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Abstract. We give a brief survey of subnormality and hyponormality of Toeplitz operators on
the vector-valued Hardy space of the unit circle. We also solve the following subnormal Toeplitz
completion problem: Complete the unspecified rational Toeplitz operators (i.e., the unknown
entries are rational Toeplitz operators) of the partial block Toeplitz matrix

G :=

[

Tω1
?

? Tω2

]

(ω1 and ω2 are finite Blaschke products)

to make G subnormal.
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1. Hyponormality and subnormality of Toeplitz operators: A brief survey

§1.1. Which operators are subnormal ?

Let H be a complex Hilbert space and let B(H) be the algebra of bounded linear operators acting
on H. An operator T ∈ B(H) is said to be hyponormal if its self-commutator [T ∗, T ] := T ∗T −TT ∗

is positive (semi-definite), and subnormal if there exists a normal operator N on some Hilbert space
K ⊇ H such that H is invariant under N and N |H = T . The notion of subnormality was intro-
duced by P.R. Halmos in 1950 and the study of subnormal operators has been highly successful
and fruitful: we refer to [Con] for details. Indeed, the theory of subnormal operators has made
significant contributions to a number of problems in functional analysis, operator theory, mathe-
matical physics, and other fields. Oddly however, the question “Which operators are subnormal ?”
is difficult to answer. In general, it is quite intricate to examine whether a normal extension
exists for an operator. Of course, there are a couple of constructive methods for determining
subnormality; one of them is the Bram-Halmos criterion of subnormality ([Br]), which states that
an operator T ∈ B(H) is subnormal if and only if

∑
i,j(T

ixj , T
jxi) ≥ 0 for all finite collections

x0, x1, · · · , xk ∈ H. It is easy to see that this is equivalent to the following positivity test:



I T ∗ . . . T ∗k

T T ∗T . . . T ∗kT
...

...
. . .

...
T k T ∗T k . . . T ∗kT k


 ≥ 0 (1)

for all k ≥ 1. Condition (1) provides a measure of the gap between hyponormality and subnor-
mality. In fact, the positivity condition (1) for k = 1 is equivalent to the hyponormality of T ,
while subnormality requires the validity of (1) for all k. If we denote by [A,B] := AB − BA the

2000 Mathematics Subject Classification. Primary 47B20, 47B35
The work of the first named author was partially supported by NSF Grant DMS-0801168. The work of the second
author was supported by Basic Science Research Program through the National Research Foundation of Korea

(NRF) funded by the Ministry of Education, Science and Technology(2011-0022577 ). The work of the third author
was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant
funded by the Korea government(MEST)(2012-0000939 ).
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commutator of two operators A and B, and if we define T to be k–hyponormal whenever the k× k

operator matrix

Mk(T ) := ([T ∗j , T i])ki,j=1

is positive, or equivalently, the (k+1)× (k+1) operator matrix in (1) is positive (via the operator
version of the Cholesky algorithm), then the Bram–Halmos criterion can be rephrased as saying
that T is subnormal if and only if T is k–hyponormal for every k ≥ 1 ([CMX]). But it still may
not be possible to test the positivity condition (1) for every positive integer k, in general. Hence
the following question is interesting and challenging:

Are there feasible tests for the subnormality of an operator ? (2)

Recall ([At], [CMX], [CoS]) that T ∈ B(H) is said to be weakly k-hyponormal if

LS(T, T 2, · · · , T k) :=





k∑

j=1

αjT
j : α = (α1, · · · , αk) ∈ C

k





consists entirely of hyponormal operators. If k = 2 then T is called quadratically hyponormal,
and if k = 3 then T is said to be cubically hyponormal. Similarly, T ∈ B(H) is said to be
polynomially hyponormal if p(T ) is hyponormal for every polynomial p ∈ C[z]. It is known that k-
hyponormal ⇒ weakly k-hyponormal, but the converse is not true in general. k-hyponormality and
weak k-hyponormality have been considered by many authors with an aim at understanding the
gap between hyponormality and subnormality ([Cu1], [Cu2], [CuF1], [CuF2], [CuF3], [CLL], [CL1],
[CL2], [CL3], [CMX], [DPY], [McCP]). The study of this gap has been only partially successful.
For example, such a gap is not yet well described for Toeplitz operators on the Hardy space of the
unit circle. For weighted shifts, positive results appear in [Cu1] and [CuF3], although no concrete
example of a weighted shift which is polynomially hyponormal but not subnormal has yet been
found (the existence of such weighted shifts was established in [CP1] and [CP2]). The Bram-Halmos
criterion on subnormality indicates that 2-hyponormality is generally far from subnormality. There
are special classes of operators, however, for which these two notions are equivalent. For example,
in [CL1, Theorem 3.2], it was shown that 2-hyponormality and subnormality coincide for Toeplitz
operators Tϕ with trigonometric polynomial symbols ϕ ∈ L∞. On the other hand, 2-hyponormality
and subnormality enjoy some common properties. One of them is the following fact ([CL2]):

If T ∈ B(H) is 2-hyponormal then ker [T ∗, T ] is invariant for T . (3)

In fact, since the invariance of ker [T ∗, T ] for T is one of the most important properties for subnormal
operators, we may, in view of (3), expect that 2-hyponormality and subnormality coincide for special
classes of operators. Indeed, in Section 2, we shall see this phenomenon for a Toeplitz completion
problem.

§1.2. (Block) Toeplitz operators and bounded type functions

Toeplitz and Hankel operators arise in a variety of problems in several fields of mathematics and
physics, and nowadays the theory of Toeplitz and Hankel operators has become a very wide area.
Let T ≡ ∂ D be the unit circle in the complex plane C. Let L2 ≡ L2(T) be the set of all square-
integrable measurable functions on T and let H2 ≡ H2(T) be the corresponding Hardy space. Let
H∞ ≡ H∞(T) := L∞ ∩H2, that is, H∞ is the set of bounded analytic functions on the unit disk
D. Given ϕ ∈ L∞, the Toeplitz operator Tϕ and the Hankel operator Hϕ are defined by

Tϕg := P (ϕg) and Hϕg := JP⊥(ϕg) (g ∈ H2),

where P and P⊥ denote the orthogonal projections that map from L2 onto H2 and (H2)⊥, respec-
tively, and where J denotes the unitary operator on L2 defined by J(f)(z) = zf(z).
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We recall that a function ϕ ∈ L∞ is said to be of bounded type (or in the Nevanlinna class)
if there are analytic functions ψ1, ψ2 ∈ H∞ such that

ϕ(z) =
ψ1(z)

ψ2(z)
for almost all z ∈ T.

It is well known [Ab, Lemma 3] that if ϕ ∈ L∞ then

ϕ is of bounded type ⇐⇒ kerHϕ 6= {0} .

