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Abstract. This paper concerns a gap between hyponormality and subnormality for block Toeplitz
operators. We show that there is no gap between 2-hyponormality and subnormality for a cer-
tain class of trigonometric block Toeplitz operators (e.g., its co-analytic outer coefficient is
invertible). In addition we consider the extremal cases for the hyponormality of trigonometric
block Toeplitz operators: in this case, hyponormality and normality coincide.
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1. Introduction

The Bram-Halmos criterion of subnormality ([Br]) states that an operator T on a Hilbert space H
is subnormal if and only if

∑
i,j(T

ixj , T
jxi) ≥ 0 for all finite collections x0, x1, · · · , xk ∈ H. It is

easy to see that this is equivalent to the following positivity test:

(1.1)




I T ∗ . . . T ∗k

T T ∗T . . . T ∗kT
...

...
. . .

...
T k T ∗T k . . . T ∗kT k


 ≥ 0 (all k ≥ 1).

Condition (1.1) provides a measure of the gap between hyponormality and subnormality. In fact
the positivity condition (1.1) for k = 1 is equivalent to the hyponormality of T , while subnormality
requires the validity of (1.1) for all k. For k ≥ 1, an operator T is said to be k-hyponormal if
T satisfies the positivity condition (1.1) for a fixed k. Thus the Bram-Halmos criterion can be
stated as: T is subnormal if and only if T is k-hyponormal for all k ≥ 1. The k-hyponormality has
been considered by many authors with an aim at understanding the gap between hyponormality
and subnormality. For instance, the Bram-Halmos criterion on subnormality indicates that 2-
hyponormality is generally far from subnormality. There are special classes of operators, however,
for which these two notions are equivalent. For example, in [CL1, Example 3.1], it was shown
that there is no gap between 2-hyponormality and subnormality for a back-step extension of the
recursively generated subnormal weighted shift. The purpose of this paper is to consider a gap
between hyponormality and subnormality (or normality) for Toeplitz operators with matrix-valued
symbols. We establish that there is no gap between 2-hyponormality and normality for a certain
class of block Toeplitz operators with matrix-valued trigonometric polynomial symbols and in the
extremal cases, hyponormality and normality coincide.

2. Preliminaries

Throughout this paper, let H denote a separable complex Hilbert space and B(H) denote the set
of all bounded linear operators acting on H. For an operator T ∈ B(H), T ∗ denotes the adjoint of
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T . An operator T ∈ B(H) is said to be normal if T ∗T = TT ∗, hyponormal if its self-commutator
[T ∗, T ] ≡ T ∗T − TT ∗ is positive semi-definite, and subnormal if T has a normal extension N , i.e.,
there is a Hilbert space K containing H and a normal operator N on K such that NH ⊆ H and
T = N |H. For an operator T ∈ B(H), we write kerT for the kernel of T . For a setM,M⊥ denotes
the orthogonal complement of M.

We review a few essential facts for (block) Toeplitz operators and (block) Hankel operators
that we will need to begin with, using [Do1], [Do2], and [Ni]. Let L2 ≡ L2(T) be the set of square-
integrable measurable functions on the unit circle T ≡ ∂ D in the complex plane and H2 ≡ H2(T)
be the corresponding Hardy space. Let L∞ ≡ L∞(T) be the set of bounded measurable functions
on T and let H∞ ≡ H∞(T) := L∞(T) ∩ H2(T). For X a Hilbert space, let L2

X ≡ L2
X (T) be the

Hilbert space of X -valued norm square-integrable measurable functions on T and H2
X ≡ H2

X (T) be
the corresponding Hardy space. We observe that L2

Cn = L2(T)⊗ Cn and H2
Cn = H2(T)⊗ Cn. Let

Mn denote the set of n× n complex matrices. If Φ is a matrix-valued function in L∞Mn
≡ L∞Mn

(T)
(= L∞(T)⊗Mn) then the block Toeplitz operator TΦ and the block Hankel operator HΦ on H2

Cn
are defined by

(2.1) TΦf = P (Φf) and HΦf = JP⊥(Φf) (f ∈ H2
Cn),

where P and P⊥ denote the orthogonal projections that map from L2
Cn onto H2

Cn and
(
H2
Cn
)⊥,

respectively and J denotes the unitary operator from L2
Cn to L2

Cn given by J(g)(z) = zIng(z) for
g ∈ L2

Cn (In :=the n × n identity matrix). If n = 1, TΦ and HΦ are called the (scalar) Toeplitz
operator and the (scalar) Hankel operator, respectively. For Φ ∈ L∞Mn×m , write

(2.2) Φ̃(z) := Φ∗(z).

