Hyponormality of Bounded-Type Toeplitz Operators

Raúl E. Curto, In Sung Hwang and Woo Young Lee

Abstract

In this paper we deal with the hyponormality of Toeplitz operators with matrixvalued symbols. The aim of this paper is to provide a tractable criterion for the hyponormality of bounded-type Toeplitz operators T_{Φ} (i.e., the symbol $\Phi \in L_{M_{n}}^{\infty}$ is a matrix-valued function such that Φ and Φ^{*} are of bounded type). In particular, we get a much simpler criterion for the hyponormality of T_{Φ} when the co-analytic part of the symbol Φ is a left divisor of the analytic part.

Keywords. Toeplitz operators, Hardy spaces, matrix-valued symbols, functions of bounded type, rational functions, hyponormal, pseudo-hyponormal, interpolation problems.

1. Introduction

An elegant theorem of C. Cowen [Co] characterizes the hyponormality of Toeplitz operators T_{φ} on the Hardy space $H^{2}(\mathbb{T})$ of the unit circle $\mathbb{T} \subset \mathbb{C}$ in terms of their symbols $\varphi \in L^{\infty}(\mathbb{T})$. Cowen's method is to recast the operator-theoretic problem of hyponormality for Toeplitz operators into the problem of finding a solution with specified properties of a certain functional equation involving the operator's symbol φ. Today, this theorem is referred as Cowen's Theorem. In 2006, Gu, Hendricks and Rutherford [GHR] extended Cowen's Theorem for block Toeplitz operators T_{Φ} on the matrixvalued Hardy space $H_{M_{n}}^{2}(\mathbb{T})$. Their characterization resembles Cowen's Theorem, except for an additional condition - the normality of the symbol $\Phi \in L_{M_{n}}^{\infty}$. However, the hyponormality of T_{Φ} with matrix-valued symbol Φ, though solved in principle by the characterization given in [GHR], is in practice very complicated - in fact it may not even be possible to find tractable conditions for the hyponormality of T_{Φ} in terms of their symbols Φ unless certain assumptions are made about Φ. To date, explicit criteria for the hyponormality of Toeplitz operators T_{Φ} have been established via interpolation problems when Φ is a matrix-valued trigonometric polynomial or a rational function (cf. [GHR], [HL1], [HL2]). Very recently, in [CHL], the hyponormality of Toeplitz operators T_{Φ} was investigated when Φ is a matrix-valued function such that Φ and Φ^{*} are of bounded type(a "bounded type" function means a quotient of two bounded analytic functions). A sufficient condition for the hyponormality was given by an interpolation involving the $H^{\infty}{ }_{-}$ functional calculus via a triangular representation for compressions of the unilateral shift operator T_{z}. The aim of this paper is to provide a tractable criterion for the hyponormality of bounded-type Toeplitz operators T_{Φ} (i.e., Φ and Φ^{*} are of bounded type). In particular, we get a much simpler criterion for the hyponormality of T_{Φ} when the co-analytic part of the symbol is a left divisor of the analytic part. To do so, we provide a definition of "divisor" for matrix-valued analytic functions whose adjoints are of bounded type.

We first review a few essential facts for (block) Toeplitz operators and (block) Hankel operators (cf. $[\mathrm{BS}],[\mathrm{Do}],[\mathrm{Ni}],[\mathrm{Pe}])$. Let \mathcal{H} denote an infinite dimensional separable complex Hilbert space and $\mathcal{B}(\mathcal{H})$ denote the set of all bounded linear operators acting on \mathcal{H}. For an operator $A \in \mathcal{B}(\mathcal{H})$,

[^0]A^{*} and ker A denote the adjoint and the kernel, respectively, of A. An operator $A \in \mathcal{B}(\mathcal{H})$ is said to be hyponormal if its self-commutator $\left[A^{*}, A\right] \equiv A^{*} A-A A^{*}$ is positive semi-definite. For a set $\mathcal{M}, \mathcal{M}^{\perp}$ denotes the orthogonal complement of \mathcal{M}. Let $L^{2} \equiv L^{2}(\mathbb{T})$ be the set of square-integrable measurable functions on the unit circle $\mathbb{T} \equiv \partial \mathbb{D}$ in the complex plane and $H^{2} \equiv H^{2}(\mathbb{T})$ be the corresponding Hardy space. Let $L^{\infty} \equiv L^{\infty}(\mathbb{T})$ be the set of bounded measurable functions on \mathbb{T} and let $H^{\infty} \equiv H^{\infty}(\mathbb{T}):=L^{\infty} \cap H^{2}$. For a Hilbert space \mathcal{X}, let $L_{\mathcal{X}}^{2} \equiv L_{\mathcal{X}}^{2}(\mathbb{T})$ be the Hilbert space of \mathcal{X}-valued norm square-integrable measurable functions on \mathbb{T} and $H_{\mathcal{X}}^{2} \equiv H_{\mathcal{X}}^{2}(\mathbb{T})$ be the corresponding Hardy space. We observe that $L_{\mathbb{C}^{n}}^{2}=L^{2} \otimes \mathbb{C}^{n}$ and $H_{\mathbb{C}^{n}}^{2}=H^{2} \otimes \mathbb{C}^{n}$. Let $M_{n \times m}$ denote the set of $n \times m$ complex matrices and write $M_{n}:=M_{n \times n}$. If Φ is a matrix-valued function in $L_{M_{n}}^{\infty} \equiv L_{M_{n}}^{\infty}(\mathbb{T})\left(=L^{\infty} \otimes M_{n}\right)$ then the block Toeplitz operator T_{Φ} and the block Hankel operator H_{Φ} on $H_{\mathbb{C}^{n}}^{2}$ are defined by
\[

$$
\begin{equation*}
T_{\Phi} f=P_{n}(\Phi f) \quad \text { and } \quad H_{\Phi} f=J P_{n}^{\perp}(\Phi f) \quad\left(f \in H_{\mathbb{C}^{n}}^{2}\right), \tag{1}
\end{equation*}
$$

\]

where P_{n} and P_{n}^{\perp} denote the orthogonal projections that map from $L_{\mathbb{C}^{n}}^{2}$ onto $H_{\mathbb{C}^{n}}^{2}$ and $\left(H_{\mathbb{C}^{n}}^{2}\right)^{\perp}$, respectively and J denotes the unitary operator from $L_{\mathbb{C}^{n}}^{2}$ to $L_{\mathbb{C}^{n}}^{2}$ given by $J(g)(z)=\bar{z} I_{n} g(\bar{z})$ for $g \in L_{\mathbb{C}^{n}}^{2}\left(I_{n}:=\right.$ the $n \times n$ identity matrix). If $n=1, T_{\Phi}$ and H_{Φ} are called the (scalar) Toeplitz operator and the (scalar) Hankel operator, respectively. For $\Phi \in L_{M_{n \times m}}^{\infty}$, write

$$
\begin{equation*}
\widetilde{\Phi}(z):=\Phi^{*}(\bar{z}) \tag{2}
\end{equation*}
$$

For $\Phi \in L_{M_{n}}^{\infty}$, we also write

$$
\Phi_{+}:=P_{n} \Phi \in H_{M_{n}}^{2} \quad \text { and } \quad \Phi_{-}:=\left(P_{n}^{\perp} \Phi\right)^{*} \in H_{M_{n}}^{2}
$$

Thus we can write $\Phi=\Phi_{-}^{*}+\Phi_{+}$. However, it will often be convenient to allow the constant term in Φ_{-}. Hence, if there is no confusion we may assume that Φ_{-}shares the constant term with Φ_{+}: in this case, $\Phi(0)=\Phi_{+}(0)+\Phi_{-}(0)^{*}$. A matrix function $\Theta \in H_{M_{n \times m}}^{\infty}\left(=H^{\infty} \otimes M_{n \times m}\right)$ is called inner if Θ is isometric almost everywhere on \mathbb{T}. The following facts are clear from the definition:

$$
\begin{align*}
& T_{\Phi}^{*}=T_{\Phi^{*}}, \quad H_{\Phi}^{*}=H_{\widetilde{\Phi}} \quad\left(\Phi \in L_{M_{n}}^{\infty}\right) ; \tag{3}\\
& T_{\Phi \Psi}-T_{\Phi} T_{\Psi}=H_{\Phi^{*}}^{*} H_{\Psi} \quad\left(\Phi, \Psi \in L_{M_{n}}^{\infty}\right) ; \tag{4}\\
& H_{\Phi} T_{\Psi}=H_{\Phi \Psi}, \quad H_{\Psi \Phi}=T_{\widetilde{\Psi}}^{*} H_{\Phi} \quad\left(\Phi \in L_{M_{n}}^{\infty}, \Psi \in H_{M_{n}}^{\infty}\right) . \tag{5}
\end{align*}
$$

For matrix-valued functions

$$
A(z):=\sum_{j=-\infty}^{\infty} A_{j} z^{j} \in L_{M_{n}}^{2} \text { and } B(z):=\sum_{j=-\infty}^{\infty} B_{j} z^{j} \in L_{M_{n}}^{2},
$$

we define the inner product of A and B by

$$
\langle A, B\rangle:=\int_{\mathbb{T}} \operatorname{tr}\left(B^{*} A\right) d \mu=\sum_{j=-\infty}^{\infty} \operatorname{tr}\left(B_{j}^{*} A_{j}\right),
$$

where $\operatorname{tr}(\cdot)$ denotes the trace of a matrix and define $\|A\|_{2}:=\langle A, A\rangle^{\frac{1}{2}}$. We also define, for $A \in L_{M_{n}}^{\infty}$,

$$
\|A\|_{\infty}:=\operatorname{ess} \sup _{z \in \mathbb{T}}\|A(z)\| \quad(\|\cdot\| \text { denotes the spectral norm of a matrix }) .
$$

For a matrix-valued function $\Phi \in H_{M_{n \times r}}^{2}$, we say that $\Delta \in H_{M_{n \times m}}^{2}$ is a left inner divisor of Φ if Δ is an inner matrix function such that $\Phi=\Delta A$ for some $A \in H_{M_{m \times r}}^{2}(m \leq n)$. We also say that two matrix functions $\Phi \in H_{M_{n \times r}}^{2}$ and $\Psi \in H_{M_{n \times m}}^{2}$ are left coprime if the only common left inner divisor of both Φ and Ψ is a unitary constant and that $\Phi \in H_{M_{n \times r}}^{2}$ and $\Psi \in H_{M_{n \times r}}^{2}$ are right coprime if $\widetilde{\Phi}$ and $\widetilde{\Psi}$ are left coprime. Two matrix functions Φ and Ψ in $H_{M_{n}}^{2}$ are said to be coprime if they are both left and right coprime. We would remark that if $\Phi \in H_{M_{n}}^{n}$ is such that $\operatorname{det} \Phi$ is not identically zero then any left inner divisor Δ of Φ is square, i.e., $\Delta \in H_{M_{n}}^{2}$. If $\Phi \in H_{M_{n}}^{2}$ is
such that $\operatorname{det} \Phi$ is not identically zero then we say that $\Delta \in H_{M_{n}}^{2}$ is a right inner divisor of Φ if $\widetilde{\Delta}$ is a left inner divisor of $\widetilde{\Phi}$.

