THE SPECTRUM IS CONTINUOUS ON THE
SET OF QUASI-n-HYPONORMAL OPERATORS

IN HyouN KiMm AND WOO YOUNG LEE

Abstract. In this paper it is shown that the spectrum o, a set valued function, is continuous when the
function is restricted to the set of all ‘quasi-n-hyponormal’ operators acting on an infinite-dimensional
separable Hilbert space, where a quasi-n-hyponormal operator is defined to be unitarily equivalent to an
n X n upper triangular operator matrix whose diagonal entries are hyponormal operators.

1 Introduction

Throughout the paper, H denotes an infinite-dimensional separable Hilbert space. We write B(H)
for the algebra of bounded linear operators on H and K (H) for the ideal of compact operators on H.
An operator T' € B(H) is called an n-normal operator if there exists a maximal abelian self-adjoint
algebra R such that 7 is in the commutant of R(™ where R(™) denotes the direct sum of n copies of
R. The class of n-normal operators was first studied by A. Brown [Br] and have been much studied
(see, for example, [Br], [Fo], [Hoo], [Pe], [RR1], [RR2]). From the definition we can see that T' € B(H)
is n-normal if and only if it is unitarily equivalent to an n X n operator matrix (N;;) acting on JSON
where {N;;} is a collection of commuting normal operators on a separable Hilbert space K (cf. [RR2,
Theorem 7.17]). In fact, the notion of n-normality was chosen as to be a generalization in operator
form of the n x n complex-valued matrices in a way parallel to the way in which a normal operator is a
generalization of a complex number (cf.[Br]). Moreover it was well known ([Fo], [RR2, Theorem 7.2])
that each n-normal operator has an upper triangular form: i.e., if T' is n-normal then T is unitarily
equivalent to

Nii Nig ... Ny
0 Noy ... Ny

(1,1) S . A
0 ... 0 N,

where {NV;;}1<i<j<n consists of mutually commuting normal operators on a separable Hilbert space
K. Evidently, the classes of normal and 1-normal operators coincide.

We now introduce a class of operators which contains the class of hyponormal operators as well
as nm-normal operators.

Definition 1. Let K be a separable complex Hilbert space. An operator T € B(H) is called a quasi-
n-hyponormal operator (for n € N) if it is unitarily equivalent to an n x n upper triangular operator
matrix (NV;;) acting on K™ where the diagonal entries Nj; (j =1,2,--- ,n) are hyponormal operators

in B(K).
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Clearly, the classes of hyponormal and quasi-1-hyponormal operators coincide. The term “n-
hyponormal” operators is reserved for n x n upper triangular operator matrices (N,;) whose all
entries are commuting hyponormal operators. So evidently, n-normal = n-hyponormal = quasi-
n-hyponormal. For example, every algebraic operator (i.e., an operator T' for which p(T') = 0 for a
non-zero polynomial p) is quasi-n-hyponormal (see [Pe, Theorem 6.11]).

Let K denote the set, equipped with the Hausdorff metric, of all compact subsets of the complex
plane C. Then the spectrum o can be viewed as a function o : B(H) — K, mapping each operator T'
to its spectrum o(7T). It is well-known that the function o is upper semicontinuous, and that o does
have points of discontinuity. J. Newburgh [Ne|] gave the fundamental results on spectral continuity
in general Banach algebras. J. Conway and B. Morrel [CoM] have undertaken a detailed study of
spectral continuity in the case where the Banach algebra is the C*-algebra of all operators acting on
a complex separable Hilbert space. Of interest is the identification of classes € of operators for which
o becomes continuous when restricted to €. In [Ne] it was shown that o is continuous on the set of
normal operators (also see [Hal, Solution 105]). This argument can be easily extended to the set of
hyponormal operators. In [FaL], the continuity of ¢ was considered when the function is restricted
to certain subsets of Toeplitz operators on the Hardy space of the unit circle. Also it was shown in
[BGS] that o is discontinuous on the entire manifold of Toeplitz operators. Recently it was shown
in [HwL] that o is continuous on the set of p-hyponormal operators (i.e., (T*T)? > (TT*)P for some
0 < p < 1). The purpose of the present paper is to show that the function o is continuous when
restricted to the set of all quasi-n-hyponormal operators.

Theorem 1. The spectrum o is continuous on the set of all quasi-n-hyponormal operators.

