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Abstract

Inspired by recent works on m-isometries for a positive integer m; in this paper we
introduce the classes of 1-isometries and 1-unitaries on a Hilbert space. We show
that an 1-isometry on a �nite dimensional complex Hilbert space H with dimension
N is in fact an (2N�1)-isometry. We describe the spectra of such operators, study the
quasinilpotent perturbations of 1-isometries and characterize when tensor products
of 1-isometries are also 1-isometries. As a surpring byproduct, we obtain a gener-
alization of Nagy-Foias-Langer decomposition of a contraction into an unitary and a
completely nonunitary contraction.

1 Introduction

Since a systematic study on m-isometries by Agler and Stankus [3], [4] and [5], the theory
of m-isometries has been highly developed. The theory for m-isometries on Hilbert spaces
has rich connections to Toeplitz operators, classical function theory, and other areas of
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mathematics. In particular, a class of 2-isometries arises from non-stationary stochastic
process of Brownian motion (see [4]). The work of Richter [27] and [28] on analytic 2-
isometries has a connection with the invariant subspaces of the shift operator on the Dirichlet
space, see also related papers [24], [25] and [30] in this direction. On the other hand, the
de�nition of m-isometries depends on the degree m of the polynomial (yx � 1)m in two
variables. Thus we may ask what happens if m ! 1. This stimulates a new notion of
1-isometries. The aim of this paper is to explore elementary properties of 1-isometries.
In particular, we give a complete characterization of 1-isometries on a �nite dimensional
Hilbert space.
Let H be a complex Hilbert space and let B(H) denote the set of all bounded linear

operators acting on H: If T 2 B(H); we write �(T ) and �ap(T ) for the spectrum and the
approximate spectrum of T; respectively. If H0 is a subspace of H; PH0 is the projection
from H onto H0: An operator T 2 B(H) is called an m-isometry for a positive integer m (as
in Agler and Stankus [3]) if

�m(T ) := (yx� 1)mjy=T �; x=T =
mX
k=0

(�1)m�k
�
m

k

�
ykxkjy=T �; x=T

=
mX
k=0

(�1)m�k
�
m

k

�
T �kT k = 0:

Note that
�m+1(T ) = T

��m(T )T � �m(T ): (1)

Thus if T is an m-isometry, then T is an n-isometry for all n � m: We say T is a strict
m-isometry if T is an m-isometry but not an (m� 1)-isometry. We now introduce the class
of 1-isometries.

De�nition 1.1 Let T 2 B(H): The operator T is called an 1-isometry if

lim sup
m!1

k�m(T )k1=m = 0:

Also T is called a �nite-isometry if T is an m-isometry for some m � 1:

If H0 is an invariant subspace of T , then

�m(T jH0) = PH0�m(T )jH0 (2)

where T jH0 is the restriction of T to H0: This property is one of the main motivations of
hereditary functional calculus as in [1], [2], [3] and [20]. So, if T on H is an 1-isometry,
then T jH0 is also an 1-isometry.
The �rst motivation of studying1-isometries comes from recent interests inm-isometries

on Hilbert spaces, Banach spaces and metric spaces [6], [8], [14], [18], [21], [26], and [31].
The second motivation is that 1-isometries seem to be natural limits of m-isometries as
m ! 1; see Proposition 4.6 below. However, the main motivation is that 1-isometries
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enjoy many properties of m-isometries, as we will demonstrate in this paper. This new class
of operators also poses some interesting questions and challenges. For example, one of the
main tools in [3], [6] and [28] for studying an m-isometry T is the nonnegative covariance
operator �m�1(T ) which is not available in an 1-isometry. We hope that this study will
deepen our understanding of m-isometries.
First we give some examples. Recall a unilateral weighted shift T on l2 is de�ned by

Tej = wjej+1; j � 0, where fej; j � 0g is the standard basis of l2.

Example 1.2 Let Q be the weighted shift on l2 with weights wj = 1
j+1
: Then Q is quasinilpo-

tent and T = I +Q is an 1-isometry by Theorem 4.4 below. But T is not a �nite-isometry.
A direct computation of showing �m(T ) 6= 0 for any m � 1 seems to be di¢ cult. Note that
�(T ) = f1g : Recall that if S is an m-isometry and �(S) consists of a �nite number of points,
then S is the direct sum of operators of the form �I +Q0; where Q0 is a nilpotent operator,
see Proposition 11 in [17]. Hence if T = I + Q is a �nite-isometry, then Q is a nilpotent
operator, which is a contradiction.

Example 1.3 Let Tn be an n� n Jordan block

Tn =

26664
�n

1
n

� � � 0

0
. . . . . .

...
...

. . . . . . 1
n

0 � � � 0 �n

37775 = �nIn + 1

n
Jn;

where j�nj = 1 and

Jn =

26664
0 1 � � � 0

0
. . . . . .

...
...
. . . . . . 1

0 � � � 0 0

37775 :
Then, by a direct calculation (for example, using the �rst formula in Lemma 4.1 below with
T = �nIn and Q = 1

n
Jn),

�2n�1(Tn) = 0

and �2n�2(Tn) =
�
2n� 2
n� 1

�
1

n2
�n�1n T �(n�1)J�(n�1)n J (n�1)n 6= 0:

That is, Tn is a strict (2n� 1)-isometry. Let

T = T1 � T2 � T3 � � � � :

Then T is an 1-isometry but not a �nite-isometry. Furthermore, �(T ) = f�n : n � 1g�.
To see this, let

Sn = T1 � � � � � Tn � �n+1I � �n+2I � � � � :
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Then Sn is a strict (2n � 1)-isometry and SnSl = SlSn for all n; l � 1: It is also clear
that Sn ! T in operator norm. Therefore, by Proposition 4.6 below, T is an 1-isometry.
Clearly, T is not a �nite-isometry since

�m(T ) = �m(T1)� �m(T2)� �m(T3)� � � � 6= 0

for any m � 1:

2 The 1-isometric matrices
In this section, we discuss basic spectral properties of an 1-isometry. As applications of
those properties, we show that if H is a �nite dimensional Hilbert space, then T 2 B(H) is
an 1-isometry if and only if T is an m-isometry for some m � 1:
The spectrum of an m-isometry was described in [3] on a Hilbert space and in [6] on a

Banach space. Similarly, we have the following generalization. Let D be the open unit disk
and @D be the unit circle.