An inner (matrix) function Θ ∈ H∞Mn×m (= H∞ ⊗Mn×m) is one satisfying Θ∗Θ = Im for almost
all z ∈ T, where Mn×m denotes the set of n ×m complex matrices. The following basic relations
can be easily derived from the definition:

(2.3) T ∗Φ = TΦ∗ , H∗Φ = HeΦ (Φ ∈ L∞Mn
);

(2.4) TΦΨ − TΦTΨ = H∗Φ∗HΨ (Φ,Ψ ∈ L∞Mn
);

(2.5) HΦTΨ = HΦΨ, HΨΦ = T ∗eΨHΦ (Φ ∈ L∞Mn
, Ψ ∈ H∞Mn

).

A matrix-valued trigonometric polynomial Φ ∈ L∞Mn
is of the form

Φ(z) =
N∑

j=−m
Ajz

j (Aj ∈Mn),

where AN and A−m are called the outer coefficients of Φ. For a matrix-valued function A(z) =∑∞
j=−∞Ajz

j ∈ L2
Mn

, we define

||A||22 :=
∫

T
tr (A∗A) dµ =

∞∑

j=−∞
tr (A∗jAj) ,

where tr (·) means the trace of the matrix and if A ∈ L∞Mn
, we define

||A||∞ := sup
t∈T
||A(t)|| (|| · || means the spectral norm of the matrix).

The hyponormality of the scalar Toeplitz operators Tϕ was completely characterized by a
property of their symbols by C. Cowen [Co] in 1988.

Cowen’s Theorem ([Co], [NT]) For ϕ ∈ L∞, write

E(ϕ) :=
{
k ∈ H∞ : ||k||∞ ≤ 1 and ϕ− kϕ ∈ H∞

}
.

Then Tϕ is hyponormal if and only if E(ϕ) is nonempty.
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In 2006, Gu, Hendricks and Rutherford [GHR] considered the hyponormality of block Toeplitz
operators and characterized the hyponormality of block Toeplitz operators in terms of their sym-
bols. In particular they showed that if TΦ is a hyponormal block Toeplitz operator on H2

Cn , then Φ
is normal, i.e., Φ∗Φ = ΦΦ∗. Their characterization for hyponormality of block Toeplitz operators
resembles the Cowen’s theorem except for an additional condition – the normality of the symbol.

Lemma 2.1. (Hyponormality of Block Toeplitz Operators) [GHR] For each Φ ∈ L∞Mn
, let

E(Φ) :=
{
K ∈ H∞Mn

: ||K||∞ ≤ 1 and Φ−KΦ∗ ∈ H∞Mn

}
.

Then a block Toeplitz operator TΦ is hyponormal if and only if Φ is normal and E(Φ) is nonempty.

For a matrix-valued function Φ ∈ H2
Mn×r , we say that ∆ ∈ H2

Mn×m is a left inner divisor of
Φ if ∆ is an inner matrix function such that Φ = ∆A for some A ∈ H2

Mm×r (m ≤ n). We also say
that two matrix functions Φ ∈ H2

Mn×r and Ψ ∈ H2
Mn×m are left coprime if the only common left

inner divisor of both Φ and Ψ is a unitary constant and that Φ ∈ H2
Mn×r and Ψ ∈ H2

Mm×r are

right coprime if Φ̃ and Ψ̃ are left coprime. Two matrix functions Φ and Ψ in H2
Mn

are said to be
coprime if they are both left and right coprime.

Remark 2.2. If Φ ∈ H2
Mn

is such that det Φ is not identically zero then any left inner divisor ∆ of
Φ is square, i.e., ∆ ∈ H2

Mn
.