For notational convenience, we write

$$
H_{0}^{2}:=z I_{n} H_{M_{n}}^{2} .
$$

Suppose $\Phi \equiv \Phi_{-}^{*}+\Phi_{+}=\left[\varphi_{i j}\right] \in L_{M_{n}}^{\infty}$ is of bounded type, in other words, each entry $\varphi_{i j}$ is of the form $\varphi_{i j}(z)=\psi_{i j}^{(1)}(z) / \psi_{i j}^{(2)}(z)$ for almost all $z \in \mathbb{T}$, where $\psi_{i j}^{(1)}, \psi_{i j}^{(2)} \in H^{\infty}$. Then it was ([Ab]) known that $\varphi_{i j}$ can be written as the form $\varphi_{i j}=\overline{\theta_{i j}} b_{i j}$, where $\theta_{i j}$ is an inner function, $b_{i j} \in H^{\infty}$, and $\theta_{i j}$ and $b_{i j}$ are coprime. Thus if θ is the least common multiple of $\theta_{i j}$'s then we can write

$$
\Phi=\left[\varphi_{i j}\right]=\left[\overline{\theta_{i j}} b_{i j}\right]=\left[\bar{\theta} c_{i j}\right]=C \Theta^{*} \quad\left(\Theta \equiv \theta I_{n}, C \equiv\left[c_{i j}\right] \in H_{M_{n}}^{\infty}\right)
$$

Thus we have

$$
\begin{equation*}
\Phi_{-}=\Theta\left(C-\Phi_{+} \Theta\right)^{*} \equiv \Theta A^{*} \quad\left(\Theta \equiv \theta I_{n}, A:=C-\Phi_{+} \Theta \in H_{M_{n}}^{2}\right) \tag{6}
\end{equation*}
$$

If Ω is the greatest common left inner divisor of A and Θ in the representation (6):

$$
\Phi_{-}=\Theta A^{*}=A^{*} \Theta \quad\left(\Theta \equiv \theta I_{n} \text { for an inner function } \theta\right),
$$

then $\Theta=\Omega \Omega_{l}$ and $A=\Omega A_{l}$ for some inner matrix Ω_{l} (where $\Omega_{l} \in H_{M_{n}}^{2}$ because $\operatorname{det} \Theta$ is not identically zero) and some $A_{l} \in H_{M_{n}}^{2}$. Thus we can write

$$
\begin{equation*}
\Phi_{-}=A_{l}^{*} \Omega_{l}, \quad \text { where } A_{l} \text { and } \Omega_{l} \text { are left coprime: } \tag{7}
\end{equation*}
$$

in this case, $A_{l}^{*} \Omega_{l}$ is called the left coprime factorization of F and similarly, we can write

$$
\begin{equation*}
\Phi_{-}=\Omega_{r} A_{r}^{*}, \quad \text { where } A_{r} \text { and } \Omega_{r} \text { are right coprime: } \tag{8}
\end{equation*}
$$

in this case, $\Omega_{r} A_{r}^{*}$ is called the right coprime factorization of Φ_{-}.
On the other hand, we note that by (5), the kernel of a block Hankel operator H_{Φ} is an invariant subspace of the shift operator $T_{z I_{n}}$ on $H_{\mathbb{C}^{n}}^{2}$. Thus if $\operatorname{ker} H_{\Phi} \neq\{0\}$ then by the Beurling-Lax-Halmos Theorem,

$$
\operatorname{ker} H_{\Phi}=\Theta H_{\mathbb{C}^{m}}^{2}
$$

for some inner matrix function Θ. In general, Θ need not be a square matrix function.
We however have:
Lemma 1.1. ([GHR]) For $\Phi \in L_{M_{n}}^{\infty}$, the following statements are equivalent:
(i) Φ is of bounded type;
(ii) $\operatorname{ker} H_{\Phi}=\Theta H_{\mathbb{C}^{n}}^{2}$ for some square inner matrix function Θ;
(iii) $\Phi=A \Theta^{*}$, where $A \in H_{M_{n}}^{\infty}$ and A and Θ are right coprime.

In general, the condition "right coprime" for matrix-valued functions is not easy to check. It was also known [CHKL] that if $A, B \in H_{M_{n}}^{2}$ and B is a rational function such that $\operatorname{det} B$ is not identically zero then

$$
\begin{equation*}
A \text { and } B \text { are right coprime } \Longleftrightarrow \operatorname{ker} A(\alpha) \cap \operatorname{ker} B(\alpha)=\{0\} \text { for any } \alpha \in \mathbb{D} \tag{9}
\end{equation*}
$$

On the other hand, recently, Gu, Hendricks and Rutherford [GHR] characterized the hyponormality of block Toeplitz operators in terms of their symbols:

Lemma 1.2. (Hyponormality of Block Toeplitz Operators) [GHR] For each $\Phi \in L_{M_{n}}^{\infty}$, let

$$
\mathcal{E}(\Phi):=\left\{K \in H_{M_{n}}^{\infty}:\|K\|_{\infty} \leq 1 \text { and } \Phi-K \Phi^{*} \in H_{M_{n}}^{\infty}\right\}
$$

Then T_{Φ} is hyponormal if and only if Φ is normal and $\mathcal{E}(\Phi)$ is nonempty.

Observe that for $\Phi \in L_{M_{n}}^{\infty}$, by (4),

$$
\left[T_{\Phi}^{*}, T_{\Phi}\right]_{p}:=H_{\Phi^{*}}^{*} H_{\Phi^{*}}-H_{\Phi}^{*} H_{\Phi}+T_{\Phi^{*} \Phi-\Phi \Phi^{*}}
$$

Since the normality of Φ is a necessary condition for the hyponormality of T_{Φ}, the positivity of $H_{\Phi^{*}}^{*} H_{\Phi^{*}}-H_{\Phi}^{*} H_{\Phi}$ is an essential condition for the hyponormality of T_{Φ}. Thus we isolate this property as a new notion, weaker than hyponormality. The reader will notice at once that this notion is meaningful for non-scalar symbols. Now a block Toeplitz operator T_{Φ} is said to be pseudo-hyponormal if

$$
H_{\Phi^{*}}^{*} H_{\Phi^{*}}-H_{\Phi}^{*} H_{\Phi} \geq 0
$$

We thus have that

$$
T_{\Phi} \text { is hyponormal } \Longleftrightarrow T_{\Phi} \text { is pseudo-hyponormal and } \Phi \text { is normal }
$$

and that (via [GHR, Theorem 3.3])

$$
T_{\Phi} \text { is pseudo-hyponormal } \Longleftrightarrow \mathcal{E}(\Phi) \neq \emptyset
$$

Note that for each $M \in M_{n}$,

$$
\begin{equation*}
T_{\Phi} \text { is pseudo-hyponormal } \Longleftrightarrow T_{\Phi+M} \text { is pseudo-hyponormal. } \tag{10}
\end{equation*}
$$

Let $\Phi \in L_{M_{n}}^{\infty}$ be such that Φ and Φ^{*} are of bounded type. Then in view of (6) we can write

$$
\Phi_{+}=\Theta_{1} A^{*} \quad \text { and } \quad \Phi_{-}=\Theta_{2} B^{*}
$$

where $\Theta_{i}=\theta_{i} I_{n}$ with an inner function $\theta_{i}(i=1,2)$ and $A, B \in H_{M_{n}}^{2}$. For $F=\left[f_{i j}\right] \in H_{M_{n}}^{\infty}$, we say that F is rational if each entry $f_{i j}$ is a rational function. Also if given $\Phi \in L_{M_{n}}^{\infty}$, Φ_{+}and Φ_{-} are rational then we say that T_{Φ} has a rational symbol Φ.

The organization of this paper is as follows. In Section 2, we prove the main theorem - a criterion for the hyponormality of bounded-type Toeplitz operators T_{Φ}. In Section 3, we consider the rational symbol case. In Section 4, we provide revealing examples to illustrate how much more it is gained by our criterion.

2. A criterion for hyponormality of bounded-type Toeplitz operators

Let $\lambda \in \mathbb{D}$ and write

$$
b_{\lambda}(z):=\xi \frac{z-\lambda}{1-\bar{\lambda} z}(\xi \in \mathbb{T}):
$$

b_{λ} is called a Blaschke factor and $\theta:=e^{i \theta} \prod_{m=1}^{d} b_{m}$ is called a finite Blaschke product. For an inner matrix function $\Theta \in H_{M_{n}}^{\infty}$, we write

$$
\mathcal{H}(\Theta):=H_{\mathbb{C}^{n}}^{2} \ominus \Theta H_{\mathbb{C}^{n}}^{2}, \quad \mathcal{H}_{\Theta}:=H_{M_{n}}^{2} \ominus \Theta H_{M_{n}}^{2} \quad \text { and } \quad \mathcal{K}_{\Theta}:=H_{M_{n}}^{2} \ominus H_{M_{n}}^{2} \Theta .
$$

If $\Theta=\theta I_{n}$ for an inner function θ, then $\mathcal{H}_{\Theta}=\mathcal{K}_{\Theta}$ and if $n=1$, then $\mathcal{H}(\Theta)=\mathcal{H}_{\Theta}=\mathcal{K}_{\Theta}$. Let $\Phi \in L_{M_{n}}^{\infty}$ be such that Φ and Φ^{*} are of bounded type: in this case, we shall say that T_{Φ} is a bounded-type Toeplitz operator. Then in view of (6) we can write

$$
\begin{equation*}
\Phi_{+}=\Theta_{1} A^{*} \quad \text { and } \quad \Phi_{-}=\Theta_{2} B^{*} \tag{11}
\end{equation*}
$$

where $\Theta_{i}=\theta_{i} I_{n}$ with an inner function $\theta_{i}(i=1,2)$. If $\Phi \in L_{M_{n}}^{\infty}$ is rational then the θ_{i} are chosen as finite Blaschke products. Moreover it is known (cf. [CHL, Lemma 3.2]) that if T_{Φ} is pseudo-hyponormal then Θ_{2} is an inner divisor of Θ_{1} if the representations in (11) are right coprime factorizations even though the Θ_{i} are arbitrary inner functions. Thus, when we consider the pseudo-hyponormality of bounded-type Toeplitz operators T_{Φ}, we may assume that the symbol $\Phi \in L_{M_{n}}^{\infty}$ is of the form

$$
\begin{equation*}
\Phi_{+}=\Theta_{1} \Theta_{2} A^{*} \quad \text { and } \quad \Phi_{-}=\Theta_{1} B^{*} \quad \text { (right coprime factorizations). } \tag{12}
\end{equation*}
$$

For $\Phi \equiv \Phi_{-}^{*}+\Phi_{+} \in L_{M_{n}}^{\infty}$, write

$$
\mathcal{C}(\Phi):=\left\{K \in H_{M_{n}}^{\infty}: \Phi-K \Phi^{*} \in H_{M_{n}}^{\infty}\right\}
$$

Thus if $\Phi \in L_{M_{n}}^{\infty}$ then $K \in \mathcal{E}(\Phi)$ if and only if $K \in \mathcal{C}(\Phi)$ and $\|K\|_{\infty} \leq 1$.
To prove the main theorem we need several auxiliary lemmas.
We begin with:
Lemma 2.1. If Θ_{1} and Θ_{2} are inner matrix functions in $H_{M_{n}}^{\infty}$, then
(a) $\widetilde{\mathcal{K}_{\Theta_{1}}}=\mathcal{H}_{\tilde{\Theta}_{1}}$,
(b) $\mathcal{K}_{\Theta_{1} \Theta_{2}}=\mathcal{K}_{\Theta_{1}} \Theta_{2} \oplus \mathcal{K}_{\Theta_{2}}$,
(c) $\mathcal{H}_{\Theta_{1} \Theta_{2}}=\Theta_{1} \mathcal{H}_{\Theta_{2}} \oplus \mathcal{H}_{\Theta_{1}}$.

