Hyponormality and Subnormality of Block Toeplitz Operators

Raúl E. Curto, In Sung Hwang and Woo Young Lee

Abstract

In this paper we are concerned with hyponormality and subnormality of block Toeplitz operators acting on the vector-valued Hardy space $H_{\mathbb{C}^{n}}^{2}$ of the unit circle.

Firstly, we establish a tractable and explicit criterion on the hyponormality of block Toeplitz operators having bounded type symbols via the triangularization theorem for compressions of the shift operator.

Secondly, we consider the gap between hyponormality and subnormality for block Toeplitz operators. This is closely related to Halmos's Problem 5: Is every subnormal Toeplitz operator either normal or analytic? We show that if Φ is a matrix-valued rational function whose coanalytic part has a coprime factorization then every hyponormal Toeplitz operator T_{Φ} whose square is also hyponormal must be either normal or analytic.

Thirdly, using the subnormal theory of block Toeplitz operators, we give an answer to the following "Toeplitz completion" problem: Find the unspecified Toeplitz entries of the partial block Toeplitz matrix $$
A:=\left[\begin{array}{cc} U^{*} & ? \\ ? & U^{*} \end{array}\right]
$$

so that A becomes subnormal, where U is the unilateral shift on H^{2}.
Keywords. Block Toeplitz operators, hyponormal, square-hyponormal, subnormal, bounded type functions, rational functions, trigonometric polynomials, subnormal completion problem.

1. Introduction

Toeplitz operators, block Toeplitz operators and (block) Toeplitz determinants (i.e., determinants of sections of (block) Toeplitz operators) arise naturally in several fields of mathematics and in a variety of problems in physics, especially, in quantum mechanics. For example, the spectral theory of Toeplitz operators plays an important role in the study of solvable models in quantum mechanics $([\mathrm{Pr}])$ and in the study the one-dimensional Heisenberg Hamiltonian of ferromagnetism ([DMA]); the theory of block Toeplitz determinants is used in the study of the classical dimer model ([BE]) and in the study of the vicious walker model ([HI]); the theory of block Toeplitz operators is also used in the study of Gelfand-Dickey Hierarchies (cf. [Ca]). On the other hand, the theory of hyponormal and subnormal operators is an extensive and highly developed area, which has made important contributions to a number of problems in functional analysis, operator theory, and mathematical physics (see, for example, [If], [HS], and [Sz] for applications to related mathematical physics problems). Thus, it becomes of central significance to describe in detail hypormality and subnormality for Toeplitz operators. This paper focuses primarily on hyponormality and subnormality of block Toeplitz operators with rational symbols. For the general theory of subnormal and hyponormal operators, we refer to [Con] and [MP].

To describe our results, we first need to review a few essential facts about (block) Toeplitz operators, and for that we will use [BS], [Do1], [Do2], [GGK], [MAR], [Ni], and [Pe]. Let \mathcal{H} and \mathcal{K}

[^0]be complex Hilbert spaces, let $\mathcal{B}(\mathcal{H}, \mathcal{K})$ be the set of bounded linear operators from \mathcal{H} to \mathcal{K}, and write $\mathcal{B}(\mathcal{H}):=\mathcal{B}(\mathcal{H}, \mathcal{H})$. For $A, B \in \mathcal{B}(\mathcal{H})$, we let $[A, B]:=A B-B A$. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be normal if $\left[T^{*}, T\right]=0$, hyponormal if $\left[T^{*}, T\right] \geq 0$, and subnormal if T has a normal extension, i.e., $T=\left.N\right|_{\mathcal{H}}$, where N is a normal operator on some Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ such that \mathcal{H} is invariant for N. For an operator $T \in \mathcal{B}(\mathcal{H})$, we write $\operatorname{ker} T$ and $\operatorname{ran} T$ for the kernel and the range of T, respectively. For a set $\mathcal{M}, \operatorname{cl} \mathcal{M}$ and \mathcal{M}^{\perp} denote the closure and the orthogonal complement of \mathcal{M}, respectively. Also, let $\mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z}$ be the unit circle. Recall that the Hilbert space $L^{2} \equiv L^{2}(\mathbb{T})$ has a canonical orthonormal basis given by the trigonometric functions $e_{n}(z)=z^{n}$, for all $n \in \mathbb{Z}$, and that the Hardy space $H^{2} \equiv H^{2}(\mathbb{T})$ is the closed linear span of $\left\{e_{n}: n=0,1, \ldots\right\}$. An element $f \in L^{2}$ is said to be analytic if $f \in H^{2}$. Let $H^{\infty} \equiv H^{\infty}(\mathbb{T}):=L^{\infty} \cap H^{2}$, i.e., H^{∞} is the set of bounded analytic functions on the open unit disk \mathbb{D}.

Given a bounded measurable function $\varphi \in L^{\infty}$, the Toeplitz operator T_{φ} and the Hankel operator H_{φ} with symbol φ on H^{2} are defined by

$$
\begin{equation*}
T_{\varphi} g:=P(\varphi g) \quad \text { and } \quad H_{\varphi} g:=J P^{\perp}(\varphi g) \quad\left(g \in H^{2}\right) \tag{1.1}
\end{equation*}
$$

where P and P^{\perp} denote the orthogonal projections that map from L^{2} onto H^{2} and $\left(H^{2}\right)^{\perp}$, respectively, and J denotes the unitary operator from L^{2} onto L^{2} defined by $J(f)(z)=\bar{z} f(\bar{z})$ for $f \in L^{2}$.

To study hyponormality (resp. normality and subnormality) of the Toeplitz operator T_{φ} with symbol φ we may, without loss of generality, assume that $\varphi(0)=0$; this is because hyponormality (resp. normality and subnormality) is invariant under translations by scalars. Normal Toeplitz operators were characterized by a property of their symbols in the early 1960's by A. Brown and P.R. Halmos $[\mathrm{BH}]$ and the exact nature of the relationship between the symbol $\varphi \in L^{\infty}$ and the hyponormality of T_{φ} was understood via Cowen's Theorem [Co4] in 1988.
Cowen's Theorem. ([Co4], [NT]) For each $\varphi \in L^{\infty}$, let

$$
\mathcal{E}(\varphi) \equiv\left\{k \in H^{\infty}:\|k\|_{\infty} \leq 1 \text { and } \varphi-k \bar{\varphi} \in H^{\infty}\right\}
$$

Then a Toeplitz operator T_{φ} is hyponormal if and only if $\mathcal{E}(\varphi)$ is nonempty.
This elegant and useful theorem has been used in the works [CuL1], [CuL2], [FL], [Gu1], [Gu2], [GS], [HKL1], [HKL2], [HL1], [HL2], [HL3], [Le], [NT] and [Zhu], which have been devoted to the study of hyponormality for Toeplitz operators on H^{2}. Particular attention has been paid to Toeplitz operators with polynomial symbols or rational symbols [HL2], [HL3]. However, the case of arbitrary symbol φ, though solved in principle by Cowen's theorem, is in practice very complicated. Indeed, it may not even be possible to find tractable necessary and sufficient condition for the hyponormality of T_{φ} in terms of the Fourier coefficients of the symbol φ unless certain assumptions are made about φ. To date, tractable criteria for the cases of trigonometric polynomial symbols and rational symbols were derived from a Carathéodory-Schur interpolation problem ([Zhu]) and a tangential Hermite-Fejér interpolation problem ([Gu1]) or the classical Hermite-Fejér interpolation problem ([HL3]), respectively.

Recall that a function $\varphi \in L^{\infty}$ is said to be of bounded type (or in the Nevanlinna class) if there are analytic functions $\psi_{1}, \psi_{2} \in H^{\infty}(\mathbb{D})$ such that $\varphi=\psi_{1} / \psi_{2}$ almost everywhere on \mathbb{T}. To date, no tractable criterion to determine the hyponormality of T_{φ} when the symbol φ is of bounded type has been found.

We now introduce the notion of block Toeplitz operators. Let $M_{n \times r}$ denote the set of all $n \times r$ complex matrices and write $M_{n}:=M_{n \times n}$. For \mathcal{X} a Hilbert space, let $L_{\mathcal{X}}^{2} \equiv L_{\mathcal{X}}^{2}(\mathbb{T})$ be the Hilbert space of \mathcal{X}-valued norm square-integrable measurable functions on \mathbb{T} and let $H_{\mathcal{X}}^{2} \equiv H_{\mathcal{X}}^{2}(\mathbb{T})$ be the corresponding Hardy space. We observe that $L_{\mathbb{C}^{n}}^{2}=L^{2} \otimes \mathbb{C}^{n}$ and $H_{\mathbb{C}^{n}}^{2}=H^{2} \otimes \mathbb{C}^{n}$. If Φ is a matrix-valued function in $L_{M_{n}}^{\infty} \equiv L_{M_{n}}^{\infty}(\mathbb{T})\left(=L^{\infty} \otimes M_{n}\right)$ then $T_{\Phi}: H_{\mathbb{C}^{n}}^{2} \rightarrow H_{\mathbb{C}^{n}}^{2}$ denotes the block Toeplitz operator with symbol Φ defined by

$$
T_{\Phi} f:=P_{n}(\Phi f) \quad \text { for } f \in H_{\mathbb{C}^{n}}^{2}
$$

where P_{n} is the orthogonal projection of $L_{\mathbb{C}^{n}}^{2}$ onto $H_{\mathbb{C}^{n}}^{2}$. A block Hankel operator with symbol $\Phi \in L_{M_{n}}^{\infty}$ is the operator $H_{\Phi}: H_{\mathbb{C}^{n}}^{2} \rightarrow H_{\mathbb{C}^{n}}^{2}$ defined by

$$
H_{\Phi} f:=J_{n} P_{n}^{\perp}(\Phi f) \quad \text { for } f \in H_{\mathbb{C}^{n}}^{2}
$$

where J_{n} denotes the unitary operator from $L_{\mathbb{C}^{n}}^{2}$ onto $L_{\mathbb{C}^{n}}^{2}$ given by $J_{n}(f)(z):=\bar{z} I_{n} f(\bar{z})$ for $f \in L_{\mathbb{C}^{n}}^{2}$, with I_{n} the $n \times n$ identity matrix. If we set $H_{\mathbb{C}^{n}}^{2}=H^{2} \oplus \cdots \oplus H^{2}$ then we see that

$$
T_{\Phi}=\left[\begin{array}{ccc}
T_{\varphi_{11}} & \ldots & T_{\varphi_{1 n}} \\
& \vdots & \\
T_{\varphi_{n 1}} & \ldots & T_{\varphi_{n n}}
\end{array}\right] \quad \text { and } \quad H_{\Phi}=\left[\begin{array}{ccc}
H_{\varphi_{11}} & \ldots & H_{\varphi_{1 n}} \\
& \vdots & \\
H_{\varphi_{n 1}} & \ldots & H_{\varphi_{n n}}
\end{array}\right]
$$

where

$$
\Phi=\left[\begin{array}{ccc}
\varphi_{11} & \ldots & \varphi_{1 n} \\
& \vdots & \\
\varphi_{n 1} & \ldots & \varphi_{n n}
\end{array}\right] \in L_{M_{n}}^{\infty}
$$

For $\Phi \in L_{M_{n \times m}}^{\infty}$, write

$$
\widetilde{\Phi}(z):=\Phi^{*}(\bar{z})
$$

A matrix-valued function $\Theta \in H_{M_{n \times m}}^{\infty}\left(=H^{\infty} \otimes M_{n \times m}\right)$ is called inner if $\Theta^{*} \Theta=I_{m}$ almost everywhere on \mathbb{T}. The following basic relations can be easily derived:

$$
\begin{align*}
& T_{\Phi}^{*}=T_{\Phi^{*}}, \quad H_{\Phi}^{*}=H_{\widetilde{\Phi}} \quad\left(\Phi \in L_{M_{n}}^{\infty}\right) \tag{1.2}\\
& T_{\Phi \Psi}-T_{\Phi} T_{\Psi}=H_{\Phi^{*}}^{*} H_{\Psi} \quad\left(\Phi, \Psi \in L_{M_{n}}^{\infty}\right) \tag{1.3}\\
& H_{\Phi} T_{\Psi}=H_{\Phi \Psi}, \quad H_{\Psi \Phi}=T_{\widetilde{\Psi}}^{*} H_{\Phi} \quad\left(\Phi \in L_{M_{n}}^{\infty}, \Psi \in H_{M_{n}}^{\infty}\right) \tag{1.4}\\
& H_{\Phi}^{*} H_{\Phi}-H_{\Theta \Phi}^{*} H_{\Theta \Phi}=H_{\Phi}^{*} H_{\Theta^{*}} H_{\Theta^{*}}^{*} H_{\Phi} \quad\left(\Theta \in H_{M_{n}}^{\infty} \text { inner, } \Phi \in L_{M_{n}}^{\infty}\right) \tag{1.5}
\end{align*}
$$

For a matrix-valued function $\Phi \equiv\left[\varphi_{i j}\right] \in L_{M_{n}}^{\infty}$, we say that Φ is of bounded type if each entry $\varphi_{i j}$ is of bounded type, and we say that Φ is rational if each entry $\varphi_{i j}$ is a rational function. A matrix-valued trigonometric polynomial $\Phi \in L_{M_{n}}^{\infty}$ is of the form

$$
\Phi(z)=\sum_{j=-m}^{N} A_{j} z^{j}\left(A_{j} \in M_{n}\right)
$$

where A_{N} and A_{-m} are called the outer coefficients of Φ.
We recall that for matrix-valued functions $A:=\sum_{j=-\infty}^{\infty} A_{j} z^{j} \in L_{M_{n}}^{2}$ and $B:=\sum_{j=-\infty}^{\infty} B_{j} z^{j} \in$ $L_{M_{n}}^{2}$, we define the inner product of A and B by

$$
(A, B):=\int_{\mathbb{T}} \operatorname{tr}\left(B^{*} A\right) d \mu=\sum_{j=-\infty}^{\infty} \operatorname{tr}\left(B_{j}^{*} A_{j}\right)
$$

where $\operatorname{tr}(\cdot)$ denotes the trace of a matrix and define $\|A\|_{2}:=(A, A)^{\frac{1}{2}}$. We also define, for $A \in L_{M_{n}}^{\infty}$,

$$
\|A\|_{\infty}:=\operatorname{ess} \sup _{t \in \mathbb{T}}\|A(t)\| \quad(\|\cdot\| \text { denotes the spectral norm of a matrix })
$$

Finally, the shift operator S on $H_{\mathbb{C}^{n}}^{2}$ is defined by

$$
S:=T_{z I_{n}}
$$

The following fundamental result will be useful in the sequel.
The Beurling-Lax-Halmos Theorem. A nonzero subspace M of $H_{\mathbb{C}^{n}}^{2}$ is invariant for the shift operator S on $H_{\mathbb{C}^{n}}^{2}$ if and only if $M=\Theta H_{\mathbb{C}^{m}}^{2}$, where Θ is an inner matrix function in $H_{M_{n \times m}}^{\infty}(m \leq n)$. Furthermore, Θ is unique up to a unitary constant right factor; that is, if $M=\Delta H_{\mathbb{C}^{r}}^{2}$ (for Δ an inner function in $H_{M_{n \times r}}^{\infty}$), then $m=r$ and $\Theta=\Delta W$, where W is a (constant in z) unitary matrix mapping \mathbb{C}^{m} onto \mathbb{C}^{m}.

As customarily done, we say that two matrix-valued functions A and B are equal if they are equal up to a unitary constant right factor. Observe by (1.4) that for $\Phi \in L_{M_{n}}^{\infty}, H_{\Phi} S=$ $H_{\Phi} T_{z I_{n}}=H_{\Phi \cdot z I_{n}}=H_{z I_{n} \cdot \Phi}=T_{z I_{n}}^{*} H_{\Phi}$, which implies that the kernel of a block Hankel operator H_{Φ} is an invariant subspace of the shift operator on $H_{\mathbb{C}^{n}}^{2}$. Thus, if ker $H_{\Phi} \neq\{0\}$, then by the Beurling-Lax-Halmos Theorem,

$$
\operatorname{ker} H_{\Phi}=\Theta H_{\mathbb{C}^{m}}^{2}
$$

for some inner matrix function Θ. We note that Θ need not be a square matrix.
On the other hand, recently C. Gu, J. Hendricks and D. Rutherford [GHR] considered the hyponormality of block Toeplitz operators and characterized it in terms of their symbols. In particular they showed that if T_{Φ} is a hyponormal block Toeplitz operator on $H_{\mathbb{C}^{n}}^{2}$, then its symbol Φ is normal, i.e., $\Phi^{*} \Phi=\Phi \Phi^{*}$. Their characterization for hyponormality of block Toeplitz operators resembles Cowen's Theorem except for an additional condition - the normality condition of the symbol.

Hyponormality of Block Toeplitz Operators ([GHR]) For each $\Phi \in L_{M_{n}}^{\infty}$, let

$$
\mathcal{E}(\Phi):=\left\{K \in H_{M_{n}}^{\infty}:\|K\|_{\infty} \leq 1 \quad \text { and } \Phi-K \Phi^{*} \in H_{M_{n}}^{\infty}\right\}
$$

Then T_{Φ} is hyponormal if and only if Φ is normal and $\mathcal{E}(\Phi)$ is nonempty.
The hyponormality of the Toeplitz operator T_{Φ} with arbitrary matrix-valued symbol Φ, though solved in principle by Cowen's Theorem [Co4] and the criterion due to Gu, Hendricks and Rutherford [GHR], is in practice very complicated. Until now, explicit criteria for the hyponormality of block Toeplitz operators T_{Φ} with matrix-valued trigonometric polynomials or rational functions Φ were established via interpolation problems ([GHR], [HL4], [HL5]).

In Section 3, we obtain a tractable criterion for the hyponormality of block Toeplitz operators with bounded type symbols. To do this we employ a continuous analogue of the elementary theorem of Schur on triangularization of finite matrices: If T is a finite matrix then it can be represented as $T=D+N$, where D is a diagonal matrix and N is a nilpotent matrix. The continuous analogue is the so-called triangularization theorem for compressions of the shift operator: in this case, D and N are replaced by a certain (normal) multiplication operator and a Volterra operator of Hilbert-Schmidt class, respectively.

Section 4 deals with the gap between hyponormality and subnormality of block Toeplitz operators. The Bram-Halmos criterion for subnormality ($[\mathrm{Br}],[\mathrm{Con}])$ states that an operator $T \in$ $\mathcal{B}(\mathcal{H})$ is subnormal if and only if $\sum_{i, j}\left(T^{i} x_{j}, T^{j} x_{i}\right) \geq 0$ for all finite collections $x_{0}, x_{1}, \cdots, x_{k} \in \mathcal{H}$. It is easy to see that this is equivalent to the following positivity test:

$$
\left[\begin{array}{cccc}
{\left[T^{*}, T\right]} & {\left[T^{* 2}, T\right]} & \ldots & {\left[T^{* k}, T\right]} \tag{1.6}\\
{\left[T^{*}, T^{2}\right]} & {\left[T^{* 2}, T^{2}\right]} & \ldots & {\left[T^{* k}, T^{2}\right]} \\
\vdots & \vdots & \ddots & \vdots \\
{\left[T^{*}, T^{k}\right]} & {\left[T^{* 2}, T^{k}\right]} & \ldots & {\left[T^{* k}, T^{k}\right]}
\end{array}\right] \geq 0 \quad(\text { all } k \geq 1)
$$

The positivity condition (1.6) for $k=1$ is equivalent to the hyponormality of T, while subnormality requires the validity of (1.6) for all $k \in \mathbb{Z}_{+}$. The Bram-Halmos criterion indicates that hyponormality is generally far from subnormality. But there are special classes of operators for which the positivity of (1.6) for some k and subnormaity are equivalent. For example, it was shown in ([CuL1]) that if $W_{\sqrt{x},(\sqrt{a}, \sqrt{b}, \sqrt{c})^{\wedge}}$ is the weighted shift whose weight sequence consists of the initial weight x followed by the weight sequence of the recursively generated subnormal weighted shift $W_{(\sqrt{a}, \sqrt{b}, \sqrt{c})^{\wedge}}$ with an initial segment of positive weights $\sqrt{a}, \sqrt{b}, \sqrt{c}(\mathrm{cf} .[\mathrm{CuF} 1],[\mathrm{CuF} 2],[\mathrm{CuF} 3])$, then W_{α} is subnormal if and only if the positivity condition (1.6) is satisfied with $k=2$. On the other hand, in [Hal3, Problem 209], it was shown that there exists a hyponormal operator whose square is not hyponormal, e.g., $U^{*}+2 U\left(U\right.$ is the unilateral shift on $\left.\ell^{2}\right)$, which is a trigonometric Toeplitz operator, i.e., $U^{*}+2 U \equiv T_{\bar{z}+2 z}$. This example addresses the gap between hyponormality
and subnormality for Toeplitz operators. This matter is closely related to Halmos's Problem 5 [Hal1], [Hal2]: Is every subnormal Toeplitz operator either normal or analytic?

In [CuL1], as a partial answer, it was shown that every hyponormal Toeplitz operator T_{φ} with trigonometric polynomial symbol φ whose square is hyponormal must be either normal or analytic. In [Gu3], C. Gu showed that this result still holds for Toeplitz operators T_{φ} with rational symbol φ (more generally, in the cases where φ is of bounded type). In Section 4 we prove the following theorem: If Φ is a matrix-valued rational function whose co-analytic part has a coprime factorization then every hyponormal Toeplitz operator T_{Φ} whose square is hyponormal must be either normal or analytic. This result generalizes the results in [CuL1] and [Gu3].

In Section 5, we consider a completion problem involving Toeplitz operators. Given a partially specified operator matrix, the problem of finding suitable operators to complete the given partial operator matrix so that the resulting matrix satisfies certain given properties is called a completion problem. The dilation problem is a special case of the completion problem: in other words, a dilation of T is a completion of the partial operator matrix $\left[\begin{array}{c}T \\ ?\end{array} ?\right.$ been interested in the subnormal completion problem for

$$
\left[\begin{array}{cc}
U^{*} & ? \\
? & U^{*}
\end{array}\right]
$$

where U is the unilateral shift on H^{2}. If the unspecified entries? are Toeplitz operators this is called the Toeplitz subnormal completion problem. Thus this problem is related to the subnormality of block Toeplitz operators. In Section 5, we solve this Toeplitz subnormal completion problem.

Finally, in Section 6 we list some open problems.
Acknowledgment. The authors are indebted to the referee for suggestions that improved the presentation.

2. Basic Theory and Preliminaries

We first recall [Ab, Lemma 3] that if $\varphi \in L^{\infty}$ then

$$
\begin{equation*}
\varphi \text { is of bounded type } \Longleftrightarrow \operatorname{ker} H_{\varphi} \neq\{0\} \tag{2.1}
\end{equation*}
$$

If $\varphi \in L^{\infty}$, we write

$$
\varphi_{+} \equiv P \varphi \in H^{2} \quad \text { and } \quad \varphi_{-} \equiv \overline{P^{\perp} \varphi} \in z H^{2}
$$

Assume now that both φ and $\bar{\varphi}$ are of bounded type. Then from Beurling's Theorem, $\operatorname{ker} H_{\overline{\varphi_{-}}}=$ $\theta_{0} H^{2}$ and ker $H_{\overline{\varphi_{+}}}=\theta_{+} H^{2}$ for some inner functions θ_{0}, θ_{+}. We thus have $b:=\overline{\varphi_{-}} \theta_{0} \in H^{2}$, and hence we can write

$$
\begin{equation*}
\varphi_{-}=\theta_{0} \bar{b} \text { and similarly } \varphi_{+}=\theta_{+} \bar{a} \text { for some } a \in H^{2} \tag{2.2}
\end{equation*}
$$

In particular, if T_{φ} is hyponormal then since

$$
\begin{equation*}
\left[T_{\varphi}^{*}, T_{\varphi}\right]=H_{\bar{\varphi}}^{*} H_{\bar{\varphi}}-H_{\varphi}^{*} H_{\varphi}=H_{\frac{\varphi_{+}}{*}}^{*} H_{\overline{\varphi_{+}}}-H_{\varphi_{-}}^{*} H_{\overline{\varphi_{-}}} \tag{2.3}
\end{equation*}
$$

it follows that $\left\|H_{\overline{\varphi_{+}}} f\right\| \geq\left\|H_{\overline{\varphi_{-}}} f\right\|$ for all $f \in H^{2}$, and hence

$$
\theta_{+} H^{2}=\operatorname{ker} H_{\overline{\varphi_{+}}} \subseteq \operatorname{ker} H_{\overline{\varphi_{-}}}=\theta_{0} H^{2}
$$

which implies that θ_{0} divides θ_{+}, i.e., $\theta_{+}=\theta_{0} \theta_{1}$ for some inner function θ_{1}. We write, for an inner function θ,

$$
\mathcal{H}(\theta):=H^{2} \ominus \theta H^{2}
$$

Note that if $f=\theta \bar{a} \in L^{2}$, then $f \in H^{2}$ if and only if $a \in \mathcal{H}(z \theta)$; in particular, if $f(0)=0$ then $a \in \mathcal{H}(\theta)$. Thus, if $\varphi=\overline{\varphi_{-}}+\varphi_{+} \in L^{\infty}$ is such that φ and $\bar{\varphi}$ are of bounded type such that $\varphi_{+}(0)=0$ and T_{φ} is hyponormal, then we can write

$$
\varphi_{+}=\theta_{0} \theta_{1} \bar{a} \quad \text { and } \quad \varphi_{-}=\theta_{0} \bar{b}, \quad \text { where } a \in \mathcal{H}\left(\theta_{0} \theta_{1}\right) \text { and } b \in \mathcal{H}\left(\theta_{0}\right)
$$

By Kronecker's Lemma [Ni, p. 183], if $f \in H^{\infty}$ then \bar{f} is a rational function if and only if rank $H_{\bar{f}}<$ ∞, which implies that

$$
\begin{equation*}
\bar{f} \text { is rational } \Longleftrightarrow f=\theta \bar{b} \text { with a finite Blaschke product } \theta \tag{2.4}
\end{equation*}
$$

Also, from the scalar-valued case of (1.4), we can see that if $k \in \mathcal{E}(\varphi)$ then

$$
\begin{equation*}
\left[T_{\varphi}^{*}, T_{\varphi}\right]=H_{\bar{\varphi}}^{*} H_{\bar{\varphi}}-H_{\varphi}^{*} H_{\varphi}=H_{\bar{\varphi}}^{*} H_{\bar{\varphi}}-H_{k \bar{\varphi}}^{*} H_{k \bar{\varphi}}=H_{\bar{\varphi}}^{*}\left(1-T_{\widetilde{k}} T_{\widetilde{k}}^{*}\right) H_{\bar{\varphi}} \tag{2.5}
\end{equation*}
$$

On the other hand, M. Abrahamse [Ab, Lemma 6] showed that if T_{φ} is hyponormal, if $\varphi \notin H^{\infty}$, and if φ or $\bar{\varphi}$ is of bounded type then both φ and $\bar{\varphi}$ are of bounded type. However, by contrast to the scalar case, Φ^{*} may not be of bounded type even though T_{Φ} is hyponormal, $\Phi \notin H_{M_{n}}^{\infty}$ and Φ is of bounded type. But we have a one-way implication: if T_{Φ} is hyponormal and Φ^{*} is of bounded type then Φ is also of bounded type (see [GHR, Corollary 3.5 and Remark 3.6]). Thus whenever we deal with hyponormal Toeplitz operators T_{Φ} with symbols Φ satisfying that both Φ and Φ^{*} are of bounded type (e.g., Φ is a matrix-valued rational function), it suffices to assume that only Φ^{*} is of bounded type. In spite of this, for convenience, we will assume that Φ and Φ^{*} are of bounded type whenever we deal with bounded type symbols.

For a matrix-valued function $\Phi \in H_{M_{n \times r}}^{2}$, we say that $\Delta \in H_{M_{n \times m}}^{2}$ is a left inner divisor of Φ if Δ is an inner matrix function such that $\Phi=\Delta A$ for some $A \in H_{M_{m \times r}}^{2}(m \leq n)$. We also say that two matrix functions $\Phi \in H_{M_{n \times r}}^{2}$ and $\Psi \in H_{M_{n \times m}}^{2}$ are left coprime if the only common left inner divisor of both Φ and Ψ is a unitary constant and that $\Phi \in H_{M_{n \times r}}^{2}$ and $\Psi \in H_{M_{m \times r}}^{2}$ are right coprime if $\widetilde{\Phi}$ and $\widetilde{\Psi}$ are left coprime. Two matrix functions Φ and Ψ in $H_{M_{n}}^{2}$ are said to be coprime if they are both left and right coprime. We note that if $\Phi \in H_{M_{n}}^{2}$ is such that $\operatorname{det} \Phi$ is not identically zero then any left inner divisor Δ of Φ is square, i.e., $\Delta \in H_{M_{n}}^{2}$: indeed, if $\Phi=\Delta A$ with $\Delta \in H_{M_{n \times r}}^{2}(r<n)$ then for almost all $z \in \mathbb{T}, \operatorname{rank} \Phi(z) \leq \operatorname{rank} \Delta(z) \leq r<n$, so that $\operatorname{det} \Phi(z)=0$ for almost all $z \in \mathbb{T}$. If $\Phi \in H_{M_{n}}^{2}$ is such that $\operatorname{det} \Phi$ is not identically zero then we say that $\Delta \in H_{M_{n}}^{2}$ is a right inner divisor of Φ if $\widetilde{\Delta}$ is a left inner divisor of $\widetilde{\Phi}$.

On the other hand, we have (in the Introduction) remarked that Θ need not be square in the equality $\operatorname{ker} H_{\Phi}=\Theta H_{\mathbb{C}^{n}}^{2}$, which comes from the Beurling-Lax-Halmos Theorem. But it was known [GHR, Theorem 2.2] that for $\Phi \in L_{M_{n}}^{\infty}, \Phi$ is of bounded type if and only if ker $H_{\Phi}=\Theta H_{\mathbb{C}^{n}}^{2}$ for some square inner matrix function Θ.

Let $\left\{\Theta_{i} \in H_{M_{n}}^{\infty}: i \in J\right\}$ be a family of inner matrix functions. Then the greatest common left inner divisor Θ_{d} and the least common left inner multiple Θ_{m} of the family $\left\{\Theta_{i} \in H_{M_{n}}^{\infty}: i \in J\right\}$ are the inner functions defined by

$$
\Theta_{d} H_{\mathbb{C}^{p}}^{2}=\bigvee_{i \in J} \Theta_{i} H_{\mathbb{C}^{n}}^{2} \quad \text { and } \quad \Theta_{m} H_{\mathbb{C}^{q}}^{2}=\bigcap_{i \in J} \Theta_{i} H_{\mathbb{C}^{n}}^{2}
$$

The greatest common right inner divisor Θ_{d}^{\prime} and the least common right inner multiple Θ_{m}^{\prime} of the family $\left\{\Theta_{i} \in H_{M_{n}}^{\infty}: i \in J\right\}$ are the inner functions defined by

$$
\widetilde{\Theta}_{d}^{\prime} H_{\mathbb{C}^{r}}^{2}=\bigvee_{i \in J} \widetilde{\Theta}_{i} H_{\mathbb{C}^{n}}^{2} \quad \text { and } \quad \widetilde{\Theta}_{m}^{\prime} H_{\mathbb{C}^{s}}^{2}=\bigcap_{i \in J} \widetilde{\Theta}_{i} H_{\mathbb{C}^{n}}^{2}
$$

The Beurling-Lax-Halmos Theorem guarantees that Θ_{d} and Θ_{m} are unique up to a unitary constant right factor, and Θ_{d}^{\prime} and Θ_{m}^{\prime} are unique up to a unitary constant left factor. We write

$$
\begin{aligned}
\Theta_{d} & =\operatorname{GCD}_{\ell}\left\{\Theta_{i}: i \in J\right\},
\end{aligned} \Theta_{m}=\operatorname{LCM}_{\ell}\left\{\Theta_{i}: i \in J\right\}, ~ 子 \Theta_{d}^{\prime}=\operatorname{GCD}_{r}\left\{\Theta_{i}: i \in J\right\}, \quad \operatorname{LCM}_{r}^{\prime}\left\{\Theta_{i}: i \in J\right\} .
$$

If $n=1$, then $\mathrm{GCD}_{\ell}\{\cdot\}=\mathrm{GCD}_{r}\{\cdot\}$ (simply denoted GCD $\{\cdot\}$) and $\mathrm{LCM}_{\ell}\{\cdot\}=\mathrm{LCM}_{r}\{\cdot\}$ (simply denoted LCM $\{\cdot\}$). In general, it is not true that $\operatorname{GCD}_{\ell}\{\cdot\}=\operatorname{GCD}_{r}\{\cdot\}$ and $\operatorname{LCM}_{\ell}\{\cdot\}=\operatorname{LCM}_{r}\{\cdot\}$.

However, we have:
Lemma 2.1. Let $\Theta_{i}:=\theta_{i} I_{n}$ for an inner function $\theta_{i}(i \in J)$.
(a) $\operatorname{GCD}_{\ell}\left\{\Theta_{i}: i \in J\right\}=\operatorname{GCD}_{r}\left\{\Theta_{i}: i \in J\right\}=\theta_{d} I_{n}$, where $\theta_{d}=\operatorname{GCD}\left\{\theta_{i}: i \in J\right\}$.
(b) $\operatorname{LCM}_{\ell}\left\{\Theta_{i}: i \in J\right\}=\operatorname{LCM}_{r}\left\{\Theta_{i}: i \in J\right\}=\theta_{m} I_{n}$, where $\theta_{m}=\operatorname{LCM}\left\{\theta_{i}: i \in J\right\}$.