Proposition 2.1 If T is an 1-isometry, then �ap(T ) � @D: Therefore, either �(T ) = D�

or �(T ) � @D. In particular, T is left invertible.

Proof. Let � 2 �ap(T ) and let hi 2 H be a sequence of unit vectors such that k(T � �I)hik !
0 as i!1: It is clear that



T khi

2 ! j�j2k as i!1: Hence

h�m(T )hi; hii =
mX
k=0

(�1)m�k
�
m

k

�

T khi

2
!

mX
k=0

(�1)m�k
�
m

k

�
j�j2k = (j�j2 � 1)m:

Thus
k�m(T )k � jh�m(T )hi; hiij and hence; k�m(T )k1=m �

��j�j2 � 1�� :
Therefore lim supm!1 k�m(T )k

1=m = 0 implies that j�j = 1:
By Example 1.3, any compact set K � @D could be the spectrum of an 1-isometry.

De�nition 2.2 We say T is an 1-unitary if both T and T � are 1-isometries. Similarly,
for m � 1; T is an m-unitary if both T and T � are m-isometries. T is a �nite-unitary if T
is an m-unitary for some m � 1:

Corollary 2.3 If T is an 1-unitary, then �(T ) � @D:

Proof. The proof is the same as the proof of Corollary 1.22 in [3]. We prove by contradiction.
If �(T ) " @D; then by Proposition 2.1, �(T ) = D� and 0 =2 �ap(T ): Thus T is onto and
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0 =2 �ap(T �): By applying Proposition 2.1 to T �; we have �(T �) � @D: This is a contraction
to �(T ) = D�:

Note that examples in Example 1.2 and Example 1.3 are 1-unitaries.
We next show that the following result about eigenvalues for an m-isometry does not

extend to 1-isometries, see part (a) of Theorem 1 in [15]. The operator in this example is
just the adjoint of the operator in Example 1.2.

Theorem 2.4 [15] Let T be an m-isometry. If � is an eigenvalue of T; then � is an eigen-
value of T �: Similarly, if � 2 �ap(T ); then � 2 �ap(T �):

Example 2.5 Let T = �I + Q�; where j�j = 1 and Q is the weighted shift on l2 with
weights wj = 1

j+1
: Then T is an 1-isometry. Furthermore, (T � �I) e0 = Q�e0 = 0; but�

T � � �I
�
e0 = e1 6= 0: It is easy to see that � is an eigenvalue of T; but � is not an eigenvalue

of T �:

However a similar result for eigenvectors or approximate eigenvectors of an m-isometry
in Theorem 1 of [15] does extend to an 1-isometry. See also Lemma 19 in [2] for a related
result.

Proposition 2.6 Let T be an 1-isometry.

(a) Eigenvectors of T corresponding to distinct eigenvalues are orthogonal.

(b) If � and � are two distinct approximate eigenvalues of T; and fxng and fyng are
sequence of unit vectors such that (T��I)xn ! 0 and (T��I)yn ! 0; then hxn; yni !
0:

Proof. We �rst prove (a). Let � and � be two distinct eigenvalues of T . By Proposition
2.1, j�j = j�j = 1; so ��� 1 6= 0: Let x and y be two unit vectors such that (T � �I)x = 0
and (T � �I)y = 0: Then

h�m(T )x; yi =
mX
k=0

(�1)m�k
�
m

k

�

T kx; T ky

�
=

mX
k=0

(�1)m�k
�
m

k

�
�k�k hx; yi = (��� 1)m hx; yi :

It follows that

j(��� 1)m hx; yij1=m = jh�m(T )x; yij1=m � k�m(T )k1=m :

By taking limsup as m!1 of the inequality above, we see that hx; yi = 0:
The proof of (b) is similar. Let � and � be two distinct approximate eigenvalues of T .

By Proposition 2.1, j�j = j�j = 1; so �� � 1 6= 0: Let fxng and fyng be two sequences of
unit vectors such that (T � �I)xn ! 0 and (T � �I)yn ! 0: To prove hxn; yni ! 0; let
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xnj ; ynj

�
be any convergent subsequence of hxn; yni such that



xnj ; ynj

�
! a; we shall show

that a = 0: Note that for each �x m � 1;

j(��� 1)maj = lim
nj!1

��(��� 1)m 
xnj ; ynj���
=

�����
mX
k=0

(�1)m�k
�
m

k

�
�k�k lim

nj!1



xnj ; ynj

������
=

�����
mX
k=0

(�1)m�k
�
m

k

�
lim
nj!1



T kxnj ; T

kynj
������

= lim
nj!1

��
�m(T )xnj ; ynj��� � k�m(T )k :
Therefore

j��� 1j lim
m!1

jaj1=m = lim sup
m!1

j(��� 1)maj1=m

� lim sup
m!1

k�m(T )k1=m = 0:

This implies a = 0 and hence hxn; yni ! 0:

We next show that the above proposition can be signi�cantly strengthened. We �rst need
a lemma.