In Section 2 we provide auxiliary lemmas needed to prove the main theorem and Section 3 devotes
a proof of the main theorem.

2 Auxiliary lemmas

If T € B(H), we write p(T) for the resolvent of T; o(T') for the spectrum of T; m(T) for the
eigenvalues of T'; moo(T) for the isolated points of o(T") which are eigenvalues of finite multiplicity.
An operator T' € B(H) is called left-Fredholm if it has closed range with finite-dimensional null space
and right-Fredholm if it has closed range with its range of finite co-dimension. If T is either left- or
right-Fredholm we call it semi-Fredholm and Fredholm if it is both. The index of a semi-Fredholm
operator T, denoted by ind(7T), is given by the integer ind (T') := dim7~(0) — dim7T(H)*. An
operator T' € B(H) is called Weyl if it is Fredholm of index zero. The essential spectrum, o.(7"), and
the Weyl spectrum, w(T), of T € B(H) are defined by

o.(T):={A e C: T — \is not Fredholm};
w(T):={A e C: T — \is not Weyl}.

H. Weyl [We] has shown that every hermitian operator T' € B(H) satisfies the equality
(2.1) o(T)\ w(T) = moo(T).

Today we say that Weyl’s theorem holds for T if T satisfies the equality (2.1). Weyl’s theorem has
been extended from hermitian operator to hyponormal operators, to Toeplitz operators by L. Coburn
[Co] and to several classes of operators including hyponormal operators by many authors.

If T € B(H), a hole in 0.(T) is a bounded component of C\ ¢.(T") and a pseudohole in o.(T)
is a component of o.(T) \ 01.(T) or 0.(T) \ 0,c(T). The spectral picture, SP(T), of T € B(H) is
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the structure consisting of the set o.(T), the collection of holes and pseudoholes in o.(T), and the
indices associated with these holes and pseudoholes. Recall ([Pe, Definition 4.8]) that an operator
T € B(H) is called quasitriangular if there exists a sequence {P,}>2; of projections of finite rank
in B(H) that converges strongly to 1 and satisfies ||P, TP, — TP,|| — 0. An operator T' € B(H)
is called coquasitriangular if T* is quasitriangular. By Apostol, Foias, and Voiculescu [AFV], T is
quasitriangular [coquasitriangular| if and only if for A\ € C, SP(T) contains no hole or pseudohole
associated with a negative [positive] number.

Lemma 1. If T € B(H) is quasi-n-hyponormal then it is coquasitriangular.

Proof. If n = 1, this statement is clear. Assume that this is true for n = k. Suppose that T is
S A
0N
hyponormal. We first show that SP(T') contains no pseudohole associated with a positive number,

that is, for A € C,

quasi-(k + 1)-hyponormal. So we can write T = ( )7 where S is quasi-k-hyponormal and N is

(2.2) T — X is right-Fredholm = T — X is Fredholm.

Towards (2.2) suppose that T'— A is right-Fredholm. We may assume A = 0. Then N is right-Fredholm.
Since N is hyponormal, N must be Fredholm. On the other hand, by the Atkinson’s theorem, there
exist operators X, Y, Z and W such that

10 S A X Y
(0 7)- (5 %) (W) eroo
Thus 1 —(SX+AZ) and NZ are both compact. But since N is Fredholm it follows that Z is compact.
Therefore 1 — SX is compact, and hence S is right-Fredholm. By the inductive hypothesis on S we
can see that S is Fredholm. Therefore T is Fredholm, which proves (2.2). Furthermore if A ¢ o.(T)

then
ind(T'—A) =ind (S — A) +ind (N — A) <0,

which shows that SP(T') has no hole associated with a positive number. Hence T is coquasitriangular.
O

Lemma 2. Weyl’s theorem holds for quasi-n-hyponormal operators.

