A Gap between Hyponormality and Subnormality for Block Toeplitz Operators

In Sung Hwang, Dong-O Kang and Woo Young Lee

Abstract

This paper concerns a gap between hyponormality and subnormality for block Toeplitz operators. We show that there is no gap between 2 -hyponormality and subnormality for a certain class of trigonometric block Toeplitz operators (e.g., its co-analytic outer coefficient is invertible). In addition we consider the extremal cases for the hyponormality of trigonometric block Toeplitz operators: in this case, hyponormality and normality coincide.

Keywords. Block Toeplitz operators, matrix-valued trigonometric polynomials, hyponormal, 2-hyponormal, subnormal.

1. Introduction

The Bram-Halmos criterion of subnormality ([Br]) states that an operator T on a Hilbert space \mathcal{H} is subnormal if and only if $\sum_{i, j}\left(T^{i} x_{j}, T^{j} x_{i}\right) \geq 0$ for all finite collections $x_{0}, x_{1}, \cdots, x_{k} \in \mathcal{H}$. It is easy to see that this is equivalent to the following positivity test:

$$
\left.\left[\begin{array}{cccc}
I & T^{*} & \ldots & T^{* k} \tag{1.1}\\
T & T^{*} T & \ldots & T^{* k} T \\
\vdots & \vdots & \ddots & \vdots \\
T^{k} & T^{*} T^{k} & \ldots & T^{* k} T^{k}
\end{array}\right] \geq 0 \quad \text { (all } k \geq 1\right) .
$$

Condition (1.1) provides a measure of the gap between hyponormality and subnormality. In fact the positivity condition (1.1) for $k=1$ is equivalent to the hyponormality of T, while subnormality requires the validity of (1.1) for all k. For $k \geq 1$, an operator T is said to be k-hyponormal if T satisfies the positivity condition (1.1) for a fixed k. Thus the Bram-Halmos criterion can be stated as: T is subnormal if and only if T is k-hyponormal for all $k \geq 1$. The k-hyponormality has been considered by many authors with an aim at understanding the gap between hyponormality and subnormality. For instance, the Bram-Halmos criterion on subnormality indicates that 2hyponormality is generally far from subnormality. There are special classes of operators, however, for which these two notions are equivalent. For example, in [CL1, Example 3.1], it was shown that there is no gap between 2-hyponormality and subnormality for a back-step extension of the recursively generated subnormal weighted shift. The purpose of this paper is to consider a gap between hyponormality and subnormality (or normality) for Toeplitz operators with matrix-valued symbols. We establish that there is no gap between 2-hyponormality and normality for a certain class of block Toeplitz operators with matrix-valued trigonometric polynomial symbols and in the extremal cases, hyponormality and normality coincide.

2. Preliminaries

Throughout this paper, let \mathcal{H} denote a separable complex Hilbert space and $\mathcal{B}(\mathcal{H})$ denote the set of all bounded linear operators acting on \mathcal{H}. For an operator $T \in \mathcal{B}(\mathcal{H}), T^{*}$ denotes the adjoint of

[^0]T. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be normal if $T^{*} T=T T^{*}$, hyponormal if its self-commutator $\left[T^{*}, T\right] \equiv T^{*} T-T T^{*}$ is positive semi-definite, and subnormal if T has a normal extension N, i.e., there is a Hilbert space \mathcal{K} containing \mathcal{H} and a normal operator N on \mathcal{K} such that $N \mathcal{H} \subseteq \mathcal{H}$ and $T=\left.N\right|_{\mathcal{H}}$. For an operator $T \in \mathcal{B}(\mathcal{H})$, we write $\operatorname{ker} T$ for the kernel of T. For a set $\mathcal{M}, \mathcal{M}^{\perp}$ denotes the orthogonal complement of \mathcal{M}.

We review a few essential facts for (block) Toeplitz operators and (block) Hankel operators that we will need to begin with, using [Do1], [Do2], and [Ni]. Let $L^{2} \equiv L^{2}(\mathbb{T})$ be the set of squareintegrable measurable functions on the unit circle $\mathbb{T} \equiv \partial \mathbb{D}$ in the complex plane and $H^{2} \equiv H^{2}(\mathbb{T})$ be the corresponding Hardy space. Let $L^{\infty} \equiv L^{\infty}(\mathbb{T})$ be the set of bounded measurable functions on \mathbb{T} and let $H^{\infty} \equiv H^{\infty}(\mathbb{T}):=L^{\infty}(\mathbb{T}) \cap H^{2}(\mathbb{T})$. For \mathcal{X} a Hilbert space, let $L_{\mathcal{X}}^{2} \equiv L_{\mathcal{X}}^{2}(\mathbb{T})$ be the Hilbert space of \mathcal{X}-valued norm square-integrable measurable functions on \mathbb{T} and $H_{\mathcal{X}}^{2} \equiv H_{\mathcal{X}}^{2}(\mathbb{T})$ be the corresponding Hardy space. We observe that $L_{\mathbb{C}^{n}}^{2}=L^{2}(\mathbb{T}) \otimes \mathbb{C}^{n}$ and $H_{\mathbb{C}^{n}}^{2}=H^{2}(\mathbb{T}) \otimes \mathbb{C}^{n}$. Let M_{n} denote the set of $n \times n$ complex matrices. If Φ is a matrix-valued function in $L_{M_{n}}^{\infty} \equiv L_{M_{n}}^{\infty}(\mathbb{T})$ $\left(=L^{\infty}(\mathbb{T}) \otimes M_{n}\right)$ then the block Toeplitz operator T_{Φ} and the block Hankel operator H_{Φ} on $H_{\mathbb{C}^{n}}^{2}$ are defined by

$$
\begin{equation*}
T_{\Phi} f=P(\Phi f) \quad \text { and } \quad H_{\Phi} f=J P^{\perp}(\Phi f) \quad\left(f \in H_{\mathbb{C}^{n}}^{2}\right) \tag{2.1}
\end{equation*}
$$