Proof. (a) Let $C \in H_{M_{n}}^{2}$ be arbitrary. Then

$$
\begin{aligned}
A \in \mathcal{K}_{\Theta_{1}} & \Longleftrightarrow \int_{\mathbb{T}} \operatorname{tr}\left(\left(C \Theta_{1}\right)^{*} A\right) d \mu=\left\langle A, C \Theta_{1}\right\rangle=0 \\
& \Longleftrightarrow \int_{\mathbb{T}} \operatorname{tr}\left(\widetilde{A}\left(\widetilde{\Theta}_{1} \widetilde{C}\right)^{*}\right) d \mu=\int_{\mathbb{T}} \operatorname{tr}\left(\left(\widetilde{\left.\Theta_{1}\right)^{*}} A\right) d \mu=0\right. \\
& \Longleftrightarrow\left\langle\widetilde{A}, \widetilde{\Theta}_{1} \widetilde{C}\right\rangle=\int_{\mathbb{T}} \operatorname{tr}\left(\left(\widetilde{\Theta}_{1} \widetilde{C}\right)^{*} \widetilde{A}\right) d \mu=0 \\
& \Longleftrightarrow \widetilde{A} \in \mathcal{H}_{\widetilde{\Theta}_{1}}
\end{aligned}
$$

which gives the result.
(b) Suppose $A \in \mathcal{K}_{\Theta_{1}}$ and $B \in \mathcal{K}_{\Theta_{2}}$. Firstly, we will show that $A \Theta_{2}+B \in \mathcal{K}_{\Theta_{1} \Theta_{2}}$. Indeed, if $C \in H_{M_{n}}^{2}$ is arbitrary then

$$
\begin{aligned}
\left\langle A \Theta_{2}+B, C \Theta_{1} \Theta_{2}\right\rangle & =\int_{\mathbb{T}} \operatorname{tr}\left(\Theta_{2}^{*} \Theta_{1}^{*} C^{*}\left(A \Theta_{2}+B\right)\right) d \mu \\
& =\int_{\mathbb{T}} \operatorname{tr}\left(\left(A \Theta_{2}+B\right) \Theta_{2}^{*} \Theta_{1}^{*} C^{*}\right) d \mu \\
& =\int_{\mathbb{T}} \operatorname{tr}\left(A \Theta_{1}^{*} C^{*}\right) d \mu+\int_{\mathbb{T}} \operatorname{tr}\left(B \Theta_{2}^{*} \Theta_{1}^{*} C^{*}\right) d \mu \\
& =\left\langle A, C \Theta_{1}\right\rangle+\left\langle B,\left(C \Theta_{1}\right) \Theta_{2}\right\rangle \\
& =0
\end{aligned}
$$

which gives $\mathcal{K}_{\Theta_{1}} \Theta_{2} \oplus \mathcal{K}_{\Theta_{2}} \subseteq \mathcal{K}_{\Theta_{1} \Theta_{2}}$. For the reverse inclusion, let $A \in \mathcal{K}_{\Theta_{1} \Theta_{2}}$ and write $B:=$ $P_{\mathcal{K}_{\Theta_{2}}} A$. Then $P_{\mathcal{K}_{\Theta_{2}}}(A-B)=0$ and hence $A-B \in H_{M_{n}}^{2} \Theta_{2}$. Thus it suffices to show that $(A-B) \Theta_{2}^{*} \in \mathcal{K}_{\Theta_{1}}$. Indeed, if $C \in H_{M_{n}}^{2}$ is arbitrary, then

$$
\begin{aligned}
\left\langle(A-B) \Theta_{2}^{*}, C \Theta_{1}\right\rangle & =\int_{\mathbb{T}} \operatorname{tr}\left(\Theta_{1}^{*} C^{*}(A-B) \Theta_{2}^{*}\right) d \mu \\
& =\int_{\mathbb{T}} \operatorname{tr}\left((A-B) \Theta_{2}^{*} \Theta_{1}^{*} C^{*}\right) d \mu \\
& =\int_{\mathbb{T}} \operatorname{tr}\left(A\left(C \Theta_{1} \Theta_{2}\right)^{*}\right) d \mu-\int_{\mathbb{T}} \operatorname{tr}\left(B\left(C \Theta_{1} \Theta_{2}\right)^{*}\right) d \mu \\
& =\left\langle A, C \Theta_{1} \Theta_{2}\right\rangle-\left\langle B, C \Theta_{1} \Theta_{2}\right\rangle \\
& =0
\end{aligned}
$$

which implies $(A-B) \Theta_{2}^{*} \in \mathcal{K}_{\Theta_{1}}$.
(c) Observe by (a) and (b) that

$$
A \in \mathcal{H}_{\Theta_{1} \Theta_{2}} \Longleftrightarrow \widetilde{A} \in \mathcal{K}_{\widetilde{\Theta}_{2} \tilde{\Theta}_{1}} \Longleftrightarrow \widetilde{A} \in \mathcal{K}_{\widetilde{\Theta}_{2}} \widetilde{\Theta}_{1} \oplus \mathcal{K}_{\widetilde{\Theta}_{1}} \Longleftrightarrow A \in \Theta_{1} \mathcal{H}_{\Theta_{2}} \oplus \mathcal{H}_{\Theta_{1}}
$$

which gives the result.

Lemma 2.2. Let $\Phi \in L_{M_{n}}^{\infty}$ be such that Φ and Φ^{*} are of bounded type. Then we may write

$$
\Phi_{+}=\Theta_{1} \Theta_{2} A^{*} \quad \text { and } \quad \Phi_{-}=\Theta_{1} B^{*}
$$

where $\Theta_{1}=\theta_{1} I_{n}$ for an inner function θ_{1} and Θ_{2} is inner. Let $\Theta_{2} A^{*}=A_{1}^{*} \Theta$, where A_{1} and Θ are left coprime. For each (scalar) inner function θ_{3}, put

$$
\Phi_{C}:=\Phi_{-}^{*}+\Theta_{1} \Theta_{3}\left(P_{\mathcal{K}_{\Theta_{1}}} A_{1}\right)^{*}+\Theta_{3} C^{*} \quad\left(\Theta_{3}:=\theta_{3} I_{n}, C \in \mathcal{K}_{\Theta_{3}}\right)
$$

Then

$$
T_{\Phi} \text { is pseudo-hyponormal } \Longleftrightarrow T_{\Phi_{C}} \text { is pseudo-hyponormal. }
$$

In particular, $\mathcal{E}\left(\Phi_{C}\right)=\left\{K \Theta^{*} \Theta_{3}: K \in \mathcal{E}(\Phi)\right\}$, where $K^{\prime} \equiv K \Theta^{*} \in H_{M_{n}}^{2}$.

Proof. Suppose T_{Φ} is pseudo-hyponormal. Then there exists a matrix function $K \in \mathcal{E}(\Phi)$. We will show that

$$
\begin{equation*}
K=K^{\prime} \Theta \quad \text { for some } K^{\prime} \in H_{M_{n}}^{2} \tag{13}
\end{equation*}
$$

Indeed if $K \in \mathcal{E}(\Phi)$, then $B \Theta_{1}^{*}-K A \Theta_{2}^{*} \Theta_{1}^{*} \in H_{M_{n}}^{2}$, so that $K \Theta^{*} A_{1} \in H_{M_{n}}^{2}$. We thus have that by (5),

$$
0=H_{K \Theta^{*} A_{1}}^{*}=H_{\widetilde{A}_{1} \widetilde{\Theta}^{*} \widetilde{K}}=H_{\widetilde{A}_{1} \widetilde{\Theta}^{*}} T_{\widetilde{K}},
$$

which implies that $\widetilde{K} H_{\mathbb{C}^{n}}^{2} \subseteq \operatorname{ker} H_{\widetilde{A}_{1} \widetilde{\Theta}^{*}}=\widetilde{\Theta} H_{\mathbb{C}^{n}}^{2}$ since A_{1} and Θ are left coprime, and hence \widetilde{A}_{1} and $\widetilde{\Theta}$ are right coprime. It thus follows (cf. [FF, Corollary IX.2.2]) that $\widetilde{\Theta}$ is a left inner divisor of \widetilde{K}, so that $\widetilde{K}=\widetilde{\Theta} \widetilde{K}^{\prime}$ for some $\widetilde{K}^{\prime} \in H_{M_{n}}^{2}$, and hence $K=K^{\prime} \Theta$. This proves (13). Now if T_{Φ} is pseudo-hyponormal then $B \Theta_{1}^{*}-\left(K^{\prime} \Theta\right) A \Theta_{2}^{*} \Theta_{1}^{*} \in H_{M_{n}}^{2}$, and hence $B \Theta_{1}^{*}-K^{\prime} A_{1} \Theta_{1}^{*} \in H_{M_{n}}^{2}$. Thus $B \Theta_{1}^{*}-\left(K^{\prime} \Theta_{3}\right)\left(P_{\mathcal{K}_{\Theta_{1}}} A_{1}+C \Theta_{1}\right) \Theta_{1}^{*} \Theta_{3}^{*} \in H_{M_{n}}^{2}$ for some $C \in \mathcal{K}_{\Theta_{3}}$, which implies that $T_{\Phi_{C}}$ is pseudo-hyponormal. This argument is reversible. The last assertion is evident from the above proof.

Lemma 2.3. Suppose that $\Theta_{1}=\theta_{1} I_{n}$ for an inner function θ_{1} and Θ_{2} is an inner matrix function in $H_{M_{n}}^{\infty}$. If θ_{1} has a Blaschke factor, then

$$
\begin{equation*}
\mathcal{K}_{\Theta_{2}} \subseteq \mathcal{K}_{\Theta_{1}} \cdot \mathcal{K}_{z I_{n} \Theta_{2}} \subseteq \mathcal{K}_{\Theta_{1} \Theta_{2}} \tag{14}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\mathcal{H}_{\Theta_{2}} \subseteq \mathcal{H}_{z I_{n} \Theta_{2}} \cdot \mathcal{H}_{\Theta_{1}} \subseteq \mathcal{H}_{\Theta_{1} \Theta_{2}} \tag{15}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\operatorname{span}\left(\mathcal{K}_{\Theta_{1}} \cdot \mathcal{K}_{z I_{n} \Theta_{2}}\right)=\mathcal{K}_{\Theta_{1} \Theta_{2}} \quad \text { and } \quad \operatorname{span}\left(\mathcal{H}_{z I_{n} \Theta_{2}} \cdot \mathcal{H}_{\Theta_{1}}\right)=\mathcal{H}_{\Theta_{1} \Theta_{2}} \tag{16}
\end{equation*}
$$