Lemma 2.7 For any two complex numbers � and �, the following holds:

�m(T ) =
X

m1+m2+m3=m

�
m

m1;m2;m3

�
(T � � �I)m1Tm1�m2(T � �I)m2(��� 1)m3 :

Proof. Using the multinomial formula,

�m(T ) = (yx� 1)mjy=T �; x=T
=
�
(y � �)x+ � (x� �) + (��� 1)

�m
jy=T �; x=T

=
X

m1+m2+m3=m

�
m

m1;m2;m3

�
(y � �)m1xm1�m2(x� �)m2(��� 1)m3 jy=T �; x=T

=
X

m1+m2+m3=m

�
m

m1;m2;m3

�
(T � � �I)m1Tm1�m2(T � �I)m2(��� 1)m3 :

The proof is complete.

Lemma 2.8 Let T be an 1-isometry. If � and � are two distinct eigenvalues of T; then
ker(T � �I)k ? ker(T � �I)l for all k; l � 1:
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Proof. We prove the lemma by induction. For the case k = l = 1. Let v1; v2 be unit vectors
such that (T � �I)v1 = (T � �I)v2 = 0. Then by Lemma 2.7,

h�m(T )v1; v2i

=

* X
m1+m2+m3=m

�
m

m1;m2;m3

�
(��� 1)m3Tm1�m2(T � �I)m2v1; (T � �I)m1v2

+
= (��� 1)m hv1; v2i ;

since (T � �I)m2v1 = (T � �I)m1v2 = 0 for all m1;m2 6= 0. By assumption �� 6= 1, thus

lim sup
m!1

j(��� 1)m hv1; v2ij1=m = lim sup
m!1

jh�m(T )v1; v2ij1=m

� lim sup
m!1

k�m(T )k1=m = 0; (3)

which gives hv1; v2i = 0.
We now �x l = 1 and use induction on k: Assume ker(T � �I)k ? ker(T � �I): Let

v1 2 ker(T � �I)k+1, v2 2 ker(T � �I). We will show that hv1; v2i = 0, and hence ker(T �
�I)k ? ker(T � �I) for all k � 1. Note that

h�m(T )v1; v2i

=

* X
m1+m2+m3=m

�
m

m1;m2;m3

�
(��� 1)m3Tm1�m2(T � �I)m2v1; (T � �I)m1v2

+

=

* X
m2+m3=m

�
m

0;m2;m3

�
(��� 1)m3�m2(T � �I)m2v1; v2

+
= (��� 1)m hv1; v2i ;

since if m1 � 1, (T � �I)m1v2 = 0. Moreover, if m2 � k + 1, (T � �I)m2v1 = 0; and if
1 � m2 � k, (T � �I)k(T � �I)m2v1 = (T � �I)k+m2v1 = 0, so (T � �I)m2v1 2 ker(T � �I)k,
thus (T � �I)m2v1 ? v2 and h(T � �I)m2v1; v2i = 0 by the inductive hypothesis. Thus the
only term left is when m1 = m2 = 0;m3 = m. An argument similar to (3) shows that
hv1; v2i = 0: This proves that

ker(T � �I)k ? ker(T � �I) for all k � 1: (4)

By symmetry, we also have

ker(T � �I) ? ker(T � �I)l for all l � 1: (5)

We will show that ker(T � �I)k ? ker(S � �I)l for any k; l � 1 by using induction on l.
Assume for �xed l;

ker(T � �I)k ? ker(T � �I)l for all k � 1: (6)
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We now show that ker(T � �I)k ? ker(T � �I)l+1 for all k � 1 as well. We do this by using
induction on k: For k = 1; this is just (5). Now we assume

ker(T � �I)n ? ker(S � �I)l+1: (7)

We will show
ker(T � �I)n+1 ? ker(T � �I)l+1:

Let v1 2 ker(T � �I)n+1 and v2 2 ker(T � �I)l+1. A similar computation yields:

0 = h�m(T )v1; v2i

=

* X
m1+m2+m3=m

�
m

m1;m2;m3

�
(��� 1)m3Tm1�m2(T � �I)m2v1; (T � �I)m1v2

+
: (8)

Now, if m1 � 1 and m2 � 0, (T � �I)m1v2 2 ker(T � �I)l and (T � �I)m2v1 2 ker(T � �I)n.
Thus by (6), these terms in (8) are zero. Ifm1 = 0 andm2 > 0, (T��I)m1v2 2 ker(T��I)l+1
and (T ��I)m2v1 2 ker(T ��I)n. Then by the inductive hypothesis (7), these terms (8) are
also zero. The only term left in (8) is when m1 = m2 = 0;m3 = m. Finally, an argument
similar to (3) shows that hv1; v2i = 0:

Remark 2.9 Similarly, if T is an 1-isometry, and if � and � are two distinct approximate
eigenvalues of T; and fxng and fyng are sequence of unit vectors such that (T ��I)kxn ! 0
and (T � �I)lyn ! 0 for some �xed k; l � 1; then hxn; yni ! 0:

Theorem 2.10 Assume H is a �nite dimensional complex Hilbert space with dim(H) = N:
Then T 2 B(H) is an 1-isometry if and only if T is an (2N � 1)-isometry.

Proof. Assume T is an 1-isometry on a �nite dimensional H. By Proposition 2.1, it is
�(T ) � @D: Let p(�) =

Qk
i=1(� � �i)pi be the characteristic polynomial of T; where �i are

distinct eigenvalues of T: By Lemma 2.8, T is unitarily equivalent to direct sum

T �=
kM
i=1

(�iI +Qi)

where Qi is a nilpotent matrix of order pi: A direct calculation (or by Lemma 4.1) shows
that �m(T ) = 0 for m = max f2pi � 1; i = 1; 2; � � � ; kg :
An m-isometry on a �nite dimensional Hilbert space H is the direct sum of operators of

the form �I + Q as in [2] where j�j = 1 and Q is a nilpotent matrix. See [2] also for more
general hereditary roots than just m-isometries on a �nite dimensional H:
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3 The decomposition of an 1-isometry
In this section, for an 1-isometry T , we identify invariant subspaces of T such that the
restriction of T to those invariant subspaces are �nite-isometries. In particular, we decompose
an 1-unitary T into direct sum of m-unitaries for m 2 f1; 2; 3; � � � g [ f1g. The �rst result
identi�es some invariant subspace Hm for an invertible T such that T jHm is an m-isometry.
Let

Hm :=
\
n�m

ker(�n(T )):

It follows from the de�nition that

H1 � H2 � H3 � � � � :

Proposition 3.1 Let T 2 B(H). Assume ker(T �) = f0g : Then Hm is an invariant subspace
for T and T jHm is an m-isometry.