where P and P^{\perp} denote the orthogonal projections that map from $L_{\mathbb{C}^{n}}^{2}$ onto $H_{\mathbb{C}^{n}}^{2}$ and $\left(H_{\mathbb{C}^{n}}^{2}\right)^{\perp}$, respectively and J denotes the unitary operator from $L_{\mathbb{C}^{n}}^{2}$ to $L_{\mathbb{C}^{n}}^{2}$ given by $J(g)(z)=\bar{z} I_{n} g(\bar{z})$ for $g \in L_{\mathbb{C}^{n}}^{2}\left(I_{n}:=\right.$ the $n \times n$ identity matrix). If $n=1, T_{\Phi}$ and H_{Φ} are called the (scalar) Toeplitz operator and the (scalar) Hankel operator, respectively. For $\Phi \in L_{M_{n \times m}}^{\infty}$, write

$$
\begin{equation*}
\widetilde{\Phi}(z):=\Phi^{*}(\bar{z}) \tag{2.2}
\end{equation*}
$$

An inner (matrix) function $\Theta \in H_{M_{n \times m}}^{\infty}\left(=H^{\infty} \otimes M_{n \times m}\right)$ is one satisfying $\Theta^{*} \Theta=I_{m}$ for almost all $z \in \mathbb{T}$, where $M_{n \times m}$ denotes the set of $n \times m$ complex matrices. The following basic relations can be easily derived from the definition:

$$
\begin{align*}
& T_{\Phi}^{*}=T_{\Phi^{*}}, H_{\Phi}^{*}=H_{\widetilde{\Phi}} \quad\left(\Phi \in L_{M_{n}}^{\infty}\right) \tag{2.3}\\
& T_{\Phi \Psi}-T_{\Phi} T_{\Psi}=H_{\Phi^{*}}^{*} H_{\Psi} \quad\left(\Phi, \Psi \in L_{M_{n}}^{\infty}\right) ; \tag{2.4}\\
& H_{\Phi} T_{\Psi}=H_{\Phi \Psi}, H_{\Psi \Phi}=T_{\widetilde{\Psi}}^{*} H_{\Phi} \quad\left(\Phi \in L_{M_{n}}^{\infty}, \Psi \in H_{M_{n}}^{\infty}\right) \tag{2.5}
\end{align*}
$$

A matrix-valued trigonometric polynomial $\Phi \in L_{M_{n}}^{\infty}$ is of the form

$$
\Phi(z)=\sum_{j=-m}^{N} A_{j} z^{j}\left(A_{j} \in M_{n}\right)
$$

where A_{N} and A_{-m} are called the outer coefficients of Φ. For a matrix-valued function $A(z)=$ $\sum_{j=-\infty}^{\infty} A_{j} z^{j} \in L_{M_{n}}^{2}$, we define

$$
\|A\|_{2}^{2}:=\int_{\mathbb{T}} \operatorname{tr}\left(A^{*} A\right) d \mu=\sum_{j=-\infty}^{\infty} \operatorname{tr}\left(A_{j}^{*} A_{j}\right)
$$

where $\operatorname{tr}(\cdot)$ means the trace of the matrix and if $A \in L_{M_{n}}^{\infty}$, we define

$$
\|A\|_{\infty}:=\sup _{t \in \mathbb{T}}\|A(t)\| \quad(\|\cdot\| \text { means the spectral norm of the matrix })
$$

The hyponormality of the scalar Toeplitz operators T_{φ} was completely characterized by a property of their symbols by C. Cowen [Co] in 1988.
Cowen's Theorem ([Co], [NT]) For $\varphi \in L^{\infty}$, write

$$
\mathcal{E}(\varphi):=\left\{k \in H^{\infty}:\|k\|_{\infty} \leq 1 \text { and } \varphi-k \bar{\varphi} \in H^{\infty}\right\}
$$

Then T_{φ} is hyponormal if and only if $\mathcal{E}(\varphi)$ is nonempty.

In 2006, Gu, Hendricks and Rutherford [GHR] considered the hyponormality of block Toeplitz operators and characterized the hyponormality of block Toeplitz operators in terms of their symbols. In particular they showed that if T_{Φ} is a hyponormal block Toeplitz operator on $H_{\mathbb{C}^{n}}^{2}$, then Φ is normal, i.e., $\Phi^{*} \Phi=\Phi \Phi^{*}$. Their characterization for hyponormality of block Toeplitz operators resembles the Cowen's theorem except for an additional condition - the normality of the symbol.

Lemma 2.1. (Hyponormality of Block Toeplitz Operators) [GHR] For each $\Phi \in L_{M_{n}}^{\infty}$, let

$$
\mathcal{E}(\Phi):=\left\{K \in H_{M_{n}}^{\infty}:\|K\|_{\infty} \leq 1 \quad \text { and } \quad \Phi-K \Phi^{*} \in H_{M_{n}}^{\infty}\right\}
$$

Then a block Toeplitz operator T_{Φ} is hyponormal if and only if Φ is normal and $\mathcal{E}(\Phi)$ is nonempty.

For a matrix-valued function $\Phi \in H_{M_{n \times r}}^{2}$, we say that $\Delta \in H_{M_{n \times m}}^{2}$ is a left inner divisor of Φ if Δ is an inner matrix function such that $\Phi=\Delta A$ for some $A \in H_{M_{m \times r}}^{2}(m \leq n)$. We also say that two matrix functions $\Phi \in H_{M_{n \times r}}^{2}$ and $\Psi \in H_{M_{n \times m}}^{2}$ are left coprime if the only common left inner divisor of both Φ and Ψ is a unitary constant and that $\Phi \in H_{M_{n \times r}}^{2}$ and $\Psi \in H_{M_{m \times r}}^{2}$ are right coprime if $\widetilde{\Phi}$ and $\widetilde{\Psi}$ are left coprime. Two matrix functions Φ and Ψ in $H_{M_{n}}^{2}$ are said to be coprime if they are both left and right coprime.

Remark 2.2. If $\Phi \in H_{M_{n}}^{2}$ is such that det Φ is not identically zero then any left inner divisor Δ of Φ is square, i.e., $\Delta \in H_{M_{n}}^{2}$.