Proof. Let $A \in \mathcal{K}_{\Theta_{1}}$ and $B \in \mathcal{K}_{z I_{n} \Theta_{2}}$. Then for arbitrary $D \in H_{M_{n}}^{2}$,

$$
0=\left\langle A, D \Theta_{1}\right\rangle=\int_{\mathbb{T}} \operatorname{tr}\left(\Theta_{1}^{*} D^{*} A\right) d \mu=\left\langle A \Theta_{1}^{*}, D\right\rangle
$$

which implies that $\Theta_{1} A^{*} \in H_{0}^{2}$, and similarly, $\Theta_{2} B^{*} \in H_{M_{n}}^{2}$. Thus we have $C \Theta_{2} B^{*} \in H_{M_{n}}^{2}$ for arbitrary $C \in H_{M_{n}}^{\infty}$. If $C \in H_{M_{n}}^{\infty}$ is arbitrary, then

$$
\begin{aligned}
\left\langle A B, C \Theta_{1} \Theta_{2}\right\rangle & =\int_{\mathbb{T}} \operatorname{tr}\left(\left(C \Theta_{1} \Theta_{2}\right)^{*} A B\right) d \mu \\
& =\int_{\mathbb{T}} \operatorname{tr}\left(A B \Theta_{2}^{*} \Theta_{1}^{*} C^{*}\right) d \mu \\
& =\int_{\mathbb{T}} \operatorname{tr}\left(\Theta_{1}^{*}\left(C \Theta_{2} B^{*}\right)^{*} A\right) d \mu \quad \text { (since } \Theta_{1}=\theta_{1} I_{n} \text { is diagonal-constant) } \\
& =0 \quad\left(\text { since } C \Theta_{2} B^{*} \in H_{M_{n}}^{2} \text { and } A \in \mathcal{K}_{\Theta_{1}}\right),
\end{aligned}
$$

which implies $A B \in \mathcal{K}_{\Theta_{1} \Theta_{2}}$. Thus we can see that $\mathcal{K}_{\Theta_{1}} \cdot \mathcal{K}_{z I_{n} \Theta_{2}} \subseteq \mathcal{K}_{\Theta_{1} \Theta_{2}}$, which gives the second inclusion of (14). For the first inclusion of (14), suppose θ_{1} has a Blaschke factor b_{α}, so that $\theta_{1}(\alpha)=0$. If $A \in \mathcal{K}_{\Theta_{2}}$, then $\Theta_{2} A^{*} \in H_{0}^{2}$. Thus

$$
z I_{n} \Theta_{2}\left((1-\bar{\alpha} z) I_{n} A\right)^{*}=z I_{n} \Theta_{2} A^{*}-\alpha I_{n} \Theta_{2} A^{*} \in H_{0}^{2}
$$

which implies that $(1-\bar{\alpha} z) I_{n} A \in \mathcal{K}_{z I_{n} \Theta_{2}}$. But since $\Theta_{1}=\theta_{1} I_{n}$ and $\frac{1}{1-\bar{\alpha} z} I_{n} \in \mathcal{K}_{\Theta_{1}}$, it follows that

$$
A \in \frac{1}{1-\bar{\alpha} z} I_{n} K_{z I_{n} \Theta_{2}} \subseteq \mathcal{K}_{\Theta_{1}} \cdot \mathcal{K}_{z I_{n} \Theta_{2}},
$$

which says that the first inclusion of (14) holds if θ_{1} has a Blaschke factor. The statement (15) follows from (14) together with Lemma 2.1(a).

For (16), observe that by Lemma 2.1(b),

$$
\mathcal{K}_{\Theta_{1} \Theta_{2}}=\mathcal{K}_{\Theta_{1}} \Theta_{2} \oplus \mathcal{K}_{\Theta_{2}}
$$

and

$$
\mathcal{K}_{\Theta_{1}} \Theta_{2} \subseteq \mathcal{K}_{\Theta_{1}} \cdot \mathcal{K}_{z I_{n} \Theta_{2}}
$$

But since $\mathcal{K}_{\Theta_{1} \Theta_{2}}$ is a subspace of $H_{M_{n}}^{2}$ and $\mathcal{K}_{\Theta_{1}} \Theta_{2} \cup \mathcal{K}_{\Theta_{2}} \subseteq \mathcal{K}_{\Theta_{1}} \cdot \mathcal{K}_{z I_{n} \Theta_{2}}$, it follows from (14) that $\operatorname{span}\left(\mathcal{K}_{\Theta_{1}} \cdot \mathcal{K}_{z I_{n} \Theta_{2}}\right)=\mathcal{K}_{\Theta_{1} \Theta_{2}}$, and similarly, $\operatorname{span}\left(\mathcal{H}_{z I_{n} \Theta_{2}} \cdot \mathcal{H}_{\Theta_{1}}\right)=\mathcal{H}_{\Theta_{1} \Theta_{2}}$, which proves (16).

From Lemma 2.3, we are tempted to guess that

$$
\begin{equation*}
\Phi=\Psi \Upsilon\left(\Phi \in \mathcal{K}_{\Theta_{1} \Theta_{2}}, \Psi \in \mathcal{K}_{\Theta_{1}}, \Upsilon \in H_{M_{n}}^{\infty}\right) \Longrightarrow \Upsilon \in \mathcal{K}_{z I_{n} \Theta_{2}} \tag{17}
\end{equation*}
$$

But this is not the case. In fact, (17) does not hold for even scalar-valued functions. Indeed, if $f=2 z^{3}+z^{2}, g=z^{2}+2 z$, and $h=\frac{z+\frac{1}{2}}{1+\frac{1}{2} z} \cdot z$, then $f=g h$, but (17) fails.

On the other hand, in view of Lemma 2.3, we might define the notion of "divisor" of matrixvalued analytic functions as follows: if $\Phi \in \mathcal{K}_{\Theta_{1} \Theta_{2}}, \Psi \in \mathcal{K}_{\Theta_{1}}, \Upsilon \in \mathcal{K}_{z I_{n} \Theta_{2}}$ satisfies $\Phi=\Psi \Upsilon$, then we say that Ψ is a left divisor of Φ. However, we must consider another aspect. Let

$$
\Phi=\left[\begin{array}{cc}
z^{2} & 0 \tag{18}\\
0 & 0
\end{array}\right], \quad \Psi=\left[\begin{array}{cc}
z & 0 \\
0 & z^{3}
\end{array}\right], \quad \text { and } \quad \Upsilon=\left[\begin{array}{cc}
z & 0 \\
0 & 0
\end{array}\right]:
$$

If we regard Φ as an element in $\mathcal{K}_{\Theta_{1} \Theta_{2}}\left(\Theta_{1}=z^{4} I_{2}, \Theta_{2}=z I_{2}\right)$ then

$$
\Phi=\Psi \Upsilon \in \mathcal{K}_{\Theta_{1}} \cdot \mathcal{K}_{z I_{2} \Theta_{2}}
$$

Thus Ψ is a left divisor of Φ. But if we regard Φ as an element in $\mathcal{K}_{\Theta_{1} \Theta_{2}}\left(\Theta_{1}=z^{4} I_{2}, \Theta_{2}=I_{2}\right)$, then Ψ cannot be a left divisor of Φ. Based on this observation, we should be careful when defining the notion of "divisor" for matrix-valued functions.

Before we define the notion of "divisor," we need to observe:
Lemma 2.4. Let $\Phi \in H_{M_{n}}^{2}$ be of the form

$$
\Phi=\Theta A^{*} \quad \text { (right coprime factorization) } .
$$

Then $A \in \mathcal{K}_{z I_{n} \Theta}$ and $\Phi \in \mathcal{H}_{z I_{n} \Theta}$. In particular, if $\Phi \in H_{0}^{2}$, then $A \in \mathcal{K}_{\Theta}$.
Proof. Since $\Phi=\Theta A^{*} \in H_{M_{n}}^{2}$, it follows that for any $C \in H_{M_{n}}^{2}$,

$$
0=\left\langle\bar{z} I_{n} C^{*}, \Phi\right\rangle=\int_{\mathbb{T}} \operatorname{tr}\left(A \Theta^{*} \bar{z} I_{n} C^{*}\right) d \mu=\int_{\mathbb{T}} \operatorname{tr}\left(\Theta^{*} \bar{z} I_{n} C^{*} A\right) d \mu=\left\langle A, C z I_{n} \Theta\right\rangle
$$

which implies that $A \in \mathcal{K}_{z I_{n} \Theta}$. Also, for any $C \in H_{M_{n}}^{2}$,

$$
\left\langle\Phi, z I_{n} \Theta C\right\rangle=\int_{\mathbb{T}} \operatorname{tr}\left(C^{*} \Theta^{*} \bar{z} I_{n} \Theta A^{*}\right) d \mu=\left\langle A^{*}, C z I_{n}\right\rangle=0
$$

which implies $\Phi \in \mathcal{H}_{z I_{n} \Theta}$. Similarly we also have that if $\Phi \in H_{0}^{2}$, then $A \in \mathcal{K}_{\Theta}$.

We now define the notion of "divisor" for matrix-valued analytic functions whose adjoints are of bounded type.

Definition 2.5. Let $\Phi, \Psi \in H_{M_{n}}^{2}$ be such that Φ^{*} and Ψ^{*} are of bounded type. Then we can write

$$
\Phi=\Theta_{1} A^{*} \quad \text { and } \quad \Psi=\Theta_{2} B^{*} \quad \text { (right coprime factorizations) },
$$

where the $\Theta_{i}(i=1,2)$ are inner, $A \in \mathcal{K}_{z I_{n} \Theta_{1}}$ and $B \in \mathcal{K}_{z I_{n} \Theta_{2}}$. If $\Theta_{1}=\Theta_{2}$ for some inner function $\Theta \in H_{M_{n}}^{2}$, and

$$
\begin{equation*}
\Phi=\Psi \Gamma \text { for some } \Gamma \in \mathcal{H}_{z I_{n} \Theta} \tag{19}
\end{equation*}
$$

then we say that Ψ is a left divisor of Φ. If $\widetilde{\Psi}$ is a left divisor of $\widetilde{\Phi}$ then we say that Ψ is a right divisor of Φ. We note that if $\Theta_{i}=\theta_{i} I_{n}(i=1,2)$, then (19) can be also written as

$$
\Phi=\Psi \Gamma \text { for some } \Gamma \in \mathcal{K}_{z I_{n} \Theta} .
$$

Lemma 2.6. Let $\Phi, \Psi \in H_{M_{n}}^{2}$ be of the form

$$
\Phi=\Theta_{1} \Theta_{2} A^{*} \quad \text { and } \quad \Psi=\Theta_{1} B^{*} \quad \text { (right coprime factorizations) },
$$

where $\Theta_{i}=\theta_{i} I_{n}(i=1,2), A \in \mathcal{K}_{z I_{n} \Theta_{1} \Theta_{2}}$ and $B \in \mathcal{K}_{z I_{n} \Theta_{1}}$. Then we have

$$
\Psi \text { is a left divisor of } \Phi \Longleftrightarrow A=E B \text { for some } E \in \mathcal{K}_{z I_{n} \Theta_{2}}
$$

Proof. If Ψ is left divisor of Φ then there exists $\Gamma \in \mathcal{K}_{z I_{n} \Theta_{2}}$ such that $\Phi=\Psi \Gamma$. Thus $\Theta_{1} \Theta_{2} A^{*}=$ $\Theta_{1} B^{*} \Gamma$, and hence $A=\Theta_{2} \Gamma^{*} B$. It suffices to show that

$$
E \equiv \Theta_{2} \Gamma^{*} \in \mathcal{K}_{z I_{n} \Theta_{2}}
$$

Indeed, since $\Gamma \in \mathcal{K}_{z I_{n} \Theta_{2}}$, it follows that for any $C \in H_{M_{n}}^{\infty}$,

$$
0=\left\langle\Gamma, C z I_{n} \Theta_{2}\right\rangle=\int_{\mathbb{T}} \operatorname{tr}\left(\Theta_{2}^{*} \bar{z} I_{n} C^{*} \Gamma\right) d \mu=\int_{\mathbb{T}} \operatorname{tr}\left(\bar{z} I_{n} C^{*}\left(\Theta_{2} \Gamma^{*}\right)^{*}\right) d \mu=\left\langle\Theta_{2} \Gamma^{*},\left(z I_{n} C\right)^{*}\right\rangle
$$

which implies that $\Theta_{2} \Gamma^{*} \in H_{M_{n}}^{2}$. Thus by Lemma $2.4, E \equiv \Theta_{2} \Gamma^{*} \in \mathcal{K}_{z I_{n} \Theta_{2}}$.
Conversely, if $A=E B$ for some $E \in \mathcal{K}_{z I_{n} \Theta_{2}}$ then

$$
\Phi=\Theta_{1} \Theta_{2} A^{*}=\left(\Theta_{1} B^{*}\right)\left(\Theta_{2} E^{*}\right)=\Psi \Gamma .
$$

Since $E \in \mathcal{K}_{z I_{n} \Theta_{2}}$, it follows that $\Theta_{2} E^{*} \in H_{M_{n}}^{2}$, and hence by Lemma $2.4, \Gamma \equiv \Theta_{2} E^{*} \in \mathcal{K}_{z I_{n} \Theta_{2}}$. Thus Ψ is a left divisor of Φ. This completes the proof.