Proof. (a) If $\Theta_{d}=\operatorname{GCD}_{\ell}\left\{\Theta_{i}: i \in J\right\}$, then

$$
\Theta_{d} H_{\mathbb{C}^{n}}^{2}=\bigvee_{i \in J} \Theta_{i} H_{\mathbb{C}^{n}}^{2}=\bigoplus_{j=1}^{n} \bigvee_{i \in J} \theta_{i} H^{2}=\bigoplus_{j=1}^{n} \theta_{d} H^{2}
$$

which implies that $\Theta_{d}=\theta_{d} I_{n}$ with $\theta_{d}=\mathrm{GCD}\left\{\theta_{i}: i \in J\right\}$. If instead $\Theta_{d}=\mathrm{GCD}_{r}\left\{\Theta_{i}: i \in J\right\}$ then $\widetilde{\Theta}_{d}=\operatorname{GCD}_{\ell}\left\{\widetilde{\Theta}_{i}: i \in J\right\}$. Thus we have $\widetilde{\Theta}_{d}=\widetilde{\theta}_{d} I_{n}$ and hence, $\Theta_{d}=\theta_{d} I_{n}$.
(b) If $\Theta_{m}=\operatorname{LCM}_{\ell}\left\{\Theta_{i}: i \in J\right\}$, then

$$
\Theta_{m} H_{\mathbb{C}^{n}}^{2}=\bigcap_{i \in J} \Theta_{i} H_{\mathbb{C}^{n}}^{2}=\bigoplus_{j=1}^{n} \bigcap_{i \in J} \theta_{i} H^{2}=\bigoplus_{j=1}^{n} \theta_{m} H^{2}
$$

which implies that $\Theta_{m}=\theta_{m} I_{n}$ with $\theta_{m}=\operatorname{LCM}\left\{\theta_{i}: i \in J\right\}$. If instead $\Theta_{m}=\operatorname{LCM}_{r}\left\{\Theta_{i}: i \in J\right\}$, then the same argument as in (a) gives the result.

In view of Lemma 2.1, if $\Theta_{i}=\theta_{i} I_{n}$ for an inner function $\theta_{i}(i \in J)$, we can define the greatest common inner divisor Θ_{d} and the least common inner multiple Θ_{m} of the Θ_{i} by

$$
\begin{aligned}
& \Theta_{d} \equiv \operatorname{GCD}\left\{\Theta_{i}: i \in J\right\}:=\operatorname{GCD}_{\ell}\left\{\Theta_{i}: i \in J\right\}=\operatorname{GCD}_{r}\left\{\Theta_{i}: i \in J\right\} \\
& \Theta_{m} \equiv \operatorname{LCM}\left\{\Theta_{i}: i \in J\right\}:=\operatorname{LCM}_{\ell}\left\{\Theta_{i}: i \in J\right\}=\operatorname{LCM}_{r}\left\{\Theta_{i}: i \in J\right\}:
\end{aligned}
$$

they are both diagonal matrices.
For $\Phi \in L_{M_{n}}^{\infty}$ we write

$$
\Phi_{+}:=P_{n}(\Phi) \in H_{M_{n}}^{2} \quad \text { and } \quad \Phi_{-}:=\left[P_{n}^{\perp}(\Phi)\right]^{*} \in H_{M_{n}}^{2}
$$

Thus we can write $\Phi=\Phi_{-}^{*}+\Phi_{+}$. Suppose $\Phi=\left[\varphi_{i j}\right] \in L_{M_{n}}^{\infty}$ is such that Φ^{*} is of bounded type. Then we may write $\varphi_{i j}=\theta_{i j} \bar{b}_{i j}$, where $\theta_{i j}$ is an inner function and $\theta_{i j}$ and $b_{i j}$ are coprime. Thus if θ is the least common inner multiple of $\theta_{i j}$'s then we can write

$$
\begin{equation*}
\Phi=\left[\varphi_{i j}\right]=\left[\theta_{i j} \bar{b}_{i j}\right]=\left[\theta \bar{a}_{i j}\right]=\Theta A^{*} \quad\left(\Theta \equiv \theta I_{n}, A \equiv\left[a_{i j}\right] \in H_{M_{n}}^{2}\right) \tag{2.6}
\end{equation*}
$$

We note that in the factorization (2.6), $A(\alpha)$ is nonzero whenever $\theta(\alpha)=0$. Let $\Phi=\Phi_{-}^{*}+\Phi_{+} \in$ $L_{M_{n}}^{\infty}$ be such that Φ and Φ^{*} are of bounded type. Then in view of (2.6) we can write

$$
\Phi_{+}=\Theta_{1} A^{*} \quad \text { and } \quad \Phi_{-}=\Theta_{2} B^{*}
$$

where $\Theta_{i}=\theta_{i} I_{n}$ with an inner function θ_{i} for $i=1,2$ and $A, B \in H_{M_{n}}^{2}$. In particular, if $\Phi \in L_{M_{n}}^{\infty}$ is rational then the θ_{i} can be chosen as finite Blaschke products, as we observed in (2.4).

By contrast with scalar-valued functions, in (2.6) Θ and A need not be (right) coprime: for instance, if $\Phi:=\left[\begin{array}{cc}z & z \\ z & z\end{array}\right]$ then we can write

$$
\Phi=\Theta A^{*}=\left[\begin{array}{ll}
z & 0 \\
0 & z
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

but $\Theta:=\left[\begin{array}{ll}z & 0 \\ 0 & z\end{array}\right]$ and $A:=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ are not right coprime because $\frac{1}{\sqrt{2}}\left[\begin{array}{cc}z & -z \\ 1 & 1\end{array}\right]$ is a common right inner divisor, i.e.,

$$
\Theta=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & z \tag{2.7}\\
-1 & z
\end{array}\right] \cdot \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
z & -z \\
1 & 1
\end{array}\right] \quad \text { and } \quad A=\sqrt{2}\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right] \cdot \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
z & -z \\
1 & 1
\end{array}\right]
$$

If $\Omega=\mathrm{GCD}_{\ell}\{A, \Theta\}$ in the representation (2.6):

$$
\Phi=\Theta A^{*}=A^{*} \Theta \quad\left(\Theta \equiv \theta I_{n} \text { for an inner function } \theta\right)
$$

then $\Theta=\Omega \Omega_{\ell}$ and $A=\Omega A_{\ell}$ for some inner matrix Ω_{ℓ} (where $\Omega_{\ell} \in H_{M_{n}}^{2}$ because $\operatorname{det} \Theta$ is not identically zero) and some $A_{l} \in H_{M_{n}}^{2}$. Therefore if $\Phi^{*} \in L_{M_{n}}^{\infty}$ is of bounded type then we can write

$$
\begin{equation*}
\Phi=A_{\ell}{ }^{*} \Omega_{\ell}, \quad \text { where } A_{\ell} \text { and } \Omega_{\ell} \text { are left coprime. } \tag{2.8}
\end{equation*}
$$

$A_{\ell}^{*} \Omega_{\ell}$ is called the left coprime factorization of Φ; similarly, we can write

$$
\begin{equation*}
\Phi=\Omega_{r} A_{r}^{*}, \quad \text { where } A_{r} \text { and } \Omega_{r} \text { are right coprime. } \tag{2.9}
\end{equation*}
$$

In this case, $\Omega_{r} A_{r}^{*}$ is called the right coprime factorization of Φ.
Remark 2.2. ([GHR, Corollary 2.5]) As a consequence of the Beurling-Lax-Halmos Theorem, we can see that

$$
\begin{equation*}
\Phi=\Omega_{r} A_{r}^{*}(\text { right coprime factorization }) \Longleftrightarrow \operatorname{ker} H_{\Phi^{*}}=\Omega_{r} H_{\mathbb{C}^{n}}^{2} \tag{2.10}
\end{equation*}
$$

In fact, if $\Phi=\Omega_{r} A_{r}^{*}$ (right coprime factorization) then it is evident that

$$
\operatorname{ker} H_{\Phi^{*}} \supseteq \Omega_{r} H_{\mathbb{C}^{n}}^{2}
$$

From the Beurling-Lax-Halmos Theorem,

$$
\operatorname{ker} H_{\Phi^{*}}=\Theta H_{\mathbb{C}^{n}}^{2}
$$

for some inner function Θ, and hence $(I-P)\left(\Phi^{*} \Theta\right)=0$, i.e., $\Phi^{*}=D \Theta^{*}$, for some $D \in H_{\mathbb{C}^{n}}^{2}$. We want to show that $\Omega_{r}=\Theta$ up to a unitary constant right factor. Since $\Theta H_{\mathbb{C}^{n}}^{2} \supseteq \Omega_{r} H_{\mathbb{C}^{n}}^{2}$, we have (cf. [FF, p.240]) that $\Omega_{r}=\Theta \Delta$ for some square inner function Δ. Thus,

$$
D \Theta^{*}=\Phi^{*}=A_{r} \Omega_{r}^{*}=A_{r} \Delta^{*} \Theta^{*}
$$

which implies $A_{r}=D \Delta$, so that Δ is a common right inner divisor of both A_{r} and Ω_{r}. But since A_{r} and Ω_{r} are right coprime, Δ must be a unitary constant. The proof of the converse implication is entirely similar.

From now on, for notational convenience we write

$$
I_{\omega}:=\omega I_{n} \quad\left(\omega \in H^{2}\right) \quad \text { and } \quad H_{0}^{2}:=I_{z} H_{M_{n}}^{2}
$$

It is not easy to check the condition " B and Θ are coprime" in the decomposition $F=B^{*} \Theta$ $\left(\Theta \equiv I_{\theta}\right.$ is inner and $B \in H_{M_{n}}^{2}$). But if F is rational (and hence Θ is given in a form $\Theta \equiv I_{\theta}$ with a finite Blaschke product θ) then we can obtain a more tractable criterion. To see this, we need to recall the notion of finite Blaschke-Potapov product.

Let $\lambda \in \mathbb{D}$ and write

$$
b_{\lambda}(z):=\frac{z-\lambda}{1-\bar{\lambda} z}
$$

which is called a Blaschke factor. If M is a closed subspace of \mathbb{C}^{n} then the matrix function of the form

$$
b_{\lambda} P_{M}+\left(I-P_{M}\right) \quad\left(P_{M}:=\text { the orthogonal projection of } \mathbb{C}^{n} \text { onto } M\right)
$$

is called a Blaschke-Potapov factor ; an $n \times n$ matrix function D is called a finite Blaschke-Potapov product if D is of the form

$$
D=\nu \prod_{m=1}^{M}\left(b_{m} P_{m}+\left(I-P_{m}\right)\right)
$$

where ν is an $n \times n$ unitary constant matrix, b_{m} is a Blaschke factor, and P_{m} is an orthogonal projection in \mathbb{C}^{n} for each $m=1, \cdots, M$. In particular, a scalar-valued function D reduces to a finite Blaschke product $D=\nu \prod_{m=1}^{M} b_{m}$, where $\nu=e^{i \omega}$. It is also known (cf. [Po]) that an $n \times n$ matrix function D is rational and inner if and only if it can be represented as a finite Blaschke-Potapov product.

Write $\mathcal{Z}(\theta)$ for the set of zeros of an inner function θ. We then have:
Lemma 2.3. Let $B \in H_{M_{n}}^{\infty}$ be rational and $\Theta=I_{\theta}$ with a finite Blaschke product θ. Then the following statements are equivalent:
(a) $B(\alpha)$ is invertible for each $\alpha \in \mathcal{Z}(\theta)$;
(b) B and Θ are right coprime;
(c) B and Θ are left coprime.

Proof. See [CHL, Lemma 3.10].

If $\Theta \in H_{M_{n}}^{\infty}$ is an inner matrix function, we write

$$
\begin{aligned}
\mathcal{H}(\Theta) & :=\left(\Theta H_{\mathbb{C}_{n}}^{2}\right)^{\perp} \\
\mathcal{H}_{\Theta} & :=\left(\Theta H_{M_{n}}^{2}\right)^{\perp} ; \\
\mathcal{K}_{\Theta} & :=\left(H_{M_{n}}^{2} \Theta\right)^{\perp} .
\end{aligned}
$$

If $\Theta=I_{\theta}$ for an inner function θ then $\mathcal{H}_{\Theta}=\mathcal{K}_{\Theta}$ and if $n=1$, then $\mathcal{H}(\Theta)=\mathcal{H}_{\Theta}=\mathcal{K}_{\Theta}$.
The following lemma is useful in the sequel.
Lemma 2.4. If $\Theta \in H_{M_{n}}^{2}$ is an inner matrix function then

$$
\operatorname{dim} \mathcal{H}(\Theta)<\infty \Longleftrightarrow \Theta \text { is a finite Blaschke-Potapov product. }
$$

Proof. Let

$$
\delta:=\operatorname{GCD}\left\{\omega: \omega \text { is inner, } \Theta \text { is a left inner divisor of } \Omega=I_{\omega}\right\} \quad \text { and } \quad \Delta:=I_{\delta}
$$

in other words, δ is a 'minimal' inner function such that $\Delta \equiv I_{\delta}=\Theta \Theta_{1}$ for some inner matrix function Θ_{1}. Note that
Θ is a finite Blaschke-Potapov product $\Longrightarrow \delta$ is a finite Blaschke product

$$
\Longrightarrow \operatorname{dim} \mathcal{H}(\Delta)<\infty
$$

Observe that

$$
\mathcal{H}(\Delta)=\mathcal{H}\left(\Theta \Theta_{1}\right)=\mathcal{H}(\Theta) \bigoplus \Theta \mathcal{H}\left(\Theta_{1}\right)
$$

Thus if Θ is a finite Blaschke-Potapov product, then $\operatorname{dim} \mathcal{H}(\Theta)<\infty$. Conversely, we suppose $\operatorname{dim} \mathcal{H}(\Theta)<\infty$. Write $\Theta:=\left[\theta_{i j}\right]_{i j=1}^{n}$. Since

$$
\operatorname{rank} H_{\bar{\theta}_{i j}}^{*} \leq \operatorname{rank} H_{\Theta^{*}}^{*}=\operatorname{dim} \mathcal{H}(\Theta)<\infty
$$

it follows that $\theta_{i j}$'s are rational functions. Thus Θ is a rational inner matrix function and hence a finite Blaschke-Potapov product.

Lemma 2.4 implies that every inner divisor of a rational inner function (i.e., a finite BlaschkePotapov product) is also a finite Blaschke-Potapov product: indeed, if Θ is a finite BlaschkePotapov product and Θ_{1} is an inner divisor of Θ, then $\operatorname{dim} \mathcal{H}\left(\Theta_{1}\right) \leq \operatorname{dim} \mathcal{H}(\Theta)<\infty$, and hence by Lemma 2.4, Θ_{1} is a finite Blaschke-Potapov product.

From Lemma 2.4, we know that every inner divisor of $B_{\lambda}:=I_{b_{\lambda}} \in H_{M_{n}}^{\infty}$ is a finite BlaschkePotapov product. However we can say more:

Lemma 2.5. Every inner divisor of $B_{\lambda}:=I_{b_{\lambda}} \in H_{M_{n}}^{\infty}$ is a Blaschke-Potapov factor.
Proof. Suppose D is an inner divisor of B_{λ}. By Lemma 2.4, D is a Blaschke-Potapov product of the form

$$
D=\nu \prod_{i=1}^{m} D_{i} \text { with } D_{i}:=b_{\lambda_{i}} P_{i}+\left(I-P_{i}\right) \quad(m \leq n)
$$

We write $B_{\lambda}=E D$ for some $E \in H_{M_{n}}^{2}$. Observe that $B_{\lambda}\left(\lambda_{i}\right)$ is not invertible, so that $\lambda_{i}=\lambda$ for all $i=1,2 \ldots, m$. We thus have

$$
P_{m}+b_{\lambda}\left(I-P_{m}\right)=B_{\lambda} D_{m}^{*}=E \cdot \nu \prod_{i=1}^{m-1} D_{i}
$$

Then we have

$$
\operatorname{ker} P_{m}=\operatorname{ker}\left(B_{\lambda} D_{m}^{*}\right)(\lambda) \supseteq \operatorname{ker} D_{m-1}(\lambda)=\operatorname{ran} P_{m-1}
$$

which implies that $P_{m} P_{m-1}=0$, and hence P_{m} and P_{m-1} are orthogonal. Thus $D_{m-1} D_{m}$ is a Blaschke-Potapov factor. Now an induction shows that D is a Blaschke-Potapov factor.

By the aid of Lemma 2.5, we can show that the equivalence (b) \Leftrightarrow (c) in Lemma 2.3 fails if Θ is not a constant diagonal matrix. To see this, let

$$
\Theta_{1}:=\left[\begin{array}{cc}
b_{\alpha} & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad \Theta_{2}:=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
z & -z \\
1 & 1
\end{array}\right]
$$

Then $\Theta:=\Theta_{1} \Theta_{2}$ and Θ_{1} are not left coprime. Observe that

$$
\widetilde{\Theta}_{1}:=\left[\begin{array}{cc}
b_{\bar{\alpha}} & 0 \\
0 & 1
\end{array}\right], \quad \widetilde{\Theta}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
z b_{\bar{\alpha}} & 1 \\
-z b_{\bar{\alpha}} & 1
\end{array}\right] .
$$

Since every right inner divisor Δ of $\widetilde{\Theta}_{1}$ is an inner divisor of $B_{\bar{\alpha}}:=I_{b_{\bar{\alpha}}}$, it follows from Lemma 2.5 that $\Delta=\widetilde{\Theta}_{1}$ (up to a unitary constant right factor). Suppose that Θ and Θ_{1} are not right coprime. Then $\widetilde{\Theta}$ and $\widetilde{\Theta}_{1}$ are not left coprime and hence $\widetilde{\Theta}_{1}$ is a left inner divisor of $\widetilde{\Theta}$. Write

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
z b_{\bar{\alpha}} & 1 \\
-z b_{\bar{\alpha}} & 1
\end{array}\right]=\left[\begin{array}{cc}
b_{\bar{\alpha}} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{21}
\end{array}\right] \quad\left(f_{i j} \in H^{2}\right)
$$

Then we have $\frac{1}{\sqrt{2}}=b_{\bar{\alpha}} f_{12}$, so that $f_{12}=\frac{1}{\sqrt{2}} \overline{b_{\bar{\alpha}}} \notin H^{2}$, giving a contradiction.
For \mathcal{X} a subspace of $H_{M_{n}}^{2}$, we write $P_{\mathcal{X}}$ for the orthogonal projection from $H_{M_{n}}^{2}$ onto \mathcal{X}.
Lemma 2.6. Let $\Theta \in H_{M_{n}}^{\infty}$ be an inner matrix function and $A \in H_{M_{n}}^{2}$. Then the following hold:
(a) $A \in \mathcal{K}_{\Theta} \Longleftrightarrow \Theta A^{*} \in H_{0}^{2}$;
(b) $A \in \mathcal{H}_{\Theta} \Longleftrightarrow A^{*} \Theta \in H_{0}^{2}$;
(c) $P_{H_{0}^{2}}\left(\Theta A^{*}\right)=\Theta\left(P_{\mathcal{K}_{\Theta}} A\right)^{*}$.

Proof. Let $C \in H_{M_{n}}^{2}$ be arbitrary. We then have

$$
\begin{aligned}
A \in \mathcal{K}_{\Theta} & \Longleftrightarrow\langle A, C \Theta\rangle=0 \\
& \Longleftrightarrow \int_{\mathbb{T}} \operatorname{tr}\left((C \Theta)^{*} A\right) d \mu=0 \\
& \Longleftrightarrow \int_{\mathbb{T}} \operatorname{tr}\left(C^{*} A \Theta^{*}\right) d \mu=0 \quad(\text { since } \operatorname{tr}(A B)=\operatorname{tr}(B A)) \\
& \Longleftrightarrow\left\langle A \Theta^{*}, C\right\rangle=0 \\
& \Longleftrightarrow \Theta A^{*} \in H_{0}^{2}
\end{aligned}
$$

giving (a) and similarly, (b). For (c), we write $A=A_{1}+A_{2}$, where $A_{1}:=P_{\mathcal{K}_{\Theta}} A$ and $A_{2}:=A_{3} \Theta$ for some $A_{3} \in H_{M_{n}}^{2}$. We then have

$$
P_{H_{0}^{2}}\left(\Theta A^{*}\right)=P_{H_{0}^{2}}\left(\Theta A_{1}^{*}+\Theta A_{2}^{*}\right)=P_{H_{0}^{2}}\left(\Theta\left(P_{\mathcal{K}_{\Theta}} A\right)^{*}+\Theta \Theta^{*} A_{3}^{*}\right)=\Theta\left(P_{\mathcal{K}_{\Theta}} A\right)^{*}
$$

giving (c).

We next review the classical Hermite-Fejér interpolation problem, following [FF]; this approach will be useful in the sequel. Let θ be a finite Blaschke product of degree d :

$$
\theta=e^{i \xi} \prod_{i=1}^{N}\left(\widetilde{b}_{i}\right)^{m_{i}} \quad\left(\widetilde{b}_{i}:=\frac{z-\alpha_{i}}{1-\bar{\alpha}_{i} z}, \text { where } \alpha_{i} \in \mathbb{D}\right)
$$

where $d=\sum_{i=1}^{N} m_{i}$. For our purposes rewrite θ in the form

$$
\theta=e^{i \xi} \prod_{j=1}^{d} b_{j}
$$

where

$$
b_{j}:=\widetilde{b}_{k} \quad \text { if } \sum_{l=0}^{k-1} m_{l}<j \leq \sum_{l=0}^{k} m_{l}
$$

and, for notational convenience, $m_{0}:=0$. Let

$$
\begin{equation*}
\varphi_{j}:=\frac{q_{j}}{1-\bar{\alpha}_{j} z} b_{j-1} b_{j-2} \cdots b_{1} \quad(1 \leq j \leq d) \tag{2.11}
\end{equation*}
$$

where $\varphi_{1}:=q_{1}\left(1-\bar{\alpha}_{1} z\right)^{-1}$ and $q_{j}:=\left(1-\left|\alpha_{j}\right|^{2}\right)^{\frac{1}{2}}(1 \leq j \leq d)$. It is well known (cf. [Ta]) that $\left\{\varphi_{j}\right\}_{j=1}^{d}$ is an orthonormal basis for $\mathcal{H}(\theta)$.

For our purposes we concentrate on the data given by sequences of $n \times n$ complex matrices. Given the sequence $\left\{K_{i j}: 1 \leq i \leq N, 0 \leq j<m_{i}\right\}$ of $n \times n$ complex matrices and a set of distinct complex numbers $\alpha_{1}, \ldots, \alpha_{N}$ in \mathbb{D}, the classical Hermite-Fejér interpolation problem entails finding necessary and sufficient conditions for the existence of a contractive analytic matrix function K in $H_{M_{n}}^{\infty}$ satisfying

$$
\begin{equation*}
\frac{K^{(j)}\left(\alpha_{i}\right)}{j!}=K_{i, j} \quad\left(1 \leq i \leq N, 0 \leq j<m_{i}\right) \tag{2.12}
\end{equation*}
$$

To construct a matrix polynomial $K(z) \equiv P(z)$ satisfying (2.12), let $p_{i}(z)$ be the polynomial of order $d-m_{i}$ defined by

$$
p_{i}(z):=\prod_{k=1, k \neq i}^{N}\left(\frac{z-\alpha_{k}}{\alpha_{i}-\alpha_{k}}\right)^{m_{k}}
$$

Consider the matrix polynomial $P(z)$ of degree $d-1$ defined by

$$
\begin{equation*}
P(z):=\sum_{i=1}^{N}\left(K_{i, 0}^{\prime}+K_{i, 1}^{\prime}\left(z-\alpha_{i}\right)+K_{i, 2}^{\prime}\left(z-\alpha_{i}\right)^{2}+\cdots+K_{i, m_{i}-1}^{\prime}\left(z-\alpha_{i}\right)^{m_{i}-1}\right) p_{i}(z) \tag{2.13}
\end{equation*}
$$

where the $K_{i, j}^{\prime}$ are obtained by the following equations:

$$
K_{i, j}^{\prime}=K_{i, j}-\sum_{k=0}^{j-1} \frac{K_{i, k}^{\prime} p_{i}^{(j-k)}\left(\alpha_{i}\right)}{(j-k)!} \quad\left(1 \leq i \leq N ; 0 \leq j<m_{i}\right)
$$

and $K_{i, 0}^{\prime}=K_{i, 0}(1 \leq i \leq N)$. Then $P(z)$ satisfies (2.12).
On the other hand, for an inner function θ, let U_{θ} be defined by the compression of the shift operator U : i.e.,

$$
U_{\theta}=\left.P_{\mathcal{H}(\theta)} U\right|_{\mathcal{H}(\theta)}
$$

Let $\Theta=I_{\theta}$ and W be the unitary operator from $\bigoplus_{1}^{d} \mathbb{C}^{n}$ onto $\mathcal{H}(\Theta)$ defined by

$$
\begin{equation*}
W:=\left(I_{\varphi_{1}}, I_{\varphi_{2}}, \cdots, I_{\varphi_{d}}\right) \tag{2.14}
\end{equation*}
$$

where the φ_{j} are the functions in (2.11). It is known [FF, Theorem X.1.5] that if θ is the finite Blaschke product of order d, then U_{θ} is unitarily equivalent to the lower triangular matrix M on \mathbb{C}^{d} defined by

$$
M:=\left[\begin{array}{cccccc}
\alpha_{1} & 0 & 0 & 0 & \cdots & \cdots \tag{2.15}\\
q_{1} q_{2} & \alpha_{2} & 0 & 0 & \cdots & \cdots \\
-\bar{\alpha}_{1} \bar{\alpha}_{1} q_{3} & q_{2} q_{3} & \alpha_{3} & 0 & \cdots & \cdots \\
q_{1} \bar{\alpha}_{2} \bar{\alpha}_{3} q_{4} & -q_{2} \bar{\alpha}_{3} q_{4} & q_{3} q_{4} & \alpha_{4} & \cdots & \cdots \\
-q_{1} \bar{\alpha}_{2} \bar{\alpha}_{3} \bar{\alpha}_{4} q_{5} & q_{2} \bar{\alpha}_{3} \bar{\alpha}_{4} q_{5} & -q_{3} \bar{\alpha}_{4} q_{5} & q_{4} q_{5} & \alpha_{5} & \ddots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots
\end{array}\right] .
$$

If $L \in M_{n}$ and $M=\left[m_{i, j}\right]_{d \times d}$, then the matrix $L \otimes M$ is the matrix on $\mathbb{C}^{n \times d}$ defined by the block matrix

$$
L \otimes M:=\left[\begin{array}{cccc}
L m_{1,1} & L m_{1,2} & \cdots & L m_{1, d} \\
L m_{2,1} & L m_{2,2} & \cdots & L m_{2, d} \\
\vdots & \vdots & \vdots & \vdots \\
L m_{d, 1} & L m_{d, 2} & \cdots & L m_{d, d}
\end{array}\right]
$$

Now let $P(z) \in H_{M_{n}}^{\infty}$ be a matrix polynomial of degree k. Then the matrix $P(M)$ on $\mathbb{C}^{n \times d}$ is defined by

$$
\begin{equation*}
P(M):=\sum_{i=0}^{k} P_{i} \otimes M^{i}, \quad \text { where } P(z)=\sum_{i=0}^{k} P_{i} z^{i} \tag{2.16}
\end{equation*}
$$

For $\Phi \in H_{M_{n}}^{\infty}$ and $\Theta:=I_{\theta}$ with an inner function θ, we write, for brevity,

$$
\begin{equation*}
\left(T_{\Phi}\right)_{\Theta}:=\left.P_{\mathcal{H}(\Theta)} T_{\Phi}\right|_{\mathcal{H}(\Theta)} \tag{2.17}
\end{equation*}
$$

which is called the compression of T_{Φ} to $\mathcal{H}(\Theta)$. If M is given by (2.15) and P is the matrix polynomial defined by (2.13) then the matrix $P(M)$ is called the Hermite-Fejér matrix determined by (2.16). In particular, it is known [FF, Theorem X.5.6] that

$$
\begin{equation*}
W^{*}\left(T_{P}\right)_{\Theta} W=P(M) \tag{2.18}
\end{equation*}
$$

which says that $P(M)$ is a matrix representation for $\left(T_{P}\right)_{\Theta}$.
Lemma 2.7. Let $A \in H_{M_{n}}^{\infty}$ and $\Theta=I_{\theta}$ for a finite Blaschke product θ. If $A(\alpha)$ is invertible for all $\alpha \in \mathcal{Z}(\theta)$ then $\left(T_{A}\right)_{\Theta}$ is invertible.

Proof. Suppose $\left(T_{A}\right)_{\Theta} f=0$ for some $f \in \mathcal{H}(\Theta)$, so that $P_{\mathcal{H}(\Theta)}(A f)=0$ and hence, $A f \in \Theta H_{\mathbb{C}^{n}}^{2}$. Since $A(\alpha)$ is invertible for all $\alpha \in \mathcal{Z}(\theta)$, it follows that $f \in \Theta H_{\mathbb{C}^{n}}^{2}$ and hence, $f \in \Theta H_{\mathbb{C}^{n}}^{2} \cap \mathcal{H}(\Theta)=$ $\{0\}$. Thus $\left(T_{A}\right)_{\Theta}$ is one-one. But since $\left(T_{A}\right)_{\Theta}$ is a finite dimensional operator (because θ is a finite Blaschke product), it follows that $\left(T_{A}\right)_{\Theta}$ is invertible.

3. Hyponormality of Block Toeplitz Operators

To get a tractable criterion for the hyponormality of block Toeplitz operators with bounded type symbols, we need a triangular representation for compressions of the unilateral shift operator $U \equiv T_{z}$. We refer to $[\mathrm{AC}]$ and $[\mathrm{Ni}]$ for details on this representation. For an explicit criterion, we need to introduce the triangularization theorem concretely. To do so, recall that for an inner function θ, U_{θ} is defined by

$$
\begin{equation*}
U_{\theta}=\left.P_{\mathcal{H}(\theta)} U\right|_{\mathcal{H}(\theta)} \tag{3.1}
\end{equation*}
$$

There are three cases to consider.
Case 1: Let B be a Blaschke product and let $\Lambda:=\left\{\lambda_{n}: n \geq 1\right\}$ be the sequence of zeros of B counted with their multiplicities. Write

$$
\beta_{1}:=1, \quad \beta_{k}:=\prod_{n=1}^{k-1} \frac{\lambda_{n}-z}{1-\bar{\lambda}_{n} z} \cdot \frac{\left|\lambda_{n}\right|}{\lambda_{n}} \quad(k \geq 2)
$$

and let

$$
\delta_{j}:=\frac{d_{j}}{1-\bar{\lambda}_{j} z} \beta_{j} \quad(j \geq 1)
$$

where $d_{j}:=\left(1-\left|\lambda_{j}\right|^{2}\right)^{\frac{1}{2}}$. Let μ_{B} be a measure on \mathbb{N} given by $\mu_{B}(\{n\}):=\frac{1}{2} d_{n}^{2},(n \in \mathbb{N})$. Then the $\operatorname{map} V_{B}: L^{2}\left(\mu_{B}\right) \rightarrow \mathcal{H}(B)$ defined by

$$
\begin{equation*}
V_{B}(c):=\frac{1}{\sqrt{2}} \sum_{n \geq 1} c(n) d_{n} \delta_{n}, \quad c \equiv\{c(n)\}_{n \geq 1} \tag{3.2}
\end{equation*}
$$

is unitary and U_{B} is mapped onto the operator

$$
\begin{equation*}
V_{B}^{*} U_{B} V_{B}=\left(I-J_{B}\right) M_{B} \tag{3.3}
\end{equation*}
$$

where $\left(M_{B} c\right)(n):=\lambda_{n} c(n)(n \in \mathbb{N})$ is a multiplication operator and

$$
\left(J_{B} c\right)(n):=\sum_{k=1}^{n-1} c(k)\left|\lambda_{k}\right|^{-2} \cdot \frac{\beta_{n}(0)}{\beta_{k}(0)} d_{k} d_{n} \quad(n \in \mathbb{N})
$$

is a lower-triangular Hilbert-Schmidt operator.
Case 2: Let s be a singular inner function with continuous representing measure $\mu \equiv \mu_{s}$. Let μ_{λ} be the projection of μ onto the $\operatorname{arc}\{\zeta: \zeta \in \mathbb{T}, 0<\arg \zeta \leq \arg \lambda\}$ and let

$$
s_{\lambda}(\zeta):=\exp \left(-\int_{\mathbb{T}} \frac{t+\zeta}{t-\zeta} d \mu_{\lambda}(t)\right) \quad(\zeta \in \mathbb{D})
$$

Then the map $V_{s}: L^{2}(\mu) \rightarrow \mathcal{H}(s)$ defined by

$$
\begin{equation*}
\left(V_{s} c\right)(\zeta)=\sqrt{2} \int_{\mathbb{T}} c(\lambda) s_{\lambda}(\zeta) \frac{\lambda d \mu(\lambda)}{\lambda-\zeta} \quad(\zeta \in \mathbb{D}) \tag{3.4}
\end{equation*}
$$

is unitary and U_{s} is mapped onto the operator

$$
\begin{equation*}
V_{s}^{*} U_{s} V_{s}=\left(I-J_{s}\right) M_{s} \tag{3.5}
\end{equation*}
$$

where $\left(M_{s} c\right)(\lambda):=\lambda c(\lambda)(\lambda \in \mathbb{T})$ is a multiplication operator and

$$
\left(J_{s} c\right)(\lambda)=2 \int_{\mathbb{T}} e^{\mu(t)-\mu(\lambda)} c(t) d_{\mu_{\lambda}}(t) \quad(\lambda \in \mathbb{T})
$$

is a lower-triangular Hilbert-Schmidt operator.
Case 3: Let Δ be a singular inner function with pure point representing measure $\mu \equiv \mu_{\Delta}$. We enumerate the set $\{t \in \mathbb{T}: \mu(\{t\})>0\}$ as a sequence $\left\{t_{k}\right\}_{k \in \mathbb{N}}$. Write $\mu_{k}:=\mu\left(\left\{t_{k}\right\}\right), k \geq 1$. Further, let μ_{Δ} be a measure on $\mathbb{R}_{+}=[0, \infty)$ such that $d \mu_{\Delta}(\lambda)=\mu_{[\lambda]+1} d \lambda$ and define a function Δ_{λ} on the unit disk \mathbb{D} by the formula

$$
\Delta_{\lambda}(\zeta):=\exp \left\{-\sum_{k=1}^{[\lambda]} \mu_{k} \frac{t_{k}+\zeta}{t_{k}-\zeta}-(\lambda-[\lambda]) \mu_{[\lambda]+1} \frac{t_{[\lambda]+1}+\zeta}{t_{[\lambda]+1}-\zeta}\right\}
$$

where $[\lambda]$ is the integer part of $\lambda\left(\lambda \in \mathbb{R}_{+}\right)$and by definition $\Delta_{0}:=1$. Then the map V_{Δ} : $L^{2}\left(\mu_{\Delta}\right) \rightarrow \mathcal{H}(\Delta)$ defined by

$$
\begin{equation*}
\left(V_{\Delta} c\right)(\zeta):=\sqrt{2} \int_{\mathbb{R}_{+}} c(\lambda) \Delta_{\lambda}(\zeta)\left(1-\bar{t}_{[\lambda]+1} \zeta\right)^{-1} d \mu_{\Delta}(\lambda)(\zeta \in \mathbb{D}) \tag{3.6}
\end{equation*}
$$

is unitary and U_{Δ} is mapped onto the operator

$$
\begin{equation*}
V_{\Delta}^{*} U_{\Delta} V_{\Delta}=\left(I-J_{\Delta}\right) M_{\Delta} \tag{3.7}
\end{equation*}
$$

where $\left(M_{\Delta} c\right)(\lambda):=t_{[\lambda]+1} c(\lambda),\left(\lambda \in \mathbb{R}_{+}\right)$is a multiplication operator and

$$
\left(J_{\Delta} c\right)(\lambda):=2 \int_{0}^{\lambda} c(t) \frac{\Delta_{\lambda}(0)}{\Delta_{t}(0)} d \mu_{\Delta}(t) \quad\left(\lambda \in \mathbb{R}_{+}\right)
$$

is a lower-triangular Hilbert-Schmidt operator.
Collecting the above three cases we get:

Triangularization theorem. ([Ni, p.123]) Let θ be an inner function with the canonical factorization $\theta=B \cdot s \cdot \Delta$, where B is a Blaschke product, and s and Δ are singular functions with representing measures μ_{s} and μ_{Δ} respectively, with μ_{s} continuous and μ_{Δ} a pure point measure. Then the map $V: L^{2}\left(\mu_{B}\right) \times L^{2}\left(\mu_{s}\right) \times L^{2}\left(\mu_{\Delta}\right) \rightarrow \mathcal{H}(\theta)$ defined by

$$
V:=\left[\begin{array}{ccc}
V_{B} & 0 & 0 \tag{3.8}\\
0 & B V_{s} & 0 \\
0 & 0 & B s V_{\Delta}
\end{array}\right]
$$

is unitary, where $V_{B}, \mu_{B}, V_{S}, \mu_{S}, V_{\Delta}, \mu_{\Delta}$ are defined in (3.2) - (3.7) and U_{θ} is mapped onto the operator

$$
M:=V^{*} U_{\theta} V=\left[\begin{array}{ccc}
M_{B} & 0 & 0 \\
0 & M_{s} & 0 \\
0 & 0 & M_{\Delta}
\end{array}\right]+J
$$

where M_{B}, M_{S}, M_{Δ} are defined in (3.3), (3.5) and (3.7) and

$$
J:=-\left[\begin{array}{ccc}
J_{B} M_{B} & 0 & 0 \\
0 & J_{s} M_{s} & 0 \\
0 & 0 & J_{\Delta} M_{\Delta}
\end{array}\right]+A
$$

is a lower-triangular Hilbert-Schmidt operator, with $A^{3}=0, \operatorname{rank} A \leq 3$.
If $\Phi \in L_{M_{n}}^{\infty}$, then by (1.3),

$$
\left[T_{\Phi}^{*}, T_{\Phi}\right]=H_{\Phi^{*}}^{*} H_{\Phi^{*}}-H_{\Phi}^{*} H_{\Phi}+T_{\Phi^{*} \Phi-\Phi \Phi^{*}}
$$

Since the normality of Φ is a necessary condition for the hyponormality of T_{Φ}, the positivity of $H_{\Phi^{*}}^{*} H_{\Phi^{*}}-H_{\Phi}^{*} H_{\Phi}$ is an essential condition for the hyponormality of T_{Φ}. Thus, we isolate this property as a new notion, weaker than hyponormality. The reader will notice at once that this notion is meaningful for non-scalar symbols.