Proof. Assume to the contrary that $\Phi=\Delta A$ with $\Delta \in H_{M_{n \times r}}^{2}(r<n)$. Then for almost all $z \in \mathbb{T}$, $\operatorname{rank} \Phi(z) \leq \operatorname{rank} \Delta(z) \leq r<n$, so that $\operatorname{det} \Phi(z)=0$ for almost all $z \in \mathbb{T}$. This shows that any left inner divisor Δ of Φ is square.

If $\Phi \in H_{M_{n}}^{2}$ is such that $\operatorname{det} \Phi$ is not identically zero then we say that $\Delta \in H_{M_{n}}^{2}$ is a right inner divisor of Φ if $\widetilde{\Delta}$ is a left inner divisor of $\widetilde{\Phi}$.

For brevity we write I for the identity matrix and

$$
I_{\zeta}:=\zeta I \quad\left(\zeta \in L^{\infty}\right)
$$

For $\Phi \in L_{M_{n}}^{\infty}$ we write

$$
\Phi_{+}:=P_{n} \Phi \in H_{M_{n}}^{2} \quad \text { and } \quad \Phi_{-}:=\left(P_{n}^{\perp} \Phi\right)^{*} \in H_{M_{n}}^{2}
$$

where P_{n} denotes the orthogonal projection from $L_{M_{n}}^{2}$ onto $H_{M_{n}}^{2}$. Thus we can write $\Phi=\Phi_{-}^{*}+\Phi_{+}$. If Ψ is a matrix-valued analytic polynomial then we can write

$$
\begin{equation*}
\Psi=\Theta A^{*} \quad\left(A \in H_{M_{n}}^{2} \text { and } \Theta=I_{z^{N}} \text { for some nonnegative integer } N\right) \tag{2.6}
\end{equation*}
$$

If Ω is the greatest common right inner divisor of A and Θ in the representation (2.6), then $\Theta=\Omega_{r} \Omega$ and $A=A_{r} \Omega$ for some inner matrix Ω_{r} (where $\Omega_{r} \in H_{M_{n}}^{2}$ because $\operatorname{det} \Theta$ is not identically zero) and some $A_{r} \in H_{M_{n}}^{2}$. Therefore we can write

$$
\begin{equation*}
\Psi=\Omega_{r} A_{r}^{*}, \quad \text { where } A_{r} \text { and } \Omega_{r} \text { are right coprime: } \tag{2.7}
\end{equation*}
$$

in this case, $\Omega_{r} A_{r}^{*}$ is called the right coprime decomposition of Φ.
In general, it is not easy to check the condition " Θ and A are right coprime" for the representation $\Phi=\Theta A^{*}\left(\Theta\right.$ is inner and $\left.A \in H_{M_{n}}^{2}\right)$ even though $\Theta=I_{\theta}$ for an inner function θ. But if Φ is a matrix-valued analytic polynomial then we have a more tractable criterion (cf. [CHL, Lemma 3.10]): if $A \in H_{M_{n}}^{\infty}$ is a matrix-valued analytic polynomial and $\Theta=I_{z^{N}}$, then

$$
\begin{equation*}
\Theta \text { and } A \text { are right coprime } \Longleftrightarrow A(0) \text { is invertible. } \tag{2.8}
\end{equation*}
$$

If $\Phi \in L_{M_{n}}^{\infty}$ is a matrix-valued trigonometric polynomial then T_{Φ} will be called a trigonometric block Toeplitz operator. In Section 3 we show that there is no gap between 2-hyponormality and
normality for a certain class of trigonometric block Toeplitz operators. In Section 4, we consider the extremal cases for the hyponormality of trigonometric block Toeplitz operators: in this case, hyponormality and normality coincide.

3. 2-hyponormality of trigonometric block Toeplitz operators

We begin with:
Lemma 3.1. Let $\Phi \in L_{M_{n}}^{\infty}$ be a matrix-valued trigonometric polynomial of the form $\Phi(z)=$ $\sum_{j=-m}^{N} A_{j} z^{j}(m \leq N)$ and write

$$
\Phi_{-}=\Theta F^{*} \text { (right coprime decomposition). }
$$

Suppose I_{z} is an inner divisor of Θ. If
(i) T_{Φ} is hyponormal;
(ii) $\operatorname{ker}\left[T_{\Phi}^{*}, T_{\Phi}\right]$ is invariant for T_{Φ},
then T_{Φ} is normal. Hence in particular, if T_{Φ} is 2-hyponormal then it is normal.
Proof. By assumption we write $\Theta=I_{z} \Theta_{1}$ for some inner matrix Θ_{1}. Suppose T_{Φ} is hyponormal. Since $\Phi^{*} \Phi=\Phi \Phi^{*}$, it follows from (2.4) that $\left[T_{\Phi}^{*}, T_{\Phi}\right]=H_{\Phi^{*}}^{*} H_{\Phi^{*}}-H_{\Phi}^{*} H_{\Phi}$. Note that by (2.8), $F_{0}:=$ $F(0)$ is an invertible matrix since F and I_{z} are right coprime. Since Φ^{*} and Φ are trigonometric polynomials of co-analytic degrees N and m, respectively, we can see that

$$
\begin{equation*}
\operatorname{ran}\left[T_{\Phi}^{*}, T_{\Phi}\right]=\operatorname{ran}\left(H_{\Phi^{*}}^{*} H_{\Phi^{*}}-H_{\Phi}^{*} H_{\Phi}\right) \subseteq \mathcal{H}\left(I_{z^{N}}\right) \tag{3.1}
\end{equation*}
$$

We now suppose that N_{1} is the smallest integer such that

$$
\begin{equation*}
\operatorname{ran}\left[T_{\Phi}^{*}, T_{\Phi}\right] \subseteq \mathcal{H}\left(I_{z^{N_{1}}}\right) \tag{3.2}
\end{equation*}
$$