Assume that both ϕ and ϕ are of bounded type. Since TzHψ = HψTz for all ψ ∈ L∞, it follows
from Beurling’s Theorem that kerHϕ−

= θ0H
2 and kerHϕ+

= θ+H
2 for some inner functions

θ0, θ+. We thus have b := ϕ−θ0 ∈ H2, and hence we can write

ϕ− = θ0b, and similarly ϕ+ = θ+a for some a ∈ H2. (4)

In the factorization (4), we will always assume that θ0 and b are coprime and θ+ and a are coprime.
In (4), θ0b and θ+a are called coprime factorizations of ϕ− and ϕ+, respectively. By Kronecker’s
Lemma [Ni, p. 183], if f ∈ H∞ then f is a rational function if and only if rankHf < ∞, which
implies that

f is rational ⇐⇒ f = θb with a finite Blaschke product θ. (5)

For a Hilbert space X , let L2
X ≡ L2

X (T) be the Hilbert space of X -valued norm square-integrable
measurable functions on T and let H2

X ≡ H2
X (T) be the corresponding Hardy space. We observe

that L2
Cn = L2 ⊗ C

n and H2
Cn = H2 ⊗ C

n. If Φ is a matrix-valued function in L∞
Mn

≡ L∞
Mn

(T)

(= L∞ ⊗Mn) then TΦ : H2
Cn → H2

Cn denotes the block Toeplitz operator with symbol Φ defined
by

TΦF := Pn(ΦF ) for F ∈ H2
Cn ,

where Pn is the orthogonal projection of L2
Cn onto H2

Cn . A block Hankel operator with symbol
Φ ∈ L∞

Mn
is the operator HΦ : H2

Cn → H2
Cn defined by

HΦF := JnP
⊥
n (ΦF ) for F ∈ H2

Cn ,

where P⊥
n is the orthogonal projection of L2

Cn onto (H2
Cn)⊥ and Jn denotes the unitary operator

on L2
Cn given by Jn(F )(z) := zInF (z) for F ∈ L2

Cn (where In is the n× n identity matrix). If we
set H2

Cn = H2 ⊕ · · · ⊕H2 then we see that

TΦ =



Tϕ11

. . . Tϕ1n

...
Tϕn1

. . . Tϕnn


 and HΦ =



Hϕ11

. . . Hϕ1n

...
Hϕn1

. . . Hϕnn


 ,

where

Φ =



ϕ11 . . . ϕ1n

...
ϕn1 . . . ϕnn


 ∈ L∞

Mn
.

For Φ ∈ L∞
Mn

, we write

Φ̃(z) := Φ∗(z). (6)

For Φ ∈ L∞
Mn

, we also write

Φ+ := PnΦ ∈ H2
Mn

and Φ− :=
(
P⊥
n Φ

)∗ ∈ H2
Mn

.

Thus we can write Φ = Φ∗
− + Φ+ . However, it will often be convenient to allow the constant

term in Φ−. When this is the case, Φ−(0)
∗ will not be zero; however, we will still ensure that

Φ(0) = Φ+(0) + Φ−(0)
∗.
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A matrix-valued function Θ ∈ H∞
Mn×m

(= H∞ ⊗Mn×m) is called inner if Θ is isometric a.e.

on T. The following basic relations can be easily derived:

T ∗
Φ = TΦ∗ , H∗

Φ = HΦ̃ (Φ ∈ L∞
Mn

);

TΦΨ − TΦTΨ = H∗
Φ∗HΨ (Φ,Ψ ∈ L∞

Mn
); (7)

HΦTΨ = HΦΨ, HΨΦ = T ∗
Ψ̃
HΦ (Φ ∈ L∞

Mn
,Ψ ∈ H∞

Mn
). (8)

For a matrix-valued function Φ = [φij ] ∈ L∞
Mn

, we say that Φ is of bounded type if each entry φij
is of bounded type and that Φ is rational if each entry φij is a rational function.

For a matrix-valued function Φ ∈ H2
Mn×r

, we say that ∆ ∈ H2
Mn×m

is a left inner divisor of

Φ if ∆ is an inner matrix function such that Φ = ∆A for some A ∈ H2
Mm×r

(m ≤ n). We also

say that two matrix functions Φ ∈ H2
Mn×r

and Ψ ∈ H2
Mn×m

are left coprime if the only common

left inner divisor of both Φ and Ψ is a unitary constant and that Φ ∈ H2
Mn×r

and Ψ ∈ H2
Mm×r

are

right coprime if Φ̃ and Ψ̃ are left coprime. Two matrix functions Φ and Ψ in H2
Mn

are said to be

coprime if they are both left and right coprime. We remark that if Φ ∈ H2
Mn

is such that detΦ

is not identically zero then any left inner divisor ∆ of Φ is square, i.e., ∆ ∈ H2
Mn

. If Φ ∈ H2
Mn

is

such that detΦ is not identically zero then we say that ∆ ∈ H2
Mn

is a right inner divisor of Φ if ∆̃

is a left inner divisor of Φ̃.

The shift operator S on H2
Cn is defined by

S :=
n∑

j=1

⊕
Tz.

The following fundamental result known as the Beurling-Lax-Halmos Theorem is useful in the
sequel.

The Beurling-Lax-Halmos Theorem. A nonzero subspace M of H2
Cn is invariant for the shift

operator S on H2
Cn if and only if M = ΘH2

Cm , where Θ is an inner matrix function in H∞
Mn×m

(m ≤ n). Furthermore, Θ is unique up to a unitary constant right factor; that is, if M = ∆H2
Cr

(for ∆ an inner function in H∞
Mn×r

), then m = r and Θ = ∆W , where W is a unitary matrix
mapping C

m onto C
m.

As is customarily done, we say that two matrix-valued functions A and B are equal if they
are equal up to a unitary constant right factor. Observe by (8) that for Φ ∈ L∞

Mn
, HΦS =

HΦTzIn = HΦ·zIn = HzIn·Φ = T ∗
zIn

HΦ, which implies that the kernel of a block Hankel operator

HΦ is an invariant subspace of the shift operator on H2
Cn . Thus, if kerHΦ 6= {0}, then by the

Beurling-Lax-Halmos Theorem,
kerHΦ = ΘH2

Cm

for some inner matrix function Θ. We note that Θ need not be a square matrix. For example, let
θi (i = 0, 1, 2) be a scalar inner function such that θ1 and θ2 are coprime and let q ∈ L∞ be such
that kerHq = {0}. Define

Θ :=
1√
2

[
θ0θ1
θ0θ2

]
and Φ :=

[
θ0θ1 θ0θ2
qθ2 −qθ1

]
.

Then a straightforward calculation shows that kerHΦ = ΘH2 (cf. [GHR, Example 2.9]).

The following result was shown in [GHR, Theorem 2.2].

Theorem 1.1. ([GHR]) For Φ ∈ L∞
Mn

, the following statements are equivalent:

(i) Φ is of bounded type;
(ii) kerHΦ = ΘH2

Cn for some square inner matrix function Θ;
(iii) Φ = AΘ∗, where A ∈ H∞

Mn
and A and Θ are right coprime.
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For an inner matrix function Θ ∈ H2
Mn

, we write

HΘ := H2
Cn ⊖ΘH2

Cn .