Proof. We �rst prove Hm is invariant for T: If x 2 Hm; then for any n � m;

�n(T )x = 0 and �n+1(T )x = 0:

Then by (1),
[�n+1(T ) + �n(T )]x = T

��n(T )Tx = 0:

Since T � is injective, �n(T )Tx = 0 for any n � m: That is, Tx 2 Hm: Now by (2),

�m(T jHm) = PHm�m(T )jHm = PHm0 = 0:

Therefore, T jHm is an m-isometry.
If T is an m-isometry, then �n(T ) = 0 and ker(�n(T )) = H for n � m; so we have the

following result.

Corollary 3.2 If T 2 B(H) is an invertible m-isometry, then for n = 1; 2; : : : ;m� 1,

Hn =
\

m�1�j�n
ker(�j(T ))

is invariant for T and T jHn is an n-isometry.

Proposition 1.6 in [3] states that if T 2 B(H) is anm-isometry, thenHm�1 is the maximal
invariant subspace M such that T jM is an (m � 1)-isometry. It is natural to ask if Hn in
Proposition 3.1 is in fact the maximal invariant subspaceM such that T jM is an n-isometry
for n = 1; 2; : : : ;m� 2: Next, we will identify some other invariant subspaces.
For m � 1; another subspace Km is de�ned by

Km(T ) � Km :=
\
i�0
ker(�m(T )T

i): (9)

It follows from (1) that
K1 � K2 � K3 � � � � :

Similarly we have the following result.
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Proposition 3.3 Let T 2 B(H). Then Km is invariant for T and T jKm is an m-isometry.

Proof. If x 2 Km; then �m(T )T ix = 0 for all i � 0: Thus �m(T )T iTx = �m(T )T i+1x = 0 for
all i � 0: So Tx 2 Km andKm is invariant for T: Furthermore �m(T jKm) = PKm�m(T )jKm =
0 because Km � ker(�m(T )):
In fact, there is a subspace K1 de�ned by

K1(T ) � K1 :=

�
h 2 H : lim sup

m!1



�m(T )T ih

1=m = 0 for all i � 0� :
Similarly, we de�ne

K1(T
�) :=

�
h 2 H : lim sup

m!1



�m(T �)T �ih

1=m = 0 for all i � 0�
and U1 := K1(T )

T
K1(T

�): (10)

Proposition 3.4 Let T 2 B(H). Then K1 is invariant for T and T jK1 is an1-isometry.

Proof. By de�nition, if x; y 2 K1, then for i � 0 and any two complex numbers a and b;

lim sup
m!1



�m(T )T i(ax+ by)

1=m
� lim sup

m!1
(jaj



�m(T )T ix

+ jbj

�m(T )T ix

)1=m
� lim sup

m!1
(jaj



�m(T )T ix

)1=m + lim sup
m!1

(jbj


�m(T )T ix

)1=m = 0:

Hence K1 is a subspace. The proof that K1 is invariant for T is also straightforward. To
prove T jK1 is an 1-isometry, we need to show

lim sup
m!1

k�m(T jK1)k1=m = 0: (11)

Note that �m(T jK1) = PK1�m(T )jK1: Hence for h 2 K1;

lim sup
m!1

k�m(T jK1)hk1=m = lim sup
m!1

kPK1�m(T )hk
1=m

� lim sup
m!1

k�m(T )hk1=m = 0: (12)

We will use the uniform boundedness principle to prove (11). But a straightforward appli-
cation of the uniform boundedness principle to the sequence of operators f�m(T jK1)g only
gives

k�m(T jK1)k � C for m � 1 and lim sup
m!1

k�m(T jK1)k1=m � 1;

where C is some constant. However, note that for any � > 0 and h 2 K1; by (12),

lim sup
m!1

k�m�m(T jK1)hk1=m = � lim sup
m!1

k�m(T jK1)hk1=m = 0:
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By applying the uniform boundedness principle to the sequence of operators f�m�m(T jK1)g ;
we have

k�m�m(T jK1)k � C (for m � 1) and k�m(T jK1)k1=m �
C1=m

�
;

where C is some constant. Therefore

lim sup
m!1

k�m(T jK1)k1=m � lim sup
m!1

C1=m

�
=
1

�
:

Since � > 0 is arbitrary, this proves that lim supm!1 k�m(T jK1)k1=m = 0:
Decomposition theorems for operators are important in operator theory, see the book [22].

The Nagy-Foias-Langer decomposition theorem for a contraction says every contraction is a
direct sum of an unitary and a completely nonunitary contraction, see Theorem 5.1 in [22] for
details. The following result generalizes Nagy-Foias-Langer decomposition theorem in two
ways. First, it is valid for an arbitrary operator. Second, it is valid for m-unitaries for all
m � 1 and for1-unitaries. This also gives a di¤erent (probably more direct) proof of Nagy-
Foias-Langer decomposition theorem since the proof of Nagy-Foias-Langer decomposition
theorem use the assumption of T being a contraction in an essential way.

Theorem 3.5 Let T 2 B(H):

(a) Then Um de�ned by the formula

Um := Km(T )
T
Km(T

�) =
\
i�0

�
ker(�m(T )T

i)
T
ker(�m(T

�)T i�)
�

(13)

is the unique maximal reducing subspace on which T is an m-unitary. Furthermore,
T = T1�T2 with respect to the decomposition H = Um�U?m; where T1 is an m-unitary
and T2 is an operator which has no direct m-unitary summand.