The following proposition provides a criterion for the hyponormality of bounded-type Toeplitz operators T_{Φ} when the co-analytic part of Φ is a left divisor of the analytic part.

Proposition 2.7. Let $\Phi \in L_{M_{n}}^{\infty}$ be such that Φ and Φ^{*} are of bounded type. Thus in view of (12), we may write

$$
\Phi_{+}=\Theta_{1} \Theta_{2} A^{*} \quad \text { and } \quad \Phi_{-}=\Theta_{1} B^{*} \quad \text { (right coprime factorizations) } .
$$

Assume that $\Theta_{i}=\theta_{i} I_{n}$ for inner functions $\theta_{i}(i=1,2)$. If Φ_{-}is a left divisor of Φ_{+}(or equivalently, in view of Lemma $2.6, A=E B$ for some $E \in \mathcal{K}_{z I_{n} \Theta_{2}}$), then the following are equivalent:
(i) T_{Φ} is pseudo-hyponormal;
(ii) There exists a function $Q \in H_{M_{n}}^{\infty}$ with $\|Q\|_{\infty} \leq 1$ such that $Q E \in I_{n}+\Theta_{1} H_{M_{n}}^{2}$;
(iii) T_{Ψ} is pseudo-hyponormal, where $\Psi=\Theta_{1}^{*}+\Theta_{1}\left(P_{\mathcal{K}_{\Theta_{1}}} E\right)^{*}$.

Moreover, if $\theta_{1}=\theta_{2}$ then T_{Φ} is pseudo-hyponormal if and only if $T_{\Theta_{1}^{*}+\Theta_{1} E^{*}}$ is pseudo-hyponormal.

Proof. For the equivalence (i) \Leftrightarrow (ii), let $\Phi^{\prime}=\Phi_{-}^{*}+\Theta_{1}\left(P_{\mathcal{K}_{\Theta_{1}}}(A)\right)^{*}$. Then by Lemma 2.2 we have $\mathcal{E}(\Phi)=\left\{Q \Theta_{2}: Q \in \mathcal{E}\left(\Phi^{\prime}\right)\right\}$. We then have

$$
\begin{aligned}
T_{\Phi} \text { is pseudo-hyponormal } & \Longleftrightarrow \Theta_{1}^{*} B-\left(Q \Theta_{2}\right) \Theta_{1}^{*} \Theta_{2}^{*} A \in H_{M_{n}}^{2} \text { and } Q \in \mathcal{E}\left(\Phi^{\prime}\right) \\
& \Longleftrightarrow \Theta_{1}^{*} B-Q \Theta_{1}^{*} A \in H_{M_{n}}^{2} \text { and }\|Q\|_{\infty} \leq 1 \\
& \Longleftrightarrow B-Q A \in \Theta_{1} H_{M_{n}}^{2} \text { and }\|Q\|_{\infty} \leq 1 \\
& \Longleftrightarrow\left(I_{n}-Q E\right) B \in \Theta_{1} H_{M_{n}}^{2} \text { and }\|Q\|_{\infty} \leq 1 \\
& \Longleftrightarrow I_{n}-Q E \in \Theta_{1} H_{M_{n}}^{2} \text { and }\|Q\|_{\infty} \leq 1 \\
& \Longleftrightarrow \text { since } B \text { and } \Theta_{1} \text { are coprime) } \\
& \Longleftrightarrow Q E \in I_{n}+\Theta_{1} H_{M_{n}}^{2} \text { and }\|Q\|_{\infty} \leq 1
\end{aligned}
$$

which proves the equivalence (i) \Leftrightarrow (ii). The equivalence (ii) \Leftrightarrow (iii) follows at once from the following equivalence:

$$
\begin{aligned}
Q E \in I_{n}+\Theta_{1} H_{M_{n}}^{2} & \Longleftrightarrow \Theta_{1}^{*}-Q \Theta_{1}^{*} E \in H_{M_{n}}^{2} \\
& \Longleftrightarrow \Theta_{1}^{*}-Q\left(P_{H_{0}^{2}}\left(\Theta_{1} E^{*}\right)\right)^{*} \in H_{M_{n}}^{2} \\
& \Longleftrightarrow \Theta_{1}^{*}-Q\left(P_{\mathcal{K}_{\Theta_{1}}} E\right) \Theta_{1}^{*} \in H_{M_{n}}^{2} \\
& \Longleftrightarrow T_{\Psi} \text { is pseudo-hyponormal. }
\end{aligned}
$$

For the second aseertion, we first observe that if $\theta_{1}=\theta_{2}$ then $E \in \mathcal{K}_{z I_{n} \Theta_{1}}$. But since $\mathcal{K}_{z I_{n} \Theta_{1}}=$ $\mathcal{K}_{\Theta_{1}} \oplus \mathcal{K}_{z I_{n}} \Theta_{1}$, it follows that $P_{\mathcal{K}_{\Theta_{1}}} E=E+M \Theta_{1}\left(M \in M_{n}\right)$, so that $\Theta_{1}\left(P_{\mathcal{K}_{\Theta_{1}}} E\right)^{*}=\Theta_{1} E^{*}+M$. Since by (10), $T_{\Theta_{1}^{*}+\Theta_{1} E^{*}}$ is pseudo-hyponormal if and only if $T_{\Theta_{1}^{*}+\Theta_{1} E^{*}+M}$ is pseudo-hyponormal, it follows from the first assertion that T_{Φ} is pseudo-hyponormal if and only if $T_{\Theta_{1}^{*}+\Theta_{1} E^{*}}$ is. This completes the proof.

Before we go on, we shall introduce a "reverse pull-back symbol" Φ " for the given symbol $\Phi \in L_{M_{n}}^{\infty}$ satisfying that Φ and Φ^{*} are of bounded type. Suppose that $\Phi \in L_{M_{n}}^{\infty}$ is such that Φ and Φ^{*} are of bounded type. Then in view of (12), we may write

$$
\Phi_{+}=\Theta_{1} \Theta_{2} A^{*} \quad \text { and } \quad \Phi_{-}=\Theta_{1} B^{*} \quad \text { (right coprime factorizations). }
$$

Assume that $\Theta_{i}=\theta_{i} I_{n}$ for inner functions $\theta_{i}(i=1,2)$. We write

$$
\begin{equation*}
\Phi^{\sharp}:=\Theta_{1}^{*}\left(P_{\mathcal{K}_{\Theta_{1}}} A\right)+\Phi_{-} \tag{20}
\end{equation*}
$$

(Φ^{\sharp} is a pull-back of Φ^{*} - i.e., pulling back of the co-analytic part of Φ^{*} to have the same degree as that of the analytic part). We then claim that

$$
\begin{equation*}
A_{1}:=P_{\mathcal{K}_{\Theta_{1}}} A \text { and } \Theta_{1} \text { are right coprime: } \tag{21}
\end{equation*}
$$

indeed, if we write $A=A_{1}+\Theta_{1} A_{2}$ for some $A_{2} \in H_{M_{n}}^{2}$ and assume to the contrary that Θ_{1} and A_{1} have a common right inner divisor Ω, then $A=A_{1}+A_{2} \Theta_{1}=A_{1}^{\prime} \Omega+A_{2} \Theta_{1}^{\prime} \Omega=\left(A_{1}^{\prime}+A_{2} \Theta_{1}^{\prime}\right) \Omega$ for some $A_{1}^{\prime}, \Theta_{1}^{\prime} \in H_{M_{n}}^{2}$, which implies that A and Θ_{1} have a common right inner divisor Ω, a contradiction.

The following observation provides a core idea of our main theorem.
Proposition 2.8. Let $\Phi \in L_{M_{n}}^{\infty}$ be such that Φ and Φ^{*} are of bounded type. Thus in view of (12), we may write

$$
\Phi_{+}=\Theta_{1} \Theta_{2} A^{*} \quad \text { and } \quad \Phi_{-}=\Theta_{1} B^{*} \quad \text { (right coprime factorizations). }
$$

Assume that $\Theta_{i}=\theta_{i} I_{n}$ for inner functions $\theta_{i}(i=1,2)$ and write

$$
\Phi^{\sharp}:=\Theta_{1}^{*}\left(P_{\mathcal{K}_{\Theta_{1}}} A\right)+\Phi_{-} .
$$

Then the set $\left\{P_{\mathcal{K}_{\Theta_{1}}} K: K \in \mathcal{C}\left(\Phi^{\sharp}\right)\right\}$ is a singleton set or empty.

Proof. Write $A_{1}:=P_{\mathcal{K}_{\Theta_{1}}} A$, and hence $\Phi^{\sharp}=\Theta_{1}^{*} A_{1}+\Phi_{-}$. Assume $K_{1}, K_{2} \in \mathcal{C}\left(\Phi^{\sharp}\right)$. Then

$$
\Theta_{1}^{*} A_{1}-K_{1} \Phi_{-}^{*} \in H_{M_{n}}^{2} \quad \text { and } \quad \Theta_{1}^{*} A_{1}-K_{2} \Phi_{-}^{*} \in H_{M_{n}}^{2}
$$

which implies that $\left(K_{1}-K_{2}\right) B \Theta_{1}^{*} \in H_{M_{n}}^{2}$, so that $\left(K_{1}-K_{2}\right) B \in \Theta_{1} H_{M_{n}}^{2}$. If we write $K:=$ $P_{\mathcal{K}_{\Theta_{1}}}\left(K_{1}-K_{2}\right)$, then $K B \in \Theta_{1} H_{M_{n}}^{2}$, and hence, $K B \Theta_{1}^{*} \in H_{M_{n}}^{2}$, which implies that $H_{K B \Theta_{1}^{*}}=0$. Thus by (5), $T_{\widetilde{K}}^{*} H_{B \Theta_{1}^{*}}=0$, so that $H_{\widetilde{B} \Theta_{1}} * T_{\widetilde{K}}=0$ (with $\widetilde{\Theta_{1}}:=I_{\widetilde{\theta_{1}}}$), which implies that

$$
\widetilde{K} H_{\mathbb{C}^{n}}^{2} \subseteq \operatorname{ker} H_{\widetilde{B} \widetilde{\Theta}_{1}^{*}}
$$

Since Θ_{1} and B are left coprime, so that $\widetilde{\Theta_{1}}$ and \widetilde{B} are right coprime, it follows from Lemma 1.1 that

$$
\widetilde{K} H_{\mathbb{C}^{n}}^{2} \subseteq \operatorname{ker} H_{\widetilde{B} \widetilde{\Theta}_{1}}{ }^{*}=\widetilde{\Theta_{1}} H_{\mathbb{C}^{n}}^{2}
$$

which implies that $\widetilde{\Theta_{1}}$ is a left inner divisor of \widetilde{K}. Therefore $\widetilde{K}=\widetilde{\Theta_{1}} E$ for some $E \in H_{M_{n}}^{2}$, and hence $K=\widetilde{E} \Theta_{1} \in H_{M_{n}}^{2} \Theta_{1}$. But since $K \in \mathcal{K}_{\Theta_{1}}$, we should have $K=0$, i.e., $P_{\mathcal{K}_{\Theta_{1}}} K_{1}=P_{\mathcal{K}_{\Theta_{1}}} K_{2}$, which says that $\left\{P_{\mathcal{K}_{\Theta_{1}}} K: K \in \mathcal{C}\left(\Phi^{\sharp}\right)\right\}$ is a singleton set.