Definition 3.1. Let $\Phi \in L_{M_{n}}^{\infty}$. The pseudo-selfcommutator of T_{Φ} is defined by

$$
\left[T_{\Phi}^{*}, T_{\Phi}\right]_{p}:=H_{\Phi^{*}}^{*} H_{\Phi^{*}}-H_{\Phi}^{*} H_{\Phi}
$$

T_{Φ} is said to be pseudo-hyponormal if $\left[T_{\Phi}^{*}, T_{\Phi}\right]_{p}$ is positive semidefinite.
As in the case of hyponormality of scalar Toeplitz operators, we can see that the pseudohyponormality of T_{Φ} is independent of the constant matrix term $\Phi(0)$. Thus whenever we consider the pseudo-hyponormality of T_{Φ} we may assume that $\Phi(0)=0$. Observe that if $\Phi \in L_{M_{n}}^{\infty}$ then

$$
\left[T_{\Phi}^{*}, T_{\Phi}\right]=\left[T_{\Phi}^{*}, T_{\Phi}\right]_{p}+T_{\Phi^{*} \Phi-\Phi \Phi^{*}}
$$

We thus have

$$
T_{\Phi} \text { is hyponormal } \Longleftrightarrow T_{\Phi} \text { is pseudo-hyponormal and } \Phi \text { is normal; }
$$

and (via [GHR, Theorem 3.3]) T_{Φ} is pseudo-hyponormal if and only if $\mathcal{E}(\Phi) \neq \emptyset$.
For $\Phi \equiv \Phi_{-}^{*}+\Phi_{+} \in L_{M_{n}}^{\infty}$, we write

$$
\mathcal{C}(\Phi):=\left\{K \in H_{M_{n}}^{\infty}: \Phi-K \Phi^{*} \in H_{M_{n}}^{\infty}\right\}
$$

Thus if $\Phi \in L_{M_{n}}^{\infty}$ then

$$
K \in \mathcal{E}(\Phi) \Longleftrightarrow K \in \mathcal{C}(\Phi) \text { and }\|K\|_{\infty} \leq 1
$$

Also if $K \in \mathcal{C}(\Phi)$ then $H_{\Phi_{-}^{*}}=H_{K \Phi_{+}^{*}}=T_{\widetilde{K}}^{*} H_{\Phi_{+}^{*}}$, which gives a necessary condition for the nonempty-ness of $\mathcal{C}(\Phi)$ (and hence the hyponormality of T_{Φ}): in other words,

$$
\begin{equation*}
K \in \mathcal{C}(\Phi) \Longrightarrow \operatorname{ker} H_{\Phi_{+}^{*}} \subseteq \operatorname{ker} H_{\Phi_{-}^{*}} \tag{3.9}
\end{equation*}
$$

We begin with:

Proposition 3.2. Let $\Phi \equiv \Phi_{-}^{*}+\Phi_{+} \in L_{M_{n}}^{\infty}$ be such that Φ and Φ^{*} are of bounded type. Thus we may write

$$
\Phi_{+}=\Theta_{1} A^{*} \quad \text { and } \quad \Phi_{-}=\Theta_{2} B^{*},
$$

where $\Theta_{i}=I_{\theta_{i}}$ for an inner function $\theta_{i}(i=1,2)$ and $A, B \in H_{M_{n}}^{2}$. If $\mathcal{C}(\Phi) \neq \emptyset$, then Θ_{2} is an inner divisor of Θ_{1}, i.e., $\Theta_{1}=\Theta_{0} \Theta_{2}$ for some inner function Θ_{0}.

Proof. In view of (2.6) we may write

$$
\Phi_{+} \equiv\left[\theta_{1} \bar{a}_{i j}\right]_{n \times n} \quad \text { and } \quad \Phi_{-}=\left[\theta_{2} \bar{b}_{i j}\right]_{n \times n}=\left[\theta_{i j} \bar{c}_{i j}\right]_{n \times n}
$$

where each $\theta_{i j}$ is an inner function, $c_{i j} \in H^{2}, \theta_{i j}$ and $c_{i j}$ are coprime, and θ_{2} is the least common multiple of $\theta_{i j}$'s. Suppose $\mathcal{C}(\Phi) \neq \emptyset$. Then there exists a matrix function $K \in H_{M_{n}}^{\infty}$ such that $\Phi_{-}^{*}-K \Phi_{+}^{*} \in H_{M_{n}}^{2}$. Thus $B \Theta_{2}^{*}-K A \Theta_{1}^{*} \in H_{M_{n}}^{2}$, which implies that

$$
B \Theta_{2}^{*} \Theta_{1}=\left[b_{j i} \bar{\theta}_{2} \theta_{1}\right] \in H_{M_{n}}^{2} .
$$

But since $\theta_{2} \bar{b}_{i j}=\theta_{i j} \bar{c}_{i j}$, and hence $b_{i j}=\theta_{2} \bar{\theta}_{i j} c_{i j}$, it follows that

$$
b_{j i} \bar{\theta}_{2} \theta_{1}=\left(\theta_{2} \bar{\theta}_{j i} c_{j i}\right) \bar{\theta}_{2} \theta_{1}=\bar{\theta}_{j i} c_{j i} \theta_{1} \in H^{\infty} .
$$

Since $\theta_{j i}$ and $c_{j i}$ are coprime, we have that

$$
\bar{\theta}_{j i} \theta_{1} \in H^{\infty}, \text { and hence } \bar{\theta}_{2} \theta_{1} \in H^{\infty},
$$

which implies that Θ_{2} divides Θ_{1}.
Proposition 3.2 shows that the hyponormality of T_{φ} with scalar-valued rational symbol φ implies

$$
\operatorname{deg}\left(\varphi_{-}\right) \leq \operatorname{deg}\left(\varphi_{+}\right)
$$

which is a generalization of the well-known result for the cases of the trigonometric Toeplitz operators, i.e., if $\varphi=\sum_{n=-m}^{N} a_{n} z^{n}$ is such that T_{φ} is hyponormal then $m \leq N$ (cf. [FL]).

In view of Proposition 3.2, when we study the hyponormality of block Toeplitz operators with bounded type symbols Φ (i.e., Φ and Φ^{*} are of bounded type) we may assume that the symbol $\Phi \equiv \Phi_{-}^{*}+\Phi_{+} \in L_{M_{n}}^{\infty}$ is of the form

$$
\Phi_{+}=\Theta_{1} \Theta_{0} A^{*} \quad \text { and } \quad \Phi_{-}=\Theta_{1} B^{*},
$$

where $\Theta_{i}:=I_{\theta_{i}}$ for an inner function $\theta_{i}(i=0,1)$ and $A, B \in H_{M_{n}}^{2}$.
Our criterion is as follows:
Theorem 3.3. Let $\Phi \equiv \Phi_{-}^{*}+\Phi_{+} \in L_{M_{n}}^{\infty}$ be normal such that Φ and Φ^{*} are of bounded type of the form

$$
\Phi_{+}=\Theta_{1} \Theta_{0} A^{*} \quad \text { and } \quad \Phi_{-}=\Theta_{1} B^{*},
$$

where $\Theta_{i}=I_{\theta_{i}}$ for an inner function $\theta_{i}(i=0,1)$ and $A, B \in H_{M_{n}}^{2}$. Write

$$
\left\{\begin{array}{l}
V: L \equiv L^{2}\left(\mu_{B}\right) \times L^{2}\left(\mu_{s}\right) \times L^{2}\left(\mu_{\Delta}\right) \rightarrow \mathcal{H}\left(\theta_{1} \theta_{0}\right) \text { is unitary as in (3.8); } \tag{3.10}\\
M:=V^{*} U_{\theta_{1} \theta_{0}} V \\
\mathcal{L}:=L \otimes \mathbb{C}^{n} \\
\mathcal{V}:=V \otimes I_{n}
\end{array}\right.
$$

If $K \in \mathcal{C}(\Phi)$ then

$$
\left[T_{\Phi}^{*}, T_{\Phi}\right]=\left.\left(T_{A}\right)_{\Theta_{1} \Theta_{0}}^{*} \mathcal{V}\left(\left.I\right|_{\mathcal{L}}-K(M)^{*} K(M)\right) \mathcal{V}^{*}\left(T_{A}\right)_{\Theta_{1} \Theta_{0}} \bigoplus 0\right|_{\Theta_{1} \Theta_{0} H_{C^{n}}^{2}},
$$

where $K(M)$ is understood as an H^{∞}-functional calculus. Hence, in particular,

$$
K(M) \text { is contractive } \Longrightarrow T_{\Phi} \text { is hyponormal; }
$$

the converse is also true if $\left(T_{A}\right)_{\Theta_{1} \Theta_{0}}$ has dense range, and in this case,

$$
\operatorname{rank}\left[T_{\Phi}^{*}, T_{\Phi}\right]=\operatorname{rank}\left(\left.I\right|_{\mathcal{L}}-K(M)^{*} K(M)\right)
$$

Proof. Let $E, F \in \mathcal{H}\left(\Theta_{1} \Theta_{0}\right)$ and $K \in \mathcal{C}(\Phi)$. Since ker $H_{\Theta_{1}^{*} \Theta_{0}^{*}}=\Theta_{1} \Theta_{0} H_{\mathbb{C}^{n}}^{2}$, we have

$$
H_{\Theta_{1}^{*} \Theta_{0}^{*} K} E=H_{\Theta_{1}^{*} \Theta_{0}^{*}}\left(P_{\mathcal{H}\left(\Theta_{1} \Theta_{0}\right)}(K E)\right) .
$$

Since $H_{\Theta_{1}^{*} \Theta_{0}^{*}}^{*} H_{\Theta_{1}^{*} \Theta_{0}^{*}}$ is the projection onto $\mathcal{H}\left(\Theta_{1} \Theta_{0}\right)$, it follows that

$$
\begin{aligned}
\left\langle H_{\Theta_{1}^{*} \Theta_{0}^{*} K}^{*} H_{\Theta_{1}^{*} \Theta_{0}^{*} K} E, F\right\rangle & =\left\langle P_{\mathcal{H}\left(\Theta_{1} \Theta_{0}\right)} K E, P_{\mathcal{H}\left(\Theta_{1} \Theta_{0}\right)} K F\right\rangle \\
& =\left\langle\left(T_{K}\right)_{\Theta_{1} \Theta_{0}} E,\left(T_{K}\right)_{\Theta_{1} \Theta_{0}} F\right\rangle
\end{aligned}
$$

which gives

$$
\left.H_{\Theta_{1}^{*} \Theta_{0}^{*} K}^{*} H_{\Theta_{1}^{*} \Theta_{0}^{*} K}\right|_{\mathcal{H}\left(\Theta_{1} \Theta_{0}\right)}=\left(T_{K}\right)_{\Theta_{1} \Theta_{0}}^{*}\left(T_{K}\right)_{\Theta_{1} \Theta_{0}}
$$

Observe that $\left[T_{\Phi}^{*}, T_{\Phi}\right]=H_{A \Theta_{0}^{*} \Theta_{1}^{*}}^{*} H_{A \Theta_{0}^{*} \Theta_{1}^{*}}-H_{B \Theta_{1}^{*}}^{*} H_{B \Theta_{1}^{*}}$ because Φ is normal. But since

$$
\operatorname{clran}\left(H_{A \Theta_{0}^{*} \Theta_{1}^{*}}^{*} H_{A \Theta_{0}^{*} \Theta_{1}^{*}}\right)=\left(\operatorname{ker} H_{\left.\left.A \Theta_{0}^{*} \Theta_{1}^{*}\right)^{\perp} \subseteq\left(\Theta_{1} \Theta_{0} H_{\mathbb{C}^{n}}^{2}\right)^{\perp}=\mathcal{H}\left(\Theta_{1} \Theta_{0}\right)\right) . \operatorname{lol}}\right.
$$

and

$$
\operatorname{clran}\left(H_{B \Theta_{1}^{*}}^{*} H_{B \Theta_{1}^{*}}\right)=\left(\operatorname{ker} H_{B \Theta_{1}^{*}}\right)^{\perp} \subseteq\left(\Theta_{1} H_{\mathbb{C}^{n}}^{2}\right)^{\perp}=\mathcal{H}\left(\Theta_{1}\right)
$$

we have $\operatorname{ran}\left[T_{\Phi}^{*}, T_{\Phi}\right] \subseteq \mathcal{H}\left(\Theta_{1} \Theta_{0}\right)$. But since $\Phi-K \Phi^{*} \in H_{M_{n}}^{\infty}$, it follows that on $\mathcal{H}\left(\Theta_{1} \Theta_{0}\right)$,

$$
\begin{aligned}
{\left[T_{\Phi}^{*}, T_{\Phi}\right] } & =\left.\left(H_{\Phi^{*}}^{*} H_{\Phi^{*}}-H_{\Phi}^{*} H_{\Phi}\right)\right|_{\mathcal{H}\left(\Theta_{1} \Theta_{0}\right)} \\
& =\left.\left(H_{\Phi^{*}}^{*} H_{\Phi^{*}}-H_{K \Phi^{*}}^{*} H_{K \Phi^{*}}\right)\right|_{\mathcal{H}\left(\Theta_{1} \Theta_{0}\right)} \\
& =\left.\left(H_{\Theta_{1}^{*} \Theta_{0}^{*} A+\Phi_{-}}^{*} H_{\Theta_{1}^{*} \Theta_{0}^{*} A+\Phi_{-}}-H_{K\left(\Theta_{1}^{*} \Theta_{0}^{*} A+\Phi_{-}\right)} H_{K\left(\Theta_{1}^{*} \Theta_{0}^{*} A+\Phi_{-}\right)}\right)\right|_{\mathcal{H}\left(\Theta_{1} \Theta_{0}\right)} \\
& =\left.T_{\left(A+\Theta_{1} \Theta_{0} \Phi_{-}\right)}^{*}\left(H_{\Theta_{1}^{*} \Theta_{0}^{*}}^{*} H_{\Theta_{1}^{*} \Theta_{0}^{*}}-H_{K \Theta_{1}^{*} \Theta_{0}^{*}}^{*} H_{K \Theta_{1}^{*} \Theta_{0}^{*}}\right) T_{\left(A+\Theta_{1} \Theta_{0} \Phi_{-}\right)}\right|_{\mathcal{H}\left(\Theta_{1} \Theta_{0}\right)} \\
& =\left(T_{A}\right)_{\Theta_{1} \Theta_{0}}^{*}\left(\left.I\right|_{\mathcal{H}\left(\Theta_{1} \Theta_{0}\right)}-\left(T_{K}\right)_{\Theta_{1} \Theta_{0}}^{*}\left(T_{K}\right)_{\Theta_{1} \Theta_{0}}\right)\left(T_{A}\right)_{\Theta_{1} \Theta_{0}}
\end{aligned}
$$

where $\left(T_{A}\right)_{\Theta_{1} \Theta_{0}}$ is understood in the sense that the compression $\left(T_{A}\right)_{\Theta_{1} \Theta_{0}}$ is bounded even though T_{A} is possibly unbounded; in fact,

$$
\left.P_{\mathcal{H}\left(\Theta_{1} \Theta_{0}\right)} T_{\left(A+\Theta_{1} \Theta_{0} \Phi_{-}\right)}\right|_{\mathcal{H}\left(\Theta_{1} \Theta_{0}\right)}=\left.P_{\mathcal{H}\left(\Theta_{1} \Theta_{0}\right)} T_{A}\right|_{\mathcal{H}\left(\Theta_{1} \Theta_{0}\right)} .
$$

On the other hand, since $K(z) \equiv\left[k_{r s}(z)\right]_{1 \leq r, s \leq n} \in H_{M_{n}}^{\infty}$, we may write

$$
K(z)=\sum_{i=0}^{\infty} K_{i} z^{i} \quad\left(K_{i} \in M_{n}\right)
$$

We also write $k_{r s}(z):=\sum_{0}^{\infty} c_{i}^{(r s)} z^{i}$ and then $K_{i}=\left[c_{i}^{(r s)}\right]_{1 \leq r, s \leq n}$. We thus have

$$
\begin{aligned}
\left(T_{K}\right)_{\Theta_{1} \Theta_{0}} & =\left.P_{\mathcal{H}\left(\Theta_{1} \Theta_{0}\right)} T_{K}\right|_{\mathcal{H}\left(\Theta_{1} \Theta_{0}\right)} \\
& =\left[P_{\mathcal{H}\left(\theta_{1} \theta_{0}\right)} T_{k_{r s}}{\mid \mathcal{H}\left(\theta_{1} \theta_{0}\right)}\right]_{1 \leq r, s \leq n} \\
& =\left[\left.\sum_{i=0}^{\infty} c_{i}^{(r s)} P_{\mathcal{H}\left(\theta_{1} \theta_{0}\right)} T_{z^{2}}\right|_{\mathcal{H}\left(\theta_{1} \theta_{0}\right)}\right]_{1 \leq r, s \leq n} \\
& =\left[\sum_{i=0}^{\infty} c_{i}^{(r s)}\left(\left.P_{\mathcal{H}\left(\theta_{1} \theta_{0}\right)} T_{z}\right|_{\mathcal{H}\left(\theta_{1} \theta_{0}\right)}\right)^{i}\right]_{1 \leq r, s \leq n} \quad\left(\text { because } \theta_{1} \theta_{0} H^{2} \subseteq \operatorname{Lat} T_{z}\right) \\
& =\sum_{i=0}^{\infty}\left(U_{\theta_{1} \theta_{0}}^{i} \otimes\left[c_{i}^{(r s)}\right]_{1 \leq r, s \leq n}\right) \\
& =\sum_{i=0}^{\infty}\left(U_{\theta_{1} \theta_{0}}^{i} \otimes K_{i}\right),
\end{aligned}
$$

Let $\left\{\phi_{j}\right\}$ be an orthonormal basis for $\mathcal{H}\left(\theta_{1} \theta_{0}\right)$ and put $e_{j}:=V^{*} \phi_{j}$. Then $\left\{e_{j}\right\}$ forms an orthonormal basis for $L^{2}\left(\mu_{B}\right) \times L^{2}\left(\mu_{s}\right) \times L^{2}\left(\mu_{\Delta}\right)$. Thus for each $f \in \mathbb{C}^{n}$, we have $\mathcal{V}\left(e_{j} \otimes f\right)=\phi_{j} \otimes f$. It thus follows that

$$
\begin{aligned}
\left\langle\left(T_{K}\right)_{\Theta_{1} \Theta_{0}}\left(\phi_{j} \otimes f\right), \phi_{k} \otimes g\right\rangle & =\sum_{i=0}^{\infty}\left\langle\left(U_{\theta_{1} \theta_{0}}^{i} \otimes K_{i}\right)\left(\phi_{j} \otimes f\right), \phi_{k} \otimes g\right\rangle \\
& =\sum_{i=0}^{\infty}\left\langle\left(U_{\theta_{1} \theta_{0}}^{i} \phi_{j}\right) \otimes\left(K_{i} f\right), \phi_{k} \otimes g\right\rangle \\
& =\sum_{i=0}^{\infty}\left\langle U_{\theta_{1} \theta_{0}}^{i} V e_{j}, V e_{k}\right\rangle\left\langle K_{i} f, g\right\rangle \\
& =\sum_{i=0}^{\infty}\left\langle\left(M^{i} \otimes K_{i}\right)\left(e_{j} \otimes f\right), e_{k} \otimes g\right\rangle \\
& =\left\langle K(M)\left(e_{j} \otimes f\right), e_{k} \otimes g\right\rangle,
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\mathcal{V}^{*}\left(T_{K}\right)_{\Theta_{1} \Theta_{0}} \mathcal{V}=K(M) . \tag{3.11}
\end{equation*}
$$

Here $K(M)$ is understood as a H^{∞}-functional calculus (so called the Sz.-Nagy-Foias functional calculus) because M is an absolutely continuous contraction: in fact, we claim that
every compression of the shift operator is completely non-unitary.
To see this, write $P_{\mathcal{X}} U P_{\mathcal{X}}$ for the compression of U to $\mathcal{X} \equiv P_{\mathcal{X}} H^{2}$ with some projection $P_{\mathcal{X}}$. We assume to the contrary that $P_{\mathcal{X}} U P_{\mathcal{X}}$ has a unitary summand W acting on a closed subspace $\mathcal{Y} \subseteq \mathcal{X}$. But since $\|U\|=1$, we must have that $\left.P_{\mathcal{Y} \perp} U\right|_{\mathcal{Y}}=0$. Thus we can see that \mathcal{Y} is an invariant subspace of U. Thus, by Beurling's Theorem, $\mathcal{Y}=\theta H^{2}$ for some inner function θ. But then $W\left(\theta H^{2}\right)=z \theta H^{2}$, and hence W is not surjective, a contradiction. Hence every compression of the shift operator is completely non-unitary. We can therefore conclude that

$$
\left[T_{\Phi}^{*}, T_{\Phi}\right]=\left.\left(T_{A}\right)_{\Theta_{1} \Theta_{0}}^{*} \mathcal{V}\left(\left.I\right|_{\mathcal{L}}-K(M)^{*} K(M)\right) \mathcal{V}^{*}\left(T_{A}\right)_{\Theta_{1} \Theta_{0}} \bigoplus 0\right|_{\Theta_{1} \Theta_{0} H_{C}^{2} n} .
$$

The remaining assertions follow trivially from the first assertion.
If Φ is a scalar-valued function then Theorem 3.3 reduces to the following corollary.
Corollary 3.4. Let $\varphi \equiv \varphi_{-}^{*}+\varphi_{+} \in L^{\infty}$ be such that φ and $\bar{\varphi}$ are of bounded type of the form

$$
\varphi_{+}=\theta_{1} \theta_{0} \bar{a} \quad \text { and } \quad \varphi_{-}=\theta_{1} \bar{b} \text {, }
$$

where θ_{1} and θ_{0} are inner functions and $a, b \in H^{2}$. If $k \in \mathcal{C}(\varphi)$ then
T_{φ} is hyponormal $\Longleftrightarrow k(M)$ is contractive,
where M is defined as in (3.10).
Proof. By Theorem 3.3, it suffices to show that $\left(T_{a}\right)_{\theta_{1} \theta_{0}}$ has dense range. To prove this suppose $\left(T_{a}\right)_{\theta_{1} \theta_{0}}^{*} f=0$ for some $f \in \mathcal{H}\left(\theta_{1} \theta_{0}\right)$. Then $P_{\mathcal{H}\left(\theta_{1} \theta_{0}\right)}(\bar{a} f)=0$, i.e., $\bar{a} f=\theta_{1} \theta_{0} h$ for some $h \in H^{2}$. Thus we have $\bar{a} \bar{\theta}_{1} \bar{\theta}_{0} f \in\left(H^{2}\right)^{\perp} \cap H^{2}=\{0\}$, which implies that $f=0$. Therefore $\left(T_{a}\right)_{\theta_{1} \theta_{0}}^{*}$ is $1-1$, which gives the result.

Remark 3.5. We note that in Corollary 3.4, if φ is a rational function then M is a finite matrix. Indeed, if φ is a rational function, and hence $\theta_{1} \theta_{0}$ is a finite Blaschke product of the form

$$
\theta_{1} \theta_{0}=\prod_{j=1}^{d} \frac{z-\alpha_{j}}{1-\overline{\alpha_{j}} z}
$$

then M is obtained by (2.15).

Remark 3.6. We mention that $K \in \mathcal{C}(\Phi)$ may not be contractive, i.e., there might exist a function $K \in \mathcal{C}(\Phi) \backslash \mathcal{E}(\Phi)$. In spite of this, Theorem 3.3 guarantees that

$$
I-K(M)^{*} K(M)
$$

is unchanged regardless of the particular choice of K in $\mathcal{C}(\Phi)$. We will illustrate this phenomenon with a scalar-valued Toeplitz operator with a trigonometric polynomial symbol. For example, let

$$
\Phi(z)=z^{-2}+2 z^{-1}+z+2 z^{2}
$$

If $K(z)=\frac{1}{2}+\frac{3}{4} z$, then $\Phi_{-}^{*}-K \Phi_{+}^{*}=\left(z^{-2}+2 z^{-1}\right)-\left(\frac{1}{2}+\frac{3}{4} z\right)\left(z^{-1}+2 z^{-2}\right)=-\frac{3}{4} \in H^{\infty}$, so that $K \in \mathcal{C}(\Phi)$, but $\|K\|_{\infty}=\frac{5}{4}>1$. However by (2.15) we have

$$
M=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \quad \text { and hence, } \quad K(M)=\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
\frac{3}{4} & \frac{1}{2}
\end{array}\right]
$$

so that

$$
I-K(M)^{*} K(M)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{cc}
\frac{13}{16} & \frac{3}{8} \\
\frac{3}{8} & \frac{1}{4}
\end{array}\right]=\left[\begin{array}{cc}
\frac{3}{16} & -\frac{3}{8} \\
-\frac{3}{8} & \frac{3}{4}
\end{array}\right] \geq 0
$$

which implies that T_{Φ} is hyponormal even though $\|K\|_{\infty}>1$. Of course, in view of Cowen's Theorem, there exists a function $b \in \mathcal{E}(\Phi)$: indeed, $b(z)=\frac{z+\frac{1}{2}}{1+\frac{1}{2} z} \in \mathcal{E}(\Phi)$.

We now provide some revealing examples that illustrate Theorem 3.3.
Example 3.7. Let Δ be a singular inner function of the form

$$
\Delta:=\exp \left(\frac{z+1}{z-1}\right)
$$

and consider the matrix-valued function

$$
\Phi:=\left[\begin{array}{cc}
\bar{\Delta} & \overline{z \Delta}+z \Delta \\
\overline{z \Delta}+z \Delta & \bar{\Delta}
\end{array}\right]
$$

We now use Theorem 3.3 to determine the hyponormality of T_{Φ}. Under the notation of Theorem 3.3 we have

$$
\Theta_{1}=I_{z \Delta}, \quad \Theta_{0}=I_{2}, \quad A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad B=\left[\begin{array}{cc}
z & 1 \\
1 & z
\end{array}\right]
$$

If we put

$$
K(z):=\left[\begin{array}{ll}
1 & z \\
z & 1
\end{array}\right]
$$

then a straightforward calculation shows that $K \in \mathcal{C}(\Phi)$. Under the notation of Theorem 3.3 we can see that

$$
\left(T_{A}\right)_{I_{z \Delta}}=\left[\begin{array}{cc}
0 & \left.I\right|_{L} \\
\left.I\right|_{L} & 0
\end{array}\right]: \mathcal{L} \rightarrow \mathcal{L} \text { is invertible. }
$$

But since

$$
K(M)=\left[\begin{array}{cc}
\left.I\right|_{L} & M \\
M & \left.I\right|_{L}
\end{array}\right]
$$

it follows that

$$
\left.I\right|_{\mathcal{L}}-K(M)^{*} K(M)=-\left[\begin{array}{cc}
M^{*} M & M+M^{*} \\
M+M^{*} & M^{*} M
\end{array}\right]
$$

which is not positive (simply by looking at the upper-left entry). It therefore follows from Theorem 3.3 that T_{Φ} is not hyponormal.

Example 3.8. Let Δ be a singular inner function of the form

$$
\Delta:=\exp \left(\frac{z+1}{z-1}\right)
$$

and let

$$
\Omega:=\Delta^{\frac{1}{2}}=\exp \left(\frac{1}{2} \cdot \frac{z+1}{z-1}\right)
$$

Consider the function

$$
\varphi:=\frac{4}{5} \bar{z}+\frac{8}{5} \bar{\Delta}+\frac{37}{50}\left(z^{2} \bar{\Omega}-\frac{1}{\sqrt{e}} z^{2}+\frac{1}{\sqrt{e}} z\right)+\frac{29}{25}(z+2 \Delta) .
$$

Observe that

$$
\overline{\varphi_{-}}=\frac{4}{5} \bar{z}+\frac{8}{5} \bar{\Delta}+\frac{37}{50}(I-P)\left(z^{2} \bar{\Omega}\right)+c \quad(c \in \mathbb{C})
$$

We thus have

$$
k:=\frac{25}{29}\left(\frac{4}{5}+\frac{37}{100} z^{2} \Omega\right) \in \mathcal{C}(\varphi)
$$

but

$$
\|k\|_{\infty}=\frac{117}{116}>1
$$

Thus by the aid of such a function k, we cannot determine the hyponormality of T_{φ}. Using the notation in the triangularization theorem we can show that
(i) $L^{2}\left(\mu_{\Delta}\right)=L^{2}(0,1)$ and $L^{2}\left(\mu_{B}\right)=\mathbb{C}$;
(ii) $M_{\Delta}=I$ and $M_{B}=0$;
(iii) $\left(J_{\Delta} c\right)(\lambda)=2 \int_{0}^{\lambda} e^{t-\lambda} c(t) d t$ for $\lambda \in(0,1)$ and $c \in L^{2}(0,1)$;
(iv) $V_{z}=\frac{1}{\sqrt{2}}$ and $\left(V_{\Delta} c\right)(\zeta)=\sqrt{2} \int_{0}^{1} c(\lambda) \exp \left(-\lambda \frac{1+\zeta}{1-\zeta}\right)(1-\zeta)^{-1} d \lambda, \quad \zeta \in \mathbb{D}, \quad c \in L^{2}(0,1)$;
(v) $M \equiv M_{B} \times M_{\Delta}+J: L \rightarrow L$, where $L \equiv \mathbb{C} \oplus L^{2}(0,1) \cong \mathcal{H}\left(I_{z \Delta}\right)$.