Assume to the contrary that $\operatorname{ran}\left[T_{\Phi}^{*}, T_{\Phi}\right] \neq\{0\}$. We choose an element $B \in \operatorname{ran}\left[T_{\Phi}^{*}, T_{\Phi}\right]$ of the greatest analytic degree. Write

$$
B:=\sum_{j=0}^{N_{1}-1} B_{j} z^{j} \quad\left(B_{N_{1}-1} \neq 0\right)
$$

We thus have

$$
\begin{aligned}
T_{\Theta_{1}^{*}} T_{I_{z}-N_{1}} T_{\Phi^{*}} B & =T_{\Theta_{1}^{*} I_{z}-N_{1} \Phi^{*}} B \\
& =P\left(\Theta_{1}^{*} I_{z^{-N_{1}}}\left(\Phi_{+}^{*}+I_{z} \Theta_{1} F^{*}\right) \sum_{j=0}^{N_{1}-1} B_{j} z^{j}\right) \\
& =P\left(\Theta_{1}^{*}\left(I_{z^{-1}} \Phi_{+}^{*}+\Theta_{1} F^{*}\right) \sum_{j=0}^{N_{1}-1} B_{j} z^{-\left(N_{1}-1-j\right)}\right) \\
& =P\left(F^{*} \sum_{j=0}^{N_{1}-1} B_{j} z^{-\left(N_{1}-1-j\right)}\right) \\
& =F_{0}^{*} B_{N_{1}-1} .
\end{aligned}
$$

But since F_{0} is invertible and $B_{N_{1}-1} \neq 0$, it follows that $T_{\Theta_{1}}^{*}\left(T_{I_{z}-N_{1}} T_{\Phi^{*}} B\right) \neq 0$, which implies that $T_{I_{z}-N_{1}} T_{\Phi^{*}} B \neq 0$ and in turn,

$$
T_{\Phi^{*}} B \notin \mathcal{H}\left(I_{z^{N_{1}}}\right)
$$

But if $\operatorname{ker}\left[T_{\Phi}^{*}, T_{\Phi}\right]$ is invariant for T_{Φ}, and hence $\operatorname{ran}\left[T_{\Phi}^{*}, T_{\Phi}\right]$ is invariant for T_{Φ}^{*}, then by (3.2),

$$
T_{\Phi}^{*} B \in \operatorname{ran}\left[T_{\Phi}^{*}, T_{\Phi}\right] \subseteq \mathcal{H}\left(I_{z^{N_{1}}}\right)
$$

which leads a contradiction. Therefore we must have that $\operatorname{ran}\left[T_{\Phi}^{*}, T_{\Phi}\right]=\{0\}$, i.e., T_{Φ} is normal. The second assertion follows from the first assertion together with the fact that every 2-hyponormal operator $T \in \mathcal{B}(\mathcal{H})$ satisfies that $\operatorname{ker}\left[T^{*}, T\right]$ is invariant for T (cf. [CL2]). This completes the proof.

Write $\Phi(z) \equiv \sum_{j=-m}^{N} A_{j} z^{j} \in L_{M_{n}}^{\infty}$. Define

$$
G_{0, r}:=A_{-m+r} \quad(r=0, \ldots, m-1)
$$

and put

$$
M_{0}:=\operatorname{ker} G_{00}\left(=\operatorname{ker} A_{-m}\right)
$$

We now define, recursively, $G_{s, r}$ and M_{s} as follows: for $r=0, \ldots, m-1$ and $s=0, \ldots, m-1$,

$$
\left\{\begin{array}{l}
G_{s+1, r}:=G_{s, r} P_{M_{s}^{\perp}}+G_{s, r+1} P_{M_{s}} \tag{3.3}\\
M_{s}:=\operatorname{ker} G_{s, 0}
\end{array}\right.
$$

where $P_{\mathcal{X}}$ denotes the orthogonal projection of \mathbb{C}^{n} onto \mathcal{X} and $G_{s, m}$ is defined to be the zero matrix for all s.

Remark 3.2. The sequence $\left(\operatorname{dim} M_{s}\right)$ is decreasing.
Proof. By definition we can write

$$
G_{s, 0}=\left[\begin{array}{cc}
C_{s} & 0 \\
D_{s} & 0
\end{array}\right]:\left[\begin{array}{c}
M_{s}^{\perp} \\
M_{s}
\end{array}\right] \rightarrow\left[\begin{array}{c}
M_{s}^{\perp} \\
M_{s}
\end{array}\right]
$$

Let

$$
G_{s, 1}:=\left[\begin{array}{ll}
E_{1} & E_{2} \\
E_{3} & E_{4}
\end{array}\right]:\left[\begin{array}{c}
M_{s}^{\perp} \\
M_{s}
\end{array}\right] \rightarrow\left[\begin{array}{c}
M_{s}^{\perp} \\
M_{s}
\end{array}\right]
$$

Since

$$
G_{s+1,0}=G_{s, 0} P_{M_{s}^{\perp}}+G_{s, 1} P_{M_{s}}=\left[\begin{array}{cc}
C_{s} & 0 \\
D_{s} & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & E_{2} \\
0 & E_{4}
\end{array}\right]=\left[\begin{array}{ll}
C_{s} & E_{2} \\
D_{s} & E_{4}
\end{array}\right]
$$

it follows that $\operatorname{rank} G_{s, 0} \leq \operatorname{rank} G_{s+1,0}$, i.e., $\operatorname{dim} \operatorname{ker} G_{s, 0} \geq \operatorname{dim} \operatorname{ker} G_{s+1,0}$, giving the result.
We note that if $G_{s_{0}, 0}$ is invertible for some s_{0}, then $G_{s, r}=G_{s_{0}, r}$ for all $s \geq s_{0}$ and $0 \leq r \leq$ $m-1$.

We are ready for:
Theorem 3.3. Let $\Phi \in L_{M_{n}}^{\infty}$ be a matrix-valued trigonometric polynomial of the form $\Phi(z)=$ $\sum_{j=-m}^{N} A_{j} z^{j}(m \leq N)$ and suppose some $G_{s_{0}, 0}\left(0 \leq s_{0} \leq m-1\right)$ defined by (3.3) is invertible. If T_{Φ} is 2-hyponormal then T_{Φ} is normal.