Our main theorem now follows:
Theorem 2.9. (A Criterion for Hyponormality of Bounded-Type Toeplitz Operators) Let $\Phi \in L_{M_{n}}^{\infty}$ be a normal matrix function such that Φ and Φ^{*} are of bounded type. Thus in view of (12), we may write

$$
\Phi_{+}=\Theta_{1} \Theta_{2} A^{*} \quad \text { and } \quad \Phi_{-}=\Theta_{1} B^{*} \quad \text { (right coprime factorizations) } .
$$

Assume that $\Theta_{i}=\theta_{i} I_{n}$ for inner functions $\theta_{i}(i=1,2)$. Write

$$
\Phi^{\sharp}:=\Theta_{1}^{*}\left(P_{\mathcal{K}_{\Theta_{1}}} A\right)+\Phi_{-} .
$$

If $\mathcal{C}\left(\Phi^{\sharp}\right)$ is nonempty, we may, in view of Proposition 2.8 , write $K^{\sharp}:=P_{\mathcal{K}_{\Theta_{1}}} K\left(\right.$ where $K \in \mathcal{C}\left(\Phi^{\sharp}\right)$). Then the following are equivalent:
(i) T_{Φ} is hyponormal;
(ii) There exists a function $Q \in H_{M_{n}}^{\infty}$ with $\|Q\|_{\infty} \leq 1$ such that $Q K^{\sharp} \in I_{n}+\Theta_{1} H_{M_{n}}^{2}$;
(iii) T_{Ψ} is pseudo-hyponormal, where $\Psi=\Theta_{1}^{*}+\Theta_{1}\left(K^{\sharp}\right)^{*}$.

Moreover, if $A=E B$ for some $E \in \mathcal{K}_{z I_{n} \Theta_{2}}$, then K^{\sharp} can be chosen as E.
Proof. Write

$$
\Phi_{C}:=\Phi_{-}^{*}+\Theta_{1}^{2}\left(P_{\mathcal{K}_{\Theta_{1}}} A\right)^{*}+\Theta_{1} C^{*} \quad\left(C \in \mathcal{K}_{\Theta_{1}}\right)
$$

Then it follows from Lemma 2.2 that

$$
\begin{equation*}
T_{\Phi} \text { is pseudo-hyponormal } \Longleftrightarrow T_{\Phi_{C}} \text { is pseudo-hyponormal. } \tag{22}
\end{equation*}
$$

Put $A_{1}:=P_{\mathcal{K}_{\Theta_{1}}} A$. Thus we can write

$$
\Phi_{C}=\Theta_{1}^{*} B+\Theta_{1}^{2}\left(A_{1}+\Theta_{1} C\right)^{*} .
$$

Now we will show that if $K \in \mathcal{C}\left(\Phi^{\sharp}\right)$, then

$$
\begin{equation*}
A_{1}+\Theta_{1} C=K^{\sharp} B \text { for some } C \in \mathcal{K}_{\Theta_{1}} . \tag{23}
\end{equation*}
$$

Indeed, if $K \in \mathcal{C}\left(\Phi^{\sharp}\right)$, then

$$
\Theta_{1}^{*} A_{1}-K \Theta_{1}^{*} B \in H_{M_{n}}^{2}, \quad \text { so that } \quad A_{1}-K B \in \Theta_{1} H_{M_{n}}^{2}
$$

It thus follows that $P_{\mathcal{K}_{\Theta_{1}}}\left(A_{1}-K B\right)=0$, so that $P_{\mathcal{K}_{\Theta_{1}}}\left(A_{1}-\left(P_{\mathcal{K}_{\Theta_{1}}} K\right) B\right)=0$, and hence $A_{1}-K^{\sharp} B \in$ $\Theta_{1} H_{M_{n}}^{2}$. Thus

$$
A_{1}+\Theta_{1} C=K^{\sharp} B \text { for some } C \in H_{M_{n}}^{2} .
$$

Now we will show that $C \in \mathcal{K}_{\Theta_{1}}$. To see this we note that $\Theta_{1}^{2}\left(A_{1}+\Theta_{1} C\right)^{*}=\Theta_{1}^{2} B^{*}\left(K^{\sharp}\right)^{*}$. But since $B \in \mathcal{K}_{\Theta_{1}}$ and $K^{\sharp} \in \mathcal{K}_{\Theta_{1}}$, it follows that

$$
\Theta_{1}^{2} A_{1}^{*}+\Theta_{1} C^{*}=\left(\Theta_{1} B^{*}\right)\left(\Theta_{1}\left(K^{\sharp}\right)^{*}\right) \in H_{0}^{2},
$$

which implies $\Theta_{1} C^{*} \in H_{0}^{2}$, and hence, $C \in \mathcal{K}_{\Theta_{1}}$. This proves (23). Then by Lemma 2.6 and (23), $\left(\Phi_{C}\right)_{-}$is a left divisor of $\left(\Phi_{C}\right)_{+}$. Thus all assertions follow at once from (22) and Proposition 2.7.

Theorem 2.9 is often useful for the cases of even scalar-valued symbols.
Example 2.10. Let δ be a singular inner function of the form

$$
\delta(z)=\exp \left(\frac{z+1}{z-1}\right)
$$

and consider the function

$$
\varphi=\bar{z}\left(\bar{\delta}-\frac{1}{2}\right)+4 z\left(\delta-\frac{1}{2}\right)\left(\delta-\frac{1}{3}\right)
$$

Then T_{φ} is hyponormal.
Proof. Observe that

$$
\varphi_{-}=z \delta\left(\overline{\left(1-\frac{1}{2} \delta\right.}\right) \quad \text { and } \quad \varphi_{+}=z \delta^{2} \overline{4\left(1-\frac{1}{2} \delta\right)\left(1-\frac{1}{3} \delta\right)}
$$

Then under the notations of Theorem 2.9, $A=4\left(1-\frac{1}{2} \delta\right)\left(1-\frac{1}{3} \delta\right), B=1-\frac{1}{2} \delta$, so that E can be given by

$$
E=4\left(1-\frac{1}{3} \delta\right)
$$

Put

$$
Q:=E^{-1}=\frac{1}{4\left(1-\frac{1}{3} \delta\right)}
$$

Then $Q \in H^{\infty}$ with $\|Q\|_{\infty} \leq 1$ and $Q E=1 \in 1+z \delta H^{2}$. Therefore by Theorem $2.9, T_{\Phi}$ is hyponormal.

3. The cases of rational symbols

To describe the cases of rational symbols, we review the classical Hermite-Fejér interpolation problem (cf. [FF]).

Given the sequence $\left\{K_{i j}: 1 \leq i \leq n, 0 \leq j<n_{i}\right\}$ of $n \times n$ complex matrices and a set of distinct complex numbers $\alpha_{1}, \ldots, \alpha_{n}$ in \mathbb{D}, the classical Hermite-Fejér interpolation problem is to find necessary and sufficient conditions for the existence of a contractive analytic function K in $H_{M_{n}}^{\infty}$ satisfying

$$
\begin{equation*}
\frac{K^{(j)}\left(\alpha_{i}\right)}{j!}=K_{i, j} \quad\left(1 \leq i \leq n, 0 \leq j<n_{i}\right) \tag{24}
\end{equation*}
$$

To construct a polynomial $K(z) \equiv P(z)$ satisfying (24), let $p_{i}(z)$ be the polynomial of order $d-n_{i}$ defined by

$$
p_{i}(z):=\prod_{k=1, k \neq i}^{n}\left(\frac{z-\alpha_{k}}{\alpha_{i}-\alpha_{k}}\right)^{n_{k}}
$$

Consider the polynomial $P(z)$ of degree $d-1$ defined by

$$
\begin{equation*}
P(z):=\sum_{i=1}^{n}\left(K_{i, 0}^{\prime}+K_{i, 1}^{\prime}\left(z-\alpha_{i}\right)+K_{i, 2}^{\prime}\left(z-\alpha_{i}\right)^{2}+\cdots+K_{i, n_{i}-1}^{\prime}\left(z-\alpha_{i}\right)^{n_{i}-1}\right) p_{i}(z) \tag{25}
\end{equation*}
$$

where the $K_{i, j}^{\prime}$ are obtained by the following equations:

$$
K_{i, j}^{\prime}=K_{i, j}-\sum_{k=0}^{j-1} \frac{K_{i, k}^{\prime} p_{i}^{(j-k)}\left(\alpha_{i}\right)}{(j-k)!}\left(1 \leq i \leq n ; 0 \leq j<n_{i}\right)
$$

and $K_{i, 0}^{\prime}=K_{i, 0}(1 \leq i \leq n)$. Then $P(z)$ satisfies (24). We call P the Hermite-Fejér polynomial with respect to $\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$. Note that $P(z)$ may not be contractive.

The following lemma guarantees that $\mathcal{C}\left(\Phi^{\sharp}\right)$ is nonempty if $\Phi \in L_{M_{n}}^{\infty}$ is a matrix-valued rational function.

Lemma 3.1. Let $\Phi \in L_{M_{n}}^{\infty}$ be a matrix-valued rational function. Thus in view of (12), we may write

$$
\Phi_{+}=\Theta_{1} \Theta_{2} A^{*} \quad \text { and } \quad \Phi_{-}=\Theta_{1} B^{*} \quad \text { (right coprime factorizations) }
$$

Assume that $\Theta_{i}=\theta_{i} I_{n}$ for inner functions $\theta_{i}(i=1,2)$. If $\Phi^{\sharp}:=\Theta_{1}^{*}\left(P_{\mathcal{K}_{\Theta_{1}}} A\right)+\Theta_{1} B^{*}$, then $\mathcal{C}\left(\Phi^{\sharp}\right)$ is nonempty.

Proof. Since Φ is a matrix-valued rational function, θ_{1} is a finite Blaschke product. Thus we can write

$$
\theta_{1}(z) \equiv \prod_{i=1}^{N}\left(\frac{z-\alpha_{i}}{1-\overline{\alpha_{i}} z}\right)^{p_{i}}
$$

where $d=\sum_{i=1}^{N} p_{i}$. Write $A_{1}:=P_{\mathcal{K}_{\Theta_{1}}} A$ and $\Phi^{\sharp}=\Theta_{1}^{*} A_{1}+\Phi_{-}$. Then

$$
\begin{align*}
K \in \mathcal{C}\left(\Phi^{\sharp}\right) & \Longleftrightarrow \Theta_{1}^{*} A_{1}-K \Theta_{1}^{*} B \in H_{M_{n}}^{2} \\
& \Longleftrightarrow A_{1}-K B \in \Theta_{1} H_{M_{n}}^{2} \tag{26}\\
& \Longleftrightarrow \widetilde{A}_{1}-\widetilde{B} \widetilde{K} \in \widetilde{\Theta}_{1} H_{M_{n}}^{2} .
\end{align*}
$$

Note that
(i) $\widetilde{\Theta}_{1}^{(n)}\left(\bar{\alpha}_{i}\right)=0 \quad\left(0 \leq n<p_{i}\right)$;
(ii) $\widetilde{B}\left(\bar{\alpha}_{i}\right)$ is invertible for each $i=1,2, \cdots, N$; and
(iii) $\widetilde{A}^{(j)}\left(\bar{\alpha}_{i}\right)=\widetilde{A}_{1}^{(j)}\left(\bar{\alpha}_{i}\right) \quad\left(1 \leq i \leq N, 0 \leq j<p_{i}\right)$.