In view of Theorem 1.1, if Φ ∈ L∞
Mn

is such that Φ and Φ∗ are of bounded type then Φ+ and Φ−
can be written in the form

Φ+ = Θ1A
∗ and Φ− = Θ2B

∗, (9)

where Θ1 and Θ2 are inner, A,B ∈ H2
Mn

, Θ1 and A are right coprime, and Θ2 and B are right
coprime. In (9), Θ1A

∗ and Θ2B
∗ will be called right coprime factorizations of Φ+ and Φ−,

respectively.

In general, it is not easy to check the condition “B and Θ are right coprime”. But if Θ ≡ θIn
for a finite Blaschke product θ, then we have a tractable criterion (cf. [CHL2, Lemma 3.3]):

Θ and B are right coprime ⇐⇒ B(α) is invertible for each zero α of θ. (10)

§1.3. Hyponormality of Toeplitz operators

An elegant and useful theorem of C. Cowen [Co4] characterizes the hyponormality of a Toeplitz
operator Tϕ by properties of the symbol ϕ ∈ L∞(T). This result makes it possible to answer an
algebraic question coming from operator theory – namely, is Tϕ hyponormal ? - by studying the
function ϕ itself. Normal Toeplitz operators were characterized by a property of their symbol in
the early 1960’s by A. Brown and P.R. Halmos [BH], and so it is somewhat surprising that 25 years
passed before the exact nature of the relationship between the symbol ϕ ∈ L∞ and the positivity
of the self-commutator [T ∗

ϕ, Tϕ] was understood (via Cowen’s Theorem). As Cowen notes in his
survey paper [Co3], the intensive study of subnormal Toeplitz operators in the 1970’s and early 80’s
is one explanation for the relatively late appearance of the sequel to the Brown-Halmos work. The
characterization of hyponormality via Cowen’s Theorem requires one to solve a certain functional
equation in the unit ball of H∞.

Cowen’s Theorem. ([Co4], [NT]) For each ϕ ∈ L∞, let

E(ϕ) ≡ {k ∈ H∞ : ||k||∞ ≤ 1 and ϕ− kϕ ∈ H∞}.
Then Tϕ is hyponormal if and only if E(ϕ) is nonempty.

Cowen’s Theorem has been used in [CHL1], [CL1], [CL2], [FL], [Gu1], [Gu2], [GS], [HKL1], [HKL2],
[HL1], [HL2], [HL3], [Le], [NT] and [Zhu], which have been devoted to the study of hyponormality
for Toeplitz operators on H2. Particular attention has been paid to Toeplitz operators with
polynomial symbols, rational symbols, and bounded type symbols [HL2], [HL3], [CHL1]. However,
the case of arbitrary symbol ϕ, though solved in principle by Cowen’s theorem, is in practice
very complicated. Indeed, it may not even be possible to find tractable necessary and sufficient
condition for the hyponormality of Tϕ in terms of the Fourier coefficients of the symbol ϕ unless
certain assumptions are made about ϕ. To date, tractable criteria for the cases of trigonometric
polynomial symbols (resp. rational symbols) were derived from a Carathéodory-Schur interpolation
problem ([Zhu]) (resp. a tangential Hermite–Fejér interpolation problem ([Gu1]) or the classical
Hermite–Fejér interpolation problem ([HL3])). Very recently, a tractable and explicit criterion
on the hyponormality of Toeplitz operators having bounded type symbols was established via the
triangularization theorem for compressions of the shift operator ([CHL1]).

When one studies the hyponormality (also, normality and subnormality) of the Toeplitz op-
erator Tϕ one may, without loss of generality, assume that ϕ(0) = 0; this is because hyponormality
is invariant under translation by scalars.

In 2006, Gu, Hendricks and Rutherford [GHR] characterized the hyponormality of block
Toeplitz operators in terms of their symbols. Their characterization for hyponormality of block
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Toeplitz operators TΦ resembles Cowen’s Theorem except for an additional condition which is
trivially satisfied in the scalar case – the normality of the symbol, i.e., Φ∗Φ = ΦΦ∗.

Theorem 1.2. (Hyponormality of Block Toeplitz Operators) (Gu-Hendricks-Rutherford [GHR])
For each Φ ∈ L∞

Mn
, let

E(Φ) :=
{
K ∈ H∞

Mn
: ||K||∞ ≤ 1 and Φ−KΦ∗ ∈ H∞

Mn

}
.

Then TΦ is hyponormal if and only if Φ is normal and E(Φ) is nonempty.

In [GHR], the normality of block Toeplitz operator TΦ was also characterized in terms of the
symbol Φ, under a “determinant” assumption on the symbol Φ.

Theorem 1.3. (Normality of Block Toeplitz Operators) (Gu-Hendricks-Rutherford [GHR]) Let
Φ ≡ Φ+ +Φ∗

− be normal. If detΦ+ is not identically zero then

TΦ is normal ⇐⇒ Φ+ − Φ+(0) =
(
Φ− − Φ−(0)

)
U for some constant unitary matrix U. (11)

Until now, tractable criteria for the hyponormality of block Toeplitz operators TΦ with matrix-
valued trigonometric polynomials, rational functions or bounded type functions Φ have been es-
tablished via interpolation problems or the so-called triangularization theorem for compressions of
the shift operator ([GHR], [HL4], [HL5], [CHL1]).

§1.4. Halmos’ Problem 5

In view of the preceding argument, it is natural and significant to elucidate the subnormality
of Toeplitz operators. In 1970, P.R. Halmos addressed a problem on subnormality of Toeplitz
operators acting on H2, the so-called Halmos’ Problem 5 in his lectures “Ten problems in Hilbert
space” [Hal1]:

Halmos’ Problem 5. Is every subnormal Toeplitz operator either normal or analytic ?

A Toeplitz operator Tϕ is called analytic if ϕ ∈ H∞. Any analytic Toeplitz operator is easily
seen to be subnormal: indeed, Mϕ is a normal extension of Tϕ, where Mϕ is the normal operator
of multiplication by ϕ on L2. Thus the question is natural because the two classes, the normal
and analytic Toeplitz operators, are well understood and are subnormal. In the 1970’s, interesting
partial (affirmative) answers appeared. Thus, when in 1979 Halmos wrote a report on progress
on his ten problems (cf. [Hal2]), he stated that “some very good mathematics had gone into that
answer” on Problem 5. He then conjectured that the future of Problem 5 was hopeful in the
affirmative direction. However, in 1984, Halmos’ Problem 5 was answered in the negative by C.
Cowen and J. Long [CoL]: they found an analytic function ψ for which Tψ+αψ (0 < α < 1) is
subnormal – in fact, this Toeplitz operator is unitarily equivalent to a subnormal weighted shift
Wβ with weight sequence β ≡ {βn}, where βn = (1− α2n+2)

1
2 for n = 0, 1, 2, . . .. A similar result

was independently obtained by S. Sun ([Sun1], [Sun2], [Sun3]). Unfortunately, these constructions
do not provide an intrinsic connection between subnormality and the theory of Toeplitz operators.