(b) The space U1 de�ned by (10) is the unique maximal reducing subspace on which T
is an 1-unitary. Furthermore, T = T1 � T2 with respect to the decomposition H =
U1 � U?1; where T1 is an 1-unitary and T2 is an operator which has no direct 1-
unitary summand.

Proof. We �rst prove (a). By Proposition 3.3, Km(T ) de�ned in (9) is invariant for T
and Km(T

�) is invariant for T �; thus Um is reducing for T: It also follows that T jUm is an
m-unitary. Now if M � H is reducing for T and T jM is an m-unitary, then �m(T )jM =
PM�m(T )jM = �m(T jM) = 0: So M � ker(�m(T )): Since M is invariant for T; T iM �
M � ker(�m(T )) for each i � 0: This implies that M � ker(�m(T )T i): Hence M � Km(T ):
Similarly, sinceM � H is reducing for T � and T �jM is an m-unitary, we haveM � Km(T

�):
Thus M � Um: This proves the maximality of Um: The decomposition T = T1 � T2 now
follows from the maximality of Um:

11



For (b), we only prove the maximality of U1 since the rest of the proof is similar to that
of (a). Assume M � H is reducing for T and T jM is an 1-unitary. Then �m(T )jM =
PM�m(T )jM = �m(T jM): So, for any h 2M and i � 0

lim sup
m!1



�m(T )T ih

1=m = lim sup
m!1



�m(T jM)T ih

1=m
� lim sup

m!1
k�m(T jM)k1=m



T ih

1=m = 0:
By the de�nition of K1(T ); h 2 K1(T ): So, M � K1(T ): Similarly, since M � H is
reducing for T � and T �jM is an 1-unitary, we have M � K1(T

�): In conclusion M � U1:
The proof is complete.

The following de�nition is natural.

De�nition 3.6 If T 2 B(H) is an m-unitary for m � 2, T is called a pure m-unitary if
T has no nonzero direct summand which is an (m � 1)-unitary. Similarly, if T 2 B(H) is
an 1-unitary, T is called a pure 1-unitary if T has no nonzero direct summand which is a
�nite-unitary.

For each m � 1; let Um denote the unique maximal reducing subspace as in (13) such
that T jUm is an m-unitary. We have the following decomposition theorem for an1-unitary.

Theorem 3.7 Let T 2 B(H) be an 1-unitary. Let V1 = U1; Vn = Un	Un�1 for n � 2 and

V1 = H 	
_
fUi; i � 1g = H 	

_
fVi; i � 1g :

Then Vi is reducing for T for each i = 1; 2; : : : ;1; and with respect to the decomposition
H = V1 � V1 � V2 � V3 � � � � ; T has the following form

T = V1 � V1 � V2 � � � � � Vn � � � � ;

where T jV1 is a pure1-unitary, T jV1 is an unitary, and T jVn is a pure n-unitary for n � 2:

For a 2-isometry T; Proposition 1.25 in [3] identi�es the unique maximal reducing sub-
space R1 such that T jR1 is an isometry. Here we are able to identify R1 for an arbitrary
operator. This also leads to a decomposition theorem for T similar to Nagy-Foias-Langer
decomposition for a contraction where the unitary part is replaced by the isometric part.

Theorem 3.8 Let T 2 B(H). Then R1 de�ned by the formula

R1 = R1(T ) :=
\
i;n�0

ker(�1(T )T
iT �n) (14)

is the unique maximal reducing subspace on which T is an isometry. Furthermore, T =
T1 � T2 with respect to the decomposition H = R1 � R?1 ; where T1 is an isometry and T2 is
an operator which has no direct isometry summand.
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Proof. We �rst prove that R1 is reducing for T: Let h 2 R1. That is,�
�1(T )T

iT �n
�
h = 0 for all i; n � 0:

We need to show both T �h and Th are in R1: Clearly�
�1(T )T

iT �n
�
T �h =

�
�1(T )T

iT �n+1
�
h = 0 for all i; n � 0:

Hence T �h 2 R1: Note also if n = 0; then�
�1(T )T

iT �n
�
Th =

�
�1(T )T

i+1
�
h = 0 for all i � 0:

Furthermore, if n � 1; then for all i � 0;�
�1(T )T

iT �n
�
Th =

�
�1(T )T

iT �n�1T �T
�
h

= �1(T )T
iT �n�1 [�1(T ) + I]h

= �1(T )T
iT �n�1�1(T )h+ �1(T )T

iT �n�1h

= 0 + 0 = 0:

Hence, Th 2 R1: In conclusion, R1 is reducing for T: Note that by (9), R1 � K1. By
Proposition 3.3, T jK1 is an isometry. Thus T1 = T jR1 is an isometry.
Next, we prove the maximality of R1. Suppose now M is reducing for T and T jM is an

isometry. Then, if h 2M;�
�1(T )T

i
�
h = [PM�1(T jM)] (T ih)
= (0) (T ih) = 0 for all i � 0:

So, M � ker(�1(T )T i) and M � K1 as in (9). Since M is reducing for T; T �nh 2 M � K1

for all n � 0: Equivalently,�
�1(T )T

iT �n
�
h =

�
�1(T )T

i
�
T �nh = 0 for all i; n � 0:

Therefore, h 2 R1 and M � R1: The proof is complete.
The maximal reducing subspace in Proposition 1.25 in [3] for a 2-isometry is de�ned

somewhat di¤erently. Of course, with some work, one can prove that R1 de�ned by (14)
reduces to the one in [3] for a 2-isometry. It seems rather miraculous the proof worked for R1
since we are unable to prove the same conclusion for the analogous Rm with m > 1; where

Rm :=
\
i;n�0

ker(�m(T )T
iT �n):
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4 Quasinilpotent perturbations of 1-isometries
We will use the following Lemma 1 and Lemma 7 from [19] and Lemma 8 in [17]. Recall
that T1 and T2 in B(H) are double commuting if