Proof. Assume to the contrary that Φ = ∆A with ∆ ∈ H2
Mn×r (r < n). Then for almost all z ∈ T,

rank Φ(z) ≤ rank ∆(z) ≤ r < n, so that det Φ(z) = 0 for almost all z ∈ T. This shows that any left
inner divisor ∆ of Φ is square. �

If Φ ∈ H2
Mn

is such that det Φ is not identically zero then we say that ∆ ∈ H2
Mn

is a right
inner divisor of Φ if ∆̃ is a left inner divisor of Φ̃.

For brevity we write I for the identity matrix and

Iζ := ζI (ζ ∈ L∞).

For Φ ∈ L∞Mn
we write

Φ+ := PnΦ ∈ H2
Mn

and Φ− :=
(
P⊥n Φ

)∗ ∈ H2
Mn

,

where Pn denotes the orthogonal projection from L2
Mn

onto H2
Mn

. Thus we can write Φ = Φ∗−+Φ+ .
If Ψ is a matrix-valued analytic polynomial then we can write

(2.6) Ψ = ΘA∗ (A ∈ H2
Mn

and Θ = IzN for some nonnegative integer N).

If Ω is the greatest common right inner divisor of A and Θ in the representation (2.6), then Θ = ΩrΩ
and A = ArΩ for some inner matrix Ωr (where Ωr ∈ H2

Mn
because det Θ is not identically zero)

and some Ar ∈ H2
Mn

. Therefore we can write

(2.7) Ψ = ΩrA∗r , where Ar and Ωr are right coprime:

in this case, ΩrA∗r is called the right coprime decomposition of Φ.

In general, it is not easy to check the condition “Θ and A are right coprime” for the represen-
tation Φ = ΘA∗ (Θ is inner and A ∈ H2

Mn
) even though Θ = Iθ for an inner function θ. But if Φ

is a matrix-valued analytic polynomial then we have a more tractable criterion (cf. [CHL, Lemma
3.10]): if A ∈ H∞Mn

is a matrix-valued analytic polynomial and Θ = IzN , then

(2.8) Θ and A are right coprime ⇐⇒ A(0) is invertible.

If Φ ∈ L∞Mn
is a matrix-valued trigonometric polynomial then TΦ will be called a trigonometric

block Toeplitz operator. In Section 3 we show that there is no gap between 2-hyponormality and
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normality for a certain class of trigonometric block Toeplitz operators. In Section 4, we consider
the extremal cases for the hyponormality of trigonometric block Toeplitz operators: in this case,
hyponormality and normality coincide.

3. 2-hyponormality of trigonometric block Toeplitz operators

We begin with:

Lemma 3.1. Let Φ ∈ L∞Mn
be a matrix-valued trigonometric polynomial of the form Φ(z) =∑N

j=−mAjz
j (m ≤ N) and write

Φ− = ΘF ∗ (right coprime decomposition).

Suppose Iz is an inner divisor of Θ. If
(i) TΦ is hyponormal;

(ii) ker [T ∗Φ, TΦ] is invariant for TΦ,
then TΦ is normal. Hence in particular, if TΦ is 2-hyponormal then it is normal.

Proof. By assumption we write Θ = IzΘ1 for some inner matrix Θ1. Suppose TΦ is hyponormal.
Since Φ∗Φ = ΦΦ∗, it follows from (2.4) that [T ∗Φ, TΦ] = H∗Φ∗HΦ∗−H∗ΦHΦ. Note that by (2.8), F0 :=
F (0) is an invertible matrix since F and Iz are right coprime. Since Φ∗ and Φ are trigonometric
polynomials of co-analytic degrees N and m, respectively, we can see that

(3.1) ran [T ∗Φ, TΦ] = ran
(
H∗Φ∗HΦ∗ −H∗ΦHΦ

)
⊆ H(IzN ).

We now suppose that N1 is the smallest integer such that

(3.2) ran [T ∗Φ, TΦ] ⊆ H(IzN1 ).