Until now researchers have been unable to characterize subnormal Toeplitz operators in terms
of their symbols. In fact it may not even be possible to find tractable necessary and sufficient
condition for the subnormality of Tϕ in terms of their symbols unless certain assumptions are
made about ϕ. On the other hand, surprisingly, as C. Cowen notes in [Co2], some analytic Toeplitz
operators are unitarily equivalent to non-analytic Toeplitz operators; i.e., the analyticity of Toeplitz
operators is not invariant under unitary equivalence. In this sense, we might ask whether Cowen
and Long’s non-analytic subnormal Toeplitz operator is unitarily equivalent to an analytic Toeplitz
operator. It was shown in [CHL2] that Cowen and Long’s non-analytic subnormal Toeplitz operator
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Tϕ is not unitarily equivalent to any analytic Toeplitz operator. Consequently, even if we interpret
“is” in Halmos’ Problem 5 as “is up to unitary equivalence,” the answer to Halmos’ Problem 5 is
still negative. Thus we would like to reformulate Halmos’ Problem 5 as follows:

Halmos’ Problem 5 reformulated. Which Toeplitz operators are subnormal ?

Directly connected with Halmos’ Problem 5 is the following question:

Which subnormal Toeplitz operators are normal or analytic ? (12)

In 1976, M.B. Abrahamse proved that the answer to Halmos’ question is affirmative for Toeplitz
operators with bounded type symbols ([Ab]):

Abrahamse’s Theorem ([Ab, Theorem]). Let ϕ ∈ L∞ be such that ϕ or ϕ is of bounded type. If
Tϕ is hyponormal and ker [T ∗

ϕ, Tϕ] is invariant under Tϕ then Tϕ is normal or analytic.

Consequently, if ϕ ∈ L∞ is such that ϕ or ϕ is of bounded type, then every subnormal Toeplitz
operator must be either normal or analytic. Partial answers to question (12) have been obtained
by many authors (cf. [AIW], [Co2], [CoL], [CHL1], [CHL2], [CL1], [CL2], [CL3], [ItW], [NT]). More
generally, we are interested in the following question:

Which subnormal block Toeplitz operators are normal or analytic ? (13)

Question (13) is more difficult to answer, in comparison with the scalar-valued case. Indeed, Abra-
hamse’s Theorem does not hold for block Toeplitz operators (even with matrix-valued trigonometric
polynomial symbol): For instance, if

Φ :=

[
z + z 0
0 z

]
,

then

TΦ =

[
U+ + U∗

+ 0
0 U+

]
(U+ := the unilateral shift on H2)

is neither normal nor analytic although TΦ is evidently subnormal.

Recall that an operator T ∈ B(H) is said to be quasinormal if T commutes with T ∗T and is
said to be pure if it has no nonzero reducing subspace on which it is normal. It is well known that
quasinormal ⇒ subnormal. On the other hand, in [ItW], it was shown that every quasinormal
Toeplitz operator is either normal or analytic, i.e., the answer to the Halmos’ Problem 5 is affirma-
tive for quasinormal Toeplitz operators. However, this is not true for the cases of matrix-valued
symbols: indeed, if

Φ ≡
[

z z + 2z
z + 2z z

]
. (14)

then TΦ is quasinormal, but it is neither normal nor analytic. Since

TΦ =
[

U∗

+ U∗

++2U+

U∗

++2U+ U∗

+

]
,

it follows that if W := 1√
2

[
1 −1
1 1

]
, then W is unitary and

W ∗TΦW = 2

[
U∗
+ + U+ 0

0 −U+

]
,

which says that TΦ is unitarily equivalent to a direct sum of the normal operator 2(U∗
+ +U+) and

the analytic Toeplitz operator −2U+. This phenomenon is not an accident. Indeed, very recently,
in [CHKL], it was shown that every pure quasinormal operator with finite rank self-commutator is
unitarily equivalent to a Toeplitz operator with a matrix-valued analytic rational symbol and (as
a corollary) that every pure quasinormal Toeplitz operator with a matrix-valued rational symbol
is unitarily equivalent to an analytic Toeplitz operator.

Also, in [CHKL], the following theorem was obtained:



8 Raúl E. Curto, In Sung Hwang and Woo Young Lee

Theorem 1.4. (Abrahamse’s Theorem for Matrix-Valued Rational Symbols) [CHKL] Let Φ ≡
Φ∗

− +Φ+ ∈ L∞
Mn

be a matrix-valued rational function. Thus in view of (9), we may write

Φ− = ΘB∗ (right coprime factorization).

Assume that Θ has an inner divisor of the form θIn, where θ is a nonconstant inner function. If

(i) TΦ is hyponormal;
(ii) ker [T ∗

Φ, TΦ] is invariant for TΦ,

then TΦ is normal. Hence in particular, if TΦ is subnormal then TΦ is normal.

Theorem 1.4 may fail if we drop the assumption “Θ has a nonconstant diagonal-constant
inner divisor.” To see this, consider the matrix-valued function in (14):

Φ ≡
[

z z + 2z
z + 2z z

]
.

We thus have

Φ− =

[
z z

z z

]
=

(
1√
2

[
1 z

−1 z

])(
1√
2

[
0 2
0 2

])∗
,

where

Θ ≡ 1√
2

[
1 z

−1 z

]
and B ≡ 1√

2

[
0 2
0 2

]
are right coprime.

As we saw in the preceding, TΦ is quasinormal, and hence subnormal. But clearly, TΦ is neither
normal nor analytic. Here we note that Θ does not have any nonconstant diagonal inner divisor
of the form θIn with a nonconstant inner function θ.

§1.5. A special subnormal Toeplitz completion

Given a partially specified operator matrix with some known entries, the problem of finding suitable
operators to complete the given partial operator matrix so that the resulting matrix satisfies
certain given properties is called a completion problem. Dilation problems are special cases of
completion problems: in other words, the dilation of T is a completion of the partial operator
matrix

[
T ?
? ?

]
. A partial block Toeplitz matrix is simply an n× n matrix some of whose entries are

specified Toeplitz operators and whose remaining entries are unspecified. A subnormal completion

of a partial operator matrix is a particular specification of the unspecified entries resulting in a
subnormal operator. In particular, to avoid the triviality, we are interested in the cases whose
diagonal entries are specified. For example, if ω is a finite Blaschke product, then Tω is evidently
subnormal, so that

[
Tω 0
0 Tω

]
is itself subnormal. On the other hand,

[
Tω 1− TωTω
0 Tω

]
(ω is a finite Blaschke product) (15)

is a subnormal (even unitary) completion of the 2× 2 partial operator matrix
[
Tω ?
? Tω

]
.

A subnormal Toeplitz completion of a partial block Toeplitz matrix is a subnormal completion
whose unspecified entries are Toeplitz operators. Then the following question comes up at once:
Does there exist a subnormal Toeplitz completion of

[
Tω ?
? Tω

]
? Evidently, (15) is not such a

completion. To answer this question, let

Φ ≡
[
ω ϕ

ψ ω

]
(ϕ,ψ ∈ L∞).

If TΦ is hyponormal then by Theorem 1.2, Φ should be normal. Thus a straightforward calculation
shows that

|ϕ| = |ψ| and ω(ϕ+ ψ) = ω(ϕ+ ψ),
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which implies that ϕ = −ψ. Thus a direct calculation shows that

[T ∗
Φ, TΦ] =

[
∗ ∗
∗ TωTω − 1

]
,

which is not positive semi-definite because TωTω − 1 is not. Therefore, there are no hyponormal

Toeplitz completions of

[
Tω ?
? Tω

]
. The following question seems to be more difficult: Does there

exist a subnormal Toeplitz completion of
[
Tω ?
? Tω

]
(ω is a finite Blaschke product) ?