Note that $\mathcal{H}(z \Delta)=\mathcal{H}(z) \oplus z \mathcal{H}(\Delta)$, so that $P_{\mathcal{H}(z \Delta)}=P_{\mathcal{H}(z)}+z P_{\mathcal{H}(\Delta)} \bar{z}$. We then have

$$
U_{z \Delta}=\left[\begin{array}{cc}
U_{z} & 0 \\
a & z U_{\Delta} \bar{z}
\end{array}\right]:\left[\begin{array}{c}
\mathcal{H}(z) \\
z \mathcal{H}(\Delta)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{H}(z) \\
z \mathcal{H}(\Delta)
\end{array}\right]
$$

Since $U_{z}=0$, it follows that

$$
M=\left[\begin{array}{cc}
V_{z} & 0 \\
0 & z V_{\Delta}
\end{array}\right]^{*}\left[\begin{array}{cc}
0 & 0 \\
a & z U_{\Delta} \bar{z}
\end{array}\right]\left[\begin{array}{cc}
V_{z} & 0 \\
0 & z V_{\Delta}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
\left(z V_{\Delta}\right)^{*} a V_{z} & I-J_{\Delta}
\end{array}\right]
$$

By using the fact that $P_{\mathcal{H}(\theta)}=I-\theta P \bar{\theta}$, we can compute:

$$
a=P_{z \mathcal{H}(\Delta)}(z \cdot 1)=z P_{\mathcal{H}(\Delta)} \bar{z}(z \cdot 1)=z P_{\mathcal{H}(\Delta)}(1)=z(I-\Delta P \bar{\Delta})(1)=z\left(1-\frac{\Delta}{e}\right)
$$

Thus we have

$$
M=\left[\begin{array}{cc}
0 & 0 \\
V_{\Delta}^{*}\left(1-\frac{\Delta}{e}\right) V_{z} & I-J_{\Delta}
\end{array}\right]
$$

Write

$$
A:=V_{\Delta}^{*}\left(1-\frac{\Delta}{e}\right) V_{z}
$$

Then we have

$$
\begin{aligned}
\|A\|^{2} & =\left\|1-\frac{\Delta}{e}\right\|^{2}=\left\|1-\frac{\Delta(0)}{e}-\frac{1}{e}(\Delta-\Delta(0))\right\|^{2} \\
& =\left(1-\frac{\Delta(0)}{e}\right)^{2}+\frac{1}{e^{2}}\left(\|\Delta\|^{2}-|\Delta(0)|^{2}\right) \\
& =\left(1-\frac{1}{e^{2}}\right)^{2}+\frac{1}{e^{2}}\left(1-\frac{1}{e^{2}}\right)=1-\frac{1}{e^{2}}
\end{aligned}
$$

A straightforward calculation shows that

$$
k(M)=\frac{25}{29}\left[\begin{array}{cc}
\frac{4}{5} & 0 \\
S & \left(\frac{4}{5}+\frac{37}{100} z^{2} \Omega\right)\left(I-J_{\Delta}\right)
\end{array}\right]
$$

where

$$
S:=\left(\left(\frac{37}{100} z \Omega\right)\left(I-J_{\Delta}\right)\right) A
$$

On the other hand, consider the function

$$
\varphi_{1}(z):=(I-P)(z \bar{\Omega})+\Delta
$$

Then $q:=z \Omega \in \mathcal{E}\left(\varphi_{1}\right)$. Since $M_{\Delta}=1$, it follows from Corollary 3.4 that $q(M)=(z \Omega)\left(I-J_{\Delta}\right)$ is a contraction. Thus we have

$$
\|S\|=\frac{37}{100}\left\|(z \Omega)\left(I-J_{\Delta}\right) A\right\| \leq \frac{37}{100} \sqrt{1-\frac{1}{e^{2}}}
$$

Also we consider the function

$$
\varphi_{2}(z):=\frac{4}{5} \bar{\Delta}+\frac{9}{25}(I-P)\left(z^{2} \bar{\Omega}\right)+\Delta
$$

Put

$$
B(z):=\frac{z^{2} \Omega+\frac{4}{5}}{1+\frac{4}{5} z^{2} \Omega}
$$

Since $B(z)=\frac{4}{5}+\frac{9}{25} z^{2} \Omega+\Delta g$ for some $g \in H^{2}$, we have

$$
\begin{aligned}
\left(\varphi_{2}\right)_{-}-B \overline{\left(\varphi_{2}\right)_{+}} & =\frac{4}{5} \bar{\Delta}+\frac{9}{25}(I-P)\left(z^{2} \bar{\Omega}\right)-\left(\frac{4}{5}+\frac{9}{25} z^{2} \Omega+\Delta g\right) \bar{\Delta} \\
& =-\frac{9}{25} P\left(z^{2} \Omega\right)-g \in H^{2}
\end{aligned}
$$

Since $\|B\|_{\infty}=1$, it follows that $T_{\varphi_{2}}$ is hyponormal. In particular, since

$$
r:=\frac{4}{5}+\frac{9}{25} z^{2} \Omega \in \mathcal{C}\left(\varphi_{2}\right)
$$

it follows from Corollary 3.4 that $r(M)=\left(\frac{4}{5}+\frac{9}{25} z^{2} \Omega\right)\left(I-J_{\Delta}\right)$ is a contraction. Thus we have that

$$
\left\|\left(\frac{4}{5}+\frac{37}{100} z^{2} \Omega\right)\left(I-J_{\Delta}\right)\right\| \leq\left\|\left(\frac{4}{5}+\frac{9}{25} z^{2} \Omega\right)\left(I-J_{\Delta}\right)\right\|+\frac{1}{100}\left\|\left(z^{2} \Omega\right)\left(I-J_{\Delta}\right)\right\| \leq \frac{101}{100}
$$

Using the observation that if A, B, C and D are operators then

$$
\left\|\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\right\| \leq\left\|\left[\begin{array}{ll}
\|A\| & \|B\| \\
\|C\| & \|D\|
\end{array}\right]\right\|,
$$

we can see that

$$
\begin{aligned}
\|k(M)\| & \leq \frac{25}{29}\left\|\left[\begin{array}{cc}
\frac{4}{5} & 0 \\
\|S\| & \left\|\left(\frac{4}{5}+\frac{9}{25} z^{2} \Omega\right)\left(I-J_{\Delta}\right)\right\|
\end{array}\right]\right\| \\
& \leq \frac{25}{29}\left\|\left[\begin{array}{cc}
\frac{4}{5} & 0 \\
\frac{37}{100} \sqrt{1-\frac{1}{e^{2}}} & \frac{101}{100}
\end{array}\right]\right\| \approx 0.968<1
\end{aligned}
$$

which, by Corollary 3.4 , implies that T_{φ} is hyponormal.
We now consider the condition " $\mathcal{C}(\Phi) \neq \emptyset$ ", i.e., the existence of a function $K \in H_{M_{n}}^{\infty}$ such that $\Phi-K \Phi^{*} \in H_{M_{n}}^{\infty}$. In view of (3.9), we may assume that

$$
\begin{equation*}
\operatorname{ker} H_{\Phi_{+}^{*}} \subseteq \operatorname{ker} H_{\Phi_{-}^{*}} \tag{3.12}
\end{equation*}
$$

whenever we study the hyponormality of T_{Φ}. Recall ([Gu1, Corollary 2]) that

$$
\begin{equation*}
H_{\Phi^{*}}^{*} H_{\Phi^{*}}-H_{\Phi}^{*} H_{\Phi} \geq 0 \Longleftrightarrow \exists K \in H_{M_{n}}^{\infty} \text { with }\|K\|_{\infty} \leq 1 \text { such that } H_{\Phi_{-}^{*}}=T_{\widetilde{K}}^{*} H_{\Phi_{+}^{*}} \tag{3.13}
\end{equation*}
$$

We thus have

$$
\begin{align*}
\mathcal{C}(\Phi) \neq \emptyset & \Longleftrightarrow \exists K \in H_{M_{n}}^{\infty} \text { such that } \Phi_{-}^{*}-K \Phi_{+}^{*} \in H_{M_{n}}^{2} \\
& \Longleftrightarrow H_{\Phi_{-}^{*}}=T_{\widetilde{K}}^{*} H_{\Phi_{+}^{*}} \text { for some } K \in H_{M_{n}}^{\infty} \\
& \Longleftrightarrow H_{\alpha \Phi_{+}^{*}}^{*} H_{\alpha \Phi_{+}^{*}}-H_{\Phi_{-}^{*}}^{*} H_{\Phi_{-}^{*}} \geq 0 \text { for some } \alpha>0 \quad(\text { by }(3.13)) \tag{3.14}\\
& \Longleftrightarrow \operatorname{ker} H_{\Phi_{+}^{*}} \subseteq \operatorname{ker} H_{\Phi_{-}^{*}} \text { and } \\
& \sup \left\{\frac{\left\|H_{\Phi_{-}^{*}} F\right\|}{\left\|H_{\Phi_{+}^{*}} F\right\|}: F \in \operatorname{ker}\left(H_{\Phi_{+}^{*}}\right)^{\perp},\|F\|=1\right\} \leq \alpha
\end{align*}
$$

If $\Phi \in L_{M_{n}}^{\infty}$ is a rational function then by Kronecker's lemma (cf. [Ni, p.183]), ran $H_{\Phi_{+}^{*}}$ is finite dimensional. Thus by (3.14) we can see that

$$
\mathcal{C}(\Phi) \neq \emptyset \Longleftrightarrow \operatorname{ker} H_{\Phi_{+}^{*}} \subseteq \operatorname{ker} H_{\Phi_{-}^{*}}
$$

Consequently, if $\Phi \in L_{M_{n}}^{\infty}$ is a rational function then there always exists a function $K \in \mathcal{C}(\Phi)$ under the kernel assumption (3.12). We record this in

Proposition 3.9. If $\Phi \in L_{M_{n}}^{\infty}$ is a rational function satisfying $\operatorname{ker} H_{\Phi_{+}^{*}} \subseteq \operatorname{ker} H_{\Phi_{-}^{*}}$, then $\mathcal{C}(\Phi) \neq \emptyset$.
We remark that there is an explicit way to find a function (in fact, a matrix-valued polynomial) K in $\mathcal{C}(\Phi)$ for the rational symbol case. To see this, in view of Proposition 3.2 , suppose $\Phi \in L_{M_{n}}^{\infty}$ is of the form

$$
\Phi_{+}=\Theta_{1} \Theta_{0} A^{*} \quad \text { and } \quad \Phi_{-}=\Theta_{1} B^{*}
$$

where $\Theta_{i}=I_{\theta_{i}}$ for a finite Blaschke product $\theta_{i}(i=0,1)$. We observe first that

$$
\begin{equation*}
K \in \mathcal{C}(\Phi) \Longleftrightarrow \Phi-K \Phi^{*} \in H_{M_{n}}^{\infty} \Longleftrightarrow \Theta_{0} B-K A \in \Theta_{1} \Theta_{0} H_{M_{n}}^{\infty} \tag{3.15}
\end{equation*}
$$

Suppose $\theta_{1} \theta_{0}$ is a finite Blaschke product of degree d of the form

$$
\theta_{1} \theta_{0}=\prod_{i=1}^{N}\left(\frac{z-\alpha_{i}}{1-\bar{\alpha}_{i} z}\right)^{m_{i}} \quad\left(d:=\sum_{i=1}^{N} m_{i}\right)
$$

Then the last assertion in (3.15) holds if and only if the following equations hold: for each $i=$ $1, \ldots, N$,

$$
\left[\begin{array}{c}
B_{i, 0} \tag{3.16}\\
B_{i, 1} \\
B_{i, 2} \\
\vdots \\
B_{i, m_{i}-1}
\end{array}\right]=\left[\begin{array}{ccccc}
K_{i, 0} & 0 & 0 & \ldots & 0 \\
K_{i, 1} & K_{i, 0} & 0 & \ldots & 0 \\
K_{i, 2} & K_{i, 1} & K_{i, 0} & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
K_{i, m_{i}-1} & K_{i, m_{i}-2} & \ldots & K_{i, 1} & K_{i, 0}
\end{array}\right]\left[\begin{array}{c}
A_{i, 0} \\
A_{i, 1} \\
A_{i, 2} \\
\vdots \\
A_{i, m_{i}-1}
\end{array}\right]
$$

where

$$
K_{i, j}:=\frac{K^{(j)}\left(\alpha_{i}\right)}{j!}, \quad A_{i, j}:=\frac{A^{(j)}\left(\alpha_{i}\right)}{j!} \quad \text { and } \quad B_{i, j}:=\frac{\left(\theta_{0} B\right)^{(j)}\left(\alpha_{i}\right)}{j!} .
$$

Thus K is a function in $H_{M_{n}}^{\infty}$ for which

$$
\begin{equation*}
\frac{K^{(j)}\left(\alpha_{i}\right)}{j!}=K_{i, j} \quad\left(1 \leq i \leq N, 0 \leq j<m_{i}\right), \tag{3.17}
\end{equation*}
$$

where the $K_{i, j}$ are determined by the equation (3.16). This is exactly the classical Hermite-Fejér interpolation problem which we have introduced in Section 2. Thus the solution (2.13) for the classical Hermite-Fejér interpolation problem provides a polynomial $K \in \mathcal{C}(\Phi)$.

Therefore we get:
Proposition 3.10. If $\Phi \in L_{M_{n}}^{\infty}$ is a rational function such that $\mathcal{C}(\Phi) \neq \emptyset$, then $\mathcal{C}(\Phi)$ contains a polynomial.

However, by comparison with the rational symbol case, there may not exist a function $K \in$ $\mathcal{C}(\Phi)$ if Φ is of bounded type. But we guarantee the existence of a function $K \in \mathcal{C}(\Phi)$ if the bounded type symbol Φ satisfies a certain determinant property. To see this, we recall the notion of the reduced minimum modulus. If $T \in \mathcal{B}(\mathcal{H})$ then the reduced minimum modulus of T is defined by

$$
\gamma(T)=\left\{\begin{array}{cl}
\inf \left\{\|T x\|: x \in(\operatorname{ker} T)^{\perp},\|x\|=1\right\} & \text { if } T \neq 0 \\
0 & \text { if } T=0
\end{array}\right.
$$

It is well known ([Ap]) that if $T \neq 0$ then $\gamma(T)>0$ if and only if T has closed range. We can easily show that if $S, T \in \mathcal{B}(\mathcal{H})$ and S is one-one then

$$
\begin{equation*}
\gamma(S T) \geq \gamma(S) \gamma(T) \tag{3.18}
\end{equation*}
$$

We then have:
Proposition 3.11. Let $\Phi \in L_{M_{n}}^{\infty}$ be such that Φ and Φ^{*} are of bounded type satisfying

$$
\operatorname{ker} H_{\Phi_{+}^{*}} \subseteq \operatorname{ker} H_{\Phi_{-}^{*}} .
$$

If there exists $\delta>0$ such that $\mathcal{M}:=\left\{t:\left|\operatorname{det} \Phi_{+}\left(e^{i t}\right)\right|<\delta\right\}$ has measure zero then $\mathcal{C}(\Phi) \neq \emptyset$.
Proof. Suppose \mathcal{M} has measure zero for some $\delta>0$. Write

$$
\Phi_{+}=\Theta A^{*} \quad \text { (right coprime factorization). }
$$

Since $\operatorname{det} \Theta$ is inner, we have $\left|\operatorname{det} \Phi_{+}\right|=|\operatorname{det} A|$ a.e. on \mathbb{T}. Then by the well-known result [GGK, Theorem XXIII.2.4], our determinant condition shows that the multiplication operator M_{A} is invertible and $\gamma\left(M_{A}\right)>0$, where $M_{A} f:=A f$ for $f \in L_{\mathbb{C}^{n}}^{2}$. Since $A \in H_{M_{n}}^{\infty}$, the Toeplitz operator T_{A} is a restriction of M_{A}. Thus it follows that $\gamma\left(T_{A}\right) \geq \gamma\left(M_{A}\right)>0$. Since ran $H_{\Theta^{*}}=\mathcal{H}(\widetilde{\Theta})$, it follows that

$$
H_{\Phi_{+}^{*}}=H_{A \Theta^{*}}=T_{\overparen{A}}^{*} H_{\Theta^{*}}=\left.T_{\overparen{A}}^{*}\right|_{\mathcal{H}(\widetilde{\Theta})} H_{\Theta^{*}}
$$

Observe that

$$
\begin{aligned}
\gamma\left(H_{\Theta^{*}}\right) & =\inf \left\{\left\|H_{\Theta^{*}} F\right\|: F \in \mathcal{H}(\Theta),\|F\|=1\right\} \\
& =\inf \left\{\left\|\Theta^{*} F\right\|: F \in \mathcal{H}(\Theta),\|F\|=1\right\} \\
& =1
\end{aligned}
$$

We now claim that

$$
\begin{equation*}
\left.T_{\widetilde{A}}^{*}\right|_{\mathcal{H}(\widetilde{\Theta})} \text { is one-one. } \tag{3.19}
\end{equation*}
$$

Indeed, since

$$
\Theta H_{\mathbb{C}^{n}}^{2}=\operatorname{ker} H_{A \Theta^{*}}=\operatorname{ker} T_{\overparen{A}}^{*} H_{\Theta^{*}} \quad \text { and } \quad \operatorname{ker} H_{\Theta^{*}}=\Theta H_{\mathbb{C}^{n}}^{2}
$$

it follows that $T_{\widetilde{A}}^{*}\left|\operatorname{ran} H_{\Theta^{*}}=T_{\widetilde{A}}^{*}\right|_{\mathcal{H}(\widetilde{\Theta})}$ is one-one, which gives (3.19). Now since $\gamma\left(T_{A}\right)>0$ it follows from (3.18) and (3.19) that

$$
\gamma\left(H_{\Phi^{*}}\right)=\gamma\left(H_{\Phi_{+}^{*}}\right)=\gamma\left(\left.T_{\widetilde{A}}^{*}\right|_{\mathcal{H}(\widetilde{\Theta})} H_{\Theta^{*}}\right) \geq \gamma\left(\left.T_{\widetilde{A}}^{*}\right|_{\mathcal{H}(\widetilde{\Theta})}\right) \geq \gamma\left(T_{\widetilde{A}}^{*}\right)=\gamma\left(T_{\widetilde{A}}\right)=\gamma\left(T_{A}\right)>0
$$

We thus have

$$
\begin{equation*}
\sup \left\{\frac{\left\|H_{\Phi_{-}^{*}} F\right\|}{\left\|H_{\Phi_{+}^{*}} F\right\|}: F \in\left(\operatorname{ker} H_{\Phi_{+}^{*}}\right)^{\perp},\|F\|=1\right\} \leq \frac{\left\|H_{\Phi}\right\|}{\gamma\left(H_{\Phi^{*}}\right)}<\alpha \quad \text { for some } \alpha>0 \tag{3.20}
\end{equation*}
$$

Therefore, by (3.14) we can conclude that $\mathcal{C}(\Phi) \neq \emptyset$.

4. Subnormality of Block Toeplitz Operators

As we saw in Introduction, the Bram-Halmos criterion on subnormality ($[\mathrm{Br}]$, [Con]) says that $T \in \mathcal{B}(\mathcal{H})$ is subnormal if and only if the positive test (1.6) holds. It is easy to see that (1.6) is equivalent to the following positivity test:

$$
\left[\begin{array}{cccc}
I & T^{*} & \ldots & T^{* k} \tag{4.1}\\
T & T^{*} T & \ldots & T^{* k} T \\
\vdots & \vdots & \ddots & \vdots \\
T^{k} & T^{*} T^{k} & \ldots & T^{* k} T^{k}
\end{array}\right] \geq 0 \quad(\text { all } k \geq 1)
$$

Condition (4.1) provides a measure of the gap between hyponormality and subnormality. In fact the positivity condition (4.1) for $k=1$ is equivalent to the hyponormality of T, while subnormality requires the validity of (4.1) for all k. For $k \geq 1$, an operator T is said to be k-hyponormal if T satisfies the positivity condition (4.1) for a fixed k. Thus the Bram-Halmos criterion can be stated as: T is subnormal if and only if T is k-hyponormal for all $k \geq 1$. The k-hyponormality has been considered by many authors with an aim at understanding the gap between hyponormality and subnormality. For instance, the Bram-Halmos criterion on subnormality indicates that 2hyponormality is generally far from subnormality. There are special classes of operators, however, for which these two notions are equivalent. A trivial example is given by the class of operators whose square is compact (e.g., compact perturbations of nilpotent operators of nilpotency 2). Also in [CuL1, Example 3.1], it was shown that there is no gap between 2-hyponormality and subnormality for back-step extensions of recursively generated subnormal weighted shifts.

On the other hand, in 1970, P.R. Halmos posed the following problem, listed as Problem 5 in his lectures "Ten problems in Hilbert space" [Hal1], [Hal2]:

Is every subnormal Toeplitz operator either normal or analytic?
A Toeplitz operator T_{φ} is called analytic if $\varphi \in H^{\infty}$. Any analytic Toeplitz operator is easily seen to be subnormal: indeed, $T_{\varphi} h=P(\varphi h)=\varphi h=M_{\varphi} h$ for $h \in H^{2}$, where M_{φ} is the normal operator of multiplication by φ on L^{2}. The question is natural because the two classes, the normal and analytic Toeplitz operators, are fairly well understood and are subnormal. Halmos's Problem 5 has been partially answered in the affirmative by many authors (cf. [Ab], [AIW], [Co2], [Co3], [CuL1], [CuL2], [NT], and etc). In 1984, Halmos's Problem 5 was answered in the negative by C. Cowen and J. Long [CoL]: they found an analytic function ψ for which $T_{\psi+\alpha}(0<\alpha<1)$ is subnormal - in fact, this Toeplitz operator is unitarily equivalent to a subnormal weighted shift W_{β} with weight sequence $\beta \equiv\left\{\beta_{n}\right\}$, where $\beta_{n}=\left(1-\alpha^{2 n+2}\right)^{\frac{1}{2}}$ for $n=0,1,2, \ldots$ Unfortunately, Cowen and Long's construction does not provide an intrinsic connection between subnormality and the theory of Toeplitz operators. Until now researchers have been unable to characterize subnormal Toeplitz operators in terms of their symbols. Thus the following question is very interesting and challenging:

The most interesting partial answer to Halmos's Problem 5 was given by M. Abrahamse [Ab]. M. Abrahamse gave a general sufficient condition for the answer to Halmos's Problem 5 to be affirmative. Abrahamse's Theorem can be then stated as follows: Let $\varphi=\bar{g}+f \in L^{\infty}\left(f, g \in H^{2}\right)$ be such that φ or $\bar{\varphi}$ is of bounded type. If T_{φ} is subnormal then T_{φ} is normal or analytic. In fact, it was also shown (cf. [CuL2], [CuL3]) that every 2-hyponormal Toeplitz operator with a bounded type symbol is normal or analytic, and hence subnormal. On the other hand, very recently, the authors of [CHL] have extended Abrahamse's Theorem to block Toeplitz operators.

Theorem 4.1. (Extension of Abrahamse's Theorem) (Curto-Hwang-Lee [CHL]) Suppose $\Phi=\Phi_{-}^{*}+$ $\Phi_{+} \in L_{M_{n}}^{\infty}$ is such that Φ and Φ^{*} are of bounded type of the form

$$
\Phi_{-}=B^{*} \Theta \quad\left(B \in H_{M_{n}}^{2} ; \Theta=I_{\theta} \text { with an inner function } \theta\right)
$$

where B and Θ are coprime. If T_{Φ} is hyponormal and $\operatorname{ker}\left[T_{\Phi}^{*}, T_{\Phi}\right]$ is invariant under T_{Φ} then T_{Φ} is normal or analytic. Hence, in particular, if T_{Φ} is subnormal then T_{Φ} is normal or analytic.

We note that if $n=1$ (i.e., T_{Φ} is a scalar-valued Toeplitz operator), then $\Phi_{-}=\bar{b} \theta$ with $b \in H^{2}$. Thus, it automatically holds that b and θ are coprime. Consequently, if $n=1$ then Theorem 4.1 reduces to Abrahamse's Theorem.

On the other hand, the study of square-hyponormality originated in [Hal3, Problem 209]. It is easy to see that every power of a normal operator is normal and the same statement is true for every subnormal operator. How about hyponormal operators? [Hal3, Problem 209] shows that there exists a hyponormal operator whose square is not hyponormal (e.g., $U^{*}+2 U$ for the unilateral shift U). However, as we remarked in the preceding, there exist special classes of operators for which square-hyponormality and subnormality coincide. For those classes of operators, it suffices to check the square-hyponormality to show subnormality. This certainly gives a nice answer to question (4.2). Indeed, in [CuL1], it was shown that every hyponormal trigonometric Toeplitz operator whose square is hyponormal must be either normal or analytic, and hence subnormal. In [Gu3], C. Gu showed that this result still holds for Toeplitz operators T_{φ} with rational symbols φ (more generally, the cases where both φ and $\bar{\varphi}$ are of bounded type).

The aim of this section is to prove that this result can be extended to the block Toeplitz operators whose symbols are matrix-valued rational functions.

We begin with:
Lemma 4.2. Suppose $\Phi=\Phi_{-}^{*}+\Phi_{+} \in L_{M_{n}}^{\infty}$ is a matrix-valued rational function of the form

$$
\left.\Phi_{-}=B^{*} \Theta \quad \text { (coprime factorization }\right) \quad \text { and } \quad \Phi_{+}=\Theta \Theta_{0} A^{*}
$$

where $\Theta=I_{\theta}$ and $\Theta_{0}=I_{\theta_{0}}$ with finite Blaschke products θ, θ_{0} and $A, B \in H_{M_{n}}^{2}$. If T_{Φ} is hyponormal then $A(\alpha)$ is invertible for each $\alpha \in \mathcal{Z}(\theta) \backslash \mathcal{Z}\left(\theta_{0}\right)$.
Proof. Assume to the contrary that $A(\alpha)$ is not invertible for some $\alpha \in \mathcal{Z}(\theta) \backslash \mathcal{Z}\left(\theta_{0}\right)$. Then by Lemma 2.3, A and $B_{\alpha}:=I_{b_{\alpha}}$ are not right coprime. Thus there exists a nonconstant inner matrix function Δ such that

$$
B_{\alpha}=\Delta_{1} \Delta=\Delta \Delta_{1} \quad \text { and } \quad A=A_{1} \Delta
$$

Write $\Theta:=B_{\alpha} \Theta^{\prime}=\Theta^{\prime} B_{\alpha}$. Then we may write $\Phi_{+}=\Theta_{0} \Theta^{\prime} \Delta_{1} A_{1}^{*}$. Since T_{Φ} is hyponormal, it follows that

$$
\Theta_{0} \Theta^{\prime} \Delta_{1} H_{\mathbb{C}^{n}}^{2} \subseteq \operatorname{ker} H_{\Phi_{+}^{*}} \subseteq \operatorname{ker} H_{\Phi_{-}^{*}}=\Theta H_{\mathbb{C}^{n}}^{2}
$$

which implies that Θ is a (left) inner divisor of $\Theta_{0} \Theta^{\prime} \Delta_{1}$ (cf. [FF, Corollary IX.2.2]). Observe that
Θ is a (left) inner divisor of $\Theta_{0} \Theta^{\prime} \Delta_{1} \Longrightarrow \Theta^{*} \Theta_{0} \Theta^{\prime} \Delta_{1} \in H_{M_{n}}^{2}$

$$
\Longrightarrow \Theta_{0} \Delta_{1} \Theta^{\prime} \Theta^{*} \in H_{M_{n}}^{2}
$$

$$
\Longrightarrow \Theta_{0} \Delta^{*} \in H_{M_{n}}^{2}
$$

which implies that Δ is a (right) inner divisor of Θ_{0}. But since B_{α} and Θ_{0} are coprime, it follows that Δ and Θ_{0} are coprime. Thus Δ is a constant unitary, a contradiction. This completes the proof.

Lemma 4.3. Suppose $F, B_{\lambda} \in H_{M_{n}}^{\infty}\left(B_{\lambda}:=I_{b_{\lambda}}\right)$. If $G=\operatorname{GCD}_{\ell}\left\{F, B_{\lambda}\right\}$, then G is a BlaschkePotapov factor of the form $G=b_{\lambda} P_{N}+\left(I-P_{N}\right)$ with

$$
N:=(\operatorname{ran} F(\lambda))^{\perp}
$$

Proof. By assumption, $\widetilde{G}=\operatorname{GCD}_{r}\left\{\widetilde{F}, \widetilde{B}_{\lambda}\right\}$. Then by Lemma 2.5,

$$
\widetilde{G}=b_{\bar{\lambda}} P_{N}+\left(I-P_{N}\right) \quad \text { for a closed subspace } N
$$

Thus $\widetilde{F}=\widetilde{L} \widetilde{G}$ for some $\widetilde{L} \in H_{M_{n}}^{2}$, where \widetilde{L} and $\widetilde{B}_{\lambda} \widetilde{G}^{*}=P_{N}+b_{\bar{\lambda}}\left(I-P_{N}\right)$ are right coprime. We argue that $\operatorname{ker} \widetilde{L}(\bar{\lambda}) \cap \operatorname{ran}\left(I-P_{N}\right)=\{0\}$. Indeed, if $\operatorname{ker} \widetilde{L}(\bar{\lambda}) \cap \operatorname{ran}\left(I-P_{N}\right)=: N_{0} \neq\{0\}$ then $P_{N_{0}^{\perp}}+b_{\bar{\lambda}}\left(I-P_{N_{0}^{\perp}}\right)$ would be a right inner divisor of \widetilde{L} and $P_{N}+b_{\bar{\lambda}}\left(I-P_{N}\right)$ as follows:

$$
\widetilde{L}(\bar{\lambda})=\left[\begin{array}{cc}
* & 0 \\
* & 0
\end{array}\right] \begin{gathered}
N_{0}^{\perp} \\
N_{0}
\end{gathered}=\left[\begin{array}{cc}
* & 0 \\
* & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & b_{\bar{\lambda}}
\end{array}\right] \begin{gathered}
N_{0}^{\perp} \\
N_{0}
\end{gathered}
$$

and hence,

$$
\widetilde{L}=\widetilde{L}(\bar{\lambda})+C B_{\bar{\lambda}}=D\left[\begin{array}{cc}
1 & 0 \\
0 & b_{\bar{\lambda}}
\end{array}\right] \begin{gathered}
N_{0}^{\perp} \\
N_{0}
\end{gathered} \quad\left(\text { some } C, D \in H_{M_{n}}^{2}\right)
$$

and

$$
P_{N}+b_{\bar{\lambda}}\left(I-P_{N}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & b_{\bar{\lambda}} & 0 \\
0 & 0 & b_{\bar{\lambda}}
\end{array}\right] \begin{aligned}
& N \\
& N^{\prime} \\
& N_{0}
\end{aligned}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & b_{\bar{\lambda}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & b_{\bar{\lambda}}
\end{array}\right] \begin{gathered}
N \\
N^{\prime} \\
N_{0}
\end{gathered}
$$

where $N^{\prime}:=N^{\perp} \ominus N_{0}$. But since $\widetilde{F}(\bar{\lambda})=\widetilde{L}(\bar{\lambda})\left(b_{\bar{\lambda}} P_{N}+\left(I-P_{N}\right)\right)(\bar{\lambda})=\widetilde{L}(\bar{\lambda})\left(I-P_{N}\right)$, it follows that

$$
N=\operatorname{ker}\left(I-P_{N}\right)=\operatorname{ker} \widetilde{F}(\bar{\lambda})=\operatorname{ker} F^{*}(\lambda)=(\operatorname{ran} F(\lambda))^{\perp}
$$

Therefore $G=b_{\lambda} P_{N}+\left(I-P_{N}\right)$ with $N:=(\operatorname{ran} F(\lambda))^{\perp}$.

Lemma 4.4. Let $\Phi \equiv \Phi_{+} \in H_{M_{n}}^{\infty}$ be a matrix-valued rational function of the form

$$
\begin{aligned}
\Phi & \left.=\Theta \Delta_{r} A_{r}^{*}, \quad \text { (right coprime factorization }\right), \\
& =A_{\ell}^{*} \Omega, \quad(\text { left coprime factorization }),
\end{aligned}
$$

where $\Theta=I_{\theta}$ with a finite Blaschke product θ and Δ_{r}, Ω are inner matrix functions. Then Θ is an inner divisor of Ω.

Proof. Since Δ_{r} is a finite Blaschke-Potapov product, we may write

$$
\Delta_{r}=\nu \prod_{m=1}^{M}\left(b_{m} P_{m}+\left(I-P_{m}\right)\right) \quad\left(b_{m}:=\frac{z-\alpha_{m}}{1-\bar{\alpha}_{m} z}\right)
$$

Without loss of generality we may assume that $\nu=I_{n}$. Define

$$
\theta_{0}:=\operatorname{GCD}\left\{\omega: \omega \text { is inner, } \Delta_{r} \text { is an inner divisor of } \Omega=\omega I_{n}\right\}
$$

Then $\theta_{0}=\prod_{m=1}^{M} b_{m}$. Observe that

$$
\begin{aligned}
\Phi & =\Theta \Delta_{r} A_{r}^{*} \\
& =\Theta \prod_{m=1}^{M}\left(b_{m} P_{m}+\left(I-P_{m}\right)\right) A_{r}^{*} \\
& =\prod_{m=1}^{M-1}\left(b_{m} P_{m}+\left(I-P_{m}\right)\right) B_{M}\left(P_{M}+b_{M}\left(I-P_{M}\right)\right)^{*} A_{r}^{*} \Theta \quad\left(B_{m}:=I_{b_{m}}\right) \\
& =\prod_{m=1}^{M-1}\left(b_{m} P_{m}+\left(I-P_{m}\right)\right)\left[A_{r}\left(P_{M}+b_{M}\left(I-P_{M}\right)\right)\right]^{*} B_{M} \Theta
\end{aligned}
$$

If $P_{M}=I$, then

$$
\Phi=\prod_{m=1}^{M-1}\left(b_{m} P_{m}+\left(I-P_{m}\right)\right) A_{r}^{*} B_{M} \Theta,
$$

where Θ and A_{r} are coprime. If instead $P_{M} \neq I$, then there are two cases to consider.
Case 1: Let $\alpha_{M} \notin \mathcal{Z}(\theta)$. Then

$$
\Phi=\prod_{m=1}^{M-1}\left(b_{m} P_{m}+\left(I-P_{m}\right)\right) A_{1}^{*} B_{M} \Theta \quad\left(\text { with } A_{1}:=A_{r}\left(P_{M}+b_{M}\left(I-P_{M}\right)\right)\right)
$$

where Θ and A_{1} are coprime (by passing to Lemma 2.3).
Case 2: Let $\alpha_{M} \in \mathcal{Z}(\theta)$. Write $\Omega_{M}:=\operatorname{GCD}_{\ell}\left\{B_{M}, A_{r}\left(P_{M}+b_{M}\left(I-P_{M}\right)\right)\right\}$. Then we can write

$$
\begin{equation*}
B_{M}=\Omega_{M} \Omega_{M}^{\prime} \quad \text { and } \quad A_{r}\left(P_{M}+b_{M}\left(I-P_{M}\right)\right)=\Omega_{M} \Gamma_{M} \tag{4.3}
\end{equation*}
$$

for some $\Omega_{M}^{\prime}, \Gamma_{M} \in H_{M_{n}}^{\infty}$. By Lemma 4.3, $\Omega_{M}=b_{M} P_{N}+\left(I-P_{N}\right)$ with $N:=\left(\operatorname{ran}\left(A_{r}\left(\alpha_{M}\right) P_{M}\right)\right)^{\perp}$. We now claim that

$$
\begin{equation*}
\Gamma_{M}\left(\alpha_{M}\right) \text { is invertible. } \tag{4.4}
\end{equation*}
$$

Since

$$
\operatorname{det}\left[A_{r}\left(P_{M}+b_{M}\left(I-P_{M}\right)\right)\right]=b_{M}^{\operatorname{rank}\left(I-P_{M}\right)} \cdot \operatorname{det} A_{r}
$$

and

$$
\operatorname{det} \Omega_{M} \Gamma_{M}=\left(b_{M}\right)^{\operatorname{dim} N} \cdot \operatorname{det} \Gamma_{M},
$$

it follows from (4.3) that

$$
\begin{equation*}
\operatorname{det} A_{r} \cdot\left(b_{M}\right)^{\operatorname{rank}\left(I-P_{M}\right)}=\left(b_{M}\right)^{\operatorname{dim} N} \cdot \operatorname{det} \Gamma_{M} . \tag{4.5}
\end{equation*}
$$

But since A_{r} and Θ are right coprime, and hence $A_{r}\left(\alpha_{M}\right)$ is invertible, it follows that

$$
\operatorname{dim} N=\operatorname{dim}\left(\operatorname{ran}\left(A_{r}\left(\alpha_{M}\right) P_{M}\right)\right)^{\perp}=\operatorname{dim}\left(\operatorname{ran} P_{M}\right)^{\perp}=\operatorname{rank}\left(I-P_{M}\right),
$$

which together with (4.5) implies that $\operatorname{det} \Gamma_{M}=\operatorname{det} A_{r}$. This proves (4.4). Therefore we have

$$
\Phi=\prod_{m=1}^{M-1}\left(b_{m} P_{m}+\left(I-P_{m}\right)\right) \Gamma_{M}^{*} \Omega_{M}^{\prime} \Theta
$$

where $\Gamma_{M}\left(\alpha_{M}\right)$ is invertible. Thus $\Gamma_{M}(\alpha)$ is invertible for all $\alpha \in \mathcal{Z}(\theta)$, and hence by Lemma 2.3, Θ and Γ_{M} are coprime.

