exists such an integer since $0 \in \sigma(R)$). But since N_k is isoid, N_k is not one-one. So there exists a vector $x := (x_1, \ldots, x_k, 0 \cdots, 0)^T$ belongs to $R^{-1}(0)$, so 0 is an eigenvalue of R. This shows that every quasi-n-hyponormal operator is isoid. Thus since S and N are isoid and Weyl’s theorem holds for S and N by the inductive hypothesis, we have that

$$
\pi_{00}(S \oplus N) = (\pi_{00}(S) \cap \rho(N)) \cup (\rho(S) \cap \pi_{00}(N)) \cup (\pi_{00}(S) \cap \pi_{00}(N)) = (\sigma(S) \cup \sigma(N)) \setminus \omega(S) \cup \omega(N)) = \sigma(S \oplus N) \setminus \omega(S \oplus N),
$$

which says that Weyl’s theorem holds for $S \oplus N$. Thus we have that $\sigma(T) \setminus \omega(T) = \sigma(S \oplus N) \setminus \omega(S \oplus N) = \pi_{00}(S \oplus N)$. But since $\sigma(T) = \sigma(S \oplus N)$, it follows at once that $\sigma(T) \setminus \omega(T) \subset \pi_{00}(T)$. For the reverse inclusion, suppose $\lambda \in \pi_{00}(T)$. We must show that $\lambda \in \pi_{00}(S \oplus N)$. Since S and N are isoid, it will suffice to show that $(S - \lambda)^{-1}(0) \oplus (N - \lambda)^{-1}(0)$ is finite-dimensional. Evidently, $(S - \lambda)^{-1}(0)$ is finite-dimensional because $(S - \lambda)^{-1}(0) \oplus \{0\} \subset (T - \lambda)^{-1}(0)$. Thus $\lambda \in \pi_{00}(S)$. We now assume to the contrary that $(N - \lambda)^{-1}(0)$ is infinite-dimensional. Thus $A((N - \lambda)^{-1}(0))$ is also infinite-dimensional; if it were not so then $(A(N - \lambda)^{-1}(0))^{-1}(0)$ is infinite-dimensional and hence, so is $(T - \lambda)^{-1}(0)$, a contradiction. On the other hand, since $\lambda \in \pi_{00}(S)$ and Weyl’s theorem holds for S, we have that $S - \lambda$ is Weyl, so that $(S - \lambda)(\mathcal{H})$ is finite-dimensional. Therefore $A((N - \lambda)^{-1}(0)) \cap (S - \lambda)(\mathcal{H})$ is infinite-dimensional. Then there exist an orthonormal sequence $\{y_j\}$ in $(N - \lambda)^{-1}(0)$ and an orthonormal sequence $\{x_j\}$ in \mathcal{H} such that $Ay_j = (S - \lambda)x_j$. Thus we have

$$
\begin{pmatrix}
S - \lambda & A \\
0 & N - \lambda
\end{pmatrix}
\begin{pmatrix}
x_j \\
y_j
\end{pmatrix}
=
\begin{pmatrix}
0 \\
0
\end{pmatrix}
$$

for each $j = 1, 2, \cdots$,

which implies that $(T - \lambda)^{-1}(0)$ is infinite-dimensional, a contradiction. Thus $(N - \lambda)^{-1}(0)$ is finite-dimensional, which completes the proof. \hfill \Box

If $T \in \mathcal{B}(\mathcal{H})$ then the reduced minimum modulus, denoted $\gamma(T)$, of T is defined by

$$
\gamma(T) := \inf_{x \in \mathcal{H}} \frac{\|Tx\|}{\text{dist}(x, T^{-1}(0))},
$$

where $\frac{0}{0}$ is defined to be ∞. If $T \in \mathcal{B}(\mathcal{H})$ is a non-zero operator then we can see that $\gamma(T) = \inf (\sigma(|T|) \setminus \{0\})$. In particular if T is invertible then $\gamma(T) = \|T^{-1}\|^{-1}$. On the other hand, if we write $r(A)$ for the spectral radius of an operator A then

$$
\text{dist}(\lambda, \sigma(T)) = \text{dist}(0, \sigma(T - \lambda)) = \min_{\mu \in \sigma(T - \lambda)} |\mu| = \frac{1}{\max_{\mu \in \sigma(T - \lambda)} |\mu|} = \frac{1}{r((T - \lambda)^{-1})}.
$$

Thus if T is hyponormal and $\lambda \notin \sigma(T)$ then since $(T - \lambda)^{-1}$ is normaloid, i.e., norm equals radius, it follows that

$$
\text{dist}(\lambda, \sigma(T)) = \frac{1}{r((T - \lambda)^{-1})} = \frac{1}{\|T - \lambda\|^{-1}} = \gamma(T - \lambda).
$$

By comparison we have:
Lemma 3. If T is quasi-n-hyponormal and $\lambda \notin \sigma(T)$ then

\[(2.4) \quad ||(T - \lambda)^{-1}|| \leq \frac{(1 + ||T||)^{n-1}}{\min\{1, \text{dist}(\lambda, \sigma(T)) \}^n}.\]