Special cases of this question were successfully considered in [CHL1] and [CHL3]. In the next
section, we consider a subnormal Toeplitz completion problem.

2. Subnormal Toeplitz completions

In this section we consider the following:

Problem A. Complete the unspecified rational Toeplitz operators of the partial block Toeplitz
matrix

G :=

[
Tω1

?
? Tω2

]
(ω1 and ω2 are finite Blaschke products) (16)

to make G subnormal.

To answer Problem A, we need several auxiliary lemmas. We write

bα(z) :=
z − α

1− αz
(α ∈ D) .

We begin with:

Lemma 2.1. Suppose ϕ,ψ ∈ L∞. Then

[T ∗
ϕ◦bα , Tψ◦bα ]

∼= [T ∗
ϕ, Tψ] (∼= denotes unitary equivalence).

In particular, Tϕ◦bα is hyponormal if and only if Tϕ is hyponormal.

Proof. By a well-known fact due to C. Cowen [Co1, Theorem 1], there exists a unitary operator V
such that

Tϕ◦bα = V ∗TϕV and Tψ◦bα = V ∗TψV .

We thus have [T ∗
ϕ◦bα , Tψ◦bα ] = V ∗[T ∗

ϕ, Tψ]V , which gives the result. �

Lemma 2.2. Let ϕ,ψ ∈ L∞ be rational functions and let ω1 and ω2 be finite Blaschke products. If

Φ :=

[
ω1 ϕ

ψ ω2

]

is such that TΦ is hyponormal then ω1 = ω2.

Proof. We first observe (bα ◦ b−α)(z) = z. Thus, in view of Lemma 2.1 we may assume that
ω1(0) = 0. Then this lemma follows from a slight variation of the proof of [CHKL, Lemma 5.1],
in which ω1 = zp and ω2 = zq. �

In view of Lemma 2.2, for the problem (16), it suffices to consider the case

Φ :=

[
ω ϕ

ψ ω

]
(ϕ,ψ ∈ L∞ are rational; ω is a finite Blaschke product))
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Lemma 2.3. Suppose Φ := Φ∗
− + Φ+ ∈ L∞

Mn
is a matrix-valued rational function. Then we may

write (cf. [CHL3, Lemma 3.1])

Φ+ = A∗∆0∆ and Φ− = B∗∆,

where ∆0∆ ≡ θIn with an inner function θ, B and ∆ are left coprime and A,B ∈ H2
Mn

. If
ker [T ∗

Φ, TΦ] is invariant under TΦ and K ∈ E(Φ), then

cl ranHA∆∗ ⊆ ker (I − T
K̃
T ∗
K̃
).

(For the definition of K̃, see (6).)

Proof. This follows from formula (16) in [CHL2], together with a careful analysis that the proof of
(16) in [CHL2] does not employ the diagonal-constant-ness of ∆. �

Lemma 2.4. Let Φ ≡ Φ∗
− +Φ+ ∈ L∞

Mn
be a matrix-valued rational function such that

Φ− :=

[
ω ψ−
ϕ− ω

]
,

where ω is a finite Blaschke product of the form

ω =

p∏

i=1

b
qi
i

(
bi(z) :=

z − αi

1− αiz
(αi 6= αj if i 6= j) and qi ≥ 1

)
.

If

Φ− = ΘB∗ (right coprime factorization),

then Θ has an inner divisor of the form biI2 for some i = 1, 2, · · · , p, except in the following two
cases:

(i) mi + ni = 2qi for all i = 1, 2, · · · , p;
(ii) mi0 + ni0 > 2qi0 and mi0ni0 = 0 for some i0 ,

in the representation

ϕ− ≡ θ0a =
( p∏

i=1

bmi

i

)
θ′0a and ψ− ≡ θ1b =

( p∏

i=1

bni

i

)
θ′1b (coprime factorizations)

(mi, ni = 0, 1, · · · and (θ′0θ
′
1)(αi) 6= 0 for all i = 1, 2, · · · , p).

Proof. By Theorem 1.1, kerHΦ∗

−
= ΘH2

C2 . We observe that for f, g ∈ H2,

Φ∗
−

[
f

g

]
∈ H2

C2 ⇐⇒
[
ω θ0a

θ1b ω

] [
f

g

]
∈ H2

C2 ,

which implies that if

[
f

g

]
∈ kerHΦ∗

−
, then

( p∏

i=1

bi
qi
)
f +

( p∏

i=1

bi
mi

)
θ′0ag ∈ H2 and

( p∏

i=1

bi
ni

)
θ′1bf +

( p∏

i=1

bi
qi
)
g ∈ H2. (17)

We split the proof into two cases.

Case 1 (0 ≤ mi0 + ni0 < 2qi0 for some i0 = 1, 2, · · · , d): In this case, ni0 < qi0 or mi0 < qi0 .
Suppose that mi0 < qi0 . Then by the first statement of (17) we have

(∏

i6=i0

bi
qi−mi

)
bi0

qi0−mi0 θ′0f ∈ H2,
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which implies that f = b
qi0−mi0

i0
f1 for some f1 ∈ H2. In turn, by the second statement of (17) we

have (∏

i6=i0

bi
ni

)
bi0

mi0
+ni0

−qi0 θ′1bf1 +
( p∏

i=1

bi
qi
)
g ∈ H2.

Thus if mi0 + ni0 − qi0 ≤ 0, then g = b
qi0
i0
g1 for some g1 ∈ H2 and if instead mi0 + ni0 − qi0 > 0,

then

bi0
2qi0−mi0

−ni0

(∏

i6=i0

bi
qi−ni

)
θ′1g ∈ H2 ,

which implies that g = b
2qi0−mi0

−ni0

i0
g2 for some g2 ∈ H2. Therefore bi0I2 is an inner divisor of Θ.

If instead ni0 < qi0 then the same argument as the above gives that bi0I2 is an inner divisor
of Θ.

Case 2 (mi0 + ni0 > 2qi0 and mi0ni0 6= 0 for some i0):

(a) Suppose mi0 ≥ qi0 + 1. If

[
f

g

]
∈ kerHΦ∗

−
, then by the first statement of (17) we have

(∏

i6=i0

bi
mi−qi

)
bi0

mi0
−qi0 θ′0ag ∈ H2,

which implies that g = b
mi0

−qi0
i0

g1 for some g1 ∈ H2. In turn, by the second statement of (17) we
have (∏

i6=i0

bi
ni

)
bi0

ni0 θ′1bf +
(∏

i6=i0

bi
qi
)
bi0

2qi0−mi0 g1 ∈ H2.

Thus if 2qi0 ≤ mi0 , then f = b
ni0

i0
f1 for some f1 ∈ H2 and if instead 2qi0 > mi0 , then(∏

i6=i0

bi
ni−qi

)
bi0

mi0
+ni0

−2qi0 θ′1bf ∈ H2 ,

which implies that f = b
mi0

+ni0
−2qi0

i0
f2 for some f2 ∈ H2. Therefore bi0I2 is an inner divisor of Θ.