Proof. Let $G_{s, r}$ be defined by (3.3) and write

$$
\begin{equation*}
G_{0}(z) \equiv \sum_{r=0}^{m-1} G_{0, r} z^{r}=\sum_{r=0}^{m-1} A_{-m+r} z^{r} \tag{3.4}
\end{equation*}
$$

Put $M_{0}:=\operatorname{ker} G_{00}\left(=\operatorname{ker} A_{-m}\right)$ as above. Therefore we can write

$$
G_{00}=\left[\begin{array}{ll}
C_{0} & 0 \\
D_{0} & 0
\end{array}\right]:\left[\begin{array}{c}
M_{0}^{\perp} \\
M_{0}
\end{array}\right] \rightarrow\left[\begin{array}{c}
M_{0}^{\perp} \\
M_{0}
\end{array}\right]
$$

Observe that

$$
\left[\begin{array}{ll}
C_{0} & 0 \\
D_{0} & 0
\end{array}\right]=\left[\begin{array}{ll}
C_{0} & 0 \\
D_{0} & 0
\end{array}\right]\left[\begin{array}{cc}
\left.1\right|_{M_{\perp}^{\perp}} & 0 \\
0 & \left.z\right|_{M_{0}}
\end{array}\right]
$$

so that

$$
G_{00}=G_{00}\left(P_{M_{0}^{\perp}}+P_{M_{0}}\right)=G_{00} P_{M_{0}^{\perp}}\left[\begin{array}{cc}
\left.1\right|_{M_{\perp}^{\perp}} & 0 \tag{3.5}\\
0 & \left.z\right|_{M_{0}}
\end{array}\right]
$$

and for $1 \leq r \leq m-1$,

$$
\begin{align*}
G_{0, r} z^{r} & =G_{0, r}\left(P_{M_{0}^{\perp}}+P_{M_{0}}\right)\left[\begin{array}{cc}
\left.z^{r}\right|_{M_{0}^{\perp}} & 0 \\
0 & \left.z^{r-1}\right|_{M_{0}}
\end{array}\right]\left[\begin{array}{cc}
\left.1\right|_{M_{0}^{\perp}} & 0 \\
0 & \left.z\right|_{M_{0}}
\end{array}\right] \tag{3.6}\\
& =\left(\left(G_{0, r} P_{M_{0}^{\perp}}\right) z^{r}+\left(G_{0, r} P_{M_{0}}\right) z^{r-1}\right)\left[\begin{array}{cc}
\left.1\right|_{M_{0}^{\perp}} ^{\perp} & 0 \\
0 & \left.z\right|_{M_{0}}
\end{array}\right]
\end{align*}
$$

Substituting (3.5) and (3.6) into (3.4), we have

$$
\begin{aligned}
G_{0}(z)= & \sum_{r=0}^{m-1} G_{0, r} z^{r} \\
= & G_{00} P_{M_{0}^{\perp}}\left[\begin{array}{cc}
\left.1\right|_{M_{0}^{\perp}} & 0 \\
0 & \left.z\right|_{M_{0}}
\end{array}\right] \\
& +\left(\left(G_{0,1} P_{M_{0}^{\perp}}\right) z^{1}+\left(G_{0,1} P_{M_{0}}\right) z^{0}\right)\left[\begin{array}{cc}
\left.1\right|_{M_{\perp}^{\perp}} & 0 \\
0 & \left.z\right|_{M_{0}}
\end{array}\right] \\
& \quad+\left(\left(G_{0,2} P_{M_{0}^{\perp}}\right) z^{2}+\left(G_{0,2} P_{M_{0}}\right) z^{1}\right)\left[\begin{array}{cc}
\left.1\right|_{M_{0}^{\perp}} & 0 \\
0 & \left.z\right|_{M_{0}}
\end{array}\right] \\
& \quad \ldots \\
& \quad+\left(\left(G_{0, m-1} P_{M_{0}^{\perp}}\right) z^{m-1}+\left(G_{0, m-1} P_{M_{0}}\right) z^{m-2}\right)\left[\begin{array}{cc}
\left.1\right|_{M_{0}^{\perp}} & 0 \\
0 & \left.z\right|_{M_{0}}
\end{array}\right] \\
= & \left(\begin{array}{cc}
\left.\sum_{r=0}^{m-1}\left(G_{0, r} P_{M_{0}^{\perp}}+G_{0, r+1} P_{M_{0}}\right) z^{r}\right)\left[\begin{array}{cc}
\left.1\right|_{M_{0}^{\perp}} & 0 \\
0 & \left.z\right|_{M_{0}}
\end{array}\right] \\
= & \left(\begin{array}{ll}
\sum_{r=0}^{m-1} G_{1, r} z^{r}
\end{array}\right)\left[\begin{array}{cc}
\left.1\right|_{M_{0}^{\perp}} & 0 \\
0 & \left.z\right|_{M_{0}}
\end{array}\right],
\end{array}\right.
\end{aligned}
$$

where the third equality follows from regrouping the terms and adding the term

$$
G_{0, m} P_{M_{0}} z^{m-1}\left[\begin{array}{cc}
\left.1\right|_{M_{0}} ^{\perp} & 0 \\
0 & \left.z\right|_{M_{0}}
\end{array}\right]
$$

(this is equal to zero because $G_{s, m}$ is defined to be the zero matrix for all s). Repeating the above argument for $G_{1}(z) \equiv \sum_{r=0}^{m-1} G_{1, r} z^{r}$, we have

$$
G_{1}(z)=\left(\sum_{r=0}^{m-1} G_{2, r} z^{r}\right)\left[\begin{array}{cc}
\left.1\right|_{M_{\perp}} ^{\perp} & 0 \\
0 & \left.z\right|_{M_{1}}
\end{array}\right]
$$