Assume to the contrary that ran [T ∗Φ, TΦ] 6= {0}. We choose an element B ∈ ran [T ∗Φ, TΦ] of the
greatest analytic degree. Write

B :=
N1−1∑

j=0

Bjz
j (BN1−1 6= 0).

We thus have
TΘ∗1TIz−N1

TΦ∗B = TΘ∗1Iz−N1 Φ∗B

= P
(

Θ∗1Iz−N1

(
Φ∗+ + IzΘ1F

∗)N1−1∑

j=0

Bjz
j
)

= P
(

Θ∗1
(
Iz−1Φ∗+ + Θ1F

∗)N1−1∑

j=0

Bjz
−(N1−1−j)

)

= P
(
F ∗

N1−1∑

j=0

Bjz
−(N1−1−j)

)

= F ∗0BN1−1.

But since F0 is invertible and BN1−1 6= 0, it follows that T ∗Θ1

(
TI

z−N1
TΦ∗B

)
6= 0, which implies

that TI
z−N1

TΦ∗B 6= 0 and in turn,
TΦ∗B /∈ H(IzN1 ).

But if ker [T ∗Φ, TΦ] is invariant for TΦ, and hence ran [T ∗Φ, TΦ] is invariant for T ∗Φ, then by (3.2),

T ∗ΦB ∈ ran [T ∗Φ, TΦ] ⊆ H(IzN1 ),
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which leads a contradiction. Therefore we must have that ran [T ∗Φ, TΦ] = {0}, i.e., TΦ is normal. The
second assertion follows from the first assertion together with the fact that every 2-hyponormal
operator T ∈ B(H) satisfies that ker [T ∗, T ] is invariant for T (cf. [CL2]). This completes the proof.
�

Write Φ(z) ≡∑N
j=−mAjz

j ∈ L∞Mn
. Define

G0,r := A−m+r (r = 0, . . . ,m− 1)

and put
M0 := kerG00 (= kerA−m).

We now define, recursively, Gs,r and Ms as follows: for r = 0, . . . ,m− 1 and s = 0, . . . ,m− 1,

(3.3)

{
Gs+1,r := Gs,rPM⊥s +Gs,r+1PMs

Ms := kerGs,0 ,

where PX denotes the orthogonal projection of Cn onto X and Gs,m is defined to be the zero
matrix for all s.

Remark 3.2. The sequence (dim Ms) is decreasing.

Proof. By definition we can write

Gs,0 =
[
Cs 0
Ds 0

]
:
[
M⊥s
Ms

]
→
[
M⊥s
Ms

]
.

Let

Gs,1 :=
[
E1 E2

E3 E4

]
:
[
M⊥s
Ms

]
→
[
M⊥s
Ms

]
.

Since

Gs+1,0 = Gs,0PM⊥s +Gs,1PMs =
[
Cs 0
Ds 0

]
+
[
0 E2

0 E4

]
=
[
Cs E2

Ds E4

]
,

it follows that rankGs,0 ≤ rankGs+1,0, i.e., dim kerGs,0 ≥ dim kerGs+1,0, giving the result. �

We note that if Gs0,0 is invertible for some s0, then Gs,r = Gs0,r for all s ≥ s0 and 0 ≤ r ≤
m− 1.

We are ready for:

Theorem 3.3. Let Φ ∈ L∞Mn
be a matrix-valued trigonometric polynomial of the form Φ(z) =∑N

j=−mAjz
j (m ≤ N) and suppose some Gs0,0 (0 ≤ s0 ≤ m− 1) defined by (3.3) is invertible. If

TΦ is 2-hyponormal then TΦ is normal.

Proof. Let Gs,r be defined by (3.3) and write

(3.4) G0(z) ≡
m−1∑
r=0

G0,rz
r =

m−1∑
r=0

A−m+rz
r.

Put M0 := kerG00 (= kerA−m) as above. Therefore we can write

G00 =
[
C0 0
D0 0

]
:
[
M⊥0
M0

]
→
[
M⊥0
M0

]
.