Proof. We use an induction. If n = 1, this is true. Assume that Weyl’s theorem holds for quasi-
1)
where S is quasi-k-hyponormal and N is hyponormal. Thus we can see that (cf. [HLL,Corollary 11])
o(S®N)=0(S)Uo(N)=0(T). On the other hand, remember ([Le, Corollary 5]) that if T" is weyl
then (i) S is left-Fredholm; (ii) V is right-Fredholm; and (iii) S~1(0)@® N~1(0) 2 (ran S)* @ (ran N)=L.
But since N is hyponormal, we have that N is Fredholm, and hence by (iii), S is also Fredholm. Since
by Lemma 1, S and N are coquasitriangular, and 0 = ind(7") = ind(S) + ind(N), we can see that
ind(S) = ind(N) = 0, i.e., S and N are both Weyl. Applying this for 7" — X in place of T gives
that w(S@® N) = w(S) Uw(N) = w(T). On the other hand, we argue that every quasi-n-hyponormal
operator is isoloid, in the sense that all isolated points of the spectrum are eigenvalues. To see this,
suppose R is quasi-n-hyponormal. Then R is unitarily equivalent to

k-hyponormal operators. Suppose T is quasi-(k + 1)-hyponormal. Then we can write T = (

N1 * *

9 N , (N; is hyponormal for 1 < j < n).
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Then o(R) = Jj_, o(N;) since the N; are all hyponormal (see [HLL, Corollary 11]). Let A €
isoo(T). We assume, without loss of generality, that A = 0. Then 0 € iso U;;l o(Nj;), so that
0 € isoo(N;) U p(N;) for j (1 < j <n). Suppose k is the first integer such that 0 € isoo(N}) (there
exists such an integer since 0 € o(R)). But since Ny is isoloid, Ny is not one-one. So there exists
a vector X := (1, ,2%,0---,0)T belongs to R71(0), so 0 is an eigenvalue of R. This shows that
every quasi-n-hyponormal operator is isoloid. Thus since S and N are isoloid and Weyl’s theorem
holds for S and N by the inductive hypothesis, we have that

7T()(](S @ N) == 7T()(] ) U ( ﬂ W(]O(N)) U (’/T()()(S) n ’/T()()(N))

o )\( w(N))
:o(seazv)\ (5@ )

—~

which says that Weyl’s theorem holds for S&N. Thus we have that o(T)\w(T') = o (S&N)\w(SON) =
700 (S @ N). But since isoo(T') = iso o (S @& N), it follows at once that o(T) \ w(T) C meo(T). For the
reverse inclusion, suppose A € moo(7T"). We must show that A € mpo(S @ N). Since S and N are isoloid,
it will suffice to show that (S —X)~1(0)& (N —X)~1(0) is finite-dimensional. Evidently, (S—X)~1(0) is
finite-dimensional because (S—\)~1(0)®{0} C (T—X)~1(0). Thus A € mo(S). We now assume to the
contrary that (N — X)~!(0) is infinite-dimensional. Thus A((N —\)~'(0)) is also infinite-dimensional;
if it were not so then (A‘(N,A)—l(o))_l (0) is infinite-dimensional and hence, so is (T' — \)~1(0), a
contradiction. On the other hand, since A € mpp(S) and Weyl’s theorem holds for S, we have that
S — X is Weyl, so that (S — A)(H)™* is finite-dimensional. Therefore A((N — X)71(0)) N (S — A)(H)
is infinite-dimensional. Then there exist an orthonormal sequence {y;} in (N — A)7!(0) and an
orthonormal sequence {z;} in H such that Ay; = (S — A)z;. Thus we have

S—A A Zj o 0 .
< 0 N)\> <yj>—<0> for each j = 1,2, ,

which implies that (7' — A)~%(0) is infinite-dimensional, a contradiction. Thus (N — \)~1(0) is finite-
dimensional, which completes the proof. O

If T € B(H) then the reduced minimum modulus, denoted y(T'), of T is defined by

. |||
T):=inf ———————
V(1) = inf T (z, T-1(0))’

where 9 is defined to be co. If T € B(H) is a non-zero operator then we can see that v(T) =
inf (o(|T]) \ {0}). In particular if T is invertible then (T') = [|T7!||~!. On the other hand, if we
write r(A) for the spectral radius of an operator A then

1 1
dist (A, o(T)) =dist (0, (T — \)) = min = = .
( () ( ( ) p€a(T—A) il maxicy oy V| (=)~

Thus if T is hyponormal and A ¢ o(T') then since (7' — A)~! is normaloid, i.e., norm equals radius, it
follows that

1 1

(2.3) dist (A, o(T)) = r((T —X\)~1) - [[(T = X)~1| B

(T = N).