By induction we obtain

$$
G_{0}(z)=\left(\sum_{r=0}^{m-1} G_{s, r} z^{r}\right) \prod_{j=1}^{s}\left[\begin{array}{cc}
\left.1\right|_{M_{s-j}} ^{\perp} & 0 \\
0 & \left.z\right|_{M_{s-j}}
\end{array}\right] \quad \text { for } s=1, \ldots, m-1
$$

We now assume that $G_{s_{0}, 0}$ is invertible for some $s_{0}\left(0 \leq s_{0} \leq m-1\right)$. Then the invertibility of $G_{s_{0}, 0}$ implies that $\sum_{r=0}^{m-1} G_{s_{0}, r} z^{r}$ is right coprime with I_{z}. We observe

$$
\begin{aligned}
\Phi_{-} & =A_{-1}^{*} z+\cdots+A_{-m}^{*} z^{m}=z^{m} G_{0}(z)^{*} \\
& =z^{m}\left(\left(\sum_{r=0}^{m-1} G_{s_{0}, r} z^{r}\right) \prod_{j=1}^{s_{0}}\left[\begin{array}{cc}
\left.1\right|_{M_{s_{0}-j}} ^{\perp} & 0 \\
0 & \left.z\right|_{M_{s_{0}-j}}
\end{array}\right]\right)^{*} \\
& =z^{m-s_{0}} \prod_{j=1}^{s_{0}}\left[\begin{array}{cc}
\left.z\right|_{M_{s_{0}-j}^{\perp}} ^{\perp} & 0 \\
0 & \left.1\right|_{M_{s_{0}-j}}
\end{array}\right]\left(\sum_{r=0}^{m-1} G_{s_{0}, r} z^{r}\right)^{*} .
\end{aligned}
$$

By assumption we must have that $m-s_{0} \geq 1$. We claim that

$$
\Theta \equiv z^{m-s_{0}} \prod_{j=1}^{s_{0}}\left[\begin{array}{cc}
\left.z\right|_{M_{s_{0}-j}^{\perp}} ^{\perp} & 0 \tag{3.7}\\
0 & \left.1\right|_{M_{s_{0}-j}}
\end{array}\right] \text { and } F \equiv \sum_{r=0}^{m-1} G_{s_{0}, r} z^{r} \text { are right coprime. }
$$

To see (3.7) we assume to the contrary that Θ and F are not right coprime. Then $\widetilde{\Theta}$ and \widetilde{F} are not left coprime. Thus there exists an inner matrix function $\widetilde{\Delta} \in H_{M_{n \times l}}^{2}$ such that

$$
\widetilde{\Theta}=\widetilde{\Delta} C_{1}, \quad \widetilde{F}=\widetilde{\Delta} C_{2} \quad\left(\text { for some } C_{1}, C_{2} \in H_{M_{l \times n}}^{2}\right)
$$

where Δ is not unitary constant. Since $G_{s_{0}, 0}$ is invertible it follows that $\operatorname{det} \widetilde{F}$ is not identically zero, and hence $\widetilde{\Delta} \in H_{M_{n}}^{2}$. Therefore Δ becomes a common right inner divisor of Θ and F. Put

$$
\Omega:=\prod_{j=0}^{s_{0}-1}\left[\begin{array}{cc}
\left.1\right|_{M_{j}^{\perp}} & 0 \\
0 & \left.z\right|_{M_{j}}
\end{array}\right]
$$

Then $I_{z^{m}}=\Omega \Theta=\Omega C_{1} \Delta$ and $F=C_{2} \Delta$ are not right coprime. But since $F(0)=G_{s_{0}, 0}$ is invertible, it follows from (2.8) that $I_{z^{m}}$ and F are right coprime, a contradiction. This proves (3.7). But since Θ contains an inner factor I_{z}, applying Lemma 3.1 with F and Θ gives the result.

The following corollary shows that there is no gap between 2-hyponormality and normality for Toeplitz operators with matrix-valued trigonometric polynomial symbols whose co-analytic outer coefficient is invertible.
Corollary 3.4. Let $\Phi \in L_{M_{n}}^{\infty}$ be a matrix-valued trigonometric polynomial whose co-analytic outer coefficient is invertible. If T_{Φ} is 2-hyponormal then T_{Φ} is normal.

Proof. Write

$$
\Phi_{-}=\sum_{j=1}^{m} A_{-j} z^{j}
$$

Under the notation of Theorem 3.3, we have that $G_{00}=A_{-m}$ ($=$ the co-analytic outer coefficient). Thus the result follows at once from Theorem 3.3.

In Corollary 3.4, the condition "the coanalytic outer coefficient is invertible" is essential. To see this, let

$$
\Phi:=\left[\begin{array}{cc}
z+\bar{z} & 0 \\
0 & z
\end{array}\right]
$$

Then

$$
T_{\Phi}=\left[\begin{array}{cc}
T_{z}+T_{z}^{*} & 0 \\
0 & T_{z}
\end{array}\right]
$$

Thus T_{Φ} is subnormal (and hence 2-hyponormal). Clearly, T_{Φ} is neither normal nor analytic even though the analytic outer coefficient $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is invertible. Note that the co-analytic outer coefficient $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is singular.

Of course, the assumption of Corollary 3.4 is superfluous. For example, if $\Phi=\sum_{j=-m}^{N} A_{j} z^{j}$ is a matrix-valued trigonometric polynomial of the form

$$
A_{-m}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad \text { and } \quad A_{-m+1}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Then by Theorem 3.3, the conclusion of Corollary 3.4 is still true even though A_{-m} is not invertible.