T1T2 = T2T1 and T1T �2 = T
�
2 T1:

Lemma 4.1 Assume T1 and T2 2 B(H) are double commuting, and T and Q 2 B(H) are
commuting. Then

�m(T +Q) =
X

m1+m2+m3=m

�
m

m1;m2;m3

�
(T � +Q�)m1Q�m2�m3(T )T

m2Qm1 ;

�m(T +Q) =
X

m1+m2+m3+m4=m

�
m

m1;m2;m3;m4

�
� T �m1Q�(m2+m4)�m3(T )T

m2Q(m1+m4); (15)

�m(T1T2) =
mX
k=0

�
m

k

�
T �k1 �m�k(T1)T

k
1 �k(T2): (16)

Theorem 4.4 below has its inspiration from sub-jordan operators in [1] and [20]. It is
directly suggested by the following result for m-isometries.

Theorem 4.2 Assume T and Q 2 B(H) are commuting, and also assume that T is an m-
isometry and Q is a nilpotent operator of order n. Then T +Q is an (m+2n� 2)-isometry.

The above result was proved for m = 1 in [10]. The general and sometimes slightly
improved versions were discussed independently in [7], [19] and [23]. We �rst prove a lemma.

Lemma 4.3 Assume T and Q 2 B(H) are commuting. Then

k�m(T +Q)k � Cm
�
max
m�n�l

k�n(T )k+ max
m�n�l

kQnk
�
;

where l =
�
m
3

�
is the integer part of m

3
and

C = 2
�
[kTk+ kQk]2 + 2 kTk+ 1

�
:

Proof. By Lemma 4.1,

�m(T +Q) =
X

m1+m2+m3=m

�
m

m1;m2;m3

�
(T � +Q�)m1Q�m2�m3(T )T

m2Qm1 :

Let l =
�
m
3

�
, the integer part of m

3
: For i = 1; 2; 3; we de�ne


i =
X

m1+m2+m3=m and mi�l

�
m

m1;m2;m3

�
k(T � +Q�)m1Q�m2�m3(T )T

m2Qm1k :
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Since m1 +m2 +m3 = m implies that mi � l for one of the i = 1; 2; 3; we have

k�m(T +Q)k �
X

m1+m2+m3=m

�
m

m1;m2;m3

�
� k(T � +Q�)m1Q�m2�m3(T )T

m2Qm1k (17)

� 
1 + 
2 + 
3:

We now estimate 
i: We will prove the estimate for 
3 since the proofs of the estimates for

1 and 
2 are similar. Note that


3 =
X

m1+m2+m3=m and m3�l

�
m

m1;m2;m3

�
k(T � +Q�)m1Q�m2�m3(T )T

m2Qm1k

�
X

m1+m2+m3=m and m3�l

�
m

m1;m2;m3

�
� (kT �k+ kQ�k)m1 kQ�km2 k�m3(T )k kTk

m2 kQkm1

� max
m�n�l

k�n(T )k
X

m1+m2+m3=m

�
m

m1;m2;m3

�
� (kT �k+ kQ�k)m1 kQ�km2 kTkm2 kQkm1

= max
m�n�l

k�n(T )k ([kT �k+ kQ�k] kQk+ kQ�k kTk+ 1)m

� (C=2)m max
m�n�l

k�n(T )k ;

where the last equality follows from multinomial formula. Similarly, by noting that

k�k(T )k � (kTk+ 1)k for k � 1;

we have


1 � max
m�n�l

kQnk ([kT �k+ kQ�k] + kQ�k kTk+ [kTk+ 1])m

� max
m�n�l

kQnk (C=2)m;


2 � max
m�n�l

kQ�nk "l ([kT �k+ kQ�k] kQk+ kTk+ [kTk+ 1])m

� max
m�n�l

kQnk (C=2)m:

Therefore by (17),

k�m(T +Q)k � (C=2)m max
m�n�l

k�n(T )k+ 2(C=2)m max
m�n�l

kQnk

� Cm
�
max
m�n�l

k�n(T )k+ max
m�n�l

kQnk
�
:

The proof is complete.
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Theorem 4.4 Assume T and Q 2 B(H) are commuting, and also assume that T is an
1-isometry and Q is a quasinilpotent operator. Then T +Q is an 1-isometry.

Proof. Given 1 > " > 0; let N be such that

k�n(T )k � "n; kQnk � "n for n � N:

Then by Lemma 4.3, for m � 3N; we have l =
�
m
3

�
� N and

k�m(T +Q)k � Cm
�
max
m�n�l

k�n(T )k+ max
m�n�l

kQnk
�
� 2Cm"[

m
3 ]

for some constant C: Hence lim supm!1 k�m(T +Q)k
1=m = 0 and T +Q is an 1-isometry.

In view of Theorem 4.2 and Theorem 4.4, we make the following conjecture.

Conjecture 4.5 Assume T and Q 2 B(H) are commuting, and also assume that T is an
m-isometry for some m � 1 and Q is a quasinilpotent operator but not a nilpotent operator.
Then T +Q is an 1-isometry but not a �nite-isometry:

We now prove a limit result alluded in the introduction.

Proposition 4.6 If Tn 2 B(H) is a sequence of commuting 1-isometries and Tn ! T in
operator norm, then T is an 1-isometry.

Proof. By the assumption TnTl = TlTn for all n; l � 1; we have TTn = TnT for all n � 1:
The proof is similar to the previous proof. Given 1 > " > 0; let N be such that

kT � TNk � " and k�n(TN)k � "n for n � N:

Then by Lemma 4.3, for m � 3N; l =
�
m
3

�
� N and

k�m(T )k = k�m(TN + T � TN)k

� Cm
�

max
m�k�[m=3]

k�k(TN)k+ max
m�k�[m=3]



(T � TN)k

�
� Cm

�
max

m�k�[m=3]
k�k(TN)k+ max

m�k�[m=3]
kT � TNkk

�
� 2Cm"[

m
3 ]

for some constant C: Hence lim supm!1 k�m(T )k
1=m = 0 and T is an 1-isometry.