Observe that [
C0 0
D0 0

]
=
[
C0 0
D0 0

] [
1|M⊥0 0

0 z|M0

]
,
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so that

(3.5) G00 = G00

(
PM⊥0 + PM0

)
= G00PM⊥0

[
1|M⊥0 0

0 z|M0

]

and for 1 ≤ r ≤ m− 1,

(3.6)
G0,rz

r = G0,r

(
PM⊥0 + PM0

)[zr|M⊥0 0
0 zr−1|M0

] [
1|M⊥0 0

0 z|M0

]

=
((
G0,rPM⊥0

)
zr +

(
G0,rPM0

)
zr−1

)[1|M⊥0 0
0 z|M0

]
.

Substituting (3.5) and (3.6) into (3.4), we have

G0(z) =
m−1∑
r=0

G0,rz
r

= G00PM⊥0

[
1|M⊥0 0

0 z|M0

]

+
((
G0,1PM⊥0

)
z1 +

(
G0,1PM0

)
z0
)[1|M⊥0 0

0 z|M0

]

+
((
G0,2PM⊥0

)
z2 +

(
G0,2PM0

)
z1
)[1|M⊥0 0

0 z|M0

]

. . .

+
((
G0,m−1PM⊥0

)
zm−1 +

(
G0,m−1PM0

)
zm−2

)[1|M⊥0 0
0 z|M0

]

=

(
m−1∑
r=0

(
G0,rPM⊥0 + G0,r+1PM0

)
zr

)[
1|M⊥0 0

0 z|M0

]

=

(
m−1∑
r=0

G1,rz
r

)[
1|M⊥0 0

0 z|M0

]
,

where the third equality follows from regrouping the terms and adding the term

G0,mPM0z
m−1

[
1|
M⊥0

0

0 z|M0

]

(this is equal to zero because Gs,m is defined to be the zero matrix for all s). Repeating the above
argument for G1(z) ≡∑m−1

r=0 G1,rz
r, we have

G1(z) =

(
m−1∑
r=0

G2,rz
r

)[
1|M⊥1 0

0 z|M1

]
.

By induction we obtain

G0(z) =

(
m−1∑
r=0

Gs,rz
r

)
s∏

j=1

[
1|M⊥s−j 0

0 z|Ms−j

]
for s = 1, . . . ,m− 1.
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We now assume that Gs0,0 is invertible for some s0 (0 ≤ s0 ≤ m − 1). Then the invertibility of
Gs0,0 implies that

∑m−1
r=0 Gs0,rz

r is right coprime with Iz. We observe

Φ− = A∗−1z + · · ·+A∗−mz
m = zmG0(z)∗

= zm



(
m−1∑
r=0

Gs0,rz
r

)
s0∏

j=1

[
1|M⊥s0−j 0

0 z|Ms0−j

]

∗

= zm−s0
s0∏

j=1

[
z|M⊥s0−j 0

0 1|Ms0−j

](
m−1∑
r=0

Gs0,rz
r

)∗
.

By assumption we must have that m− s0 ≥ 1. We claim that

(3.7) Θ ≡ zm−s0
s0∏

j=1

[
z|M⊥s0−j 0

0 1|Ms0−j

]
and F ≡

m−1∑
r=0

Gs0,rz
r are right coprime.

To see (3.7) we assume to the contrary that Θ and F are not right coprime. Then Θ̃ and F̃ are
not left coprime. Thus there exists an inner matrix function ∆̃ ∈ H2

Mn×l such that

Θ̃ = ∆̃C1, F̃ = ∆̃C2 (for some C1, C2 ∈ H2
Ml×n),

where ∆ is not unitary constant. Since Gs0,0 is invertible it follows that det F̃ is not identically
zero, and hence ∆̃ ∈ H2

Mn
. Therefore ∆ becomes a common right inner divisor of Θ and F . Put

Ω :=
s0−1∏

j=0

[
1|M⊥j 0

0 z|Mj

]
.

Then Izm = ΩΘ = ΩC1∆ and F = C2∆ are not right coprime. But since F (0) = Gs0,0 is invertible,
it follows from (2.8) that Izm and F are right coprime, a contradiction. This proves (3.7). But since
Θ contains an inner factor Iz, applying Lemma 3.1 with F and Θ gives the result. �

The following corollary shows that there is no gap between 2-hyponormality and normality for
Toeplitz operators with matrix-valued trigonometric polynomial symbols whose co-analytic outer
coefficient is invertible.