(b) Suppose mi0 < qi0 +1. Then ni0 ≥ qi0 +1 and the same argument as the Case 2(a) gives
that bi0I2 is an inner divisor of Θ.

From Case 1 and Case 2, we can conclude that Θ has an inner divisor of the form biI2 for
some i = 1, 2, · · · , p except the cases mi+ni = 2qi for all i = 1, 2, · · · , p and mi0 +ni0 > 2qi0 with
mi0ni0 = 0 for some i0. This completes the proof. �

Lemma 2.5. Let Φ ≡ Φ∗
− +Φ+ ∈ L∞

Mn
be a matrix-valued rational function such that

Φ− :=

[
ω ϕ−
ψ− ω

]
,

where ω is a finite Blaschke product of the form

ω =

p∏

i=1

b
qi
i

(
bi(z) :=

z − αi

1− αiz
, qi ≥ 1

)
,

ϕ− ≡ θ0a =
( p∏

i=1

bmi

i

)
θ′0a and ψ− ≡ θ1b =

( p∏

i=1

bni

i

)
θ′1b (coprime factorizations)

(mi, ni = 0, 1, · · · and (θ′0θ
′
1)(αi) 6= 0 for all i = 1, 2, · · · , p). If αi0 = 0, mi0 > 2qi0 and ni0 = 0 for

some i0, then

kerHΦ∗

−
⊆ 1√

|α|2 + 1

[
zmi0

−qi0 θ′0 −αzmi0
−qi0+1θ′0

αθ′1 zθ′1

]
H2

C2

(
α := − a′(0)

θ′′1 (0)

)
,
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where

a′ :=
(∏

i6=i0

bi
Mi−mi

)
a and θ′′1 :=

(∏

i6=i0

b
Mi−qi
i

)
θ′1

(Mi := max(mi, qi) for i 6= i0).

Proof. Observe that for f, g ∈ H2,

Φ∗
−

[
f

g

]
∈ H2

C2 ⇐⇒
[
ω θ1b

θ0a ω

] [
f

g

]
∈ H2

C2 ,

which implies that if

[
f

g

]
∈ kerHΦ∗

−
, then

( p∏

i=1

bi
qi
)
f +

( p∏

i=1

bi
ni

)
θ′1bg ∈ H2 and

( p∏

i=1

bi
mi

)
θ′0af +

( p∏

i=1

bi
qi
)
g ∈ H2. (18)

It follows from the first statement of (18) that g = θ′1g1 for some g1 ∈ H2. In turn

( p∏

i=1

bi
qi
)
f +

( p∏

i=1

bi
ni

)
bg1 ∈ H2

Since ni0 = 0, we have f = zqi0 f1 for some f1 ∈ H2. Thus, by the second statement of (18) we
have

(∏

i6=i0

bi
mi

)
zmi0

−qi0 θ′0af1 +
( p∏

i=1

bi
qi
)
g ∈ H2 , (19)

so that (∏

i6=i0

bi
mi−qi

)
zmi0

−2qi0 θ′0af1 ∈ H2.

Since mi0 > 2qi0 , it follows that f1 = θ′0z
mi0

−2qi0 f2 for some f2 ∈ H2. Thus, by (19) we have

(∏

i6=i0

bi
mi

)
zqi0af2 +

( p∏

i=1

bi
qi
)
θ′1g1 ∈ H2. (20)

Then it follows from (20) that
(∏

i6=i0

bi
Mi−mi

)
af2 +

(∏

i6=i0

b
Mi−qi
i

)
θ′1g1 ∈ zqi0H2. (21)

Write

a′ :=
(∏

i6=i0

bi
Mi−mi

)
a and θ′′1 :=

(∏

i6=i0

b
Mi−qi
i

)
θ′1.

Then we have a′(0) 6= 0 and θ′′1 (0) 6= 0, and by (21) we have

g1(0) = αf2(0)
(
α := − a′(0)

θ′′1 (0)

)
.

Therefore, we have
[
f

g

]
∈ kerHΦ∗

−
=⇒ f = zmi0

−qi0 θ′0f2, g = θ′1g1, and g1(0) = αf2(0). (22)

Put

Ω :=
1√

|α|2 + 1

[
zmi0

−qi0 θ′0 −αzmi0
−qi0+1θ′0

αθ′1 zθ′1

]
.
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Then Ω is inner, and for h1, h2 ∈ H2,

Ω

[
h1
h2

]
=

1√
|α|2 + 1

[
zmi0

−qi0 θ′0h1 − αzmi0
−qi0+1θ′0h2

αθ′1h1 + zθ′1h2

]

=
1√

|α|2 + 1

[
zmi0

−qi0 θ′0
(
h1 − αzh2

)

θ′1
(
αh1 + zh2

)
]
.

Since (αh1 + zh2)(0) = αh1(0) = α(h1 − αzh2)(0), it follows from (22) that

kerHΦ∗

−
⊆ ΩH2

C2 ,

which gives the result. �

To answer Problem A, we recall ([CHL2, Lemma 3.2]) that if Φ ≡ Φ∗
− + Φ+ ∈ L∞

Mn
is such

that Φ and Φ∗ are of bounded type, we may write, as in (9),

Φ+ = Θ1A
∗ and Φ− = ΘB∗ (right coprime factorizations).

If TΦ is hyponormal, then

Θ1 = ΘΘ0 for some inner matrix function Θ0; (23)

in other words, Θ is a left inner divisor of Θ1.

We are ready for:

Theorem 2.6. Let ϕ,ψ ∈ L∞ be rational functions and consider

G :=

[
Tω1

Tϕ
Tψ Tω2

]
(ωi is a finite Blaschke product for i = 1, 2) . (24)

Then the following statements are equivalent:

1. G is normal;
2. G is subnormal;
3. G is 2-hyponormal;
4. G is hyponormal and ker [G∗, G] is invariant for G;
5. ω1 = ω2 =: ω and the following condition holds:

ϕ = eiδ1ω + ζ and ψ = eiδ2ϕ (ζ ∈ C; δ1, δ2 ∈ [0, 2π)) , (25)

except in the following case:

mi + ni = 2qi for some i = 1, 2, · · · , p , (26)

in the representation

ω :=

p∏

i=1

b
qi
i

(
bi(z) :=

z − αi

1− αiz
, qi ≥ 1

)
,

ϕ− ≡ θ0a =
( p∏

i=1

bmi

i

)
θ′0a and ψ− ≡ θ1b =

( p∏

i=1

bni

i

)
θ′1b (coprime factorizations)

(mi, ni = 0, 1, · · · and (θ′0θ
′
1)(αi) 6= 0 for all i = 1, 2, · · · , p).

Proof. Clearly, (1) ⇒ (2) and (2) ⇒ (3). Also (3) ⇒ (4) is evident because ker [T ∗, T ] is invariant
under T for every 2-hyponormal operator T ∈ B(H) (cf. [CL2]). Moreover, (5) ⇒ (1) follows from
a straightforward calculation.