If we repeat this argument then after M steps we get the left coprime factorization of $\Phi=A_{l}^{*} \Omega$, where Ω still has Θ as an inner divisor.

Our main theorem of this section now follows:

Theorem 4.5. Let $\Phi \in L_{M_{n}}^{\infty}$ be a matrix-valued rational function. Then we may write

$$
\Phi_{-}=B^{*} \Theta
$$

where $B \in H_{M_{n}}^{2}$ and $\Theta:=I_{\theta}$ with a finite Blaschke product θ. Suppose B and Θ are coprime. If both T_{Φ} and T_{Φ}^{2} are hyponormal then T_{Φ} is either normal or analytic.
Proof. Suppose Φ is not analytic. Then Θ is not constant unitary. Since T_{Φ} is hyponormal, it follows that $\operatorname{ker} H_{\Phi_{+}^{*}} \subseteq \operatorname{ker} H_{\Phi_{-}^{*}}=\Theta H_{\mathbb{C}^{n}}^{2}$. Thus we can write

$$
\Phi_{+}=\Theta \Delta_{r} A_{r}^{*} \quad(\text { right coprime factorization })
$$

where Δ_{r} is an inner matrix function. Let θ_{0} be a minimal inner function such that $\Theta_{0} \equiv I_{\theta_{0}}=$ $\Delta_{r} \Theta_{1}$ for some inner matrix function Θ_{1}. We also write $A:=A_{r} \Theta_{1}$, and hence

$$
\Phi_{+}=\Theta \Theta_{0} A^{*}
$$

On the other hand, we need to keep in mind that $\Theta=I_{\theta}$ and $\Theta_{0}=I_{\theta_{0}}$ are inner functions, constant along the diagonal, so that these factors commute with all other matrix functions in the computations below. Note that $\Phi^{2} \Theta^{2} \Theta_{0}^{2} \in H_{M_{n}}^{\infty}$ and $\Phi^{* 2} \Theta^{2} \Theta_{0}^{2} \in H_{M_{n}}^{\infty}$. We thus have

$$
\begin{aligned}
T_{\Theta^{2} \Theta_{0}^{2}}^{*}\left[T_{\Phi}^{2 *}, T_{\Phi}^{2}\right] T_{\Theta^{2} \Theta_{0}^{2}} & =T_{\Theta^{2} \Theta_{0}^{2}}^{*} T_{\Phi}^{2 *} T_{\Phi}^{2} T_{\Theta^{2} \Theta_{0}^{2}}-T_{\Theta^{2} \Theta_{0}^{2}}^{*} T_{\Phi}^{2} T_{\Phi}^{2 *} T_{\Theta^{2} \Theta_{0}^{2}} \\
& =T_{\Phi^{* 2} \Theta^{* 2} \Theta_{0}^{* 2}} T_{\Phi^{2} \Theta^{2} \Theta_{0}^{2}}-T_{\Phi^{2} \Theta^{* 2} \Theta_{0}^{* 2}} T_{\Phi^{* 2} \Theta^{2} \Theta_{0}^{2}} \\
& =T_{\Phi^{* 2} \Theta^{* 2} \Theta_{0}^{* 2} \Phi^{2} \Theta^{2} \Theta_{0}^{2}}-T_{\Phi^{2} \Theta^{* 2} \Theta_{0}^{* 2} \Phi^{* 2} \Theta^{2} \Theta_{0}^{2}} \\
& =T_{\Phi^{* 2} \Phi^{2}}-T_{\Phi^{2} \Phi^{* 2}}=0 \quad \text { (since } \Phi \text { is normal) }
\end{aligned}
$$

The positivity of $\left[T_{\Phi}^{2 *}, T_{\Phi}^{2}\right]$ implies that $\left[T_{\Phi}^{2 *}, T_{\Phi}^{2}\right] T_{\Theta^{2} \Theta_{0}^{2}}=0$. We thus have

$$
\begin{align*}
0 & =\left[T_{\Phi}^{2 *}, T_{\Phi}^{2}\right] T_{\Theta^{2} \Theta_{0}^{2}} \\
& =T_{\Phi^{*}}^{2} T_{\Phi^{2} \Theta^{2} \Theta_{0}^{2}}-T_{\Phi}^{2} T_{\Phi^{* 2} \Theta^{2} \Theta_{0}^{2}} \\
& =T_{\Phi^{*}} T_{\Phi^{*} \Phi^{2} \Theta^{2} \Theta_{0}^{2}}-T_{\Phi} T_{\Phi \Phi^{* 2} \Theta^{2} \Theta_{0}^{2}} \\
& =\left(T_{\Phi^{* 2} \Phi^{2} \Theta^{2} \Theta_{0}^{2}}-H_{\Phi}^{*} H_{\Phi^{*} \Phi^{2} \Theta^{2} \Theta_{0}^{2}}\right)-\left(T_{\Phi^{2} \Phi^{* 2} \Theta^{2} \Theta_{0}^{2}}-H_{\Phi *}^{*} H_{\Phi \Phi^{* 2} \Theta^{2} \Theta_{0}^{2}}\right) \quad(\text { by }(1.3)) \tag{4.6}\\
& =H_{\Phi^{*}}^{*} H_{\Phi \Phi^{* 2} \Theta^{2} \Theta_{0}^{2}}-H_{\Phi}^{*} H_{\Phi^{*} \Phi^{2} \Theta^{2} \Theta_{0}^{2}} \\
& =H_{\Phi_{+}^{*}}^{*} H_{\Phi \Phi^{* 2} \Theta^{2} \Theta_{0}^{2}}-H_{\Phi_{-}^{*}}^{*} H_{\Phi^{*} \Phi^{2} \Theta^{2} \Theta_{0}^{2}}
\end{align*}
$$

Let $\Omega:=\operatorname{GCD}\left(\Theta_{0}, \Theta\right)$. Then by Lemma $2.1, \Omega=I_{\omega}$ for an inner function ω. Thus we can write

$$
\Theta=\Theta^{\prime} \Omega \quad \text { and } \quad \Theta_{0}=\Theta_{0}^{\prime} \Omega
$$

where $\Theta^{\prime}=I_{\theta^{\prime}}$ and $\Theta_{0}^{\prime}=I_{\theta_{0}^{\prime}}$ for some inner functions θ^{\prime} and θ_{0}^{\prime}. Observe that

$$
\begin{align*}
H_{\Phi^{*} \Phi^{2} \Theta^{2} \Theta_{0}^{2}} & =H_{\left(\Theta B^{*}+\Theta^{*} \Theta_{0}^{*} A\right)\left(\Theta^{*} B+\Theta \Theta_{0} A^{*}\right)^{2} \Theta^{2} \Theta_{0}^{2}} \\
& =H_{\left(\Theta B^{*}+\Theta^{*} \Theta_{0}^{*} A\right)\left(B+\Theta^{2} \Theta_{0} A\right)^{2} \Theta_{0}^{2}} \\
& =H_{\Theta^{*} \Theta_{0}^{*} A\left(B+\Theta^{2} \Theta_{0} A\right)^{2} \Theta_{0}^{2}} \tag{4.7}\\
& =H_{A\left(B+\Theta^{2} \Theta_{0} A\right)^{2} \Theta_{0} \Theta^{*}} \\
& =H_{A\left(B+\Theta^{2} \Theta_{0} A\right)^{2} \Theta_{0}^{\prime} \Theta^{\prime *}}
\end{align*}
$$

Since Φ is normal we also have

$$
\begin{align*}
H_{\Phi \Phi^{* 2} \Theta^{2} \Theta_{0}^{2}} & =H_{\left(\Theta B^{*}+\Theta^{*} \Theta_{0}^{*} A\right)^{2}\left(\Theta^{*} B+\Theta \Theta_{0} A^{*}\right) \Theta^{2} \Theta_{0}^{2}} \\
& =H_{\left(\Theta^{2} \Theta_{0} B^{*}+A\right)\left(\Theta^{*} B+\Theta \Theta_{0} A^{*}\right)} \tag{4.8}\\
& =H_{\left(\Theta^{2} \Theta_{0} B^{*}+A\right) B \Theta^{*}} \\
& =H_{A B \Theta^{*}}
\end{align*}
$$

We now claim that

$$
\begin{equation*}
\theta^{\prime} \text { is not constant. } \tag{4.9}
\end{equation*}
$$

Toward (4.9) we assume to the contrary that θ^{\prime} is a constant. Then by (4.7) we have

$$
H_{\Phi^{*} \Phi^{2} \Theta^{2} \Theta_{0}^{2}}=H_{A\left(B+\Theta^{2} \Theta_{0} A\right)^{2} \Theta_{0}^{\prime} \Theta^{\prime *}}=0
$$

so that $H_{\Phi_{-}^{*}}^{*} H_{\Phi^{*} \Phi^{2} \Theta^{2} \Theta_{0}^{2}}=0$, and by (4.6) we have

$$
\begin{equation*}
H_{\Phi_{+}^{*}}^{*} H_{\Phi \Phi^{* 2} \Theta^{2} \Theta_{0}^{2}}=0 \tag{4.10}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
H_{A B \Theta^{*}}=0 & \Longleftrightarrow A B \Theta^{*} \in H_{M_{n}}^{2} \\
& \Longleftrightarrow A B \in \Theta H_{M_{n}}^{2} \\
& \Longleftrightarrow A=\Theta A^{\prime} \quad(\text { since } B \text { and } \Theta \text { are coprime }),
\end{aligned}
$$

which implies that $A(\alpha)=0$ for each $\alpha \in \mathcal{Z}(\theta)$, a contradiction. Therefore

$$
H_{\Phi \Phi^{* 2} \Theta^{2} \Theta_{0}^{2}}=H_{A B \Theta *} \neq 0 \quad \text { and } \quad \operatorname{cl} \operatorname{ran} H_{\Phi \Phi^{* 2} \Theta^{2} \Theta_{0}^{2}}=\mathcal{H}(\widetilde{\Delta})
$$

for some nonconstant (left) inner divisor Δ of Θ. Thus it follows from Lemma 4.4 and (4.10) that

$$
\mathcal{H}(\widetilde{\Delta})=\mathrm{cl} \operatorname{ran} H_{\Phi \Phi^{* 2} \Theta^{2} \Theta_{0}^{2}} \subseteq \operatorname{ker} H_{\Phi_{+}^{*}}^{*} \subseteq \widetilde{\Theta} H_{\mathbb{C}^{n}}^{2}
$$

giving a contradiction. This proves (4.9). Observe

$$
\operatorname{cl} \operatorname{ran} H_{\Phi^{*} \Phi^{2} \Theta^{2} \Theta_{0}^{2}}=\mathrm{cl} \operatorname{ran} H_{A\left(B+\Theta^{2} \Theta_{0} A\right)^{2} \Theta_{0}^{\prime} \Theta^{\prime *}} \subseteq \mathcal{H}\left(\widetilde{\Theta}^{\prime}\right) \perp \widetilde{\Theta} H_{\mathbb{C}^{n}}^{2}=\operatorname{ker} H_{\Phi_{-}^{*}}^{*}
$$

and

$$
\operatorname{cl} \operatorname{ran} H_{\Phi \Phi^{* 2} \Theta^{2} \Theta_{0}^{2}}=\operatorname{cl} \operatorname{ran} H_{A B \Theta^{*}} \subseteq \mathcal{H}(\widetilde{\Theta}) \perp \widetilde{\Theta} H_{\mathbb{C}^{n}}^{2} \supseteq \operatorname{ker} H_{\Phi_{+}^{*}}^{*}
$$

Thus by (4.6) we have

$$
\begin{align*}
\operatorname{ker} H_{\Phi^{*} \Phi^{2} \Theta^{2} \Theta_{0}^{2}} & =\operatorname{ker} H_{\Phi_{-}^{*}}^{*} H_{\Phi^{*} \Phi^{2} \Theta^{2} \Theta_{0}^{2}} \\
& =\operatorname{ker} H_{\Phi_{+}^{*}}^{*} H_{\Phi \Phi^{* 2} \Theta^{2} \Theta_{0}^{2}} \tag{4.11}\\
& =\operatorname{ker} H_{\Phi \Phi^{* 2} \Theta^{2} \Theta_{0}^{2}}
\end{align*}
$$

Observe that for all $\alpha \in \mathcal{Z}(\theta)$,

$$
\left(A\left(B+\Theta^{2} \Theta_{0} A\right)^{2} \Theta_{0}^{\prime}\right)(\alpha)=A(\alpha) B(\alpha)^{2} \Theta_{0}^{\prime}(\alpha)
$$

Since $B(\alpha)$ and $\Theta_{0}^{\prime}(\alpha)$ are invertible, we have

$$
\operatorname{dim} \operatorname{ker}\left(A\left(B+\Theta^{2} \Theta_{0} A\right)^{2} \Theta_{0}^{\prime}\right)(\alpha)=\operatorname{dim} \operatorname{ker} A(\alpha)=\operatorname{dim} \operatorname{ker}(A B)(\alpha)
$$

By (4.7), (4.8) and (4.11), we have that $A(\alpha)=0$ for all $\alpha \in \mathcal{Z}(\omega)$ and hence ω is a constant. Thus Ω is a constant unitary, and hence $\Theta=\Theta^{\prime}$ and $\Theta_{0}=\Theta_{0}^{\prime}$. Therefore $\mathcal{Z}(\theta)=\mathcal{Z}(\theta) \backslash \mathcal{Z}\left(\theta_{0}\right)$ and hence, by Lemma 4.2, $A(\alpha)$ is invertible for each $\alpha \in \mathcal{Z}(\theta)$. Since for each $\alpha \in \mathcal{Z}(\theta)$,

$$
\left(A\left(B+\Theta^{2} \Theta_{0} A\right)^{2} \Theta_{0}\right)(\alpha)=A(\alpha) B(\alpha)^{2} \Theta_{0}(\alpha) \text { and }(A B)(\alpha) \text { are invertible }
$$

it follows that $A\left(B+\Theta^{2} \Theta_{0} A\right)^{2} \Theta_{0}$ and Θ are coprime, and $A B$ and Θ are coprime. Thus by (4.7), (4.8), and (4.11) we have

$$
\begin{equation*}
\mathrm{cl} \operatorname{ran} H_{\Phi^{*} \Phi^{2} \Theta^{2} \Theta_{0}^{2}}=\mathrm{cl} \operatorname{ran} H_{\Phi \Phi^{* 2} \Theta^{2} \Theta_{0}^{2}}=\mathcal{H}(\widetilde{\Theta}) \tag{4.12}
\end{equation*}
$$

By the well-known result of C. Cowen [Co1, Theorem 1] - if $\varphi \in L^{\infty}$ and b is a finite Blaschke product of degree n then $T_{\varphi \circ b} \cong \oplus_{n} T_{\varphi}$, we may, without loss of generality, assume that $0 \in \mathcal{Z}(\theta)$. Since T_{Φ} is hyponormal, by [GHR] (cf. p.4) there exists $K \in H_{M_{n}}^{\infty}$ with $\|K\|_{\infty} \leq 1$ such that

$$
H_{\Phi_{-}^{*}}=H_{K \Phi_{+}^{*}}=T_{\widetilde{K}}^{*} H_{\Phi_{+}^{*}} .
$$

Since $\Phi \Phi^{*} \Theta^{2} \Theta_{0}^{2} \in H_{M_{n}}^{\infty}$, we have

$$
\begin{aligned}
T_{\widetilde{K}} H_{\Phi^{2} \Phi^{*} \Theta^{2} \Theta_{0}^{2}} & =T_{\widetilde{K}} H_{\Phi} T_{\Phi \Phi^{*} \Theta^{2} \Theta_{0}^{2}}=T_{\widetilde{K}} H_{\Phi_{-}^{*}} T_{\Phi \Phi^{*} \Theta^{2} \Theta_{0}^{2}} \\
& =T_{\widetilde{K}}\left(T_{\widetilde{K}}^{*} H_{\Phi_{+}^{*}}\right) T_{\Phi \Phi^{*} \Theta^{2} \Theta_{0}^{2}}=T_{\widetilde{K}} T_{\widetilde{K}}^{*} H_{\Phi \Phi^{* 2} \Theta^{2} \Theta_{0}^{2}}
\end{aligned}
$$

Thus by (4.6) we have

$$
\begin{align*}
0 & =H_{\Phi_{+}^{*}}^{*} H_{\Phi \Phi^{* 2} \Theta^{2} \Theta_{0}^{2}}-H_{\Phi_{-}^{*}}^{*} H_{\Phi^{*} \Phi^{2} \Theta^{2} \Theta_{0}^{2}} \\
& =H_{\Phi_{+}^{*}}^{*}\left(H_{\Phi \Phi^{* 2} \Theta^{2} \Theta_{0}^{2}}-T_{\widetilde{K}} H_{\Phi^{*} \Phi^{2} \Theta^{2} \Theta_{0}^{2}}\right) \tag{4.13}\\
& =H_{\Phi_{+}^{*}}^{*}\left(I-T_{\widetilde{K}} T_{\widetilde{K}}^{*}\right) H_{\Phi \Phi^{* 2} \Theta^{2} \Theta_{0}^{2}} .
\end{align*}
$$

It thus follows from (4.12), (4.13) and Lemma 4.4 that

$$
\begin{equation*}
\left(I-T_{\widetilde{K}} T_{\widetilde{K}}^{*}\right)(\mathcal{H}(\widetilde{\Theta}))=\operatorname{cl} \operatorname{ran}\left(\left(I-T_{\widetilde{K}} T_{\widetilde{K}}^{*}\right) H_{\Phi^{* 2} \Phi \Theta^{2} \Theta_{0}^{2}}\right) \subseteq \operatorname{ker} H_{\Phi_{+}^{*}}^{*} \subseteq \widetilde{\Theta} H_{\mathbb{C}^{n}}^{2} \tag{4.14}
\end{equation*}
$$

Since $\|K\|_{\infty}=\|\widetilde{K}\|_{\infty}=\left\|\widetilde{K}^{*}\right\|_{\infty}$, it follows that $\left\|T_{\widetilde{K}}\right\|=\left\|T_{\widetilde{K}^{*}}\right\| \leq 1$. For each $i=1,2, \cdots, n$, put

$$
E_{i}:=(0,0, \cdots, 1,0, \cdots, 0,0)^{t}
$$

Since $0 \in \mathcal{Z}(\theta) \cap \mathcal{Z}(\widetilde{\theta})$, we have $E_{i} \in \mathcal{H}(\Theta) \cap \mathcal{H}(\widetilde{\Theta})$ and by (4.14),

$$
E_{i}-T_{\widetilde{K}} T_{\widetilde{K}}^{*} E_{i}=\widetilde{\Theta} F_{i} \quad\left(\text { some } F_{i} \in H_{\mathbb{C}^{n}}^{2}\right)
$$

Observe that

$$
\begin{aligned}
E_{i}-T_{\widetilde{K}} T_{\widetilde{K}}^{*} E_{i}=\widetilde{\Theta} F_{i} & \Longrightarrow T_{\widetilde{K}} T_{\widetilde{K}}^{*} E_{i}=E_{i}-\widetilde{\Theta} F_{i} \\
& \Longrightarrow\left\|T_{\widetilde{K}} T_{\widetilde{K}}^{*} E_{i}\right\|_{2}^{2}=\left\|E_{i}-\widetilde{\Theta} F_{i}\right\|_{2}^{2} \\
& \Longrightarrow\left\|T_{\widetilde{K}} T_{\widetilde{K}}^{*} E_{i}\right\|_{2}^{2}=\left\|E_{i}\right\|_{2}^{2}+\left\|\widetilde{\Theta} F_{i}\right\|_{2}^{2} \quad\left(\text { since } E_{i} \in \mathcal{H}(\widetilde{\Theta})\right) \\
& \Longrightarrow\left\|T_{\widetilde{K}} T_{\widetilde{K}}^{*} E_{i}\right\|_{2}^{2}=1+\left\|\widetilde{\Theta} F_{i}\right\|_{2}^{2}
\end{aligned}
$$

But since $\left\|T_{\widetilde{K}} T_{\widetilde{K}}^{*}\right\| \leq 1$, it follows that $\left\|T_{\widetilde{K}} T_{\widetilde{K}}^{*} E_{i}\right\|_{2}=1$ and $F_{i}=0$ for all $i=1,2, \cdots, n$. We thus have $\left\|T_{\widetilde{K}}^{*} E_{i}\right\|_{2}=1$ for all $i=1,2, \cdots, n$. Write

$$
K(z):=\left[k_{i j}(z)\right] \quad \text { and } \quad k_{i j}(z)=\sum_{m=0}^{\infty} k_{i j}^{(m)} z^{m}
$$

Then $\widetilde{K}^{*}(z)=K(\bar{z})=\left[k_{i j}(\bar{z})\right]$, and hence

$$
T_{\widetilde{K}}^{*} E_{i}=\left[P\left(k_{1 i}(\bar{z})\right), P\left(k_{2 i}(\bar{z})\right), \cdots, P\left(k_{n i}(\bar{z})\right)\right]^{t}=\left[k_{1 i}^{(0)}, k_{2 i}^{(0)}, \cdots, k_{n i}^{(0)}\right]^{t}
$$

But since $\left\|T_{\widetilde{K}}^{*} E_{i}\right\|_{2}=1$ for all $i=1,2, \cdots, n$, it follows that

$$
\left\|\left[k_{1 i}^{(0)}, k_{2 i}^{(0)}, \cdots, k_{n i}^{(0)}\right]^{t}\right\|_{2}=1 \text { for all } i=1,2, \cdots n
$$

Therefore

$$
1=\frac{1}{n}\left\|\left[k_{i j}^{(0)}\right]\right\|_{2}^{2} \leq \frac{1}{n} \sum_{m=0}^{\infty}\left\|\left[k_{i j}^{(m)}\right]\right\|_{2}^{2}=\frac{1}{n}\|K\|_{2}^{2} \leq\|K\|_{\infty}^{2} \leq 1
$$

which implies that $\left[k_{i j}^{(m)}\right]=0$ for all $m \geq 1$. Hence $K=\left[k_{i j}^{(0)}\right]$, so that $\widetilde{K}=K^{*}$. Observe that

$$
\begin{aligned}
\left(I-T_{\widetilde{K}} T_{\widetilde{K}}^{*}\right) \mathcal{H}(\widetilde{\Theta})=0 & \Longrightarrow\left(I-T_{K^{*} K}\right) \mathcal{H}(\widetilde{\Theta})=0 \\
& \Longrightarrow K^{*} K=I_{n} \quad(\text { since } 0 \in \mathcal{Z}(\widetilde{\theta}))
\end{aligned}
$$

Therefore $\widetilde{K}=K^{*}$ is a constant unitary and hence we have

$$
\left[T_{\Phi}^{*}, T_{\Phi}\right]=H_{\Phi^{*}}^{*} H_{\Phi^{*}}-H_{\Phi}^{*} H_{\Phi}=H_{\Phi^{*}}^{*} H_{\Phi^{*}}-H_{\Phi^{*}}^{*} T_{\widetilde{K}^{*} \widetilde{K}^{*}} H_{\Phi^{*}}=0
$$

which implies that T_{Φ} is normal.

Corollary 4.6. Let $\Phi \in L_{M_{n}}^{\infty}$ be a matrix-valued trigonometric polynomial whose co-analytic outer coefficient is invertible. If T_{Φ} and T_{Φ}^{2} are hyponormal then T_{Φ} is normal.

Proof. Immediate from Theorem 4.5 together with the observation that $\Phi_{-}=B^{*} \Theta$ with $\Theta=I_{z^{m}}$ is a coprime factorization if and only if $B(0)$ is a co-analytic outer coefficient and is invertible.

Remark 4.7. In Theorem 4.5, the "coprime" condition is essential. To see this, let

$$
T_{\Phi}:=\left[\begin{array}{cc}
T_{b}+T_{b}^{*} & 0 \\
0 & T_{b}
\end{array}\right] \quad(b \text { is a finite Blaschke product })
$$

Since $T_{b}+T_{b}^{*}$ is normal and T_{b} is analytic, it follows that T_{Φ} and T_{Φ}^{2} are both hyponormal. Obviously, T_{Φ} is neither normal nor analytic. Note that $\Phi_{-} \equiv\left[\begin{array}{cc}b & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]^{*} \cdot I_{b}$, where $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and I_{b} are not coprime.

On the other hand, we have not been able to determine whether this phenomenon is quite accidental. In fact we would guess that if $\Phi \in L_{M_{n}}^{\infty}$ is a matrix-valued rational function such that T_{Φ} is subnormal then $T_{\Phi}=T_{A} \oplus T_{B}$, where T_{A} is normal and T_{B} is analytic.

5. Subnormal Toeplitz Completions

Given a partially specified operator matrix with some known entries, the problem of finding suitable operators to complete the given partial operator matrix so that the resulting matrix satisfies certain given properties is called a completion problem. Dilation problems are special cases of completion problems: in other words, the dilation of T is a completion of the partial operator matrix $\left[\begin{array}{c}T \\ ?\end{array} ?\right.$ In recent years, operator theorists have been interested in the subnormal completion problem for $\left[\begin{array}{cc}U^{*} & ? \\ ? & U^{*}\end{array}\right]$, where U is the shift on H^{2}. In this section, we solve this completion problem.

A partial block Toeplitz matrix is simply an $n \times n$ matrix some of whose entries are specified Toeplitz operators and whose remaining entries are unspecified. A subnormal completion of a partial operator matrix is a particular specification of the unspecified entries resulting in a subnormal operator. For example

$$
\left[\begin{array}{cc}
T_{z} & 1-T_{z} T_{\bar{z}} \tag{5.1}\\
0 & T_{\bar{z}}
\end{array}\right]
$$

is a subnormal (even unitary) completion of the 2×2 partial operator matrix

$$
\left[\begin{array}{cc}
T_{z} & ? \\
? & T_{\bar{z}}
\end{array}\right]
$$

A subnormal Toeplitz completion of a partial block Toeplitz matrix is a subnormal completion whose unspecified entries are Toeplitz operators. Then the following question comes up at once: Does there exist a subnormal Toeplitz completion of $\left[\begin{array}{cc}T_{z} & ? \\ ? & T_{z}\end{array}\right]$? Evidently, (5.1) is not such a completion. To answer this question, let

$$
\Phi \equiv\left[\begin{array}{cc}
z & \varphi \\
\psi & \bar{z}
\end{array}\right] \quad\left(\varphi, \psi \in L^{\infty}\right)
$$

If T_{Φ} is hyponormal then by [GHR] (cf. p.4), Φ should be normal. Thus a straightforward calculation shows that

$$
|\varphi|=|\psi| \quad \text { and } \quad \bar{z}(\varphi+\bar{\psi})=z(\varphi+\bar{\psi})
$$

which implies that $\varphi=-\bar{\psi}$. Thus a direct calculation shows that

$$
\left[T_{\Phi}^{*}, T_{\Phi}\right]=\left[\begin{array}{cc}
* & * \\
* & T_{z} T_{\bar{z}}-1
\end{array}\right]
$$

which is not positive semi-definite because $T_{z} T_{\bar{z}}-1$ is not. Therefore, there are no hyponormal Toeplitz completions of $\left[\begin{array}{cc}T_{z} & ? \\ ? & T_{\bar{z}}\end{array}\right]$. However the following problem has remained unsolved until now:

Problem A. Let U be the shift on H^{2}. Complete the unspecified Toeplitz entries of the partial block Toeplitz matrix $A:=\left[\begin{array}{cc}U^{*} & ? \\ ? & U^{*}\end{array}\right]$ to make A subnormal.

In this section we give a complete answer to Problem A.

Theorem 5.1. Let $\varphi, \psi \in L^{\infty}$ and consider

$$
A:=\left[\begin{array}{cc}
T_{\bar{z}} & T_{\varphi} \\
T_{\psi} & T_{\bar{z}}
\end{array}\right]
$$

The following statements are equivalent.
(i) A is normal.
(ii) A is subnormal.
(iii) A is 2-hyponormal.
(iv) One of the following conditions holds:

1. $\varphi=e^{i \theta} z+\beta \quad$ and $\quad \psi=e^{i \omega} \varphi \quad(\beta \in \mathbb{C} ; \theta, \omega \in[0,2 \pi))$;
2. $\varphi=\alpha \bar{z}+e^{i \theta} \sqrt{1+|\alpha|^{2}} z+\beta \quad$ and $\quad \psi=e^{i(\pi-2 \arg \alpha)} \varphi$

$$
(\alpha, \beta \in \mathbb{C}, \alpha \neq 0 ; \theta \in[0,2 \pi))
$$

Theorem 5.1 says that the unspecified entries of the matrix $\left[\begin{array}{cc}T_{\bar{z}} & ? \\ ? ? & T_{\bar{z}}\end{array}\right]$ are Toeplitz operators with symbols which are both analytic or trigonometric polynomials of degree 1. In fact, as we will see in the proof of Theorem 5.1, our solution is just the normal completion. However the solution is somewhat more intricate than one would expect.

To prove Theorem 5.1 we need several technical lemmas.
Lemma 5.2. For $j=1,2,3$, let θ_{j} be an inner function. If $\theta_{1} \mathcal{H}\left(\theta_{2}\right) \subseteq \mathcal{H}\left(\theta_{3}\right)$ then either θ_{2} is constant or $\theta_{1} \theta_{2}$ is a divisor of θ_{3}. In particular, if $\theta_{1} \mathcal{H}\left(\theta_{2}\right) \subseteq \mathcal{H}\left(\theta_{1}\right)$ then θ_{1} or θ_{2} is constant.

Proof. Suppose θ_{2} is not constant. If $\theta_{1} \mathcal{H}\left(\theta_{2}\right) \subseteq \mathcal{H}\left(\theta_{3}\right)$ then by Lemma 2.6, for all $f \in \mathcal{H}\left(\theta_{2}\right)$, $\bar{\theta}_{1} \bar{f} \theta_{3} \in z H^{2}$, and hence $\bar{f} \theta_{3} \in z H^{2}$, so that $f \in \mathcal{H}\left(\theta_{3}\right)$, which implies that $\mathcal{H}\left(\theta_{2}\right) \subseteq \mathcal{H}\left(\theta_{3}\right)$, and therefore $\theta_{3} H^{2} \subseteq \theta_{2} H^{2}$. Thus θ_{2} is a divisor of θ_{3}. We can then write $\theta_{3}=\theta_{0} \theta_{2}$ for some inner function θ_{0}. It suffices to show that θ_{1} is a divisor of θ_{0}. Observe that

$$
\begin{aligned}
\theta_{1} \mathcal{H}\left(\theta_{2}\right) \subseteq \mathcal{H}\left(\theta_{0} \theta_{2}\right) & \Longrightarrow \operatorname{ran}\left(T_{\theta_{1}} H_{\bar{\theta}_{2}}^{*}\right) \subseteq \mathcal{H}\left(\theta_{0} \theta_{2}\right) \\
& \Longrightarrow \theta_{0} \theta_{2} H^{2} \subseteq \operatorname{ker} H_{\bar{\theta}_{2}} T_{\bar{\theta}_{1}} \\
& \Longrightarrow H_{\bar{\theta}_{2}} T_{\bar{\theta}_{1} \theta_{0} \theta_{2}}=0 \\
& \Longrightarrow H_{\bar{\theta}_{1} \theta_{0}}-T_{\widetilde{\theta}_{2}} H_{\bar{\theta}_{1} \theta_{0} \theta_{2}}=0 \\
& \Longrightarrow H_{\bar{\theta}_{1} \theta_{0}}-T_{\widetilde{\theta}_{2}} T_{\widetilde{\dddot{\theta}}_{2}} H_{\bar{\theta}_{1} \theta_{0}}=0 \\
& \Longrightarrow H_{\overline{\widehat{\theta}}_{2}} H_{\theta_{0} \bar{\theta}_{1}}=0
\end{aligned}
$$

where the fourth implication follows from the fact that $H_{\varphi \psi}=T_{\widetilde{\varphi}}^{*} H_{\psi}+H_{\varphi} T_{\psi}$ for any $\varphi, \psi \in L^{\infty}$. But since θ_{2} is not constant it follows that θ_{1} is a divisor of θ_{0}. The second assertion follows at once from the first.

Suppose $\Phi \equiv \Phi_{-}^{*}+\Phi_{+} \in L_{M_{n}}^{\infty}$ is such that Φ and Φ^{*} are of bounded type, with

$$
\Phi_{+}=A^{*} \Theta \quad \text { and } \quad \Phi_{-}=B_{\ell}^{*} \Omega_{2} \text { (left coprime factorization) }
$$

where $\Theta=I_{\theta}$ for an inner function θ. If T_{Φ} is hyponormal, then in view of Proposition 3.2, Φ can be written as:

$$
\begin{equation*}
\Phi_{+}=A^{*} \Omega_{1} \Omega_{2} \quad \text { and } \quad \Phi_{-}=B_{\ell}^{*} \Omega_{2} \tag{5.2}
\end{equation*}
$$

where $\Omega_{1} \Omega_{2}=\Theta=I_{\theta}$. We also note that $\Omega_{1} \Omega_{2}=\Theta=\Omega_{2} \Omega_{1}$.
The following lemma will be extensively used in the proof of Theorem 5.1.