Corollary 3.4. Let Φ ∈ L∞Mn
be a matrix-valued trigonometric polynomial whose co-analytic outer

coefficient is invertible. If TΦ is 2-hyponormal then TΦ is normal.

Proof. Write

Φ− =
m∑

j=1

A−jzj .

Under the notation of Theorem 3.3, we have that G00 = A−m (=the co-analytic outer coefficient).
Thus the result follows at once from Theorem 3.3. �

In Corollary 3.4, the condition “the coanalytic outer coefficient is invertible” is essential. To
see this, let

Φ :=
[
z + z 0

0 z

]
.

Then

TΦ =
[
Tz + T ∗z 0

0 Tz

]
.

Thus TΦ is subnormal (and hence 2-hyponormal). Clearly, TΦ is neither normal nor analytic even
though the analytic outer coefficient [ 1 0

0 1 ] is invertible. Note that the co-analytic outer coefficient
[ 1 0
0 0 ] is singular.
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Of course, the assumption of Corollary 3.4 is superfluous. For example, if Φ =
∑N
j=−mAjz

j

is a matrix-valued trigonometric polynomial of the form

A−m =
[
1 0
0 0

]
and A−m+1 =

[
0 0
0 1

]
.

Then by Theorem 3.3, the conclusion of Corollary 3.4 is still true even though A−m is not invertible.

4. Extremal cases

It was known ([FL]) that if ϕ is a trigonometric polynomial of the form ϕ(z) =
∑N
n=−m anz

n

then ‘|a−m| ≤ |aN |’ is a necessary condition for Tϕ to be hyponormal. In this sense, the condition
‘|a−m| = |aN |’ is an extremal case for Tϕ to be hyponormal: in particular, in this case, Tϕ is
hyponormal if and only if the Fourier coefficients of ϕ have a symmetric relation, i.e., there exists
θ ∈ [0, 2π) such that (cf. [FL, Theorem 1.4])




a−1

a−2

...
a−m


 = eiθ




aN−m+1

aN−m+2

...
aN


 for some θ ∈ [0, 2π).

We now consider the extremal cases for hyponormal Toeplitz operators with matrix-valued trigono-
metric polynomial symbols. What is a matrix version of the extremal condition ‘|a−m| = |aN |’ for
a matrix-valued trigonometric polynomial Φ(z) =

∑N
j=−mAjz

j (where each Aj is an n × n ma-
trix and AN is invertible) ? We may suggest the following conditions as the corresponding matrix
version of the extremal case:

(4.1) A∗−mA−m = ANA
∗
N ;

(4.2) |detA−m| = |detAN |;
(4.3) ||A−m||2 = ||AN ||2.

Evidently, (4.1) ⇒ (4.2) and (4.3). However (4.2) is independent of (4.3). In [GHR], the authors
established the hyponormality of TΦ with symbol Φ satisfying the condition (4.1): indeed, there is
a symmetric relation such as

A−m+j = U A∗N−j with a constant unitary matrix U (j = 0, 1, . . . ,m− 1).

In this section, we consider the cases (4.2) and (4.3): in fact, we get to the same conclusion.

Theorem 4.1. Let Φ ∈ L∞Mn
be a matrix-valued trigonometric polynomial of the form Φ(z) =∑N

j=−mAjz
j (AN is invertible). If TΦ is hyponormal then

(4.4) |detA−m| ≤ |detAN |.
Moreover if |detA−m| = |detAN |, then TΦ is hyponormal if and only if Φ∗Φ = ΦΦ∗ and there
exists a constant unitary matrix U such that

(4.5) A−m+j = U A∗N−j for each j = 0, 1, . . . ,m− 1.

Proof. Suppose TΦ is hyponormal. Then by Lemma 2.1, there exists a matrix function K ∈ H∞Mn

such that ||K||∞ ≤ 1 and Φ∗− −KΦ∗+ ∈ H∞Mn
, i.e.,

(4.6)
−1∑

j=−m
Ajz

j −K
N∑

j=1

A∗jz
−j ∈ H∞Mn

.