Thus the last statement in (26) is equivalent to the following equation:

$$
\begin{equation*}
\frac{\widetilde{K}^{(j)}\left(\bar{\alpha}_{i}\right)}{j!}=d_{i, j} \quad\left(1 \leq i \leq N, 0 \leq j<p_{i}\right) \tag{27}
\end{equation*}
$$

where the $d_{i, j}$ are determined by the following equation: for each $i=1, \cdots, N$,

$$
\left[\begin{array}{c}
d_{i, 0} \tag{28}\\
d_{i, 1} \\
d_{i, 2} \\
\vdots \\
d_{i, p_{i}-2} \\
d_{i, p_{i}-1}
\end{array}\right]:=\left[\begin{array}{cccccc}
b_{i, 0} & 0 & 0 & 0 & \cdots & 0 \\
b_{i, 1} & b_{i, 0} & 0 & 0 & \cdots & 0 \\
b_{i, 2} & b_{i, 1} & b_{i, 0} & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
b_{i, p_{i}-2} & b_{i, p_{i}-3} & \ddots & \ddots & b_{i, 0} & 0 \\
b_{i, p_{i}-1} & b_{i, p_{i}-2} & \ldots & b_{i, 2} & b_{i, 1} & b_{i, 0}
\end{array}\right]^{-1}\left[\begin{array}{c}
a_{i, 0} \\
a_{i, 1} \\
a_{i, 2} \\
\vdots \\
a_{i, p_{i}-2} \\
a_{i, p_{i}-1}
\end{array}\right]
$$

where

$$
a_{i, j}:=\frac{\widetilde{A}^{(j)}\left(\bar{\alpha}_{i}\right)}{j!} \quad \text { and } \quad b_{i, j}:=\frac{\widetilde{B}^{(j)}\left(\bar{\alpha}_{i}\right)}{j!} .
$$

This is exactly the classical Hermite-Fejér interpolation problem except for the contracitivity condition for K. Thus if P is the Hermite-Fejér polynomial with respect to $\left\{\alpha_{1}, \cdots, \alpha_{N}\right\}$, then $K \equiv P$ satisfies (27). Thus by (26), we must have $P \in \mathcal{C}\left(\Phi^{\sharp}\right)$, and therefore $\mathcal{C}\left(\Phi^{\sharp}\right)$ is nonempty. This completes the proof.

If $\Phi, \Psi \in H_{M_{n}}^{2}$ are matrix-valued rational functions then the notion of divisor can be somewhat relaxed in the sense that the quotient of the division may belong to a larger class.

Lemma 3.2. Let $\Phi, \Psi \in H_{M_{n}}^{2}$ be matrix valued rational functions of the form

$$
\Phi=\Theta_{1} \Theta_{2} A^{*} \quad \text { and } \quad \Psi=\Theta_{1} B^{*} \quad \text { (right coprime factorizations) },
$$

where $\Theta_{i}=\theta_{i} I_{n}$ for some finite Blaschke product $\theta_{i}(i=1,2)$. If $\Phi=\Psi \Gamma$ for some $\Gamma \in \mathcal{K}_{z I_{n} \Theta_{1} \Theta_{2}}$, then we have $\Gamma \in \mathcal{K}_{z I_{n} \Theta_{2}}$, so that Ψ is a left divisor of Φ.
Proof. By Lemma 2.4, we see that $A \in \mathcal{K}_{z I_{n} \Theta_{1} \Theta_{2}}$ and $B \in \mathcal{K}_{z I_{n} \Theta_{1}}$. Suppose $\Phi=\Psi \Gamma$ for some $\Gamma \in \mathcal{K}_{z I_{n} \Theta_{1} \Theta_{2}}$. We want to show $\Gamma \in \mathcal{K}_{z I_{n} \Theta_{2}}$. Assume to the contrary that $\Gamma \notin \mathcal{K}_{z I_{n} \Theta_{2}}$. Since $\Theta_{i}=\theta_{i} I_{n}$ for some finite Blaschke product $\theta_{i}(i=1,2)$ and $\Gamma \in \mathcal{K}_{z I_{n} \Theta_{1} \Theta_{2}}$, it follows from the observation $\mathcal{K}_{z I_{n} \Theta_{1} \Theta_{2}}=\mathcal{K}_{z I_{n} \Theta_{2}} \oplus \mathcal{K}_{\Theta_{1}}\left(z I_{n} \Theta_{2}\right)$ that

$$
\Gamma=\Gamma_{0}+\Gamma_{1}\left(z I_{n} \Theta_{2}\right)
$$

where $\Gamma_{0}=P_{\mathcal{K}_{z I_{n} \Theta_{2}}} \Gamma$ and $\Gamma_{1} \in \mathcal{K}_{\Theta_{1}}$ with $\Gamma_{1} \neq 0$. Thus

$$
\Phi=\Psi \Gamma=\Psi \Gamma_{0}+\Psi \Gamma_{1}\left(z I_{n} \Theta_{2}\right)
$$

But since $\Gamma_{0} \in \mathcal{K}_{z I_{n} \Theta_{2}}$, it follows from Lemmas 2.3 and 2.4 that $\Psi \Gamma_{0} \in \mathcal{K}_{z I_{n} \Theta_{1} \Theta_{2}}$. Since also $\Phi \in$ $\mathcal{K}_{z I_{n} \Theta_{1} \Theta_{2}}$, it follows that $\Psi \Gamma_{1}\left(z I_{n} \Theta_{2}\right) \in \mathcal{K}_{z I_{n} \Theta_{1} \Theta_{2}}$, so that $\Psi \Gamma_{1} \in \mathcal{K}_{\Theta_{1}}$, and hence $\bar{z} I_{n} \Gamma_{1}^{*} B \in H_{M_{n}}^{2}$. This implies that $H_{\bar{z} I_{n} \Gamma_{1}^{*}} T_{B}=0$, so that

$$
\begin{equation*}
B H_{\mathbb{C}^{n}}^{2} \subseteq \operatorname{ker} H_{\bar{z} I_{n} \Gamma_{1}^{*}} . \tag{29}
\end{equation*}
$$

Write

$$
z I_{n} \Gamma_{1}=\Delta D^{*} \quad(\text { right coprime factorization })
$$

where Δ is inner and $D \in H_{M_{n}}^{2}$. Then by (29), $B H_{\mathbb{C}^{n}}^{2} \subset \Delta H_{\mathbb{C}^{n}}^{2}$ and hence $B=\Delta E$ for some $E \in H_{M_{n}}^{2}$. But since $\Gamma_{1} \in \mathcal{K}_{\Theta_{1}}$, we have $\Theta_{1}\left(z I_{n} \Gamma_{1}\right)^{*} \in H_{M_{n}}^{2}$. Thus $\Theta_{1} D \Delta^{*} \in H_{M_{n}}^{2}$, and hence $\Theta_{1} D=F \Delta$ for some $F \in H_{M_{n}}^{2}$. Therefore for each $\alpha \in \mathcal{Z}\left(\theta_{1}\right)$, it follows that $(F \Delta)(\alpha)=0$. Since B and Θ_{1} are right coprime, so that by $(9), B(\alpha)$ is invertible, and hence so is $\Delta(\alpha)$, it follows that $F(\alpha)=0$. Thus we can write $F=(z-\alpha) I_{n} F^{\prime}=b_{\alpha} I_{n}(1-\bar{\alpha} z) I_{n} F^{\prime}$ for some $F^{\prime} \in H_{M_{n}}^{2}$, so that $\Theta_{1} \bar{b}_{\alpha} I_{n} D=F \bar{b}_{\alpha} I_{n} \Delta=(1-\bar{\alpha} z) I_{n} F^{\prime} \Delta$, and hence, $\Theta_{1} \bar{b}_{\alpha} I_{n} \Gamma_{1}^{*}=z(1-\bar{\alpha} z) I_{n} F^{\prime} \in H_{0}^{2}$, which implies $\Gamma_{1} \in \mathcal{K}_{\Theta_{1}^{(1)}}$ with $\Theta_{1}^{(1)}:=\left(\theta_{1} \bar{b}_{\alpha}\right) I_{n}$. Repeating this argument we have

$$
\Gamma_{1} \in \mathcal{K}_{\Theta_{1}^{(2)}}
$$

where $\Theta_{1}^{(2)}=\Theta_{1} \bar{b}_{\alpha} I_{n} \bar{b}_{\beta} I_{n}$ for $\beta \in \mathcal{Z}\left(\theta_{1} \bar{b}_{\alpha}\right)$. Continuing this process we get $\Gamma_{1}=0$, a contradiction. This completes the proof.

We are ready for:
Theorem 3.3. (A Criterion for Hyponormality of Rational Toeplitz Operators) Let $\Phi \in L_{M_{n}}^{\infty}$ be a matrix-valued normal rational function. Thus in view of (12), we may write

$$
\Phi_{+}=\Theta_{1} \Theta_{2} A^{*} \quad \text { and } \quad \Phi_{-}=\Theta_{1} B^{*} \quad \text { (right coprime factorizations). }
$$

Assume that $\Theta_{i}=\theta_{i} I_{n}$ for finite Blaschke products $\theta_{i}(i=1,2)$. Put

$$
D:=P_{\mathcal{K}_{\Theta_{1}}} P
$$

where P is is the Hermite-Fejér polynomial with respect to the zeros of θ_{1}. Then the following are equivalent:
(i) T_{Φ} is hyponormal;
(ii) There exists a function $Q \in H_{M_{n}}^{\infty}$ with $\|Q\|_{\infty} \leq 1$ such that $Q D \in I_{n}+\Theta_{1} H_{M_{n}}^{2}$;
(iii) T_{Ψ} is pseudo-hyponormal, where $\Psi=\Theta_{1}^{*}+\Theta_{1} D^{*}$.

Moreover, if $A=E B$ for some $E \in \mathcal{K}_{z I_{n} \Theta_{1} \Theta_{2}}$, then D can be chosen as E.

Proof. If P is is the Hermite-Fejér polynomial with respect to the zeros of θ_{1}, then from the proof of Lemma 3.1 we can see that $P \in \mathcal{C}\left(\Phi^{\sharp}\right)$. Thus if we take $D \equiv K^{\sharp}:=P_{\mathcal{K}_{\Theta_{1}}} P$, then the first assertion follows at once from Theorem 2.9. The second assertion follows from Lemma 2.6, Lemma 3.2 and Theorem 2.9.

Corollary 3.4. (A Necessary Condition for Hyponormality) Let $\Phi \in L_{M_{n}}^{\infty}$ be a matrix-valued normal rational function. Thus in view of (12), we may write

$$
\Phi_{+}=\Theta_{1} \Theta_{2} A^{*} \quad \text { and } \quad \Phi_{-}=\Theta_{1} B^{*} \quad \text { (right coprime factorizations) } .
$$

Assume that $\Theta_{i}=\theta_{i} I_{n}$ for finite Blaschke products $\theta_{i}(i=1,2)$ and that $A=E B$ for some $E \in \mathcal{K}_{z I_{n} \Theta_{1} \Theta_{2}}$. If T_{Φ} is hyponormal then $\left\|B(\alpha) A(\alpha)^{-1}\right\| \leq 1$ for each zero α of θ_{1}.

Proof. Suppose T_{Φ} is hyponormal and $\theta_{1}(\alpha)=0$. By (9), $A(\alpha)$ and $B(\alpha)$ are invertible. By Theorem 3.3 (ii), $Q(\alpha) E(\alpha)=I_{n}$, so that $\left\|B(\alpha) A(\alpha)^{-1}\right\|=\left\|E(\alpha)^{-1}\right\|=\|Q(\alpha)\| \leq 1$.