Lemma 5.3. Let $\Phi \equiv \Phi_{-}^{*}+\Phi_{+} \in L_{M_{n}}^{\infty}$ be such that Φ and Φ^{*} are of bounded type of the form (5.2):

$$
\Phi_{+}=A^{*} \Omega_{1} \Omega_{2}=A^{*} \Theta \quad \text { and } \quad \Phi_{-}=B_{\ell}^{*} \Omega_{2} \text { (left coprime factorization), }
$$

where $\Theta=I_{\theta}$ for an inner function θ. If $\operatorname{ker}\left[T_{\Phi}^{*}, T_{\Phi}\right]$ is invariant under T_{Φ}, then

$$
\Omega_{1} H_{\mathbb{C}^{n}}^{2} \subseteq \operatorname{ker}\left[T_{\Phi}^{*}, T_{\Phi}\right]
$$

and therefore

$$
\mathrm{cl} \operatorname{ran}\left[T_{\Phi}^{*}, T_{\Phi}\right] \subseteq \mathcal{H}\left(\Omega_{1}\right)
$$

Assume instead that we decompose $\Phi \in L_{M_{n}}^{\infty}$ as:

$$
\Phi_{+}=\Delta_{2} \Delta_{0} A_{r}^{*} \quad \text { (right coprime factorization) }
$$

and

$$
\Phi_{-}=\Delta_{2} B_{r}^{*} \quad \text { (right coprime factorization) }
$$

If T_{Φ} is hyponormal then

$$
\Delta_{2} \mathcal{H}\left(\Delta_{0}\right) \subseteq \operatorname{cl~ran}\left[T_{\Phi}^{*}, T_{\Phi}\right]
$$

Hence, in particular, if T_{Φ} is hyponormal and $\operatorname{ker}\left[T_{\Phi}^{*}, T_{\Phi}\right]$ is invariant under T_{Φ}, then

$$
\begin{equation*}
\Delta_{2} \mathcal{H}\left(\Delta_{0}\right) \subseteq \operatorname{cl} \operatorname{ran}\left[T_{\Phi}^{*}, T_{\Phi}\right] \subseteq \mathcal{H}\left(\Omega_{1}\right) \tag{5.3}
\end{equation*}
$$

Proof. See [CHL, Lemma 3.2 and Theorem 3.7].

Lemma 5.4. Let

$$
\Phi_{-}=\left[\begin{array}{cc}
z & \theta_{1} \bar{b} \\
\theta_{0} \bar{a} & z
\end{array}\right] \quad\left(a \in \mathcal{H}\left(\theta_{0}\right), b \in \mathcal{H}\left(\theta_{1}\right) \text { and } \theta_{j} \text { inner }(j=0,1)\right)
$$

If $\theta_{0}=z^{n} \theta_{0}^{\prime}\left(n \geq 1 ; \theta_{0}^{\prime}(0) \neq 0\right)$ and $\theta_{1}(0) \neq 0$, then $\operatorname{ker} H_{\Phi_{-}^{*}}=\Delta H_{\mathbb{C}^{2}}^{2}$, where

$$
\Delta=\left\{\begin{array}{cl}
{\left[\begin{array}{cc}
z \theta_{1} & 0 \\
0 & \theta_{0}
\end{array}\right]} & (n=1) \\
\frac{1}{\sqrt{|\alpha|^{2}+1}}\left[\begin{array}{cc}
z \theta_{1} & \alpha \theta_{1} \\
-\bar{\alpha} \theta_{0} & z^{n-1} \theta_{0}^{\prime}
\end{array}\right] & (n \geq 2) \quad\left(\alpha:=-\frac{a(0)}{\theta_{1}(0)}\right)
\end{array}\right.
$$

Proof. Observe that for $f, g \in H^{2}$,

$$
\Phi_{-}^{*}\left[\begin{array}{l}
f \\
g
\end{array}\right]=\left[\begin{array}{cc}
\bar{z} & \bar{z}^{n} \overline{\theta_{0}^{\prime}} a \\
\bar{\theta}_{1} b & \bar{z}
\end{array}\right]\left[\begin{array}{l}
f \\
g
\end{array}\right] \in H_{\mathbb{C}^{2}}^{2} \Longleftrightarrow\left[\begin{array}{c}
\bar{z} f+\bar{z}^{n} \overline{\theta_{0}^{\prime}} a g \\
\bar{\theta}_{1} b f+\bar{z} g
\end{array}\right] \in H_{\mathbb{C}^{2}}^{2}
$$

Thus if $\Phi_{-}^{*}\left[\begin{array}{l}f \\ g\end{array}\right] \in H_{\mathbb{C}^{2}}^{2}$, then $\bar{\theta}_{1} b f+\bar{z} g \in H^{2}$. Since $\theta_{1}(0) \neq 0$, we have $\bar{\theta}_{1} b f z \in H^{2}$, and hence $f=\theta_{1} f_{1}$ for some $f_{1} \in H^{2}$. In turn, $b f_{1}+\bar{z} g \in H^{2}$, so that $g=z g_{1}$ for some $g_{1} \in H^{2}$. We therefore have

$$
\begin{equation*}
\bar{z} \theta_{1} f_{1}+\bar{z}^{n-1} \overline{\theta_{0}^{\prime}} a g_{1} \in H^{2} \tag{5.4}
\end{equation*}
$$

If $n=1$, then (5.4) implies $g_{1}=\theta_{0}^{\prime} g_{2}$ and $f_{1}=z f_{2}$ for some $g_{2}, f_{2} \in H^{2}$. Thus $f=z \theta_{1} f_{2}$ and $g=\theta_{0} g_{2}$, which implies

$$
\operatorname{ker} H_{\Phi_{-}^{*}}=\left[\begin{array}{cc}
z \theta_{1} & 0 \\
0 & \theta_{0}
\end{array}\right] H_{\mathbb{C}^{2}}^{2}
$$

If instead $n \geq 2$, then (5.4) implies that $\bar{z}^{n-2} \overline{\theta_{0}^{\prime}} a g_{1} \in H^{2}$, so that $g_{1}=z^{n-2} \theta_{0}^{\prime} g_{2}$ for some $g_{2} \in H^{2}$. We thus have

$$
\begin{aligned}
\bar{z} \theta_{1} f_{1}+\bar{z}^{n-1} \overline{\theta_{0}^{\prime}} a g_{1} \in H^{2} & \Longleftrightarrow \bar{z} \theta_{1} f_{1}+\bar{z} a g_{2} \in H^{2} \\
& \Longleftrightarrow \theta_{1}(0) f_{1}(0)+a(0) g_{2}(0)=0 \\
& \left.\Longleftrightarrow g_{2}(0)=\frac{1}{\alpha} f_{1}(0) \quad \text { (recall that } \alpha=-\frac{a(0)}{\theta_{1}(0)}\right)
\end{aligned}
$$

Therefore we have

$$
\left[\begin{array}{l}
f \tag{5.5}\\
g
\end{array}\right] \in \operatorname{ker} H_{\Phi_{-}^{*}} \Longleftrightarrow f=\theta_{1} f_{1}, g=z^{n-1} \theta_{0}^{\prime} g_{2}, \text { and } g_{2}(0)=\frac{1}{\alpha} f_{1}(0)
$$

Put

$$
\Delta:=\frac{1}{\sqrt{|\alpha|^{2}+1}}\left[\begin{array}{cc}
z \theta_{1} & \alpha \theta_{1} \\
-\bar{\alpha} \theta_{0} & z^{n-1} \theta_{0}^{\prime}
\end{array}\right]
$$

Then Δ is inner, and for $h_{1}, h_{2} \in H^{2}$,

$$
\Delta\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]=\frac{1}{\sqrt{|\alpha|^{2}+1}}\left[\begin{array}{c}
z \theta_{1} h_{1}+\alpha \theta_{1} h_{2} \\
-\bar{\alpha} z^{n} \theta_{0}^{\prime} h_{1}+z^{n-1} \theta_{0}^{\prime} h_{2}
\end{array}\right]=\frac{1}{\sqrt{|\alpha|^{2}+1}}\left[\begin{array}{c}
\theta_{1}\left(z h_{1}+\alpha h_{2}\right) \\
z^{n-1} \theta_{0}^{\prime}\left(-\bar{\alpha} z h_{1}+h_{2}\right)
\end{array}\right]
$$

But since $\frac{1}{\alpha}\left(z h_{1}+\alpha h_{2}\right)(0)=\left(-\bar{\alpha} z h_{1}+h_{2}\right)(0)$, it follows from (5.5) that ker $H_{\Phi_{-}^{*}}=\Delta H_{\mathbb{C}^{2}}^{2}$.

Lemma 5.5. Let

$$
\Phi_{-}=\left[\begin{array}{cc}
z & \theta_{1} \bar{b} \\
\theta_{0} \bar{a} & z
\end{array}\right] \quad\left(a \in \mathcal{H}\left(\theta_{0}\right), b \in \mathcal{H}\left(\theta_{1}\right) \text { and } \theta_{j} \text { inner }(j=0,1)\right)
$$

If $\theta_{1}=z^{n} \theta_{1}^{\prime} \quad\left(n \geq 1 ; \theta_{1}^{\prime}(0) \neq 0\right)$ and $\theta_{0}(0) \neq 0$, then $\operatorname{ker} H_{\Phi_{-}^{*}}=\Delta H_{\mathbb{C}^{2}}^{2}$, where

$$
\Delta=\left\{\begin{array}{cl}
{\left[\begin{array}{cc}
\theta_{1} & 0 \\
0 & z \theta_{0}
\end{array}\right]} & (n=1) \\
\frac{1}{\sqrt{|\alpha|^{2}+1}}\left[\begin{array}{cc}
z^{n-1} \theta_{1}^{\prime} & -\bar{\alpha} \theta_{1} \\
\alpha \theta_{0} & z \theta_{0}
\end{array}\right] & (n \geq 2) \quad\left(\alpha:=-\frac{b(0)}{\theta_{0}(0)}\right)
\end{array}\right.
$$

Proof. Same as the proof of Lemma 5.4.

Lemma 5.6. Let

$$
\Phi_{-}=\left[\begin{array}{cc}
z & \theta_{1} \bar{b} \\
\theta_{0} \bar{a} & z
\end{array}\right] \quad\left(a \in \mathcal{H}\left(\theta_{0}\right), b \in \mathcal{H}\left(\theta_{1}\right) \text { and } \theta_{j} \text { inner }(j=0,1)\right)
$$

If $\theta_{0}=z \theta_{0}^{\prime}$ and $\theta_{1}=z \theta_{1}^{\prime}$ then $\operatorname{ker} H_{\Phi_{-}^{*}}=\Delta H_{\mathbb{C}^{2}}^{2}$, where

$$
\Delta=\left\{\begin{array}{cl}
{\left[\begin{array}{cc}
\theta_{1} & 0 \\
0 & \theta_{0}
\end{array}\right]} & \left((a b)(0) \neq\left(\theta_{0}^{\prime} \theta_{1}^{\prime}\right)(0)\right) \\
\frac{1}{\sqrt{|\alpha|^{2}+1}}\left[\begin{array}{cc}
\theta_{1} & \alpha \theta_{1}^{\prime} \\
-\bar{\alpha} \theta_{0} & \theta_{0}^{\prime}
\end{array}\right] & \left((a b)(0)=\left(\theta_{0}^{\prime} \theta_{1}^{\prime}\right)(0)\right) \quad\left(\alpha:=-\frac{a(0)}{\theta_{1}^{\prime}(0)}\right)
\end{array}\right.
$$

Remark 5.7. Since $a(0), b(0) \neq 0$, the second part of the above assertion makes sense because by assumption, $\theta_{0}^{\prime}(0), \theta_{1}^{\prime}(0) \neq 0$.

Proof of Lemma 5.6. Observe that for $f, g \in H^{2}$,

$$
\begin{aligned}
\Phi_{-}^{*}\left[\begin{array}{c}
f \\
g
\end{array}\right]=\left[\begin{array}{cc}
\bar{z} & \overline{z \theta_{0}^{\prime}} a \\
z \theta_{1}^{\prime} b & \bar{z}
\end{array}\right]\left[\begin{array}{l}
f \\
g
\end{array}\right] \in H_{\mathbb{C}^{2}}^{2} & \Longleftrightarrow\left[\begin{array}{l}
\bar{z}\left(f+\overline{\theta_{0}^{\prime}} a g\right) \\
\bar{z}\left(g+\overline{\theta_{1}^{\prime}} b f\right)
\end{array}\right] \in H_{\mathbb{C}^{2}}^{2} \\
& \Longrightarrow\left[\begin{array}{l}
f+\overline{\theta_{0}^{\prime}} a g \\
g+\overline{\theta_{1}^{\prime}} b f
\end{array}\right] \in z H_{\mathbb{C}^{2}}^{2} \\
& \Longrightarrow\left[\begin{array}{l}
\overline{\theta_{0}^{\prime}} a g \\
\hat{\theta}_{1}^{\prime}
\end{array}\right] \in H_{\mathbb{C}^{2}}^{2} \\
& \Longrightarrow g=\theta_{0}^{\prime} g_{1} \text { and } f=\theta_{1}^{\prime} f_{1} \text { for some } g_{1}, f_{1} \in H^{2}
\end{aligned}
$$

Thus if $\Phi_{-}^{*}\left[\begin{array}{l}f \\ g\end{array}\right] \in H_{\mathbb{C}^{2}}^{2}$ then $\bar{z}\left(\theta_{1}^{\prime} f_{1}+a g_{1}\right) \in H^{2}$ and $\bar{z}\left(\theta_{0}^{\prime} g_{1}+b f_{1}\right) \in H^{2}$, so that

$$
\theta_{1}^{\prime}(0) f_{1}(0)=-a(0) g_{1}(0) \quad \text { and } \quad \theta_{0}^{\prime}(0) g_{1}(0)=-b(0) f_{1}(0)
$$

If $(a b)(0)=\left(\theta_{0}^{\prime} \theta_{1}^{\prime}\right)(0)$, then

$$
\theta_{1}^{\prime}(0) f_{1}(0)=-a(0) g_{1}(0) \Longleftrightarrow \theta_{0}^{\prime}(0) g_{1}(0)=-b(0) f_{1}(0)
$$

Put

$$
\Delta:=\frac{1}{\sqrt{|\alpha|^{2}+1}}\left[\begin{array}{cc}
\theta_{1} & \alpha \theta_{1}^{\prime} \\
-\bar{\alpha} \theta_{0} & \theta_{0}^{\prime}
\end{array}\right] .
$$

Then we can see that Δ is inner and ker $H_{\Phi_{-}^{*}}=\Delta H_{\mathbb{C}^{2}}^{2}$.
If $(a b)(0) \neq\left(\theta_{0}^{\prime} \theta_{1}^{\prime}\right)(0)$, put $\theta_{0}=z^{m} \theta_{0}^{\prime \prime}$ and $\theta_{1}=z^{n} \theta_{1}^{\prime \prime}\left(\theta_{0}^{\prime \prime}(0), \theta_{1}^{\prime \prime}(0) \neq 0\right)$. If $n=m$ then

$$
\Phi_{-}=\left[\begin{array}{cc}
z & z^{n} \theta_{1}^{\prime \prime} \bar{b} \\
z^{m} \theta_{0}^{\prime \prime} \bar{a} & z
\end{array}\right]=I_{z^{n} \theta_{0}^{\prime \prime} \theta_{1}^{\prime \prime}}\left[\begin{array}{cc}
\bar{z}^{n-1} \overline{\theta_{0}^{\prime \prime} \theta_{1}^{\prime \prime}} & \overline{\theta_{0}^{\prime \prime} b} \\
\overline{\theta_{1}^{\prime \prime} a} & \bar{z}^{n-1} \overline{\theta_{0}^{\prime \prime} \theta_{1}^{\prime \prime}}
\end{array}\right] \equiv I_{z^{n} \theta_{0}^{\prime \prime} \theta_{1}^{\prime \prime}} B^{*}
$$

Since $B(0)$ is invertible, it follows from Lemma 2.3 that $I_{z^{n}}$ and B are coprime. Observe that

$$
\Phi_{-}^{*}\left[\begin{array}{c}
z^{n} f \\
z^{n} g
\end{array}\right]=\left[\begin{array}{cc}
\bar{z} & \bar{z}^{n} \overline{\theta_{0}^{\prime \prime}} a \\
\bar{z}^{n} \overline{\theta_{1}^{\prime \prime} b} & \bar{z}
\end{array}\right]\left[\begin{array}{c}
z^{n} f \\
z^{n} g
\end{array}\right] \in H_{\mathbb{C}^{2}}^{2} \Longleftrightarrow\left[\begin{array}{c}
z^{n-1} f+\overline{\theta_{0}^{\prime \prime}} a g \\
\overline{\theta_{1}^{\prime \prime}} b f+z^{n-1} g
\end{array}\right] \in H_{\mathbb{C}^{2}}^{2}
$$

which implies

$$
f=\theta_{1}^{\prime \prime} f_{1} \text { and } g=\theta_{0}^{\prime \prime} g_{1} \text { for some } f_{1}, g_{1} \in H^{2}
$$

We thus have

$$
\operatorname{ker} H_{\Phi_{-}^{*}}=\left[\begin{array}{cc}
\theta_{1} & 0 \\
0 & \theta_{0}
\end{array}\right] H_{\mathbb{C}^{2}}^{2}
$$

If instead $n \neq m$, then

$$
\begin{aligned}
\Phi_{-}^{*}\left[\begin{array}{c}
f \\
g
\end{array}\right] & =\left[\begin{array}{cc}
\bar{z} & \bar{z}^{m} \overline{\theta_{0}^{\prime \prime}} a \\
\bar{z}^{n} \frac{\overline{\theta_{1}^{\prime \prime}} b}{\bar{z}}
\end{array}\right]\left[\begin{array}{l}
f \\
g
\end{array}\right]=\left[\begin{array}{c}
\bar{z}\left(f+\bar{z}^{m-1} \overline{\theta_{0}^{\prime \prime}} a g\right) \\
\bar{z}\left(g+\bar{z}^{n-1} \overline{\theta_{1}^{\prime \prime}} b f\right)
\end{array}\right] \in H_{\mathbb{C}^{2}}^{2} \\
& \Longleftrightarrow\left\{\begin{array}{l}
f+\bar{z}^{m-1} \overline{\theta_{0}^{\prime \prime}} a g \in z H^{2} \\
g+\bar{z}^{n-1} \overline{\theta_{1}^{\prime \prime}} b f \in z H^{2},
\end{array}\right.
\end{aligned}
$$

which implies

$$
f=z^{n-1} \theta_{1}^{\prime \prime} f_{1} \quad \text { and } \quad g=z^{m-1} \theta_{0}^{\prime \prime} g_{1}
$$

Suppose $n>m$, and hence $n \geq 2$. We thus have

$$
z^{n-2} \theta_{1}^{\prime \prime} f_{1}+\bar{z} a g_{1} \in H^{2} \Longrightarrow \bar{z} a g_{1} \in H^{2} \Longrightarrow g_{1}=z g_{2} \Longrightarrow g=\theta_{0} g_{2}
$$

In turn,

$$
g+\bar{z}^{n-1} \overline{\theta_{1}^{\prime \prime}} b f \in z H^{2} \Longrightarrow z^{m} \theta_{0}^{\prime \prime} g_{2}+b f_{1} \in z H^{2} \Longrightarrow f_{1}=z f_{2}
$$

which implies

$$
\operatorname{ker} H_{\Phi_{-}^{*}}=\left[\begin{array}{cc}
\theta_{1} & 0 \\
0 & \theta_{0}
\end{array}\right] H_{\mathbb{C}^{2}}^{2}
$$

If $m>n$, a similar argument gives the result.

We are ready for:

Proof of Theorem 5.1. Clearly (i) \Rightarrow (ii) and (ii) \Rightarrow (iii). Moreover, a simple calculation shows that (iv) \Rightarrow (i).
(iii) \Rightarrow (iv): Write

$$
\Phi \equiv\left[\begin{array}{cc}
\bar{z} & \varphi \\
\psi & \bar{z}
\end{array}\right] \equiv \Phi_{-}^{*}+\Phi_{+}=\left[\begin{array}{cc}
z & \psi_{-} \\
\varphi_{-} & z
\end{array}\right]^{*}+\left[\begin{array}{cc}
0 & \varphi_{+} \\
\psi_{+} & 0
\end{array}\right]
$$

and assume that T_{Φ} is 2-hyponormal. Since $\operatorname{ker}\left[T^{*}, T\right]$ is invariant under T for every 2-hyponormal operator $T \in \mathcal{B}(\mathcal{H})$, we note that Theorem 4.1 and Lemma 5.3 hold for 2-hyponormal operators T_{Φ}. We claim that

$$
\begin{align*}
& |\varphi|=|\psi|, \text { and } \tag{5.6}\\
& \Phi \text { and } \Phi^{*} \text { are of bounded type. } \tag{5.7}
\end{align*}
$$

Indeed, if T_{Φ} is hyponormal then Φ is normal, so that a straightforward calculation gives (5.6). Also there exists a matrix function $K \equiv\left[\begin{array}{ll}k_{1} & k_{2} \\ k_{3} & k_{4}\end{array}\right] \in H_{M_{2}}^{\infty}$ with $\|K\|_{\infty} \leq 1$ such that $\Phi-K \Phi^{*} \in H_{M_{2}}^{\infty}$, i.e.,

$$
\left[\begin{array}{cc}
\bar{z} & \overline{\varphi_{-}} \\
\overline{\psi_{-}} & \bar{z}
\end{array}\right]-\left[\begin{array}{cc}
k_{1} & k_{2} \\
k_{3} & k_{4}
\end{array}\right]\left[\begin{array}{cc}
0 & \overline{\psi_{+}} \\
\overline{\varphi_{+}} & 0
\end{array}\right] \in H_{M_{2}}^{2}
$$

which implies that

$$
\left\{\begin{array}{l}
H_{\bar{z}}=H_{k_{2} \overline{\varphi_{+}}}=H_{\overline{\varphi_{+}}} T_{k_{2}} \\
H_{\overline{\varphi_{-}}}=H_{k_{1}} \overline{\psi_{+}}=H_{\overline{\psi_{+}}} T_{k_{1}} \\
H_{\overline{\psi_{-}}}=H_{k_{4} \overline{\varphi_{+}}}=H_{\overline{\varphi_{+}}} T_{k_{4}} \\
H_{\bar{z}}=H_{k_{3} \overline{\psi_{+}}}=H_{\overline{\psi_{+}}} T_{k_{3}} .
\end{array}\right.
$$

If $\overline{\varphi_{+}}$is not of bounded type then ker $H_{\overline{\varphi_{+}}}=0$, so that $k_{2}=0$, a contradiction; and if $\overline{\psi_{+}}$is not of bounded type then $\operatorname{ker} H_{\overline{\psi_{+}}}=0$, so that $k_{3}=0$, a contradiction. Therefore we should have Φ^{*} of bounded type. Since T_{Φ} is hyponormal, Φ is also of bounded type, giving (5.7). Thus we can write

$$
\varphi_{-}:=\theta_{0} \bar{a} \quad \text { and } \quad \psi_{-}:=\theta_{1} \bar{b} \quad\left(a \in \mathcal{H}\left(\theta_{0}\right), b \in \mathcal{H}\left(\theta_{1}\right)\right)
$$

Put

$$
\theta_{0}=z^{m} \theta_{0}^{\prime} \quad \text { and } \quad \theta_{1}=z^{n} \theta_{1}^{\prime} \quad\left(m, n \geq 0 ; \quad \theta_{0}^{\prime}(0) \neq 0 \neq \theta_{1}^{\prime}(0)\right)
$$

We now claim that

$$
\begin{equation*}
m=n=0 \quad \text { or } \quad m=n=1 \tag{5.8}
\end{equation*}
$$

We split the proof of (5.8) into three cases.
Case $1(m \neq 0$ and $n=0)$ In this case, we have $a(0) \neq 0$ because $\theta_{0}(0)=0$ and θ_{0} and a are coprime. We first claim that $m=1$. To show this we assume to the contrary that $m \geq 2$. Write

$$
\alpha:=-\frac{a(0)}{\theta_{1}(0)} \quad \text { and } \quad \nu:=\frac{1}{\sqrt{|\alpha|^{2}+1}}
$$

By Lemma 5.4, we can write:

$$
\Phi_{-}=\left[\begin{array}{cc}
z & \theta_{1} \bar{b} \\
\theta_{0} \bar{a} & z
\end{array}\right]=\Delta_{2} B_{r}^{*} \quad \text { (right coprime factorization) }
$$

where

$$
\Delta_{2}:=\nu\left[\begin{array}{cc}
z \theta_{1} & \alpha \theta_{1} \\
-\bar{\alpha} \theta_{0} & z^{m-1} \theta_{0}^{\prime}
\end{array}\right] \quad \text { and } \quad B_{r}:=\nu\left[\begin{array}{cc}
\theta_{1}-\bar{\alpha} a & \alpha \theta_{1} \bar{z}+a \bar{z} \\
z b-\bar{\alpha} z^{m-1} \theta_{0}^{\prime} & \alpha b+z^{m-2} \theta_{0}^{\prime}
\end{array}\right]
$$

To get the left coprime factorization of Φ_{-}, applying Lemma 5.4 for $\widetilde{\Phi_{-}}$gives

$$
\widetilde{\Phi_{-}}=\left[\begin{array}{cc}
z & \widetilde{\theta_{0}} \overline{\bar{a}} \\
\widetilde{\theta_{1}} \overline{\widetilde{a}} & z
\end{array}\right]=\widetilde{\Omega}_{2} \widetilde{B}_{\ell}^{*} \quad \text { (right coprime factorization) }
$$

where

$$
\Omega_{2}:=\nu\left[\begin{array}{cc}
z^{m-1} \theta_{0}^{\prime} & \alpha \theta_{1} \\
-\bar{\alpha} \theta_{0} & z \theta_{1}
\end{array}\right] \quad \text { and } \quad B_{\ell}:=\nu\left[\begin{array}{cc}
z^{m-2} \theta_{0}^{\prime}+\alpha b & a \bar{z}+\alpha \theta_{1} \bar{z} \\
-\bar{\alpha} z^{m-1} \theta_{0}^{\prime}+z b & -\bar{\alpha} a+\theta_{1}
\end{array}\right]
$$

which gives

$$
\Phi_{-}=\left[\begin{array}{cc}
z & \theta_{1} \bar{b} \\
\theta_{0} \bar{a} & z
\end{array}\right]=B_{\ell}^{*} \Omega_{2} \quad \text { (left coprime factorization) }
$$

On the other hand, since $\Phi_{-}^{*}-K \Phi_{+}^{*} \in H_{M_{n}}^{2}$, and hence

$$
\left[\begin{array}{cc}
\bar{z} & \bar{\theta}_{0} a \\
\bar{\theta}_{1} b & \bar{z}
\end{array}\right]-\left[\begin{array}{cc}
k_{2} \overline{\varphi_{+}} & k_{1} \overline{\psi_{+}} \\
k_{4} \overline{\varphi_{+}} & k_{3} \overline{\psi_{+}}
\end{array}\right] \in H_{M_{2}}^{2}
$$

we have

$$
\begin{cases}\bar{z}-k_{2} \overline{\varphi_{+}} \in H^{2}, & \bar{\theta}_{1} b-k_{4} \overline{\varphi_{+}} \in H^{2} \\ \bar{z}-k_{3} \overline{\psi_{+}} \in H^{2}, & \bar{\theta}_{0} a-k_{1} \overline{\psi_{+}} \in H^{2}\end{cases}
$$

which via Cowen's Theorem gives that the following Toeplitz operators are all hyponormal:

$$
T_{\bar{z}+\varphi_{+}}, \quad T_{\bar{\theta}_{1} b+\varphi_{+}}, \quad T_{\bar{z}+\psi_{+}}, \quad T_{\bar{\theta}_{0} a+\psi_{+}}
$$

Thus by Proposition 3.2 we can see that

$$
\varphi_{+}=z \theta_{1} \theta_{3} \bar{d} \text { and } \psi_{+}=\theta_{0} \theta_{2} \bar{c} \text { for some inner functions } \theta_{2}, \theta_{3}
$$

We thus have

$$
\Phi_{+}=\left[\begin{array}{cc}
z \theta_{1} \theta_{3} & 0 \\
0 & \theta_{0} \theta_{2}
\end{array}\right]\left[\begin{array}{ll}
0 & c \\
d & 0
\end{array}\right]^{*} \equiv \Delta_{2} \Delta_{0} A_{r}^{*} \quad \text { (right coprime factorization) }
$$

where

$$
\begin{aligned}
A_{r} & :=\left[\begin{array}{ll}
0 & c \\
d & 0
\end{array}\right] \\
\Delta_{0} & :=\nu\left[\begin{array}{cc}
1 & -\alpha \\
\bar{\alpha} z & z
\end{array}\right]\left[\begin{array}{cc}
\theta_{3} & 0 \\
0 & \theta_{2}
\end{array}\right] \\
\Delta_{2} & :=\nu\left[\begin{array}{cc}
z \theta_{1} & \alpha \theta_{1} \\
-\bar{\alpha} \theta_{0} & z^{m-1} \theta_{0}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\theta_{1} & 0 \\
0 & z^{m-1} \theta_{0}^{\prime}
\end{array}\right] \cdot \nu\left[\begin{array}{cc}
z & \alpha \\
-\bar{\alpha} z & 1
\end{array}\right] .
\end{aligned}
$$

Write

$$
\theta_{2}=z^{p} \theta_{2}^{\prime} \quad \text { and } \quad \theta_{3}=z^{q} \theta_{3}^{\prime} \quad\left(p, q \geq 0 ; \theta_{2}^{\prime}(0), \theta_{3}^{\prime}(0) \neq 0\right)
$$

If $q+1 \geq m+p$, then $\operatorname{LCM}\left(z \theta_{1} \theta_{3}, \theta_{0} \theta_{2}\right)$ is an inner divisor of $z^{q+1} \theta_{0}^{\prime} \theta_{1} \theta_{2}^{\prime} \theta_{3}^{\prime}$. Thus we can write

$$
\Phi_{+}=\left[\begin{array}{ll}
0 & x \\
y & 0
\end{array}\right]^{*} I_{z^{q+1} \theta_{0}^{\prime} \theta_{1} \theta_{2}^{\prime} \theta_{3}^{\prime}} \equiv A^{*} \Omega_{1} \Omega_{2}
$$

where

$$
\begin{aligned}
A & :=\left[\begin{array}{ll}
0 & x \\
y & 0
\end{array}\right] \quad\left(\text { some } x, y \in H^{2}\right) ; \\
\Omega_{1} & :=\left[\begin{array}{cc}
z^{q+1-m} \theta_{1} \theta_{2}^{\prime} \theta_{3}^{\prime} & 0 \\
0 & z^{q} \theta_{0}^{\prime} \theta_{2}^{\prime} \theta_{3}^{\prime}
\end{array}\right] \cdot \nu\left[\begin{array}{cc}
z & -\alpha \\
\bar{\alpha} z & 1
\end{array}\right] .
\end{aligned}
$$

It thus follows from Lemma 5.3 that

$$
\begin{equation*}
\Delta_{2} \mathcal{H}\left(\Delta_{0}\right) \subseteq \mathrm{cl} \operatorname{ran}\left[T_{\Phi}^{*}, T_{\Phi}\right] \subseteq \mathcal{H}\left(\Omega_{1}\right) \tag{5.9}
\end{equation*}
$$

But since in general, $\Theta_{2} \mathcal{H}\left(\Theta_{1}\right) \subseteq \mathcal{H}\left(\Theta_{1} \Theta_{2}\right)$ for inner matrix functions Θ_{1}, Θ_{2}, we have

$$
\nu\left[\begin{array}{cc}
1 & -\alpha \\
\bar{\alpha} z & z
\end{array}\right] \mathcal{H}\left(\left[\begin{array}{cc}
\theta_{3} & 0 \\
0 & \theta_{2}
\end{array}\right]\right) \subseteq \mathcal{H}\left(\Delta_{0}\right)
$$

Thus by (5.9), we have

$$
\Delta_{2} \cdot \nu\left[\begin{array}{cc}
1 & -\alpha \\
\bar{\alpha} z & z
\end{array}\right] \mathcal{H}\left(\left[\begin{array}{cc}
\theta_{3} & 0 \\
0 & \theta_{2}
\end{array}\right]\right) \subseteq \mathcal{H}\left(\Omega_{1}\right)
$$

or equivalently,

$$
\left[\begin{array}{cc}
z \theta_{1} & 0 \tag{5.10}\\
0 & z^{m} \theta_{0}^{\prime}
\end{array}\right] \mathcal{H}\left(\left[\begin{array}{cc}
\theta_{3} & 0 \\
0 & \theta_{2}
\end{array}\right]\right) \subseteq \mathcal{H}\left(\Omega_{1}\right)
$$

Since in general, $F \in \mathcal{H}(\Theta)$ if and only if $\Theta^{*} F \in\left(H_{\mathbb{C}^{n}}^{2}\right)^{\perp}$, (5.10) implies

$$
\nu\left[\begin{array}{cc}
1 & \alpha \tag{5.11}\\
-\bar{\alpha} z & z
\end{array}\right] \mathcal{H}\left(\left[\begin{array}{cc}
\theta_{3} & 0 \\
0 & \theta_{2}
\end{array}\right]\right) \subseteq \mathcal{H}\left(\left[\begin{array}{cc}
z^{q+1-m} \theta_{2}^{\prime} \theta_{3}^{\prime} & 0 \\
0 & z^{q+1-m} \theta_{2}^{\prime} \theta_{3}^{\prime}
\end{array}\right]\right)
$$

Also since for inner matrix functions Θ_{1}, Θ_{2} and any closed subspace F of $H_{\mathbb{C}^{n}}^{2}$,

$$
\Theta_{1} F \subseteq \mathcal{H}\left(\Theta_{1} \Theta_{2}\right) \text { and } \Theta_{1} \Theta_{2}=\Theta_{2} \Theta_{1} \Longrightarrow F \subseteq \mathcal{H}\left(\Theta_{1} \Theta_{2}\right)
$$

it follows from (5.11) that

$$
\left[\begin{array}{l}
\mathcal{H}\left(\theta_{3}\right) \\
\mathcal{H}\left(\theta_{2}\right)
\end{array}\right] \subseteq\left[\begin{array}{l}
\mathcal{H}\left(z^{q+1-m} \theta_{2}^{\prime} \theta_{3}^{\prime}\right) \\
\mathcal{H}\left(z^{q+1-m} \theta_{2}^{\prime} \theta_{3}^{\prime}\right)
\end{array}\right]
$$