4. Extremal cases

It was known ([FL]) that if φ is a trigonometric polynomial of the form $\varphi(z)=\sum_{n=-m}^{N} a_{n} z^{n}$ then ' $\left|a_{-m}\right| \leq\left|a_{N}\right|$ ' is a necessary condition for T_{φ} to be hyponormal. In this sense, the condition $'\left|a_{-m}\right|=\left|a_{N}\right|$ ' is an extremal case for T_{φ} to be hyponormal: in particular, in this case, T_{φ} is hyponormal if and only if the Fourier coefficients of φ have a symmetric relation, i.e., there exists $\theta \in[0,2 \pi)$ such that (cf. [FL, Theorem 1.4])

$$
\left[\begin{array}{c}
a_{-1} \\
a_{-2} \\
\vdots \\
a_{-m}
\end{array}\right]=e^{i \theta}\left[\begin{array}{c}
\bar{a}_{N-m+1} \\
\bar{a}_{N-m+2} \\
\vdots \\
\bar{a}_{N}
\end{array}\right] \text { for some } \theta \in[0,2 \pi)
$$

We now consider the extremal cases for hyponormal Toeplitz operators with matrix-valued trigonometric polynomial symbols. What is a matrix version of the extremal condition ' $\left|a_{-m}\right|=\left|a_{N}\right|$ ' for a matrix-valued trigonometric polynomial $\Phi(z)=\sum_{j=-m}^{N} A_{j} z^{j}$ (where each A_{j} is an $n \times n$ matrix and A_{N} is invertible)? We may suggest the following conditions as the corresponding matrix version of the extremal case:

$$
\begin{align*}
& A_{-m}^{*} A_{-m}=A_{N} A_{N}^{*} \tag{4.1}\\
& \left|\operatorname{det} A_{-m}\right|=\left|\operatorname{det} A_{N}\right| \tag{4.2}\\
& \left\|A_{-m}\right\|_{2}=\left\|A_{N}\right\|_{2} \tag{4.3}
\end{align*}
$$

Evidently, $(4.1) \Rightarrow(4.2)$ and (4.3). However (4.2) is independent of (4.3). In [GHR], the authors established the hyponormality of T_{Φ} with symbol Φ satisfying the condition (4.1): indeed, there is a symmetric relation such as

$$
A_{-m+j}=U A_{N-j}^{*} \text { with a constant unitary matrix } U \quad(j=0,1, \ldots, m-1)
$$

In this section, we consider the cases (4.2) and (4.3): in fact, we get to the same conclusion.
Theorem 4.1. Let $\Phi \in L_{M_{n}}^{\infty}$ be a matrix-valued trigonometric polynomial of the form $\Phi(z)=$ $\sum_{j=-m}^{N} A_{j} z^{j}\left(A_{N}\right.$ is invertible $)$. If T_{Φ} is hyponormal then

$$
\begin{equation*}
\left|\operatorname{det} A_{-m}\right| \leq\left|\operatorname{det} A_{N}\right| \tag{4.4}
\end{equation*}
$$

Moreover if $\left|\operatorname{det} A_{-m}\right|=\left|\operatorname{det} A_{N}\right|$, then T_{Φ} is hyponormal if and only if $\Phi^{*} \Phi=\Phi \Phi^{*}$ and there exists a constant unitary matrix U such that

$$
\begin{equation*}
A_{-m+j}=U A_{N-j}^{*} \quad \text { for each } j=0,1, \ldots, m-1 \tag{4.5}
\end{equation*}
$$

Proof. Suppose T_{Φ} is hyponormal. Then by Lemma 2.1, there exists a matrix function $K \in H_{M_{n}}^{\infty}$ such that $\|K\|_{\infty} \leq 1$ and $\Phi_{-}^{*}-K \Phi_{+}^{*} \in H_{M_{n}}^{\infty}$, i.e.,

$$
\begin{equation*}
\sum_{j=-m}^{-1} A_{j} z^{j}-K \sum_{j=1}^{N} A_{j}^{*} z^{-j} \in H_{M_{n}}^{\infty} \tag{4.6}
\end{equation*}
$$

A Gap between Hyponormality and Subnormality for Block Toeplitz Operators
Since A_{N} is invertible, we can write $K=z^{N-m} \sum_{j=0}^{\infty} K_{j} z^{j}$ and $A_{-m}=K_{0} A_{N}^{*}$. On the other hand, since $\left\|K_{0}\right\| \leq 1$ (because $\|K\|_{\infty} \leq 1$) and

$$
\left\|K_{0}\right\|=\max \left\{\sqrt{\lambda_{j}}: \lambda_{j} \text { is an eigenvalue of } K_{0}^{*} K_{0}\right\}
$$

we have $0 \leq \lambda_{j} \leq\left\|K_{0}\right\|^{2} \leq 1$ for each j. Thus

$$
\begin{equation*}
\left|\operatorname{det} K_{0}\right|^{2}=\operatorname{det} K_{0}^{*} K_{0}=\lambda_{1} \lambda_{2} \cdots \lambda_{n} \leq 1 \tag{4.7}
\end{equation*}
$$

which implies $\left|\operatorname{det} K_{0}\right| \leq 1$. Thus we have

$$
\left|\operatorname{det} A_{-m}\right|=\left|\operatorname{det} K_{0}\right|\left|\operatorname{det} A_{N}\right| \leq\left|\operatorname{det} A_{N}\right|
$$

giving (4.4). For the second assertion, we assume that

$$
\left|\operatorname{det} A_{-m}\right|=\left|\operatorname{det} A_{N}\right| \neq 0
$$

so that $\lambda_{1} \lambda_{2} \cdots \lambda_{n}=\left|\operatorname{det} K_{0}\right|^{2}=1$. Since $0 \leq \lambda_{j} \leq 1$ for each j, it follows that $\lambda_{j}=1$ for all $j=1, \ldots, n$. Thus $K_{0}^{*} K_{0}$ is unitarily equivalent to I, so that K_{0} is unitary. On the other hand,

$$
1=\frac{1}{n}\left\|K_{0}\right\|_{2}^{2} \leq \frac{1}{n} \sum_{j=0}^{\infty}\left\|K_{j}\right\|_{2}^{2}=\frac{1}{n}\|K\|_{2}^{2} \leq\|K\|_{\infty}^{2} \leq 1
$$

which implies that $K_{1}=K_{2}=\ldots=0$. Hence $U \equiv K_{0}=\sum_{j=0}^{\infty} K_{j} z^{j}$ is unitary. In particular, from (4.6),

$$
\sum_{j=-m}^{-1} A_{j} z^{j}-U \sum_{j=N-m+1}^{N} A_{j}^{*} z^{N-m-j} \in H_{M_{n}}^{\infty}
$$

giving (4.5). The converse is similar.
Theorem 4.2. Let $\Phi \in L_{M_{n}}^{\infty}$ be a matrix-valued trigonometric polynomial of the form $\Phi(z)=$ $\sum_{j=-m}^{N} A_{j} z^{j}\left(A_{N}\right.$ is invertible $)$. If T_{Φ} is hyponormal then

$$
\begin{equation*}
\left\|A_{-m}\right\|_{2} \leq\left\|A_{N}\right\|_{2} \tag{4.8}
\end{equation*}
$$