Problem 4.7 What happens when Tn are not commuting in Proposition 4.6?
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There is a partial converse to Theorem 4.4. Let K be another complex Hilbert space.
Let H 
K denote the Hilbert space tensor product of H and K: Let IH and IK denote the
identity operators on H and K respectively. If T 2 B(H) is an 1-isometry and S 2 B(K)
is a quasinilpotent operators, then T 
 IK on H 
 K is an 1-isometry and T2 = IH 
 S
is a quasinilpotent operators. Thus, by Theorem 4.4, T 
 IK + IH 
 S is an 1-isometry
on H 
K: We will prove the converse of this result under a technical assumption. We �rst
prove a lemma.

Lemma 4.8 Let T 2 B(H) and Q 2 B(K): If (T 
 IH + IK 
Q) is an 1-isometry on
H 
K and 0 2 �ap(Q); then T is an 1-isometry.

Proof. By assumption, 0 2 �ap(Q): That is, there exist unit vectors ki 2 K such that
Qki ! 0 as i ! 1: Thus, for any l > 0; Qlki ! 0 as i ! 1: Note formula (15) in Lemma
4.1 becomes

�m(S 
 I + I 
Q)

=
X

m1+m2+m3+m4=m

�
m

m1;m2;m3;m4

�
T �m1�m3(T )T

m2 
Q�(m2+m4)Q(m1+m4):

So, for any unit vector h 2 H; letting i!1; we have

h�m(S 
 I + I 
Q)(h
 ki); (h
 ki)i

=
X

m1+m2+m3+m4=m

�
m

m1;m2;m3;m4

�
� hT �m1�m3(T )T

m2h; hi


Q(m1+m4)ki; Q

(m2+m4)ki
�

! h�m(T )h; hi ;

since all the terms in the above summation tend to zero except when m1 = m2 = m4 = 0
and m3 = m: Note that (h
 ki) is a unit vector in H 
K: Hence

k�m(S 
 I + I 
Q)k � jh�m(S 
 I + I 
Q)(h
 ki); (h
 ki)ij and
k�m(S 
 I + I 
Q)k � jh�m(T )h; hij :

Since the unit vector h 2 H is arbitrary, k�m(S 
 I + I 
Q)k is bigger than or equal to
the numerical radius of �m(T ): But �m(T ) is a self-adjoint operator and thus its numerical
radius and the norm are the same. Therefore

k�m(S 
 I + I 
Q)k � k�m(T )k :

This implies that if lim supm!1 k�m(S 
 I + I 
Q)k
1=m = 0, then

lim supm!1 k�m(T )k
1=m = 0: So T is an 1-isometry on H:

Note that for any constant �;

(T + �IH)
 IK + IH 
 (Q� �IK) = S 
 I + I 
Q:

By a translation we can assume 0 2 �ap(Q): So a little re�ection gives the following interesting
corollary.
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Corollary 4.9 Let T 2 B(H) and Q 2 B(K): Then

k�m(S 
 I + I 
Q)k � max fk�m(T + �IH)k : � 2 �ap(Q)g ;
k�m(S 
 I + I 
Q)k � max fk�m(Q+ �IK)k : � 2 �ap(T )g :

The following technical condition is similar to the one needed for an analogous result for
m-isometries (Theorem 12 in [17]). Let � be the set of four points on the unit circle @D,
speci�cally,

� = �e�i�ei� for some �; � 2 [0; 2�): (18)

Theorem 4.10 Let T 2 B(H) and Q 2 B(K): Assume � (T 
 IH + IK 
Q)
6= �: Then (T 
 IH + IK 
Q) is an1-isometry on H
K if and only if one of the following
holds.

(a) There exists a constant � such that T + �I is an 1-isometry and Q � �I is a quasi-
nilpotent operator.

(b) There exists a constant � such that Q + �I is an 1-isometry and T � �I is a quasi-
nilpotent operator.

Proof. Assume (T 
 IH + IK 
Q) is an1-isometry. We will prove either (a) or (b) holds.
The proof is similar to and slightly simpler than the proof of Theorem 12 in [17]. We �rst
prove that either �(T ) or �(Q) is a singleton or both �(T ) and �(Q) contain exactly two
points.
If �(Q) is not a singleton, let �1; �2 be two di¤erent numbers in �ap(Q): We use I to

denote either IH or IK : Since

(T + �iIH)
 IK + IH 
 (Q� �iIK) = S 
 I + I 
Q; i = 1; 2;

it follows that 0 2 �ap (Q� �iI) : By Lemma 4.8, T +�iI is an1-isometry for i = 1; 2: Note
that

�(T + �2I) = �(T + �1I) + �2 � �1:
But by Proposition 2.1, either �(T + �1I) = D� or �(T + �1I) � @D: If �(T + �1I) = D�;
then T +�2I can not be an1-isometry since a translation of the unit disk D is not the unit
disk. Therefore �(T + �1I) � @D: It is clear that �(T + �2I) 6= D�, so �(T + �2I) � @D as
well. But �(T +�2I) is a translation of �(T +�1I) by the number �2��1; thus �(T ��1I)
consists of at most two points. In the case �(T + �1I) is a singleton we are done. In the
case �(T ) consists of two points �1; �2; since �1; �2 2 �ap(T ), a similar argument shows that
�(Q� �1I) consists of exactly two points as well.
We �rst deal with the singleton case. Without loss of generality, let �(Q) = f�g : Then

Q� �I is a quasinilpotent operator. By Lemma 4.8, T + �I is an 1-isometry. That is, (b)
holds.
In this case, both �(T ) and �(Q) contain exactly two points. Since