(4) ⇒ (5): By Lemma 2.2, ω1 = ω2 =: ω. Thus we may write

Φ ≡
[
ω ϕ

ψ ω

]
≡ Φ∗

− +Φ+ =

[
ω ψ−
ϕ− ω

]∗
+

[
0 ϕ+

ψ+ 0

]
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and assume that TΦ is hyponormal and ker [TΦ, T
∗
Φ] is invariant for TΦ. Since, by Theorem 1.2, Φ

is normal, we have

|ϕ| = |ψ|, (27)

and also there exists a function K ≡
[
k1 k2
k3 k4

]
∈ H∞

M2
such that Φ∗

− −KΦ∗
+ ∈ H2

M2
, i.e.,

[
ω ϕ−
ψ− ω

]
−

[
k1 k2
k3 k4

] [
0 ψ+

ϕ+ 0

]
∈ H2

M2
,

which implies that ϕ+ and ψ+ are not identically zero and hence detΦ+ is not identically zero.

We now split the proof into three cases.

Case 1 (mi0 = ni0 = 0 for some i0): In this case, by Lemma 2.4 and Theorem 1.4, we can
conclude that TΦ is normal. Since detΦ+ is not identically zero, it follows from Theorem 1.3 that
Φ+ − Φ−U ∈Mn(C) for some constant unitary matrix U ≡ [ c1 c2c3 c4 ]. We observe

Φ+ − Φ−U ∈Mn(C) ⇐⇒
[
0 ϕ+

ψ+ 0

]
−
[
ω θ1b

θ0a ω

] [
c1 c2
c3 c4

]
∈Mn(C)

=⇒





c1ω + c3θ1b = ξ1

c4ω + c2θ0a = ξ2

ϕ+ = c2ω + c4θ1b+ ξ3

ψ+ = c3ω + c1θ0a+ ξ4

(ξi ∈ C for i = 1, · · · , 4) ,
(28)

which gives

c1Hω = −c3Hθ1b
and c4Hω = −c2Hθ0a

. (29)

Thus if c1 6= 0 then c3 6= 0 and hence ω = θ1, which is a contradiction because ω(αi0) = 0, but
θ1(αi0) 6= 0. Thus c1 = 0 and similarly, c4 = 0. Since U is unitary, it follows that |c2| = |c3| = 1,
and hence θ1b and θ0a are constants. Thus, again by (28), we have

ϕ = ϕ+ = eiδ1ω + β1 and ψ = ψ+ = eiδ2ω + β2 (δ1, δ2 ∈ [0, 2π); β1, β2 ∈ C).

Since |ϕ| = |ψ|, it follows that
ϕ = eiδ1ω + ζ and ψ = eiδ2ϕ (δ1, δ2 ∈ [0, 2π); ζ ∈ C)).

Case 2
(
(i) 0 < mi0 + ni0 < 2qi0 ; or (ii) mi0 + ni0 > 2qi0 (mi0ni0 6= 0) for some i0

)
: In this

case, by Lemma 2.4 and Theorem 1.4, we can conclude that TΦ is normal. By case assumption,
we have mi0 6= qi0 or ni0 6= qi0 . Suppose that mi0 6= qi0 . Then ω 6= θ0, and hence by (29) we have
c2 = c4 = 0. Therefore U is not unitary, a contradiction.

If instead ni0 6= qi0 then the same argument as above gives that U is not unitary, a contra-
diction. Thus this case cannot occur.

Case 3 (mi + ni > 2qi (mini = 0) for all i = 1, · · · , p ): Fix i0 (1 ≤ io ≤ p); we may, without loss
of generality, assume that ni0 = 0 (and hence, mi0 > 2qi0). By Lemma 2.1, we may also assume

that bi0 = z. It follows from Theorem 1.2 that there exists a matrix function K ≡
[
k1 k2
k3 k4

]
∈ E(Φ),

so that [
ω ϕ−
ψ− ω

]
−

[
k1 k2
k3 k4

] [
0 ψ+

ϕ+ 0

]
∈ H2

M2
,

which implies that {
ω − k2ϕ+ ∈ H2, θ1b− k4ϕ+ ∈ H2

ω − k3ψ+ ∈ H2, θ0a− k1ψ+ ∈ H2.
(30)

Since ||K||∞ ≤ 1 and hence ||ki||∞ ≤ 1 for each i = 1, · · · , 4, the following Toeplitz operators are
all hyponormal (by Cowen’s Theorem):

Tω+ϕ+
, Tθ1b+ϕ+

, Tω+ψ+
, Tθ0a+ψ+

. (31)
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Put Mi := max(mi, qi) and Ni := max(ni, qi). Then by (31) and a scalar-valued version of (23),
we can see that

ϕ+ = zqi0
∏

i6=i0

bNi

i θ′1θ3d and ψ+ = zmi0

∏

i6=i0

bMi

i θ′0θ2c (coprime factorizations),

where θ2 and θ3 are finite Blaschke products. Thus, in particular, c(0) 6= 0 and d(0) 6= 0. Thus,
by (30), we can see that

k3(0) = 0 and k4(0) = 0 : (32)

indeed, in (30),

ω − k3ψ+ ∈ H2 =⇒ zqi0
∏

i6=i0

bi
qi − k3z

mi0

∏

i6=i0

bi
Mi

θ′0θ2c ∈ H2

=⇒ zmi0
−qi0

∏

i6=i0

bi
Mi−qiθ′0θ2 − k3c ∈ zmi0H2

=⇒ k3(0) = 0 (since mi0 > 2qi0)

and

θ1b− k4ϕ+ ∈ H2 =⇒
( d∏

i=1

bi
ni

)
θ′1b− k4z

qi0
∏

i6=i0

bi
Ni

θ′1θ3d ∈ H2

=⇒ zqi0
(∏

i6=i0

bNi−ni

i

)
θ3b− k4d ∈ zqi0H2

=⇒ k4(0) = 0 ,

which proves (32). Write

θ2 = zl2θ′2 and θ3 = zl3θ′3 (θ′2(0) 6= 0, θ′3(0) 6= 0).

Then we can write

Φ+ =

[
0 zqi0+l3

∏
i6=i0 b

Ni

i θ′1θ
′
3d

zmi0
+l2

∏
i6=i0 b

Mi

i θ′0θ
′
2c 0

]
.

On the other hand, write

a′ :=
(∏

i6=i0

bi
Mi−mi

)
a, θ′′1 :=

(∏

i6=i0

b
Mi−qi
i

)
θ′1

and

α := − a′(0)

θ′′1 (0)
and ν :=

1√
|α|2 + 1

.

Note that

Φ̃− =

[
ω̃ θ̃0ã

θ̃1b̃ ω̃

]
.

Since Φ̃∗
− is of bounded type, it follows from Theorem 1.1 that there exists a square inner matrix

function ∆ such that kerH
Φ̃∗

−

= ∆̃H2
C2 and

Φ̃∗
− = B̃∆̃∗ (right coprime factorization).