Moreover if $\left\|A_{-m}\right\|_{2}=\left\|A_{N}\right\|_{2}$, then T_{Φ} is hyponormal if and only if $\Phi^{*} \Phi=\Phi \Phi^{*}$ and there exists a constant unitary matrix U such that

$$
\begin{equation*}
A_{-m+j}=U A_{N-j}^{*} \quad \text { for each } j=0,1, \ldots, m-1 \tag{4.9}
\end{equation*}
$$

Proof. Suppose T_{Φ} is hyponormal. Thus by Lemma 2.1, there exists a matrix function $K \in H_{M_{n}}^{\infty}$ such that $\|K\|_{\infty} \leq 1$ and $\Phi_{-}^{*}-K \Phi_{+}^{*} \in H_{M_{n}}^{\infty}$, i.e.,

$$
\sum_{j=-m}^{-1} A_{j} z^{j}-K \sum_{j=1}^{N} A_{j}^{*} z^{-j} \in H_{M_{n}}^{\infty}
$$

Thus we can write $K=z^{N-m} \sum_{j=0}^{\infty} K_{j} z^{j}$ and $A_{-m}=K_{0} A_{N}^{*}$. Observe that

$$
\begin{equation*}
\left\|A_{N}\right\|_{2}^{2}-\left\|A_{-m}\right\|_{2}^{2}=\operatorname{tr}\left(A_{N} A_{N}^{*}\right)-\operatorname{tr}\left(A_{-m}^{*} A_{-m}\right)=\operatorname{tr}\left(A_{N}\left(I-K_{0}^{*} K_{0}\right) A_{N}^{*}\right) \geq 0 \tag{4.10}
\end{equation*}
$$

because K_{0} is a contraction. This gives (4.8). For the second assertion we assume that $\left\|A_{-m}\right\|_{2}=$ $\left\|A_{N}\right\|_{2}$. By (4.10), we have $\operatorname{tr}\left(A_{N}\left(I-K_{0}^{*} K_{0}\right) A_{N}^{*}\right)=0$, so that $A_{N}\left(I-K_{0}^{*} K_{0}\right)^{\frac{1}{2}}=0$. But since A_{N} is invertible it follows that K_{0} is unitary. Now the same argument as the proof of Theorem 4.1 gives the result.

We conclude with the following observation which shows that hyponormality and normality coincide for the extremal cases.

Corollary 4.3. Let $\Phi \in L_{M_{n}}^{\infty}$ be a matrix-valued trigonometric polynomial of the form $\Phi(z)=$ $\sum_{j=-N}^{N} A_{j} z^{j}\left(A_{N}\right.$ is invertible) satisfying

$$
\text { either } \quad\left|\operatorname{det} A_{-N}\right|=\left|\operatorname{det} A_{N}\right| \quad \text { or } \quad\left\|A_{-N}\right\|_{2}=\left\|A_{N}\right\|_{2} \text {, }
$$

then T_{Φ} is hyponormal if and only if T_{Φ} is normal.
Proof. In this case, Theorems 4.1 and 4.2 give that $\Phi_{+}-\Phi(0)=\Phi_{-} U$ for some constant unitary matrix U. Further since A_{N} is invertible, $\operatorname{det}\left(\Phi_{+}-\Phi(0)\right)$ is not identically zero. Thus the result follows at once from Theorem 4.3 of [GHR].

References

[Br] J. Bram, Sunormal operators, Duke Math. J. 22 (1955), 75-94.
[Co] C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103(1988), 809-812.
[CHL] R.E. Curto, I.S. Hwang and W.Y. Lee, Which subnormal Toeplitz operators are either normal or analytic ?, (preprint, 2010).
[CL1] R.E. Curto and W.Y. Lee, Joint hyponormality of Toeplitz pairs, Memoirs Amer. Math. Soc. 712, Amer. Math. Soc., Providence, 2001.
[CL2] R.E. Curto and W.Y. Lee, Towards a model theory for 2-hyponormal operators, Integral Equations Operator Theory 44(2002), 290-315.
[Do1] R.G. Douglas, Banach algenra techniques in operator theory, Academic Press, New York, 1972.
[Do2] R.G. Douglas, Banach algenra techniques in the theory of Toeplitz operators, CBMS 15, Providence, Amer. Math. Soc. 1973.
[FL] D.R. Farenick and W.Y. Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348(1996), 4153-4174.
[GHR] C. Gu, J. Hendricks and D. Rutherford, Hyponormality of block Toeplitz operators, Pacific J. Math. 223 (2006), 95-111.
[NT] T. Nakazi and K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc. 338(1993), 753-769.
[Ni] N. K. Nikolskii, Treatise on the shift operator, Springer, New York, 1986.

In Sung Hwang
Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea
e-mail: ihwang@skku.edu
Dong-O Kang
Department of Mathematics, Seoul National University, Seoul 151-742, Korea
e-mail: skylover@snu.ac.kr
Woo Young Lee
Department of Mathematics, Seoul National University, Seoul 151-742, Korea
e-mail: wylee@snu.ac.kr

[^0]: 2000 Mathematics Subject Classification. Primary 47B20, 47B35
 The work of the first author was supported by National Research Foundation of Korea (NRF) grant funded by the Korea government(MEST)(2010-0016369). The work of the third author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST)(2010-0001983)