By comparison we have:
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Lemma 3. If T is quasi-n-hyponormal and X ¢ o(T) then
@[T

o) T -» < g
min{l, [dist (A, o(T))] }

Proof. Note that if n = 1, then (2.4) is obvious from (2.3). We also use an induction. It is easy to

see that if A, B € B(H) and A is invertible then v(AB) > v(A)vy(B). We suppose that T' is quasi-2-
Ni N
0 N,
then Ny — A is right invertible. But since Ny is hyponormal it follows that N, — X is invertible. We
thus have that

_(Ni-A N 10 1 Na\_(Mi—A 0
7(T_A)_V( 0 NQ—A)ZV< NQ—A>7<0 1)”( 0 1)

:7<(1) ]\173>m1n{1, V(NQ—A)}min{l, (N —A)}-

(1 Ng)_ 1 _ 1 R S
v 0 1 1 N3 -1 H 1 —N3 H - 1+||N3|| - 1+||T||’
I I 0 1

hyponormal. So we can write T' = ( ), where N1 and Ny are hyponormal operators. If A ¢ o(T)

o

But since

it follows that
@25)  AT-N =4[] min{l, ANy = A), (N2 = A), 7(Ny = A)y(Na A)}.

By (2.3) and the fact that o(T) = o(N1) U o(N2), we have that v(N; — A) = dist (A, o(N;))
dist (A, o(T)) for each j = 1,2, and hence, v(T' — \) > (1+ ||T|])~* min {1, [dist (A, U(T))]2 . So
A ¢ o(T) then

2
if

1 L+ [|T7|
VS .
YT =) min{l, [(dlist (A, U(T))]Q}
Thus (2.4) holds for n = 2. We assume that (2.4) holds for n = k. Suppose T is quasi-(k + 1)-

AC
0B

s (h ) () (),

Then B — X is right invertible. But since B is hyponormal, it follows that B — X is invertible. Thus
by the same argument as (2.5) we have that

(T =N =

hyponormal. Then we can write T = ( ), where A is quasi-k-hyponormal and B is hyponormal.

If A ¢ o(T), write

@26) AT N>+ T min{l, V(A=) 1(B— N). A(A— N(B - A)}.

By the inductive hypothesis on A, we have

min {17 [dist (A, U(A))}k}
YA —=A) > 1+ |T])*T
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But since (B — A) = dist (A, o(B)) > dist (A, o(T)), it follows from (2.6) that

min {1, [dist (A, o(T))] k“}
(1+(|T[)* ’

YT = A) >

which implies that (2.4) holds for n = k£ + 1. This completes the proof. O

3 Proof of Theorem 1

We are ready for:

Proof of Theorem 1. We write (Q,,)(H) for the set of all quasi-n-hyponormal operators. If T' € B(H),
define m,(T) for the essential minimum modulus of T (cf.[Bo]): i.e., m¢(T') := inf o.(|T|). Obviously,

(3.1 me(T) >0 <= T is left-Fredholm.

On the other hand, m,. can be viewed as a function from B(H) to R, mapping each operator T
to its essential minimum modulus m.(T). We claim that m, is a continuous function: indeed, if
T,T, € B(H) (n € Z,) are such that T,, converges to T in norm then |T,,| converges to |T| in norm
(cf.[HwL, Lemma 1]) and lim 0. (|T},|) = 0. (|T|) because o, is continuous on the set of normal elements
in a unital C*-algebra (cf. [Ne, Corollary 2]), which implies that limm.(7,,) = m.(T"). We also claim
that there exists a constant ¢ > 0 such that if T € (Q,,)(H) then

(3.2) me(T —N\) > ¢ min{l, [dist (A, ae(T))]”} for A ¢ o.(T).

To prove (3.2) suppose T' € (Qn)(H) and 0 ¢ o.(T). If # : B(H) — B(H)/K(H) is the Calkin
homomorphism then we have that m.(T") = info(|7(T)|). We thus argue that if B(H)/K(H) is
regarded as a C*-subalgebra of B(K) for some Hilbert space K then since 7(T') is quasi-n-hyponormal,
we have that by Lemma 3,

me(T) = inf o[ (7))

= inf{||7r(T)x| Nzl =1, z € /c}
- 1
()|
1
(LA [ (D))"

zcmin{L [dist (0, a(w(T»}"} with ¢ :=

=c min{l, [dist (0, ae(T))}”}.