But since $\theta_{3}=z^{q} \theta_{3}^{\prime}$, it follows that $q+1-m \geq q$, giving a contradiction.
If instead $q+1<m+p$, then $\operatorname{LCM}\left(z \theta_{1} \theta_{3}, \theta_{0} \theta_{2}\right)$ is an inner divisor of $z^{m+p} \theta_{0}^{\prime} \theta_{1} \theta_{2}^{\prime} \theta_{3}^{\prime}$. Thus we can write

$$
\Phi_{+}=\left[\begin{array}{ll}
0 & x \\
y & 0
\end{array}\right]^{*} I_{z^{m+p} \theta_{0}^{\prime} \theta_{1} \theta_{2}^{\prime} \theta_{3}^{\prime}} \equiv A_{1}^{*} \Omega_{1}^{\prime} \Omega_{2}
$$

where

$$
\begin{aligned}
A_{1} & :=\left[\begin{array}{ll}
0 & x \\
y & 0
\end{array}\right] \quad\left(\text { some } x, y \in H^{2}\right) \\
\Omega_{1}^{\prime} & :=\left[\begin{array}{cc}
z^{p} \theta_{1} \theta_{2}^{\prime} \theta_{3}^{\prime} & 0 \\
0 & z^{m+p-1} \theta_{0}^{\prime} \theta_{2}^{\prime} \theta_{3}^{\prime}
\end{array}\right] \cdot \nu\left[\begin{array}{cc}
z & -\alpha \\
\bar{\alpha} z & 1
\end{array}\right] .
\end{aligned}
$$

It thus follows from Lemma 5.3 with Ω_{1}^{\prime} in place of Ω_{1} that

$$
\Delta_{2} \mathcal{H}\left(\Delta_{0}\right) \subseteq \mathrm{cl} \operatorname{ran}\left[T_{\Phi}^{*}, T_{\Phi}\right] \subseteq \mathcal{H}\left(\Omega_{1}^{\prime}\right)
$$

Since

$$
\begin{aligned}
\mathcal{H}\left(\Delta_{0}\right) & =\mathcal{H}\left(\nu\left[\begin{array}{cc}
1 & -\alpha \\
\bar{\alpha} z & z
\end{array}\right]\left[\begin{array}{cc}
\theta_{3} & 0 \\
0 & \theta_{2}
\end{array}\right]\right) \\
& =\mathcal{H}\left(\nu\left[\begin{array}{cc}
1 & -\alpha \\
\bar{\alpha} z & z
\end{array}\right]\right) \bigoplus \nu\left[\begin{array}{cc}
1 & -\alpha \\
\bar{\alpha} z & z
\end{array}\right] \mathcal{H}\left(\left[\begin{array}{cc}
\theta_{3} & 0 \\
0 & \theta_{2}
\end{array}\right]\right)
\end{aligned}
$$

we have

$$
\Delta_{2} \mathcal{H}\left(\nu\left[\begin{array}{cc}
1 & -\alpha \tag{5.12}\\
\bar{\alpha} z & z
\end{array}\right]\right) \bigoplus\left[\begin{array}{cc}
z \theta_{1} & 0 \\
0 & z^{m} \theta_{0}^{\prime}
\end{array}\right] \mathcal{H}\left(\left[\begin{array}{cc}
\theta_{3} & 0 \\
0 & \theta_{2}
\end{array}\right]\right) \subseteq \mathcal{H}\left(\Omega_{1}^{\prime}\right)
$$

Then by the same argument as (5.10) and (5.11), we can see that

$$
\nu\left[\begin{array}{cc}
1 & \alpha \tag{5.13}\\
-\bar{\alpha} z & z
\end{array}\right] \mathcal{H}\left(\left[\begin{array}{cc}
\theta_{3} & 0 \\
0 & \theta_{2}
\end{array}\right]\right) \subseteq \mathcal{H}\left(\left[\begin{array}{cc}
z^{p} \theta_{2}^{\prime} \theta_{3}^{\prime} & 0 \\
0 & z^{p} \theta_{2}^{\prime} \theta_{3}^{\prime}
\end{array}\right]\right)
$$

which gives

$$
z \mathcal{H}\left(\theta_{2}\right) \subseteq \mathcal{H}\left(z^{p} \theta_{2}^{\prime} \theta_{3}^{\prime}\right)
$$

which by Lemma 5.2 implies that θ_{2} should be a constant. Thus (5.13) can be written as

$$
\nu\left[\begin{array}{cc}
1 & \alpha \\
-\bar{\alpha} z & z
\end{array}\right] \mathcal{H}\left(\left[\begin{array}{cc}
\theta_{3} & 0 \\
0 & 1
\end{array}\right]\right) \subseteq \mathcal{H}\left(\left[\begin{array}{cc}
\theta_{3}^{\prime} & 0 \\
0 & \theta_{3}^{\prime}
\end{array}\right]\right)
$$

which gives $z \mathcal{H}\left(\theta_{3}\right) \subseteq \mathcal{H}\left(\theta_{3}^{\prime}\right)$. It follows from again Lemma 5.2 that θ_{3} is a constant. Thus by (5.12), we have

$$
\left[\begin{array}{cc}
\theta_{1} & 0 \\
0 & z^{m-1} \theta_{0}^{\prime}
\end{array}\right] \nu\left[\begin{array}{cc}
z & \alpha \\
-\bar{\alpha} z & 1
\end{array}\right] \mathcal{H}\left(\nu\left[\begin{array}{cc}
1 & -\alpha \\
\bar{\alpha} z & z
\end{array}\right]\right) \subseteq \mathcal{H}\left(\left[\begin{array}{cc}
\theta_{1} & 0 \\
0 & z^{m-1} \theta_{0}^{\prime}
\end{array}\right] \nu\left[\begin{array}{cc}
z & -\alpha \\
\bar{\alpha} z & 1
\end{array}\right]\right)
$$

so that

$$
\nu\left[\begin{array}{cc}
z & \alpha \\
-\bar{\alpha} z & 1
\end{array}\right] \mathcal{H}\left(\nu\left[\begin{array}{cc}
1 & -\alpha \\
\bar{\alpha} z & z
\end{array}\right]\right) \subseteq \mathcal{H}\left(\nu\left[\begin{array}{cc}
z & -\alpha \\
\bar{\alpha} z & 1
\end{array}\right]\right)
$$

giving a contradiction by Lemma 5.3. Therefore we should have

$$
m=1, \quad \text { i.e., } \quad \theta_{0}=z \theta_{0}^{\prime}
$$

Thus by Lemmas 5.5 and 5.6, we have

$$
\Phi_{-}=\left[\begin{array}{cc}
z & \theta_{1} \bar{b} \\
z \theta_{0}^{\prime} \bar{a} & z
\end{array}\right]=\left[\begin{array}{cc}
z \theta_{1} & 0 \\
0 & \theta_{0}
\end{array}\right]\left[\begin{array}{cc}
\theta_{1} & a \\
z b & \theta_{0}^{\prime}
\end{array}\right]^{*} \quad \text { (right coprime factorization) }
$$

and

$$
\Phi_{-}=\left[\begin{array}{cc}
z & \theta_{1} \bar{b} \\
z \theta_{0}^{\prime} \bar{a} & z
\end{array}\right]=\left[\begin{array}{cc}
\theta_{0}^{\prime} & a \\
z b & \theta_{1}
\end{array}\right]^{*}\left[\begin{array}{cc}
\theta_{0} & 0 \\
0 & z \theta_{1}
\end{array}\right] \quad \text { (left coprime factorization). }
$$

Recall that

$$
\psi_{+}=\theta_{0} \theta_{2} \bar{c} \text { and } \varphi_{+}=z \theta_{1} \theta_{3} \bar{d} \text { for some inner functions } \theta_{2} \text { and } \theta_{3}
$$

We can thus write

$$
\Phi_{+}=\left[\begin{array}{cc}
0 & z \theta_{1} \theta_{3} \bar{d} \\
\theta_{0} \theta_{2} \bar{c} & 0
\end{array}\right]=\left[\begin{array}{cc}
z \theta_{1} \theta_{3} & 0 \\
0 & \theta_{0} \theta_{2}
\end{array}\right]\left[\begin{array}{ll}
0 & c \\
d & 0
\end{array}\right]^{*} \quad \text { (right coprime factorization) }
$$

Note that $\operatorname{LCM}\left(z \theta_{1} \theta_{3}, \theta_{0} \theta_{2}\right)$ is an inner divisor of $\theta_{0} \theta_{1} \theta_{2} \theta_{3}$. Thus we can write

$$
\Phi_{+}=\left[\begin{array}{ll}
0 & x \\
y & 0
\end{array}\right]^{*} I_{\theta_{0} \theta_{1} \theta_{2} \theta_{3}} \quad\left(x, y \in H^{2}\right)
$$

It follows from Lemma 5.3 that

$$
\left[\begin{array}{c}
z \theta_{1} \mathcal{H}\left(\theta_{3}\right) \\
\theta_{0} \mathcal{H}\left(\theta_{2}\right)
\end{array}\right] \subseteq \operatorname{cl} \operatorname{ran}\left[T_{\Phi}^{*}, T_{\Phi}\right] \subseteq\left[\begin{array}{c}
\mathcal{H}\left(\theta_{1} \theta_{2} \theta_{3}\right) \\
\mathcal{H}\left(\theta_{0}^{\prime} \theta_{2} \theta_{3}\right)
\end{array}\right]
$$

which implies

$$
z \mathcal{H}\left(\theta_{3}\right) \subseteq \mathcal{H}\left(\theta_{2} \theta_{3}\right) \quad \text { and } \quad z \mathcal{H}\left(\theta_{2}\right) \subseteq \mathcal{H}\left(\theta_{2} \theta_{3}\right)
$$

By Lemma 5.2,

$$
\left\{\begin{array}{l}
\text { either } \theta_{3} \text { is constant or } z \theta_{3} \text { is a divisor of } \theta_{2} \theta_{3} \tag{5.14}\\
\text { either } \theta_{2} \text { is constant or } z \theta_{2} \text { is a divisor of } \theta_{2} \theta_{3}
\end{array}\right.
$$

If θ_{2} or θ_{3} is not constant then it follows from (5.14) that z is a divisor of θ_{2} and θ_{3}. Thus we have $p, q \geq 1$. Let $N:=\max (p, q)$. Then $\operatorname{LCM}\left(z \theta_{1} \theta_{3}, \theta_{0} \theta_{2}\right)$ is an inner divisor of $z^{N} \theta_{0} \theta_{1} \theta_{2}^{\prime} \theta_{3}^{\prime}$. Thus we can write

$$
\Phi_{+}=\left[\begin{array}{ll}
0 & x \\
y & 0
\end{array}\right]^{*} I_{z^{N} \theta_{0} \theta_{1} \theta_{2}^{\prime} \theta_{3}^{\prime}} \quad\left(x, y \in H^{2}\right)
$$

It follows from Lemma 5.3 that

$$
\begin{aligned}
{\left[\begin{array}{c}
z \theta_{1} \mathcal{H}\left(z^{q} \theta_{3}^{\prime}\right) \\
\theta_{0} \mathcal{H}\left(z^{p} \theta_{2}^{\prime}\right)
\end{array}\right] } & \subseteq \operatorname{clran}\left[T_{\Phi}^{*}, T_{\Phi}\right] \subseteq\left[\begin{array}{l}
\mathcal{H}\left(z^{N} \theta_{1} \theta_{2}^{\prime} \theta_{3}^{\prime}\right) \\
\mathcal{H}\left(z^{N} \theta_{0}^{\prime} \theta_{2}^{\prime} \theta_{3}^{\prime}\right)
\end{array}\right] \\
& \Longrightarrow\left\{\begin{array}{l}
z^{q} \text { is a divisor of } z^{N-1} \theta_{2}^{\prime} \\
z^{p} \text { is a divisor of } z^{N-1} \theta_{3}^{\prime},
\end{array}\right.
\end{aligned}
$$

giving a contradiction. Therefore

$$
\theta_{2} \text { and } \theta_{3} \text { are constant. }
$$

We observe that $\operatorname{LCM}\left(z \theta_{1}, \theta_{0}\right)$ is an inner divisor of $z \theta_{0}^{\prime} \theta_{1}$. It follows from Lemma 5.3 that

$$
\left[\begin{array}{l}
\theta_{1} H^{2} \\
\theta_{0}^{\prime} H^{2}
\end{array}\right] \subseteq \operatorname{ker}\left[T_{\Phi}^{*}, T_{\Phi}\right]
$$

In particular, $\left[\begin{array}{c}0 \\ \theta_{0}^{\prime}\end{array}\right] \in \operatorname{ker}\left[T_{\Phi}^{*}, T_{\Phi}\right]$. Observe that

$$
\Phi_{-}^{*}\left[\begin{array}{c}
0 \\
\theta_{0}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\bar{z} & \bar{\theta}_{0} a \\
\bar{\theta}_{1} b & \bar{z}
\end{array}\right]\left[\begin{array}{c}
0 \\
\theta_{0}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
\bar{z} a \\
\bar{z} \theta_{0}^{\prime}
\end{array}\right]
$$

so that

$$
H_{\Phi_{-}^{*}}\left[\begin{array}{c}
0 \\
\theta_{0}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
a(0) \\
\theta_{0}^{\prime}(0)
\end{array}\right]
$$

We thus have

$$
H_{\Phi_{-}^{*}}^{*} H_{\Phi_{-}^{*}}\left[\begin{array}{c}
0 \\
\theta_{0}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
\theta_{0}^{\prime}(0) J(I-P)\left(\overline{\widetilde{\theta}}_{1} \widetilde{b}\right)+a(0) \\
*
\end{array}\right]
$$

A similar calculation shows that

$$
H_{\Phi_{+}^{*}}^{*} H_{\Phi_{+}^{*}}\left[\begin{array}{c}
0 \\
\theta_{0}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
0 \\
*
\end{array}\right]
$$

Since $\left[T_{\Phi}^{*}, T_{\Phi}\right]=H_{\Phi_{+}^{*}}^{*} H_{\Phi_{+}^{*}}-H_{\Phi_{-}^{*}}^{*} H_{\Phi_{-}^{*}}$, it follows that

$$
\theta_{0}^{\prime}(0) J(I-P)\left(\overline{\widetilde{\theta}}_{1} \widetilde{b}\right)=-a(0)
$$

 nonzero constant c, giving a contradiction because $\theta_{1}(0) \neq 0$. Therefore this case cannot occur.

Case $2(m=0$ and $n \neq 0)$ This case is symmetrical to Case 1. Thus the proof is identical to that of Case 1. Therefore this case cannot occur either.

Case $3(m \neq 0, n \neq 0$ and $m \geq 2$ or $n \geq 2) \quad$ In this case we have $a(0) \neq 0$ and $b(0) \neq 0$ because $\theta_{0}(0)=\theta_{1}(0)=0, \theta_{0}$ and a are coprime, and θ_{1} and b are coprime. By Lemma 5.6 we have

$$
\Phi_{-}=\left[\begin{array}{cc}
\theta_{1} & 0 \\
0 & \theta_{0}
\end{array}\right]\left[\begin{array}{cc}
z^{n-1} \theta_{1}^{\prime} & a \\
b & z^{m-1} \theta_{0}^{\prime}
\end{array}\right]^{*} \quad \text { (right coprime factorization) }
$$

Similarly, we have

$$
\Phi_{-}=\left[\begin{array}{cc}
z^{m-1} \theta_{0}^{\prime} & a \\
b & z^{n-1} \theta_{1}^{\prime}
\end{array}\right]^{*}\left[\begin{array}{cc}
\theta_{0} & 0 \\
0 & \theta_{1}
\end{array}\right] \quad \text { (left coprime factorization) }
$$

and

$$
\Phi_{+}=\left[\begin{array}{cc}
\theta_{1} \theta_{3} & 0 \\
0 & \theta_{0} \theta_{2}
\end{array}\right]\left[\begin{array}{ll}
0 & c \\
d & 0
\end{array}\right]^{*} \quad \text { (right coprime factorization). }
$$

We then claim that

$$
\begin{equation*}
\theta_{2} \text { and } \theta_{3} \text { are constant. } \tag{5.15}
\end{equation*}
$$

Assume θ_{2} is not constant. Put $\theta_{2}=z^{p} \theta_{2}^{\prime}$ and $\theta_{3}=z^{q} \theta_{3}^{\prime}\left(\theta_{2}^{\prime} \neq 0 \neq \theta_{3}^{\prime}(0)\right.$ and $\left.p, q \geq 0\right)$ and let $N:=\max (m+p, n+q)$. Then $\operatorname{LCM}\left(\theta_{0} \theta_{2}, \theta_{1} \theta_{3}\right)$ is a divisor of $z^{N} \theta_{0}^{\prime} \theta_{1}^{\prime} \theta_{2}^{\prime} \theta_{3}^{\prime}$. Thus we can write

$$
\Phi_{+}=\left[\begin{array}{ll}
0 & x \\
y & 0
\end{array}\right]^{*} I_{z^{N}} \theta_{0}^{\prime} \theta_{1}^{\prime} \theta_{2}^{\prime} \theta_{3}^{\prime} \quad\left(x, y \in H^{2}\right)
$$

By Lemma 5.3 we have

$$
\left[\begin{array}{l}
\theta_{1} \mathcal{H}\left(\theta_{3}\right) \\
\theta_{0} \mathcal{H}\left(\theta_{2}\right)
\end{array}\right] \subseteq\left[\begin{array}{l}
\mathcal{H}\left(z^{N-m} \theta_{1}^{\prime} \theta_{2}^{\prime} \theta_{3}^{\prime}\right) \\
\mathcal{H}\left(z^{N-n} \theta_{0}^{\prime} \theta_{2}^{\prime} \theta_{3}^{\prime}\right)
\end{array}\right]
$$

If θ_{3} is a constant, then $q=0$ and $m+p \leq N-n$, giving a contradiction because $m, n \geq 2$. If θ_{3} is not constant, then $n+q \leq N-m$ and $m+p \leq N-n$, giving a contradiction because $m, n \geq 2$. Therefore we should have that θ_{2} is constant. Similarly, we can show that θ_{3} is also constant. This proves (5.15).

We now suppose $n \leq m$. By Lemma 5.3 we have

$$
\left[\begin{array}{c}
\theta_{1}^{\prime} H^{2} \\
z^{m-n} \theta_{0}^{\prime} H^{2}
\end{array}\right] \subseteq \operatorname{ker}\left[T_{\Phi}^{*}, T_{\Phi}\right]
$$

In particular, $\left[\begin{array}{c}\theta_{1}^{\prime} \\ 0\end{array}\right] \in \operatorname{ker}\left[T_{\Phi}^{*}, T_{\Phi}\right]$. Observe that

$$
\Phi_{-}^{*}\left[\begin{array}{c}
\theta_{1}^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{cc}
\bar{z} & \bar{\theta}_{0} a \\
\bar{\theta}_{1} b & \bar{z}
\end{array}\right]\left[\begin{array}{c}
\theta_{1}^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{c}
\bar{z} \theta_{1}^{\prime} \\
\bar{z}^{n} b
\end{array}\right]
$$

so that

$$
H_{\Phi_{-}^{*}}\left[\begin{array}{c}
\theta_{1}^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{c}
\theta_{1}^{\prime}(0) \\
z^{n-1} \overline{\widetilde{b}}_{1}
\end{array}\right] \quad\left(b_{1}:=P_{\mathcal{H}\left(z^{n}\right)}(b)\right)
$$

Put $b_{3}:=z^{n-1} \overline{\widetilde{b}}_{1}$. We also have

$$
\widetilde{\Phi_{-}^{*}}\left[\begin{array}{c}
\theta_{1}^{\prime}(0) \\
b_{3}
\end{array}\right]=\left[\begin{array}{cc}
\bar{z} & \overline{\widetilde{\theta}}_{1} \widetilde{b}^{2} \\
\widetilde{\theta}_{0} \widetilde{a} & \bar{z}
\end{array}\right]\left[\begin{array}{c}
\theta_{1}^{\prime}(0) \\
b_{3}
\end{array}\right]=\left[\begin{array}{c}
* \\
\theta_{1}^{\prime}(0) \overline{\widetilde{\theta}}_{0} \widetilde{a}+b_{3} \bar{z}
\end{array}\right]
$$

so that

$$
H_{\Phi_{-}^{*}}^{*} H_{\Phi_{-}^{*}}\left[\begin{array}{c}
\theta_{1}^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{c}
* \\
\theta_{1}^{\prime}(0) J(I-P)\left(\overline{\widetilde{\theta}}_{0} \widetilde{a}\right)+b_{3}(0)
\end{array}\right] .
$$

A similar calculation shows that

$$
H_{\Phi_{+}^{*}}^{*} H_{\Phi_{+}^{*}}\left[\begin{array}{c}
\theta_{1}^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{l}
* \\
0
\end{array}\right]
$$

It thus follows that

$$
\theta_{1}^{\prime}(0) J(I-P)\left(\overline{\widetilde{\theta}}_{0} \widetilde{a}\right)=-b_{3}(0) \Longrightarrow \overline{\tilde{\theta}}_{0} \widetilde{a} \in \bar{z} H^{2} \Longrightarrow \bar{\theta}_{0} a \in \bar{z} H^{2} \Longrightarrow \bar{\theta}_{0} a \in \bar{z} H^{2} \cap\left(H^{2}\right)^{\perp}
$$

Since $n \leq m$ and ($m \geq 2$ or $n \geq 2$), it follows that $m \geq 2$. Thus $\overline{\theta_{0}} a \in \bar{z} H^{2} \cap\left(H^{2}\right)^{\perp}$ implies $\bar{z}^{m-1} \overline{\theta_{0}^{\prime}} a=c$ (a constant), which forces $a=0$, giving a contradiction. If instead $n>m$ then the same argument leads a contradiction. Therefore this case cannot occur. This completes the proof of (5.8).

Now in view of (5.8) it suffices to consider the case $m=n=0$ and the case $m=n=1$.
Case A $(m=n=0)$. In this case, we first claim that

$$
\begin{equation*}
\varphi_{-}=\psi_{-}=0, \quad \text { i.e., } \varphi \text { and } \psi \text { are analytic. } \tag{5.16}
\end{equation*}
$$

Put $\theta:=\operatorname{GCD}\left(\theta_{0}, \theta_{1}\right)$. Then $\theta_{0}=\theta_{0}^{\prime} \theta$ and $\theta_{1}=\theta_{1}^{\prime} \theta$ for some inner functions $\theta_{0}^{\prime}, \theta_{1}^{\prime}$, and hence $\operatorname{LCM}\left(\theta_{0}, \theta_{1}\right)=\theta \theta_{0}^{\prime} \theta_{1}^{\prime}$. We thus have

$$
\Phi_{-}=I_{z \theta \theta_{0}^{\prime} \theta_{1}^{\prime}}\left[\begin{array}{cc}
\theta \theta_{0}^{\prime} \theta_{1}^{\prime} & z \theta_{1}^{\prime} a \\
z \theta_{0}^{\prime} b & \theta \theta_{0}^{\prime} \theta_{1}^{\prime}
\end{array}\right]^{*} \equiv I_{z \theta \theta_{0}^{\prime} \theta_{1}^{\prime}} B^{*}
$$

Since $B(0)$ is invertible it follows from Lemma 2.3 that I_{z} and B are coprime. Observe that

$$
\begin{aligned}
\Phi_{-}^{*}\left[\begin{array}{c}
z f \\
z g
\end{array}\right]=\left[\begin{array}{cc}
\bar{z} & \bar{\theta}_{0} a \\
\bar{\theta}_{1} b & \bar{z}
\end{array}\right]\left[\begin{array}{c}
z f \\
z g
\end{array}\right] \in H_{\mathbb{C}^{2}}^{2} & \Longleftrightarrow\left[\begin{array}{l}
\bar{\theta}_{0} a z g \\
\bar{\theta}_{1} b z f
\end{array}\right] \in H_{\mathbb{C}^{2}}^{2} \\
& \Longleftrightarrow g \in \theta_{0} H^{2}, f \in \theta_{1} H^{2}
\end{aligned}
$$

which implies

$$
\operatorname{ker} H_{\Phi_{-}^{*}}=\left[\begin{array}{cc}
z \theta_{1} & 0 \\
0 & z \theta_{0}
\end{array}\right] H_{\mathbb{C}^{2}}^{2}
$$

We thus have

$$
\Phi_{-}=\left[\begin{array}{cc}
z \theta_{1} & 0 \\
0 & z \theta_{0}
\end{array}\right]\left[\begin{array}{cc}
\theta_{1} & z a \\
z b & \theta_{0}
\end{array}\right]^{*} \quad \text { (right coprime factorization). }
$$

To get the left coprime factorization of Φ_{-}, we take

$$
\widetilde{\Phi_{-}}=\left[\begin{array}{cc}
z \widetilde{\theta}_{0} & 0 \\
0 & z \widetilde{\theta_{1}}
\end{array}\right]\left[\begin{array}{cc}
\widetilde{\theta_{0}} & z \widetilde{b} \\
z \widetilde{a} & \widetilde{\theta_{1}}
\end{array}\right]^{*} \quad \text { (right coprime factorization) }
$$

which implies

$$
\Phi_{-}=\left[\begin{array}{cc}
\theta_{0} & z a \\
z b & \theta_{1}
\end{array}\right]^{*}\left[\begin{array}{cc}
z \theta_{0} & 0 \\
0 & z \theta_{1}
\end{array}\right] \quad \text { (left coprime factorization). }
$$

Since T_{Φ} is hyponormal and hence,

$$
\operatorname{ker} H_{\Phi_{+}^{*}} \subseteq \operatorname{ker} H_{\Phi_{-}^{*}}=\left[\begin{array}{l}
z \theta_{1} H^{2} \\
z \theta_{0} H^{2}
\end{array}\right]
$$

it follows that

$$
\psi_{+}=z \theta_{0} \theta_{2} \bar{c} \text { and } \varphi_{+}=z \theta_{1} \theta_{3} \bar{d} \text { for some inner functions } \theta_{2}, \theta_{3}
$$

We can thus write

$$
\Phi_{+}=\left[\begin{array}{cc}
0 & z \theta_{1} \theta_{3} \bar{d} \\
z \theta_{0} \theta_{2} \bar{c} & 0
\end{array}\right]=\left[\begin{array}{cc}
z \theta_{1} \theta_{3} & 0 \\
0 & z \theta_{0} \theta_{2}
\end{array}\right]\left[\begin{array}{ll}
0 & c \\
d & 0
\end{array}\right]^{*} \quad \text { (right coprime factorization) }
$$

Observe that $\operatorname{LCM}\left(z \theta_{1} \theta_{3}, z \theta_{0} \theta_{2}\right)$ is an inner divisor of $z \theta_{0} \theta_{1} \theta_{2} \theta_{3}$. Thus we can write

$$
\Phi_{+}=\left[\begin{array}{ll}
0 & x \\
y & 0
\end{array}\right]^{*} I_{z \theta_{0} \theta_{1} \theta_{2} \theta_{3}} \quad\left(x, y \in H^{2}\right)
$$

It follows from Lemma 5.3 that

$$
\left[\begin{array}{l}
z \theta_{1} \mathcal{H}\left(\theta_{3}\right) \\
z \theta_{0} \mathcal{H}\left(\theta_{2}\right)
\end{array}\right] \subseteq \operatorname{clran}\left[T_{\Phi}^{*}, T_{\Phi}\right] \subseteq\left[\begin{array}{l}
\mathcal{H}\left(\theta_{1} \theta_{2} \theta_{3}\right) \\
\mathcal{H}\left(\theta_{0} \theta_{2} \theta_{3}\right)
\end{array}\right]
$$

which implies that

$$
z \mathcal{H}\left(\theta_{3}\right) \subseteq \mathcal{H}\left(\theta_{2} \theta_{3}\right) \quad \text { and } \quad z \mathcal{H}\left(\theta_{2}\right) \subseteq \mathcal{H}\left(\theta_{2} \theta_{3}\right)
$$

Thus the same argument as in (5.14) shows that

$$
\theta_{2} \text { and } \theta_{3} \text { are constant. }
$$

We now observe that $\operatorname{LCM}\left(z \theta_{1}, z \theta_{0}\right)$ is an inner divisor of $z \theta_{0} \theta_{1}$. Thus we can write

$$
\Phi_{+}=\left[\begin{array}{ll}
0 & x \\
y & 0
\end{array}\right]^{*} I_{z \theta_{0} \theta_{1}} \quad\left(x, y \in H^{2}\right)
$$

It follows from Lemma 5.3 that $\left[\begin{array}{c}\theta_{1} H^{2} \\ \theta_{0} H^{2}\end{array}\right] \subseteq \operatorname{ker}\left[T_{\Phi}^{*}, T_{\Phi}\right]$. In particular, $\left[\begin{array}{c}\theta_{1} \\ 0\end{array}\right] \in \operatorname{ker}\left[T_{\Phi}^{*}, T_{\Phi}\right]$. Observe that

$$
\Phi_{-}^{*}\left[\begin{array}{c}
\theta_{1} \\
0
\end{array}\right]=\left[\begin{array}{cc}
\bar{z} & \bar{\theta}_{0} a \\
\bar{\theta}_{1} b & \bar{z}
\end{array}\right]\left[\begin{array}{c}
\theta_{1} \\
0
\end{array}\right]=\left[\begin{array}{c}
\bar{z} \theta_{1} \\
b
\end{array}\right],
$$

so that

$$
H_{\Phi_{-}^{*}}\left[\begin{array}{c}
\theta_{1} \\
0
\end{array}\right]=\left[\begin{array}{c}
\theta_{1}(0) \\
0
\end{array}\right]
$$

We thus have

$$
H_{\Phi_{-}^{*}}^{*} H_{\Phi_{-}^{*}}\left[\begin{array}{c}
\theta_{1} \\
0
\end{array}\right]=\left[\begin{array}{c}
\theta_{1}(0) \\
\theta_{1}(0) J(I-P)\left(\overline{\widetilde{\theta}}_{0} \widetilde{a}\right)
\end{array}\right]
$$

A similar calculation shows that

$$
H_{\Phi_{+}^{*}}^{*} H_{\Phi_{+}^{*}}\left[\begin{array}{c}
\theta_{1} \\
0
\end{array}\right]=\left[\begin{array}{l}
* \\
0
\end{array}\right]
$$

It thus follows that

$$
\theta_{1}(0) J(I-P)\left(\overline{\widetilde{\theta}}_{0} \widetilde{a}\right)=0 \Longrightarrow \overline{\widetilde{\theta}}_{0} \widetilde{a} \in H^{2} \Longrightarrow \bar{\theta}_{0} a \in H^{2} \Longrightarrow \bar{\theta}_{0} a \in H^{2} \cap\left(H^{2}\right)^{\perp}
$$

which implies that $a=0$ and hence ϕ is analytic. Similarly, we can show that ψ is also analytic. This gives (5.16).