A Gap between Hyponormality and Subnormality for Block Toeplitz Operators 9

Since AN is invertible, we can write K = zN−m
∑∞
j=0Kjz

j and A−m = K0A
∗
N . On the other hand,

since ||K0|| ≤ 1 (because ||K||∞ ≤ 1) and

||K0|| = max
{√

λj : λj is an eigenvalue of K∗0K0

}
,

we have 0 ≤ λj ≤ ||K0||2 ≤ 1 for each j. Thus

(4.7) |detK0|2 = detK∗0K0 = λ1λ2 · · ·λn ≤ 1 ,

which implies |detK0| ≤ 1. Thus we have

|detA−m| = |detK0| |detAN | ≤ |detAN | ,
giving (4.4). For the second assertion, we assume that

|detA−m| = |detAN | 6= 0,

so that λ1λ2 · · ·λn = |detK0|2 = 1. Since 0 ≤ λj ≤ 1 for each j, it follows that λj = 1 for all
j = 1, . . . , n. Thus K∗0K0 is unitarily equivalent to I, so that K0 is unitary. On the other hand,

1 =
1
n
||K0||22 ≤

1
n

∞∑

j=0

||Kj ||22 =
1
n
||K||22 ≤ ||K||2∞ ≤ 1,

which implies that K1 = K2 = . . . = 0. Hence U ≡ K0 =
∑∞
j=0Kjz

j is unitary. In particular, from
(4.6),

−1∑

j=−m
Ajz

j − U
N∑

j=N−m+1

A∗jz
N−m−j ∈ H∞Mn

,

giving (4.5). The converse is similar. �

Theorem 4.2. Let Φ ∈ L∞Mn
be a matrix-valued trigonometric polynomial of the form Φ(z) =∑N

j=−mAjz
j (AN is invertible). If TΦ is hyponormal then

(4.8) ||A−m||2 ≤ ||AN ||2.
Moreover if ||A−m||2 = ||AN ||2, then TΦ is hyponormal if and only if Φ∗Φ = ΦΦ∗ and there exists
a constant unitary matrix U such that

(4.9) A−m+j = U A∗N−j for each j = 0, 1, . . . ,m− 1.

Proof. Suppose TΦ is hyponormal. Thus by Lemma 2.1, there exists a matrix function K ∈ H∞Mn

such that ||K||∞ ≤ 1 and Φ∗− −KΦ∗+ ∈ H∞Mn
, i.e.,

−1∑

j=−m
Ajz

j −K
N∑

j=1

A∗jz
−j ∈ H∞Mn

.

Thus we can write K = zN−m
∑∞
j=0Kjz

j and A−m = K0A
∗
N . Observe that

(4.10) ||AN ||22 − ||A−m||22 = tr (ANA∗N )− tr
(
A∗−mA−m

)
= tr (AN (I −K∗0K0)A∗N ) ≥ 0

because K0 is a contraction. This gives (4.8). For the second assertion we assume that ||A−m||2 =
||AN ||2. By (4.10), we have tr (AN (I −K∗0K0)A∗N ) = 0, so that AN (I −K∗0K0)

1
2 = 0. But since

AN is invertible it follows that K0 is unitary. Now the same argument as the proof of Theorem 4.1
gives the result. �

We conclude with the following observation which shows that hyponormality and normality
coincide for the extremal cases.
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Corollary 4.3. Let Φ ∈ L∞Mn
be a matrix-valued trigonometric polynomial of the form Φ(z) =∑N

j=−N Ajz
j (AN is invertible) satisfying

either |detA−N | = |detAN | or ||A−N ||2 = ||AN ||2 ,

then TΦ is hyponormal if and only if TΦ is normal.

Proof. In this case, Theorems 4.1 and 4.2 give that Φ+ − Φ(0) = Φ−U for some constant unitary
matrix U . Further since AN is invertible, det (Φ+ − Φ(0)) is not identically zero. Thus the result
follows at once from Theorem 4.3 of [GHR]. �
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