4. Revealing examples

In this section, we provide revealing examples to illustrate that Theorem 3.3 is much simpler than the criteria due to the interpolation problems given in [HL2] and [HL3] when the co-analytic part of the symbol is a left divisor of the analytic part. To see this we recall the criterion by the classical Hermite-Fejér interpolation problem (cf. [HL2]). Let

$$
\theta:=e^{i \xi} \prod_{i=1}^{n} b_{i}^{n_{i}}
$$

where

$$
b_{i}(z):=\frac{z-\alpha_{i}}{1-\overline{\alpha_{i}} z}, \quad\left(\left|\alpha_{i}\right|<1\right), \quad n_{i} \geq 1, \quad \text { and } \quad \sum_{i=1}^{n} n_{i}=d .
$$

Let $q_{j}:=\left(1-\left|\alpha_{j}\right|^{2}\right)^{\frac{1}{2}}(1 \leq j \leq d)$ and let M be the matrix on \mathbb{C}^{d} of the form

$$
M:=\left[\begin{array}{ccccccc}
\alpha_{1} & 0 & 0 & 0 & \cdots & \cdots & 0 \tag{30}\\
q_{1} q_{2} & \alpha_{2} & 0 & 0 & \cdots & \cdots & 0 \\
-q_{1} \overline{\alpha_{1}} q_{3} & q_{2} q_{3} & \alpha_{3} & 0 & \cdots & \cdots & 0 \\
q_{1} \overline{\alpha_{2} \alpha_{3}} q_{4} & -q_{2} \overline{\alpha_{3}} q_{4} & q_{3} q_{4} & \alpha_{4} & \cdots & \cdots & 0 \\
-q_{1} \overline{\alpha_{2} \alpha_{3}} \overline{\alpha_{4}} q_{5} & q_{2} \overline{\alpha_{3} \alpha_{4}} q_{5} & -q_{3} \overline{\alpha_{4}} q_{5} & q_{4} q_{5} & \ddots & & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\
(-1)^{d} q_{1}\left(\prod_{j=2}^{d-1} \overline{\alpha_{j}}\right) q_{d} & (-1)^{d-1} q_{2}\left(\prod_{j=3}^{d-1} \overline{\alpha_{j}}\right) q_{d} & \cdots & \cdots & \cdots & q_{d-1} q_{d} & \alpha_{d}
\end{array}\right] .
$$

If $P(z)$ is given by (25) and the $K_{i j}$ are given by the equation (28) with $d_{i j} \equiv K_{i, j}$ and $B \equiv \Theta_{2} B$, then the matrix $P(M)$ on $\mathbb{C}^{n \times d}$ is defined by

$$
P(M):=\sum_{i=0}^{d-1} P_{i} \otimes M^{i}, \quad \text { where } P(z)=\sum_{i=0}^{d-1} P_{i} z^{i}
$$

Then $P(M)$ is called the Hermite-Fejér matrix determined by (24) (cf. [FF]). It follows from [HL2, Proof of Theorem 2.1] that if Φ is given as in Theorem 3.3, then we have (with $\theta \equiv \theta_{1} \theta_{2}$)

$$
\begin{equation*}
T_{\Phi} \text { is pseudo-hyponormal } \Longleftrightarrow P(M) \text { is contractive. } \tag{31}
\end{equation*}
$$

Example 4.1. (A comparison of two criteria). Let $b(z):=\frac{z-\frac{1}{2}}{1-\frac{1}{2} z}$ and consider

$$
\Phi:=\left[\begin{array}{cc}
2 b+2 \bar{z} & \bar{z}+b+3 z b \\
\bar{z}+b+3 z b & 2 b+2 \bar{z}
\end{array}\right] \in L_{M_{2}}^{\infty}
$$

Then Φ is normal and

$$
\Phi_{+}=z b\left[\begin{array}{cc}
2 z & z+3 \\
z+3 & 2 z
\end{array}\right]^{*} \quad \text { and } \quad \Phi_{-}=z\left[\begin{array}{cc}
2 & 1 \\
1 & 2
\end{array}\right]^{*}
$$

Thus we can write

$$
\Theta_{1}=z I_{2}, \quad \Theta_{2}=b I_{2}, \quad A=\left[\begin{array}{cc}
2 z & z+3 \\
z+3 & 2 z
\end{array}\right], \quad B=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] .
$$

(i) By the criterion (31): By (30) (with $\theta=z b$) and (25), we observe

$$
\begin{gathered}
M=\frac{1}{2}\left[\begin{array}{cc}
0 & 0 \\
\sqrt{3} & 1
\end{array}\right] \\
p_{1}(z)=-2 z+1, \quad p_{2}(z)=2 z \\
K_{1,0}=-\frac{1}{6}\left[\begin{array}{cc}
1 & 2 \\
2 & 1
\end{array}\right], \quad K_{2,0}=\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right]
\end{gathered}
$$

and

$$
P(z)=K_{1,0}^{\prime} p_{1}(z)+K_{2,0}^{\prime} p_{2}(z)=-\frac{1}{6}\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right](-2 z+1)=\frac{1}{3}\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] z-\frac{1}{6}\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]
$$

Therefore the Hermite-Fejér matrix $P(M)$ is given by

$$
\begin{aligned}
P(M) & =\frac{1}{3}\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] \bigotimes \frac{1}{2}\left[\begin{array}{cc}
0 & 0 \\
\sqrt{3} & 1
\end{array}\right]-\frac{1}{6}\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] \bigotimes I_{2} \\
& =\frac{1}{6}\left[\begin{array}{cccc}
-1 & -2 & 0 & 0 \\
-2 & -1 & 0 & 0 \\
\sqrt{3} & 2 \sqrt{3} & 0 & 0 \\
2 \sqrt{3} & \sqrt{3} & 0 & 0
\end{array}\right]
\end{aligned}
$$

Hence a straightforward calculation shows that

$$
I-P(M)^{*} P(M)=\left[\begin{array}{cccc}
\frac{4}{9} & -\frac{4}{9} & 0 & 0 \\
-\frac{4}{9} & \frac{4}{9} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \geq 0 \quad \text { (eigenvalues : } 1,0, \frac{8}{9} \text {) }
$$

which shows that T_{Φ} is hyponormal.
(ii) By the criterion (2) of Theorem 3.3: Observe

$$
E:=A B^{-1}=\left[\begin{array}{cc}
z-1 & 2 \\
2 & z-1
\end{array}\right]
$$

If $Q \in H_{M_{2}}^{\infty}$ is arbitrary then a straightforward calculation shows that

$$
Q E \in I_{2}+z H_{M_{2}}^{2} \Longleftrightarrow Q \in \frac{1}{3}\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]+z H_{M_{2}}^{2}
$$

Thus if we take $Q:=\frac{1}{3}\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ then since $\|Q\|_{\infty}=1$, it follows from Theorem 3.3 that T_{Φ} is hyponormal.

Example 4.2. Let $b_{\alpha}(z):=\frac{z-\alpha}{1-\bar{\alpha} z}$ and consider

$$
\Phi:=\left[\begin{array}{cc}
3 \overline{b_{\frac{1}{2}}}+3 b_{\frac{1}{2}} & \bar{z}+z \\
\bar{z}+z b_{\frac{1}{3}} & 3 \overline{b_{\frac{1}{2}}}+3 b_{\frac{1}{2}} b_{\frac{1}{3}}
\end{array}\right] \in L_{M_{2}}^{\infty} .
$$

Then

$$
\Phi_{+}=z b_{\frac{1}{2}} b_{\frac{1}{3}}\left[\begin{array}{cc}
3 z b_{\frac{1}{3}} & b_{\frac{1}{2}} b_{\frac{1}{3}} \\
b_{\frac{1}{2}} & 3 z
\end{array}\right]^{*} \quad \text { and } \quad \Phi_{-}=z b_{\frac{1}{2}}\left[\begin{array}{ll}
3 z & b_{\frac{1}{2}} \\
b_{\frac{1}{2}} & 3 z
\end{array}\right]^{*} .
$$

Thus under the notations of Corollary 3.4, we can write

$$
\Theta_{1}:=z b_{\frac{1}{2}} I_{2}, \quad \Theta_{2}:=b_{\frac{1}{3}} I_{2}, \quad A:=\left[\begin{array}{cc}
3 z b_{\frac{1}{3}} & b_{\frac{1}{2}} b_{\frac{1}{3}} \\
b_{\frac{1}{2}} & 3 z
\end{array}\right], \quad B:=\left[\begin{array}{ll}
3 z & b_{\frac{1}{2}} \\
b_{\frac{1}{2}} & 3 z
\end{array}\right] .
$$

Then

$$
B(0) A(0)^{-1}=\left[\begin{array}{cc}
0 & -\frac{1}{2} \\
-\frac{1}{2} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & \frac{1}{6} \\
-\frac{1}{2} & 0
\end{array}\right]^{-1}=\left[\begin{array}{cc}
-3 & 0 \\
0 & 1
\end{array}\right]
$$

But since $\left\|B(0) A(0)^{-1}\right\|=3>1$, we can, by Corollary 3.4 , conclude that T_{Φ} is not hyponormal.

References

[Ab] M.B. Abrahamse, Sunormal Toeplitz operators and functions of bounded type, Duke Math. J. 43 (1976), 597-604.
[BS] A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators, Springer, Berlin-Heidelberg, 2006.
[Co] C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103(1988), 809-812.
[CHKL] R. Curto, I.S. Hwang, D. Kang and W.Y. Lee, Subnormal and quasinormal Toeplitz operators with matrix-valued rational symbols, (preprint, 2013).
[CHL] R.E. Curto, I.S. Hwang and W.Y. Lee, Hyponormality and subnormality of block Toeplitz operators, Adv. Math. 230(2012), 2094-2151.
[Do] R.G. Douglas, Banach algebra techniques in the theory of Toeplitz operators, CBMS 15, Providence, Amer. Math. Soc. 1973.
[FF] C. Foias and A. Frazo, The commutant lifting approach to interpolation problems, Operator Theory: Adv. Appl. vol 44, Birkhäuser, Boston, 1993.
[GHR] C. Gu, J. Hendricks and D. Rutherford, Hyponormality of block Toeplitz operators, Pacific J. Math. 223 (2006), 95-111.
[HL1] I.S. Hwang and W.Y. Lee, Block Toeplitz operators with rational symbols, J. Phys. A: Math. Theor. 41(18) (2008), 185207.
[HL2] I.S. Hwang and W.Y. Lee, Block Toeplitz operators with rational symbols (II), J. Phys. A: Math. Theor. 41(38) (2008), 385205.
[Ni] N.K. Nikolskii, Treatise on the shift operator, Springer, New York, 1986.
[Pe] V.V. Peller, Hankel Operators and Their Applications, Springer, New York, 2003.
Raúl E. Curto
Department of Mathematics, University of Iowa, Iowa City, IA 52242, U.S.A.
e-mail: raul-curto@uiowa.edu
In Sung Hwang
Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea
e-mail: ihwang@skku.edu
Woo Young Lee
Department of Mathematics, Seoul National University, Seoul 151-742, Korea
e-mail: wylee@snu.ac.kr

[^0]: 2000 Mathematics Subject Classification. Primary 47B20, 47B35, 42B30, 32A35, 30E05
 The work of the first named author was partially supported by NSF Grant DMS-0801168. The work of second named author was supported by Basic Science Research Program through NRF funded by the Ministry of Education, Science and Technology (No. 2011-0022577). The work of the third named author was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2009-0083521).