Now since by (5.16), $\varphi, \psi \in H^{\infty}$ and $|\varphi|=|\psi|$, we can write $\varphi=\theta_{1} a$ and $\psi=\theta_{2} a$, where the θ_{i} are inner functions and a is an outer function. Observe that

$$
\Phi_{-} \equiv B^{*} \Theta_{2}
$$

where $B \equiv\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\Theta_{2} \equiv\left[\begin{array}{ll}z & 0 \\ 0 & z\end{array}\right]$ are coprime. Thus our symbol satisfies all the assumptions of Theorem 4.1. Thus by Theorem 4.1, since T_{Φ} is 2-hyponormal then T_{Φ} must be normal. We thus have

$$
\begin{equation*}
H_{\Phi_{+}^{*}}^{*} H_{\Phi_{+}^{*}}=H_{\Phi_{-}^{*}}^{*} H_{\Phi_{-}^{*}} . \tag{5.17}
\end{equation*}
$$

Now observe that

$$
\Phi_{+}=\left[\begin{array}{cc}
0 & \varphi \\
\psi & 0
\end{array}\right] \quad \text { and } \quad \Phi_{-}=\left[\begin{array}{cc}
z & 0 \\
0 & z
\end{array}\right]
$$

Since T_{Φ} is normal we have

$$
\left[\begin{array}{cc}
H_{\frac{*}{\varphi}}^{*} H_{\bar{\varphi}} & 0 \\
0 & H_{\bar{\psi}}^{*} H_{\bar{\psi}}
\end{array}\right]=\left[\begin{array}{cc}
H_{\bar{z}} & 0 \\
0 & H_{\bar{z}}
\end{array}\right]
$$

which implies

$$
\begin{equation*}
H_{\bar{\varphi}}^{*} H_{\bar{\varphi}}=H_{\bar{z}}=H_{\bar{\psi}}^{*} H_{\bar{\psi}}, \tag{5.18}
\end{equation*}
$$

which says that $H_{\bar{\varphi}}$ and $H_{\bar{\psi}}$ are both rank-one operators. Now remember that if T is a rankone Hankel operator then there exist $\omega \in \mathbb{D}$ and a constant c such that $T=c\left(k_{\bar{\omega}} \otimes k_{\omega}\right)$, where $k_{\omega}:=\frac{1}{1-\bar{\omega} z}$ is the reproducing kernel for ω. Note that $k_{\bar{\omega}} \otimes k_{\omega}$ is represented by the matrix

$$
\left[\begin{array}{ccccc}
1 & \omega & \omega^{2} & \omega^{3} & \ldots \\
\omega & \omega^{2} & \omega^{3} & \ldots & \\
\omega^{2} & \omega^{3} & \ldots & & \\
\omega^{3} & & & & \\
\vdots & & & &
\end{array}\right]
$$

By (5.18) we have that $\omega=0$. We thus have

$$
\begin{equation*}
\varphi=e^{i \theta_{1}} z+\beta_{1} \quad \text { and } \quad \psi=e^{i \theta_{2}} z+\beta_{2} \quad\left(\beta_{1}, \beta_{2} \in \mathbb{C}, \theta_{1}, \theta_{2} \in[0,2 \pi)\right) \tag{5.19}
\end{equation*}
$$

But since $|\varphi|=|\psi|$, we have

$$
\begin{equation*}
\varphi=e^{i \theta} z+\beta \quad \text { and } \quad \psi=e^{i \omega} \varphi \quad(\beta \in \mathbb{C}, \theta, \omega \in[0,2 \pi)) \tag{5.20}
\end{equation*}
$$

Case $\mathbf{B}(m=n=1) \quad$ In this case, $\theta_{0}=z \theta_{0}^{\prime}$ and $\theta_{1}=z \theta_{1}^{\prime}\left(\theta_{0}^{\prime}(0), \theta_{1}^{\prime}(0) \neq 0\right)$. We thus have

$$
\varphi_{-}=z \theta_{0}^{\prime} \bar{a} \quad \text { and } \quad \psi_{-}=z \theta_{1}^{\prime} \bar{b}
$$

so that

$$
\Phi_{-}=\left[\begin{array}{cc}
z & z \theta_{1}^{\prime} \bar{b} \\
z \theta_{0}^{\prime} \bar{a} & z
\end{array}\right]
$$

There are two subcases to consider.
Case B-1 $\left((a b)(0) \neq\left(\theta_{0}^{\prime} \theta_{1}^{\prime}\right)(0)\right)$. In this case, we have, by Lemma 5.6,

$$
\begin{aligned}
\Phi_{-}=\left[\begin{array}{cc}
z & z \theta_{1}^{\prime} \bar{b} \\
z \theta_{0}^{\prime} \bar{a} & z
\end{array}\right] & =\left[\begin{array}{cc}
z \theta_{1}^{\prime} & 0 \\
0 & z \theta_{0}^{\prime}
\end{array}\right]\left[\begin{array}{cc}
\theta_{1}^{\prime} & a \\
b & \theta_{0}^{\prime}
\end{array}\right]^{*} & & \text { (right coprime decompositon) } \\
& =\left[\begin{array}{cc}
\theta_{0}^{\prime} & a \\
b & \theta_{1}^{\prime}
\end{array}\right]^{*}\left[\begin{array}{cc}
z \theta_{0}^{\prime} & 0 \\
0 & z \theta_{1}^{\prime}
\end{array}\right] & & \text { (left coprime factorization) }
\end{aligned}
$$

and

$$
\Phi_{+}=\left[\begin{array}{cc}
z \theta_{1}^{\prime} \theta_{3} & 0 \\
0 & z \theta_{0}^{\prime} \theta_{2}
\end{array}\right]\left[\begin{array}{ll}
0 & c \\
d & 0
\end{array}\right]^{*} \quad \text { (right coprime factorization). }
$$

Suppose θ_{2} is not constant. Put $\theta_{2}=z^{p} \theta_{2}^{\prime}$ and $\theta_{3}=z^{q} \theta_{3}^{\prime}(p, q \in \mathbb{N} \cup\{0\})$. Let $N:=\max (p, q)$. Then $\operatorname{LCM}\left(\theta_{1} \theta_{3}, \theta_{0} \theta_{2}\right)$ is a divisor of $z^{N+1} \theta_{0}^{\prime} \theta_{1}^{\prime} \theta_{2}^{\prime} \theta_{3}^{\prime}$. Thus we can write

$$
\Phi_{+}=\left[\begin{array}{ll}
0 & x \\
y & 0
\end{array}\right]^{*} I_{z^{N+1} \theta_{0}^{\prime} \theta_{1}^{\prime} \theta_{2}^{\prime} \theta_{3}^{\prime}} \quad\left(x, y \in H^{2}\right)
$$

By Lemma 5.3 we have

$$
\left[\begin{array}{l}
z \theta_{1}^{\prime} \mathcal{H}\left(\theta_{3}\right) \\
z \theta_{0}^{\prime} \mathcal{H}\left(\theta_{2}\right)
\end{array}\right] \subseteq\left[\begin{array}{l}
\mathcal{H}\left(z^{N} \theta_{1}^{\prime} \theta_{2}^{\prime} \theta_{3}^{\prime}\right) \\
\mathcal{H}\left(z^{N} \theta_{0}^{\prime} \theta_{2}^{\prime} \theta_{3}^{\prime}\right)
\end{array}\right]
$$

If θ_{3} is a constant then $p+1 \leq N=p$, giving a contradiction. If instead θ_{3} is not constant then $q+1 \leq N$ and $p+1 \leq N$, giving a contradiction. The same argument gives θ_{3} is a constant. Therefore θ_{2} and θ_{3} should be constant. Note that $\operatorname{LCM}\left(z \theta_{1}^{\prime}, z \theta_{0}^{\prime}\right)$ is an inner divisor of $z \theta_{0}^{\prime} \theta_{1}^{\prime}$. Thus we can write

$$
\Phi_{+}=\left[\begin{array}{ll}
0 & x \\
y & 0
\end{array}\right]^{*} I_{z \theta_{0}^{\prime} \theta_{1}^{\prime}} \quad\left(x, y \in H^{2}\right)
$$

It follows from Lemma 5.3 that

$$
\left[\begin{array}{l}
\theta_{1}^{\prime} H^{2} \tag{5.21}\\
\theta_{0}^{\prime} H^{2}
\end{array}\right] \subseteq \operatorname{ker}\left[T_{\Phi}^{*}, T_{\Phi}\right]
$$

In particular, $\left[\begin{array}{c}\theta_{1}^{\prime} \\ 0\end{array}\right] \in \operatorname{ker}\left[T_{\Phi}^{*}, T_{\Phi}\right]$. Observe that

$$
\Phi_{-}^{*}\left[\begin{array}{c}
\theta_{1}^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{cc}
\bar{z} & \bar{\theta}_{0} a \\
\bar{\theta}_{1} b & \bar{z}
\end{array}\right]\left[\begin{array}{c}
\theta_{1}^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{c}
\bar{z} \theta_{1}^{\prime} \\
\bar{z} b
\end{array}\right]
$$

so that

$$
H_{\Phi_{-}^{*}}\left[\begin{array}{c}
\theta_{1}^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{c}
\theta_{1}^{\prime}(0) \\
b(0)
\end{array}\right]
$$

We thus have

$$
\widetilde{\Phi_{-}^{*}}\left[\begin{array}{c}
\theta_{1}^{\prime}(0) \\
b(0)
\end{array}\right]=\left[\begin{array}{cc}
\bar{z}^{z} & \overline{\widetilde{\theta}}_{1} \widetilde{b}^{2} \\
\widetilde{\widetilde{\theta}}_{0} \widetilde{a} & \bar{z}
\end{array}\right]\left[\begin{array}{c}
\theta_{1}^{\prime}(0) \\
b(0)
\end{array}\right]=\left[\begin{array}{c}
* \\
\theta_{1}^{\prime}(0) \overline{\tilde{\theta}}_{0} \widetilde{a}+b(0) \bar{z}
\end{array}\right]
$$

so that

$$
H_{\Phi_{-}^{*}}^{*} H_{\Phi_{-}^{*}}\left[\begin{array}{c}
\theta_{1}^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{c}
* \\
\theta_{1}^{\prime}(0) J(I-P)\left(\overline{\widetilde{\theta}}_{0} \widetilde{a}\right)+b(0)
\end{array}\right]
$$

A similar calculation shows that

$$
H_{\Phi_{+}^{*}}^{*} H_{\Phi_{+}^{*}}\left[\begin{array}{c}
\theta_{1}^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{c}
* \\
0
\end{array}\right]
$$

It thus follows that

$$
\theta_{1}^{\prime}(0) J(I-P)\left(\overline{\widetilde{\theta}}_{0} \widetilde{a}\right)=-b(0)
$$

Since $b(0) \neq 0$, we have that $\overline{\widetilde{\theta}}_{0} \widetilde{a} \in \bar{z} H^{2}$, which implies that $\overline{\theta_{0}} a=\alpha \bar{z}$ for a nonzero constant α. Therefore we must have that θ_{0}^{\prime} is a constant. Similarly, we can show that $\overline{\theta_{1}} b=\beta \bar{z}$ for a nonzero constant β, and hence θ_{1}^{\prime} is also a constant. Therefore by (5.21), T_{Φ} is normal. Now observe that

$$
\Phi_{+}=\left[\begin{array}{cc}
0 & \varphi_{+} \\
\psi_{+} & 0
\end{array}\right] \quad \text { and } \quad \Phi_{-}^{*}=\left[\begin{array}{cc}
\bar{z} & \alpha \bar{z} \\
\beta \bar{z} & \bar{z}
\end{array}\right] \quad(\alpha \neq 0 \neq \beta)
$$

Since T_{Φ} is normal we have

$$
\left[\begin{array}{cc}
H_{\frac{\varphi_{+}}{\varphi_{+}}}^{H_{\overline{\varphi_{+}}}} & 0 \\
0 & H_{\overline{\psi_{+}}}^{*} H_{\overline{\psi_{+}}}
\end{array}\right]=\left[\begin{array}{cc}
\left(1+|\beta|^{2}\right) H_{\bar{z}} & (\alpha+\bar{\beta}) H_{\bar{z}} \\
(\bar{\alpha}+\beta) H_{\bar{z}} & \left(1+|\alpha|^{2}\right) H_{\bar{z}}
\end{array}\right]
$$

which implies that

$$
\left\{\begin{array}{l}
\beta=-\bar{\alpha} \tag{5.22}\\
H_{\overline{\varphi_{+}}}^{*} H_{\overline{\varphi_{+}}}=\left(1+|\beta|^{2}\right) H_{\bar{z}} \\
H_{\frac{*}{\psi_{+}}}^{*} H_{\overline{\psi_{+}}}=\left(1+|\alpha|^{2}\right) H_{\bar{z}}
\end{array}\right.
$$

By the case assumption, $1 \neq|a b|=|\alpha \beta|=|\alpha|^{2}$, i.e., $|\alpha| \neq 1$. By the same argument as in (5.18) we have

$$
\varphi_{+}=e^{i \theta_{1}} \sqrt{1+|\alpha|^{2}} z+\beta_{1} \quad \text { and } \quad \psi_{+}=e^{i \theta_{2}} \sqrt{1+|\alpha|^{2}} z+\beta_{2}
$$

$\left(\beta_{1}, \beta_{2} \in \mathbb{C} ; \theta_{1}, \theta_{2} \in[0,2 \pi)\right)$ which implies that

$$
\varphi=\alpha \bar{z}+e^{i \theta_{1}} \sqrt{1+|\alpha|^{2}} z+\beta_{1} \quad \text { and } \quad \psi=-\bar{\alpha} \bar{z}+e^{i \theta_{2}} \sqrt{1+|\alpha|^{2}} z+\beta_{2}
$$

Since $|\varphi|=|\psi|$, it follows that

$$
\left|e^{i \theta_{1}} \sqrt{1+|\alpha|^{2}} z^{2}+\beta_{1} z+\alpha\right|=\left|e^{i \theta_{2}} \sqrt{1+|\alpha|^{2}} z^{2}+\beta_{2} z-\bar{\alpha}\right| \quad \text { for all } z \text { on } \mathbb{T}
$$

We argue that if p and q are polynomials having the same degree and the outer coefficients of the same modulus then

$$
|p(z)|=|q(z)| \text { on }|z|=1 \Longrightarrow p(z)=e^{i \omega} q(z) \quad \text { for some } \omega \in[0,2 \pi)
$$

Indeed, if $|p(z)|=|q(z)|$ on $|z|=1$, then $p=\theta q$ for a finite Blaschke product θ, i.e., $p=$ $\prod_{j=1}^{n} \frac{z-\alpha_{j}}{1-\bar{\alpha}_{j} z} q\left(\left|\alpha_{j}\right| \leq 1\right)$. But since the modulus of the outer coefficients are same, it follows that $\prod_{j=1}^{n}\left|\alpha_{j}\right|=1$ and therefore, $p=e^{i \omega} q$ for some ω. Using this fact we can see that $\psi=e^{i \omega} \varphi$ for some $\omega \in[0,2 \pi)$. But then a straightforward calculation shows that $\omega=\pi-2 \arg \alpha$, and hence

$$
\varphi=\alpha \bar{z}+e^{i \theta} \sqrt{1+|\alpha|^{2}} z+\beta \quad \text { and } \quad \psi=e^{i(\pi-2 \arg \alpha)} \varphi
$$

where $\alpha \neq 0,|\alpha| \neq 1, \beta \in \mathbb{C}$, and $\theta \in[0,2 \pi)$.
Case B-2 $\left((a b)(0)=\left(\theta_{0}^{\prime} \theta_{1}^{\prime}\right)(0)\right)$. A similar argument as in Case 1 shows that θ_{2} and θ_{3} are constant and the same argument as in Case B-1 gives that

$$
\varphi=\alpha \bar{z}+e^{i \theta} \sqrt{1+|\alpha|^{2}} z+\beta \quad \text { and } \quad \psi=e^{i(\pi-2 \arg \alpha)} \varphi
$$

where $\alpha \neq 0,|\alpha|=1, \beta \in \mathbb{C}$, and $\theta \in[0,2 \pi)$. We here note that the condition $|\alpha|=1$ comes from the case assumption $1=\left|\theta_{0}^{\prime} \theta_{1}^{\prime}\right|=|a b|=|\alpha|^{2}$.

Therefore if we combine the two subcases of Case B-1 and B-2 then we can conclude that

$$
\begin{equation*}
\varphi=\alpha \bar{z}+e^{i \theta} \sqrt{1+|\alpha|^{2}} z+\beta \quad \text { and } \quad \psi=e^{i(\pi-2 \arg \alpha)} \varphi \tag{5.23}
\end{equation*}
$$

where $\alpha \neq 0, \beta \in \mathbb{C}$, and $\theta \in[0,2 \pi)$. This completes the proof.
Remark 5.8. We would also ask whether there is a subnormal non-Toeplitz completion of $\left[\begin{array}{cc}T_{\bar{z}} & ? \\ ? & T_{\bar{z}}\end{array}\right]$. Unexpectedly, there is a normal non-Toeplitz completion of $\left[\begin{array}{cc}T_{\bar{z}} & ? \\ ? & T_{\bar{z}}\end{array}\right]$. To see this, let B be a selfadjoint operator and put

$$
T=\left[\begin{array}{cc}
T_{\bar{z}} & T_{z}+B \\
T_{z}+B & T_{\bar{z}}
\end{array}\right]
$$

Then

$$
\left[T^{*}, T\right]=\left[\begin{array}{ll}
T_{\bar{z}} B+B T_{z}-\left(T_{z} B+B T_{\bar{z}}\right) & T_{z} B+B T_{\bar{z}}-\left(T_{\bar{z}} B+B T_{z}\right) \\
B T_{\bar{z}}+T_{z} B-\left(B T_{z}+T_{\bar{z}} B\right) & T_{\bar{z}} B+B T_{z}-\left(T_{z} B+B T_{\bar{z}}\right)
\end{array}\right]
$$

so that T is normal if and only if

$$
\begin{equation*}
T_{\bar{z}} B+B T_{z}=T_{z} B+B T_{\bar{z}}, \quad \text { i.e., }\left[T_{z}, B\right]=\left[T_{\bar{z}}, B\right] . \tag{5.24}
\end{equation*}
$$

We define

$$
\alpha_{1}:=0 \quad \text { and } \quad \alpha_{n}:=-\frac{2}{3}\left(1-\left(-\frac{1}{2}\right)^{n}\right) \quad \text { for } n \geq 2
$$

Let $D \equiv \operatorname{diag}\left(\alpha_{n}\right)$, i.e., a diagonal operator whose diagonal entries are $\alpha_{n}(n=1,2, \ldots)$ and for each $n=1,2 \ldots$, let B_{n} be defined by

$$
B_{n}=-\frac{1}{2^{n-1}} \operatorname{diag}\left(\alpha_{n-1}\right) T_{z^{2 n}}^{*}
$$

Then

$$
\left\|B_{n}\right\| \leq \frac{1}{2^{n-1}} \sup \left\{\alpha_{n-1}\right\}<\frac{1}{2^{n-1}}
$$

which implies that

$$
\left\|\sum_{n=1}^{\infty} B_{n}\right\| \leq 2
$$

We define C by

$$
C:=\sum_{n=1}^{\infty} B_{n}
$$

Then C looks like:

$$
C=\left[\begin{array}{ccccccccc}
0 & 0 & 1 & 0 & \frac{1}{2} & 0 & \frac{1}{2^{2}} & 0 & \cdots \\
0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2^{2}} & 0 & \frac{1}{2^{3}} & \cdots \\
0 & 0 & 0 & 0 & \frac{3}{2^{2}} & 0 & \frac{3}{2^{3}} & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & \frac{5}{2^{3}} & 0 & \frac{5}{2^{4}} & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{11}{2^{4}} & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{21}{2^{5}} & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\vdots & \ddots
\end{array}\right] .
$$

Note that C is bounded. If we define B by

$$
B:=D+C+C^{*},
$$

then a straightforward calculation shows that B satisfies equation (5.24). Therefore the operator

$$
T=\left[\begin{array}{cc}
T_{\bar{z}} & T_{z}+B \\
T_{z}+B & T_{\bar{z}}
\end{array}\right]
$$

is normal. We note that $T_{z}+B$ is not a Toeplitz operator.

Remark 5.9. In Theorem 5.1 we have seen that a 2 -hyponormal Toeplitz completion of $\left[\begin{array}{c}T_{\bar{z}} \\ ? \\ ? \\ T_{\bar{z}}\end{array}\right]$ is automatically normal. Consequently, from the viewpoint of k-hyponormality as a bridge between hyponormality and subnormality, there is no gap between the 2-hyponormality and the subnormality of $\left[\begin{array}{cc}T_{\bar{z}} & T_{\varphi} \\ T_{\psi} & T_{\bar{z}}\end{array}\right]\left(\varphi, \psi \in H^{2}\right)$. Of course there does exist a gap between the hyponormality and the 2-hyponormality of $\left[\begin{array}{cc}T_{\bar{z}} & T_{\varphi} \\ T_{\psi} & T_{\bar{z}}\end{array}\right]$. To see this, let

$$
\Phi:=\left[\begin{array}{cc}
\bar{z} & \bar{z}^{2}+2 z^{2} \\
\bar{z}^{2}+2 z^{2} & \bar{z}
\end{array}\right]
$$

Then Φ is normal and if we put $K:=\left[\begin{array}{cc}\frac{1}{2} & \frac{z}{2} \\ \frac{z}{2} & \frac{1}{2}\end{array}\right]$, then $\Phi-K \Phi^{*} \in H_{M_{2}}^{2}$ and $\|K\|_{\infty}=1$, so that T_{Φ} is hyponormal. But by Theorem 5.1, T_{Φ} is not 2-hyponormal. However, we have not been able to characterize all hyponormal completions of $\left[\begin{array}{cc}T_{\bar{z}} & \stackrel{?}{?} \\ T_{\bar{z}}\end{array}\right]$; this completion problem appears to be quite difficult.

6. Open Problems

1. Nakazi-Takahashi's Theorem for matrix-valued symbols. T. Nakazi and K. Takahashi [NT] have shown that if $\varphi \in L^{\infty}$ is such that T_{φ} is a hyponormal operator whose self-commutator $\left[T_{\varphi}^{*}, T_{\varphi}\right]$ is of finite rank then there exists a finite Blaschke product $b \in \mathcal{E}(\varphi)$ such that

$$
\operatorname{deg}(b)=\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right]
$$

What is the matrix-valued version of Nakazi and Takahashi's Theorem? A candidate is as follows: If $\Phi \in L_{M_{n}}^{\infty}$ is such that T_{Φ} is a hyponormal operator whose self-commutator $\left[T_{\Phi}^{*}, T_{\Phi}\right]$ is of finite rank then there exists a finite Blaschke-Potapov product $B \in \mathcal{E}(\Phi)$ such that $\operatorname{deg}(B)=\operatorname{rank}\left[T_{\Phi}^{*}, T_{\Phi}\right]$. We note that the degree of the finite Blaschke-Potapov product B is defined by

$$
\begin{equation*}
\operatorname{deg}(B):=\operatorname{dim} \mathcal{H}(B)=\operatorname{deg}(\operatorname{det} B) \tag{6.1}
\end{equation*}
$$

where the second equality follows from the well-known Fredholm theory of block Toeplitz operators [Do2] that

$$
\begin{aligned}
\operatorname{dim} \mathcal{H}(\Theta) & =\operatorname{dim} \operatorname{ker} T_{\Theta^{*}}=-\operatorname{index} T_{\Theta} \\
& =-\operatorname{index} T_{\operatorname{det} \Theta}=\operatorname{dim} \operatorname{ker} T \overline{\operatorname{det} \Theta} \\
& =\operatorname{dim}(\mathcal{H}(\operatorname{det} \Theta))=\operatorname{deg}(\operatorname{det} \Theta)
\end{aligned}
$$

Thus we conjecture the following:
Conjecture 6.1. If $\Phi \in L_{M_{n}}^{\infty}$ is such that T_{Φ} is a hyponormal operator whose self-commutator [T_{Φ}^{*}, T_{Φ}] is of finite rank then there exists a finite Blaschke-Potapov product $B \in \mathcal{E}(\Phi)$ such that $\operatorname{rank}\left[T_{\Phi}^{*}, T_{\Phi}\right]=\operatorname{deg}(\operatorname{det} B)$.

On the other hand, in [NT], it was shown that if $\varphi \in L^{\infty}$ is such that T_{φ} is subnormal and $\varphi=q \bar{\varphi}$, where q is a finite Blaschke product then T_{φ} is normal or analytic. We now we pose its block version:
Problem 6.2. If $\Phi \in L_{M_{n}}^{\infty}$ is such that T_{Φ} is subnormal and $\Phi=B \Phi^{*}$, where B is a a finite Blaschke-Potapov product, does it follow that T_{Φ} is normal or analytic ?
2. Subnormality of block Toeplitz operators. In Remark 4.7 we have shown that if the "coprime" condition of Theorem 4.5 is dropped, then Theorem 4.5 may fail. However we note that the example given in Remark 4.7 is a direct sum of a normal Toeplitz operator and an analytic Toeplitz operator. Based on this observation, we have:

Problem 6.3. Let $\Phi \in L_{M_{n}}^{\infty}$ be a matrix-valued rational function. If T_{Φ} and T_{Φ}^{2} are hyponormal, but T_{Φ} is neither normal nor analytic, does it follow that T_{Φ} is of the form

$$
T_{\Phi}=\left[\begin{array}{cc}
T_{A} & 0 \\
0 & T_{B}
\end{array}\right] \quad \text { (where } T_{A} \text { is normal and } T_{B} \text { is analytic)? }
$$

It is well-known that if $T \in \mathcal{B}(\mathcal{H})$ is subnormal then $\operatorname{ker}\left[T^{*}, T\right]$ is invariant under T. Thus we might be tempted to guess that if the condition " T_{Φ} and T_{Φ}^{2} are hyponormal" is replaced by " T_{Φ} is hyponormal and $\operatorname{ker}\left[T_{\Phi}^{*}, T_{\Phi}\right]$ is invariant under $T_{\Phi}, "$ then the answer to Problem 6.3 is affirmative. But this is not the case. Indeed, consider

$$
T_{\Phi}=\left[\begin{array}{cc}
2 U+U^{*} & U^{*} \\
U^{*} & 2 U+U^{*}
\end{array}\right]
$$

Then a straightforward calculation shows that T_{Φ} is hyponormal and $\operatorname{ker}\left[T_{\Phi}^{*}, T_{\Phi}\right]$ is invariant under T_{Φ}, but T_{Φ} is never normal (cf. [CHL, Remark 3.9]). However, if the condition " T_{Φ} and T_{Φ}^{2} are hyponormal" is strengthened to " T_{Φ} is subnormal", what conclusion do you draw?
3. Subnormal completion problem. Theorem 5.1 provides the subnormal Toeplitz completion of

$$
\left[\begin{array}{cc}
U^{*} & ? \tag{6.2}\\
? & U^{*}
\end{array}\right] \quad\left(U \text { is the shift on } H^{2}\right)
$$

Moreover Remark 5.8 shows that there is a normal non-Toeplitz completion of (6.2). However we were unable to find all subnormal completions of (6.2).

Problem 6.4. Let U be the shift on H^{2}. Complete the unspecified entries of the partial block matrix $\left[\begin{array}{cc}U^{*} & ? \\ ? & U^{*}\end{array}\right]$ to make it subnormal.

On the other hand, Theorem 5.1 shows that the solution of the subnormal Toeplitz completion of $\left[\begin{array}{cc}U^{*} & ? \\ ? & U^{*}\end{array}\right]$ consists of Toeplitz operators with symbols which are both analytic or trigonometric polynomials of degree 1. Hence we might expect that if the symbols of the specified Toeplitz operators of (6.2) are co-analytic polynomials of degree two then the non-analytic solution of the unspecified entries consists of trigonometric polynomials of degree ≤ 2.

More generally, we have:

Problem 6.5. If Φ and Ψ are co-analytic polynomials of degree n, does it follow that the non-analytic solution of the subnormal Toeplitz completion of the partial Toeplitz matrix $\left[\begin{array}{c}T_{\Phi} \\ ?\end{array}{ }_{T}{ }_{T}.\right]$ consists of Toeplitz operators whose symbols are trigonometric polynomials of degree $\leq n$?

References

[Ab] M.B. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke Math. J. 43 (1976), 597-604.
[AC] P.R. Ahern and D.N. Clark, On functions orthogonal to invariant subspaces, Acta Math. 124(1970), 191-204.
[AIW] I. Amemiya, T. Ito, and T.K. Wong, On quasinormal Toeplitz operators, Proc. Amer. Math. Soc. 50 (1975), 254-258.
[Ap] C. Apostol, The reduced minimum modulus, Michigan Math. J. 32 (1985), 279-294.
[BE] E.L. Basor and T. Ehrhardt, Asymptotics of block Toeplitz determinants and the classical dimer model, Commun. Math. Phys. 274 (2007), 427-455.
[BS] A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators, Springer, Berlin-Heidelberg, 2006.
[Br] J. Bram, Sunormal operators, Duke Math. J. 22 (1955), 75-94.
[BH] A. Brown and P.R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213(1963/1964), 89-102.
[Ca] M. Cafasso, Block Toeplitz determinants, constrained KP and Gelfand-Dickey hierarchies, Math. Phys. Anal. Geom. 11 (2008) 11-51.
[Con] J.B. Conway, The Theory of Subnormal Operators, Math Surveys and Monographs, vol. 36, Amer. Math. Soc., Providence, 1991.
[Co1] C. Cowen, On equivalnce of Toeplitz operators, J. Operator Theory 7 (1982), 167-172.
[Co2] C. Cowen, More subnormal Toeplitz operators, J. Reine Angew. Math. 367 (1986), 215-219.
[Co3] C. Cowen, Hyponormal and subnormal Toeplitz operators, Surveys of Some Recent Results in Operator Theory, I (J.B. Conway and B.B. Morrel, eds.), Pitman Research Notes in Mathematics, Volume 171, Longman, 1988, pp. (155-167).
[Co4] C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), 809-812.
[CoL] C. Cowen and J. Long, Some subnormal Toeplitz operators, J. Reine Angew. Math. 351 (1984), 216-220.
[Cu] R.E. Curto, Joint hyponormality: A bridge between hyponormality and subnormality, Operator Theory: Operator Algebras and Applications (Durham, NH, 1988) (W.B. Arveson and R.G. Douglas, eds.), Proc. Sympos. Pure Math., vol. 51, Part II, Amer. Math. Soc., Providence, 1990, 69-91.
[CuF1] R.E. Curto and L.A. Fialkow, Recursiveness, positivity, and truncated moment problems, Houston J. Math. 17 (1991), 603-635.
[CuF2] R.E. Curto and L.A. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, Integral Equations Operator Theory 17 (1993), 202-246.
[CuF3] R.E. Curto and L.A. Fialkow, Recursively generated weighted shifts and the subnormal completion problem II, Integral Equations Operator Theory 18 (1994), 369-426.
[CHL] R.E. Curto, I.S. Hwang and W.Y. Lee, Which subnormal Toeplitz operators are either normal or analytic? (preprint, 2010).
[CuL1] R.E. Curto and W.Y. Lee, Joint hyponormality of Toeplitz pairs, Memoirs Amer. Math. Soc. 712, Amer. Math. Soc., Providence, 2001.
[CuL2] R.E. Curto and W.Y. Lee, Towards a model theory for 2-hyponormal operators, Integral Equations Operator Theory 44 (2002), 290-315.
[CuL3] R.E. Curto and W.Y. Lee, Subnormality and k-hyponormality of Toeplitz operators: A brief survey and open questions, Operator Theory and Banach Algebras (Rabat, 1999), 73-81, Theta, Bucharest, 2003.
[DMA] M. Damak, M. Măntoiu, and R.T. de Aldecoa, Toeplitz algebras and spectral results for the onedimensional Heisenberg model, J. Math. Phys. 47 (2006), 082107, 10pp.
[Do1] R.G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
[Do2] R.G. Douglas, Banach Algebra Techniques in the Theory of Toeplitz Operators, CBMS 15, Providence, Amer. Math. Soc. 1973.
[FL] D.R. Farenick and W.Y. Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348 (1996), 4153-4174.
[FF] C. Foiass and A. Frazho, The commutant lifting approach to interpolation problems, Operator Theory: Adv. Appl. vol 44, Birkhäuser, Boston, 1993.
[GGK] I. Gohberg, S. Goldberg, and M.A. Kaashoek, Classes of Linear Operators, Vol II, Basel, Birkhäuser, 1993.
[Gu1] C. Gu, A generalization of Cowen's characterization of hyponormal Toeplitz operators, J. Funct. Anal. 124 (1994), 135-148.
[Gu2] C. Gu, On a class of jointly hyponormal Toeplitz operators, Trans. Amer. Math. Soc. 354 (2002), 3275-3298.
[Gu3] C. Gu, Non-subnormal k-hyponormal Toeplitz operators (preprint).
[GHR] C. Gu, J. Hendricks and D. Rutherford, Hyponormality of block Toeplitz operators, Pacific J. Math. 223 (2006), 95-111.
[GS] C. Gu and J.E. Shapiro, Kernels of Hankel operators and hyponormality of Toeplitz operators, Math. Ann. 319 (2001), 553-572.
[Hal1] P.R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887-933.
[Hal2] P.R. Halmos, Ten years in Hilbert space, Integral Equations Operator Theory 2 (1979), 529-564.
[Hal3] P.R. Halmos, A Hilbert Space Problem Book, 2nd ed. Springer, New York, 1982.
[Har] R.E. Harte, Invertibility and Singularity for Bounded Linear Operators, Monographs and Textbooks in Pure and Applied Mathematics, vol. 109, Marcel Dekker, New York, 1988.
[HS] M. Hayashi and F. Sakaguchi, Subnormal operators regarded as generalized observables and compound-system-type normal extension related to su(1,1), J. Phys. A: Math. Gen. 33 (2000), 7793-7820.
[HI] K. Hikami and T. Imamura, Vicious walkers and hook Young tableaux, J. Phys. A: Math. Gen. 36 (2003), 3033-3048.
[HKL1] I.S. Hwang, I.H. Kim and W.Y. Lee, Hyponormality of Toeplitz operators with polynomial symbols, Math. Ann. 313(2) (1999), 247-261.
[HKL2] I.S. Hwang, I.H. Kim and W.Y. Lee, Hyponormality of Toeplitz operators with polynomial symbols: An extremal case, Math. Nach. 231 (2001), 25-38.
[HL1] I.S. Hwang and W.Y. Lee, Hyponormality of trigonometric Toeplitz operators, Trans. Amer. Math. Soc. 354 (2002), 2461-2474.
[HL2] I.S. Hwang and W.Y. Lee, Hyponormality of Toeplitz operators with rational symbols, Math. Ann. 335 (2006), 405-414.
[HL3] I.S. Hwang and W.Y. Lee, Hyponormal Toeplitz operators with rational symbols, J. Operator Theory 56 (2006), 47-58.
[HL4] I.S. Hwang and W.Y. Lee, Block Toeplitz Operators with rational symbols, J. Phys. A: Math. Theor. 41(18) (2008), 185207.
[HL5] I.S. Hwang and W.Y. Lee, Block Toeplitz Operators with rational symbols (II), J. Phys. A: Math. Theor. 41(38) (2008), 385206.
[If] E.K. Ifantis, Minimal uncertainty states for bounded observables, J. Math. Phys. 12(12) (1971), 2512-2516.
[Le] W.Y. Lee, Cowen sets for Toeplitz operators with finite rank selfcommutators, J. Operator Theory 54(2) (2005), 301-307.
[MP] M. Martin and M. Putinar, Lectures on Hyponormal Operators, Operator Theory: Adv. Appl. vol 39, Birkhäuser, Verlag, 1989.
[MAR] R.A. Martínez-Avendaño and P. Rosenthal, An Introduction to Operators on the Hardy-Hilbert Space, Springer, New York, 2007.
[NT] T. Nakazi and K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc. 338 (1993), 753-769.
[Ni] N. K. Nikolskii, Treatise on the Shift Operator, Springer, New York, 1986.
[Pe] V.V. Peller, Hankel Operators and Their Applications, Springer, New York, 2003.
[Po] V.P. Potapov, On the multiplicative structure of J-nonexpansive matrix functions, Tr. Mosk. Mat. Obs. (1955), 125-236 (in Russian); English trasl. in: Amer. Math. Soc. Transl. (2) 15(1966), 131-243.
[Pr] E. de Prunelé, Conditions for bound states in a periodic linear chain, and the spectra of a class of Toeplitz operators in terms of polylogarithm functions, J. Phys. A: Math. Gen. 36 (2003), 8797-8815.
[Sz] F.H. Szafraniec, Subnormality in the quantum harmonic oscillator, Commun. Math. Phys. 210 (2000), 323-334.
[Ta] S. Takenaka, On the orthogonal functions and a new formula of interpolation, Japan J. Math. 2 (1925), 129-145.
[Zhu] K. Zhu, Hyponormal Toeplitz operators with polynomial symbols, Integral Equations Operator Theory 21 (1996), 376-381

Raúl E. Curto
Department of Mathematics, University of Iowa, Iowa City, IA 52242, U.S.A.
e-mail: raul-curto@uiowa.edu
In Sung Hwang
Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea
e-mail: ihwang@skku.edu
Woo Young Lee
Department of Mathematics, Seoul National University, Seoul 151-742, Korea
e-mail: wylee@snu.ac.kr

[^0]: 2010 Mathematics Subject Classification. Primary 47B20, 47B35, 47A13; Secondary 30H10, 47A20, 47A57
 The work of the first named author was partially supported by NSF Grant DMS-0801168. The work of the second author was supported by NRF grant funded by the Korea government(MEST)(2011-0003273). The work of the third author was supported by Basic Science Research Program through the NRF grant funded by the Korea government(MEST)(2011-0001250).