Thus, by Lemma 2.5 we have

kerH
Φ̃∗

−

= ∆̃H2
C2

⊆ Ω̃H2
C2 and Φ− = B∗∆ (left coprime factorization) , (33)

where

Ω = ν

[
zmi0

−qi0 θ′0 αθ′1
−αzmi0

−qi0+1θ′0 zθ′1

]
.
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Since ∆̃H2
C2

⊆ Ω̃H2
C2 , it follows that Ω̃ is a left inner divisor of ∆̃. Thus, we can write

∆̃ = Ω̃Ω̃1 for some Ω1, so that ∆ = Ω1Ω.

We suppose that qi0 + l3 ≤ mi0 + l2 and write r := (mi0 + l2) − (qi0 + l3) ≥ 0. Then there exist
finite Blaschke products θ4 and θ5 with θi(0) 6= 0 (i = 4, 5) such that

Φ+ =
∏

i6=i0

b
max(Mi,Ni)
i (zmi0

+l2θ′1θ
′
3θ

′
0θ

′
2)I2

[
0 θ5θ

′
1θ

′
3c

zrθ4θ
′
0θ

′
2d 0

]∗
≡ (θI2)A

∗,

where θ :=
∏
i6=i0 b

max(Mi,Ni)
i (zmi0

+l2θ′1θ
′
3θ

′
0θ

′
2). Since HA∆∗ = HAΩ∗Ω∗

1
, it follows that

ranHA∆∗ ⊇ ranHAΩ∗ . (34)

Observe that

AΩ∗ = ν

[
0 θ5θ

′
1θ

′
3c

zrθ4θ
′
0θ

′
2d 0

] [
zmi0

−qi0 θ′0 αθ′1
−αzmi0

−qi0+1θ′0 zθ′1

]∗

= ν

[
αθ5θ

′
3c zθ5θ

′
3c

zr−mi0
+qi0 θ4θ

′
2d −αzr−mi0

+qi0−1θ4θ
′
2d

]
.

If r ≤ mi0 − qi0 , then we have

HAΩ∗

[
0

zmi0
−qi0−r

]
= ν

[
Hz(z

mi0
−qi0−rθ5θ

′
3c)

−αHz(θ4θ
′
2d)

]
.

Since (θ4θ
′
2d)(0) 6= 0, it follows from Lemma 2.3, (33) and (34) that

[
β

1

]
∈ cl ranHAΩ∗ ⊆ cl ranHA∆∗ ⊆ ker (I − T

K̃
T ∗
K̃
) for some β ∈ C. (35)

It thus follows from (32) and (35) that

[
β

1

]
= T

K̃
T ∗
K̃

[
β

1

]
=

[
T
k̃1

T
k̃3

T
k̃2

T
k̃4

] [
T
k̃1

T
k̃2

T
k̃3

T
k̃4

] [
β

1

]

=

[
T
k̃1

T
k̃3

T
k̃2

T
k̃4

] [
(βk1(0) + k2(0))

0

]

=

[
k̃1(βk1(0) + k2(0))

k̃2(βk1(0) + k2(0))

]
,

which implies that k1 is a constant and k2 is a nonzero constant. Again by (30),

ω − k2ϕ+ ∈ H2 =⇒ ωzqi0
∏

i6=i0

bi
Ni

θ′1θ3d ∈ H2

=⇒ qi ≥ ni (i 6= i0) and θ′1θ3d ∈ H2

=⇒ ni = 0 (i 6= i0) and θ
′
1θ3 = 1 ,

(36)

where the last implication follows from the observation that if ni 6= 0 then by the case assumption,
mi = 0 and hence, 2qi < ni ≤ qi, a contradiction. We thus have ni = 0 for all i = 1, · · · , p. Since
θ′1 = 1, it follows that

θ1 = 1 and hence, ψ− = 0.
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In turn, mi > 2qi for all i = 1, · · · , p, so that θ0 is nonconstant, and hence ϕ− = θ0a 6= 0. Since
by (30), θ0a− k1ψ+ ∈ H2, it follows that k1 6= 0. We thus have

θ0a− k1ψ+ ∈ H2 =⇒ θ0a− k1z
mi0

∏

i6=i0

bi
Mi

θ′0θ2c ∈ H2

=⇒
p∏

i=1

bi
mi

a− k1z
mi0

∏

i6=i0

bi
Mi

θ2c ∈ H2

=⇒ θ2c ∈ H2 (because mi > 2qi and hence, Mi = mi)

=⇒ θ2 = 1 .

(37)

Therefore, we have

ϕ+ = zq
∏

i6=i0

bNi

i θ′1θ3d = ωd (q := qi0) and ψ+ = zmi0

∏

i6=i0

bMi

i θ′0θ2c = θ0c.

Since by (27), |ϕ| = |ψ|, we have

|ωd+ θ0a| = |ϕ+ + ϕ−| = |ψ+| = |θ0c| (where a ∈ Hθ0 , d ∈ Hzω, c ∈ Hzθ0) ,

which implies

ωθ0(ωd+ θ0a)(ωd+ θ0a) = ωθ0cc ,

so that

ad = z
(
(θ0c)(zω)c− (θ0d)(zω)d− (θ0a)(θ0d)(zω

2)− (θ0a)(zω)a
)
. (38)

Since a ∈ Hθ0 , c ∈ Hzθ0 , d ∈ Hzω and mi ≥ 2qi for all i = 1, · · · , p, it follows that θ0a ∈ H2,

θ0c ∈ H2 and θ0d = (
∏p
i=1 b

mi

i ) θ′0d =
(∏p

i=1 b
mi−qi
i θ′0

)
(ωd) ∈ H2. Thus, (38) implies that ad = zh

for some h ∈ H2, and hence (ad)(0) = 0, a contradiction. Therefore this case cannot occur.

If instead r > mi0−qi0 , then the same argument as before leads to a contradiction. Moreover,
by the same argument as in the case qi0 + l3 ≤ mi0 + l2, the case qi0 + l3 > mi0 + l2 cannot occur
either.

Therefore, Case 3 cannot occur. This proves the implication (4) ⇒ (5).

This completes the proof. �

Remark 2.7. From the proof of Theorem 2.6 we can see that if G is given by (24) then G is
subnormal if and only if G is normal, except in the case (26). However we need not expect that
the exceptional case (26) implies normality of G. For example, if

Φ :=

[
ω ω + 2ω

ω + 2ω ω

]
(ω is a finite Blaschke product)

then TΦ satisfies the case (26) (where mi = ni = qi and a = b = θ′0 = θ′1 = 1). A straightforward
calculation shows that TΦ is not normal. Since

TΦ =

[
Tω Tω + 2Tω

Tω + 2Tω Tω

]
,

it follows that if W := 1√
2

[
1 −1
1 1

]
, then W is unitary and

W ∗TΦW = 2

[
Tω + Tω 0

0 −Tω

]
,

which says that TΦ is unitarily equivalent to a direct sum of the normal operator 2(Tω + Tω)
and the analytic Toeplitz operator −2Tω. From this viewpoint, we might conjecture that every
subnormal rational Toeplitz operator is unitarily equivalent to a direct sum of a normal operator
and an analytic Toeplitz operator. However we have been unable to settle this conjecture.
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