Applying this result with 7" — X in place of T" proves (3.2). Now suppose that T,,,T € (Q.)(H), for
n € Z, are such that T, converges to T’ in norm. Since o is upper semicontinuous and lim inf,, o(7,,) C
o(T), it suffices to show that o(T) C liminf, o(T,). We first claim that isoo(T) C liminf o(7},):
indeed this follows at once from an argument of Newburgh [Ne. Lemma 3|: if A € isoo(T) then for
every neighborhood N(A) of A there exists an N € Z such that n > N implies o(7},,) N N(A\) # 0.
This shows that A € liminf, o(7},). So it suffices to show that acco(T) C liminfo(7,). To show
this let A € acco(T) and assume to the contrary that A ¢ liminf, 0(7,). Then there exists a
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neighborhood N(A) of A which does not intersect infinitely many o(7},). Thus we can choose a
subsequence {T,, }r of {T,}, such that for some € > 0, dist (A, 0(7T},,)) > € for all k € Z,. Since
dist (A, 0(Ty,)) < dist (A, 0.(Ty,)), it follows that me(T,, — A) > 0 for some § > 0 and all k € Z,..
Since m, is continuous, we have that m.(T'—\) > §, which by (3.1), implies that T'— X is left-Fredholm.
By the continuity of the semi-Fredholm index, ind (T'— A) = limy_, ind (T, — A) = 0, which implies
that T'— X\ is Weyl. Since by Lemma 2, Weyl’s theorem holds for every quasi-n-hyponormal operator,
it follows A € mpo(T'), which implies A € isoo(T), a contradiction. Therefore A € liminf, o(7},) and
this completes the proof. O

REFERENCES

[AFV] C. Apostol, C. Foias and D. Voiculescu, Some results on non-quasitriangular operators, IV, Rev. Roum. Math.
Pures Appl. 18 (1973), 487-514.

[Bo]  R.H. Bouldin, The essential minimum modulus, Indiana Univ. Math. J. 30 (1981), 513-517.

[BGS] A. Béttcher, S. Grudsky and I. Spitkovsky, The spectrum is discontinuous on the manifold of Toeplitz operators,
Arch. Math. 75 (2000), 46-52.

[Br] A. Brown, Unitary equivalence of binormal operators, Amer. J. Math. 76 (1954), 413-434.

[Co] L.A. Coburn, Weyl’s theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285—288.

[CoM] J.B. Conway and B.B. Morrel, Operators that are points of spectral continuity, Integral Equations Operator
Theory 2 (1979), 174-198.

[FaL] D.R. Farenick and W.Y. Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348
(1996), 4153-4174.

[Fo] S.R. Foguel, Normal operators of finite multiplicity, Comm. Pure Appl. Math. 11 (1958), 297-313.

[Hal] P. R. Halmos, A Hilbert Space Problem Book, Springer, New York, 1982.

[HLL] J.K.Han, H.Y. Lee and W.Y. Lee, Invertible completions of 2 X 2 upper triangular matrices, Proc. Amer. Math.
Soc. 128(1) (2000), 119-123.

[Har] R.E. Harte, Invertibility and singularity for bounded linear operators, Dekker, New York, 1988.

[Hoo] T.B. Hoover, Hyperinvariant subspaces for n-normal operators, Acta Sci. Math. (Szeged) 32 (1971), 109-119.

[HwL] L.S. Hwang and W.Y. Lee, The spectrum is continuous on the set of p-hyponormal operators, Math. Z. 235
(2000), 151-157.

[Le] W.Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129(1) (2001), 131-138.

[Ne] J. D. Newburgh, The variation of spectra, Duke Math. J. 18 (1951), 165-176.

[Pe] C. Pearcy, Some recent developments in operator theory, C.B.M.S. Regional Conference Series in Mathematics,
No. 36, Amer. Math. Soc., Providence, 1978.

[RR1] H. Radjavi and P. Rosenthal, Hyperinvariant subspaces for spectral and n-normal operators, Acta Sci. Math.
(Szeged) 32 (1971), 121-126.

[RR2] H. Radjavi and P. Rosenthal, Invariant Subspaces, Second edition, Dover Publications, Mineda, NY, 2003.

[We] H. Weyl, Uber beschrinkte quadratische Formen, deren Differenz vollsteig ist, Rend. Circ. Mat. Palermo 27
(1909), 373-392.

Department of Mathematics, Seoul National University, Seoul 151-742, Korea
E-mail address: ihmath@skku.edu

Department of Mathematics, Seoul National University, Seoul 151-742, Korea
E-mail address: wylee@math.snu.ac.kr