Proof. Note that if $n = 1$, then (2.4) is obvious from (2.3). We also use an induction. It is easy to see that if $A, B \in B(H)$ and A is invertible then $\gamma(AB) \geq \gamma(A)\gamma(B)$. We suppose that T is quasi-2-hyponormal. So we can write $T = \begin{pmatrix} N_1 & N_3 \\ 0 & N_2 \end{pmatrix}$, where N_1 and N_2 are hyponormal operators. If $\lambda \notin \sigma(T)$ then $N_2 - \lambda$ is right invertible. But since N_2 is hyponormal it follows that $N_2 - \lambda$ is invertible. We thus have that

\[
\gamma(T - \lambda) = \gamma \left(\begin{pmatrix} N_1 - \lambda & N_3 \\ 0 & N_2 - \lambda \end{pmatrix} \right) \geq \gamma \left(\begin{pmatrix} 1 & 0 \\ 0 & N_2 - \lambda \end{pmatrix} \right) \gamma \left(\begin{pmatrix} 1 & N_3 \\ 0 & 1 \end{pmatrix} \right) = \gamma \left(\begin{pmatrix} 1 & N_3 \\ 0 & 1 \end{pmatrix} \right) \min\{1, \gamma(N_2 - \lambda)\} \min\{1, \gamma(N_1 - \lambda)\}.
\]

But since

\[
\gamma \left(\begin{pmatrix} 1 & N_3 \\ 0 & 1 \end{pmatrix} \right) = \frac{1}{|| \begin{pmatrix} 1 & N_3 \\ 0 & 1 \end{pmatrix}^{-1} ||} = \frac{1}{|| \begin{pmatrix} 1 & -N_3 \\ 0 & 1 \end{pmatrix} ||} \geq \frac{1}{1 + ||N_3||} \geq \frac{1}{1 + ||T||},
\]

it follows that

\[(2.5) \quad \gamma(T - \lambda) \geq (1 + ||T||)^{-1} \min\{1, \gamma(N_1 - \lambda), \gamma(N_2 - \lambda), \gamma(N_1 - \lambda)\gamma(N_2 - \lambda)\}.
\]

By (2.3) and the fact that $\sigma(T) = \sigma(N_1) \cup \sigma(N_2)$, we have that $\gamma(N_j - \lambda) = \text{dist}(\lambda, \sigma(N_j)) \geq \text{dist}(\lambda, \sigma(T))$ for each $j = 1, 2$, and hence, $\gamma(T - \lambda) \geq (1 + ||T||)^{-1} \min\{1, \text{dist}(\lambda, \sigma(T))^2\}$. So if $\lambda \notin \sigma(T)$ then

\[
||(T - \lambda)^{-1}|| = \frac{1}{\gamma(T - \lambda)} \leq \frac{1 + ||T||}{\min\{1, \text{dist}(\lambda, \sigma(T))^2\}}.
\]

Thus (2.4) holds for $n = 2$. We assume that (2.4) holds for $n = k$. Suppose T is quasi-$(k + 1)$-hyponormal. Then we can write $T = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$, where A is quasi-k-hyponormal and B is hyponormal. If $\lambda \notin \sigma(T)$, write

\[
T - \lambda = \begin{pmatrix} 1 & 0 \\ 0 & B - \lambda \end{pmatrix} \begin{pmatrix} 1 & C \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A - \lambda & 0 \\ 0 & 1 \end{pmatrix}.
\]

Then $B - \lambda$ is right invertible. But since B is hyponormal, it follows that $B - \lambda$ is invertible. Thus by the same argument as (2.5) we have that

\[(2.6) \quad \gamma(T - \lambda) \geq (1 + ||T||)^{-1} \min\{1, \gamma(A - \lambda), \gamma(B - \lambda), \gamma(A - \lambda)\gamma(B - \lambda)\}.
\]

By the inductive hypothesis on A, we have

\[
\gamma(A - \lambda) \geq \frac{\min\{1, \text{dist}(\lambda, \sigma(A))^k\}}{(1 + ||T||)^{k-1}}.
\]
But since $\gamma(B - \lambda) = \text{dist}(\lambda, \sigma(B)) \geq \text{dist}(\lambda, \sigma(T))$, it follows from (2.6) that

$$
\gamma(T - \lambda) \geq \frac{\min\left\{1, \left[\text{dist}(\lambda, \sigma(T))\right]^{k+1}\right\}}{(1 + ||T||)^k},
$$

which implies that (2.4) holds for $n = k + 1$. This completes the proof. \hfill \Box

3 Proof of Theorem 1

We are ready for:

Proof of Theorem 1. We write $(Q_n)(\mathcal{H})$ for the set of all quasi-n-hyponormal operators. If $T \in \mathcal{B}(\mathcal{H})$, define $m_e(T)$ for the essential minimum modulus of T (cf.[Bo]): i.e., $m_e(T) := \inf \sigma_e(|T|)$. Obviously,

$$(3.1) \quad m_e(T) > 0 \iff T \text{ is left-Fredholm.}$$

On the other hand, m_e can be viewed as a function from $\mathcal{B}(\mathcal{H})$ to \mathbb{R}, mapping each operator T to its essential minimum modulus $m_e(T)$. We claim that m_e is a continuous function: indeed, if $T, T_n \in \mathcal{B}(\mathcal{H})$ ($n \in \mathbb{Z}_+$) are such that T_n converges to T in norm then $|T_n|$ converges to $|T|$ in norm (cf.[HwL, Lemma 1]) and $\lim \sigma_e(|T_n|) = \sigma_e(|T|)$ because σ_e is continuous on the set of normal elements in a unital C*-algebra (cf. [Ne, Corollary 2]), which implies that $\lim m_e(T_n) = m_e(T)$. We also claim that there exists a constant $c > 0$ such that if $T \in (Q_n)(\mathcal{H})$ then

$$(3.2) \quad m_e(T - \lambda) \geq c \min\left\{1, \left[\text{dist}(\lambda, \sigma_e(T))^n\right]\right\} \quad \text{for } \lambda \not\in \sigma_e(T).$$

To prove (3.2) suppose $T \in (Q_n)(\mathcal{H})$ and $0 \not\in \sigma_e(T)$. If $\pi : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})/K(\mathcal{H})$ is the Calkin homomorphism then we have that $m_e(T) = \inf \sigma(|\pi(T)|)$. We thus argue that if $\mathcal{B}(\mathcal{H})/K(\mathcal{H})$ is regarded as a C^*-subalgebra of $\mathcal{B}(\mathcal{K})$ for some Hilbert space \mathcal{K} then since $\pi(T)$ is quasi-n-hyponormal, we have that by Lemma 3,

$$
m_e(T) = \inf \sigma(|\pi(T)|)
= \inf\left\{||\pi(T)x|| : ||x|| = 1, \ x \in \mathcal{K}\right\}
= \frac{1}{||\pi(T)^{-1}||}
\geq c \min\left\{1, \left[\text{dist}(0, \sigma(\pi(T)))^n\right]\right\} \quad \text{with } c := \frac{1}{(1 + ||\pi(T)||)^{n-1}}
= c \min\left\{1, \left[\text{dist}(0, \sigma_e(T))^n\right]\right\}.
$$

Applying this result with $T - \lambda$ in place of T proves (3.2). Now suppose that $T_n, T \in (Q_n)(\mathcal{H})$, for $n \in \mathbb{Z}_+$, are such that T_n converges to T in norm. Since σ is upper semicontinuous and $\lim \inf_n \sigma(T_n) \subset \sigma(T)$, it suffices to show that $\sigma(T) \subset \lim \inf_n \sigma(T_n)$. We first claim that $\sigma(T) \subset \lim \inf \sigma(T_n)$: indeed this follows at once from an argument of Newburgh [Ne, Lemma 3]: if $\lambda \in \sigma(T)$ then for every neighborhood $N(\lambda)$ of λ there exists an $N \in \mathbb{Z}_+$ such that $n > N$ implies $\sigma(T_n) \cap N(\lambda) \neq \emptyset$. This shows that $\lambda \in \lim \inf_n \sigma(T_n)$. So it suffices to show that $\sigma(T) \subset \lim \inf \sigma(T_n)$. To show this let $\lambda \in \text{acc } \sigma(T)$ and assume to the contrary that $\lambda \not\in \lim \inf_n \sigma(T_n)$. Then there exists a
neighborhood \(N(\lambda) \) of \(\lambda \) which does not intersect infinitely many \(\sigma(T_n) \). Thus we can choose a subsequence \(\{T_{n_k}\}_k \) of \(\{T_n\}_n \) such that for some \(\epsilon > 0 \), \(\text{dist} (\lambda, \sigma(T_{n_k})) > \epsilon \) for all \(k \in \mathbb{Z}_+ \). Since \(\text{dist} (\lambda, \sigma(T_{n_k})) \leq \text{dist}(\lambda, \sigma(T_{n_k} - \lambda)) \), it follows that \(m_e(T_{n_k} - \lambda) > \delta \) for some \(\delta > 0 \) and all \(k \in \mathbb{Z}_+ \). Since \(m_e \) is continuous, we have that \(m_e(T - \lambda) \geq \delta \), which by (3.1), implies that \(T - \lambda \) is left-Fredholm. By the continuity of the semi-Fredholm index, \(\text{ind}(T - \lambda) = \lim_{k \to \infty} \text{ind}(T_{n_k} - \lambda) = 0 \), which implies that \(T - \lambda \) is Weyl. Since by Lemma 2, Weyl’s theorem holds for every quasi-n-hyponormal operator, it follows \(\lambda \in \pi_0(T) \), which implies \(\lambda \in \sigma(T) \), a contradiction. Therefore \(\lambda \in \liminf_n \sigma(T_n) \) and this completes the proof. \(\square \)

REFERENCES

DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL 151-742, KOREA
E-mail address: ihmath@skku.edu

DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL 151-742, KOREA
E-mail address: wylee@math.snu.ac.kr