�(ei� (T + �I)
 I + I 
 ei�(Q� �I)) = ei�� (T 
 I + I 
Q) ;
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by a rotation and a translation, we may assume that

�(Q) = �ap(Q) = f0;��g for some � > 0:

By a theorem of Rosenblum [29], �(T 
 I + I 
Q) = �(T ) + �(Q): But by Proposition 2.1,
�(T 
 I + I 
Q) � @D: Hence �(T ) � @D\ (�+ @D) and �(T ) contains exactly two points
when 0 < � < 2. In fact, we have

�(T ) = �ap(T ) =
�
ei�; e�i�

	
; where ei� =

�

2
+ i

r
1� �

2

4
:

Therefore

�(T 
 I + I 
Q) = �(T ) + �(Q)
=
�
ei�; e�i�; ei� � �; e�i� � �

	
=
�
�e�i�

	
= �;

which can not happen by our assumption. The proof is complete.

See Proposition 14 in [17] for examples where it is shown that the corresponding result
for m-isometries may not hold without the assumption � (T 
 IH + IK 
Q) 6= �:
The following result gives a partial answer to Conjecture 4.5.

Proposition 4.11 Let T 2 B(H) and Q 2 B(K): Assume � (T 
 IH + IK 
Q)
6= �: If T is an m-isometry for some m � 1 and Q is a quasinilpotent operator but not a
nilpotent operator. Then (T 
 IH + IK 
Q) is an 1-isometry but not a �nite-isometry.

Proof. It follows from Theorem 4.4 that (T 
 IH + IK 
Q) is an 1-isometry. We prove
by using contradiction. Assume (T 
 IH + IK 
Q) is a strict n-isometry for some n � 1:
By Theorem 12 in [17], either there exists a constant � such that T + �I is a k-isometry
and Q� �I is a nilpotent operator of order l with k + 2l � 2 = n or there exists a constant
� such that Q + �I is an k-isometry and T � �I is a nilpotent operator of order l. In the
�rst case � = 0; and Q is a nilpotent operator of order l; which contradicts the assumption
on Q. In the second case, Q+ �I is a k-isometry implies that j�j = 1: So �(Q+ �I) = f�g :
Recall that if S is an m-isometry for some m � 1 and �(S) consists of a �nite number of
points, then S is the direct sum of operators of the form �I + Q0; where Q0 is a nilpotent
operator, see Proposition 11 in [17]. Hence, Q+ �I is a k-isometry, which implies that Q is
a nilpotent operator. This again contradicts the assumption on Q.

5 Tensor products of 1-isometries
The following result is inspired by the work on products of m-isometries in [9]. In fact, a
result is proved there for products of m-isometries on Banach spaces. See also [19] and [23]
for related results for m-isometries on Hilbert spaces.
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Theorem 5.1 Assume T1 are T2 in B(H) are double commuting. If T1 and T2 are 1-
isometries, then so is T1T2.

Proof. By Lemma 4.1,

�m(T1T2) =

mX
k=0

�
m

k

�
T �k1 �m�k(T1)T

k
1 �k(T2):

This proof is similar to the proof of Lemma 4.3 and Theorem 4.4 by using the above formula.
The proof here is actually slightly simpler. For clarity, we include the proof.
Given 1 > " > 0; let N be such that

k�n(T1)k � "n and k�n(T2)k � "n for n � N:

We claim that there exists a constant C such that for m � 2N

k�m(T1T2)k � Cm"m=2:

Let l =
�
m
2

�
denote the integer part of m

2
: We write

�m(T1T2) = I + II;

where

I :=
lX

k=0

�
m

k

�
T �k1 �m�k(T1)T

k
1 �k(T2);

II :=
mX

k=l+1

�
m

k

�
T �k1 �m�k(T1)T

k
1 �k(T2):

Note that for k � l =
�
m
2

�
; m� k �

�
m
2

�
= l � N; so

k�m�k(T1)k � "m�k � "l:

Note also by de�nition
k�k(T2)k � (kT2k+ 1)k for k � 1:

Therefore

kIk �
lX

k=0

�
m

k

�

T �k1 

 k�m�k(T1)k

T k1 

 k�k(T2)k
�

lX
k=0

�
m

k

�
kT1kk "m�k kT1kk (kT2k+ 1)k

� "l
mX
k=0

�
m

k

�
kT1kk kT1kk (kT2k+ 1)k

= "l
�
kT1k2 (kT2k+ 1) + 1

�m
:
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Similarly, by noting that for k � l + 1 � N; k�k(T2)k � "k; we have

kIIk � "l
�
kT1k2 + (kT1k+ 1)

�m
:

In conclusion, for n � 2N

k�m(T1T2)k � "[
m
2 ]
��
kT1k2 (kT2k+ 1) + 1

�m
+
�
kT1k2 + (kT1k+ 1)

�m�
:

Therefore lim supm!1 k�m(T1T2)k
1=m = 0 and T1T2 is an 1-isometry.

By applying Theorem 5.1, we have the following result: if T 2 B(H) and S 2 B(K) are
1-isometries, then T 
 S on H 
 K is an 1-isometry. To see this, let T1 = T 
 IK and
T2 = IH
S; where IH and IK are identity operators. Then T1 and T2 are double commuting,
and T1 and T2 are 1-isometries. Thus by Theorem 5.1, T1T2 = T 
 S is an 1-isometry.

Corollary 5.2 If T 2 B(H) and S 2 B(K) are 1-isometries, then T 
 S on H 
K is an
1-isometry.

A similar result on tensor products of m-isometries is the following:

Theorem 5.3 [16] If T 2 B(H) is an m-isometry and S 2 B(K) is an n-isometry, then
T 
 S on H 
K is an (m+ n� 1)-isometry.

We would like to mention that the result in Theorem 5.3 on tensor products of m-
isometries was �rst formulated in term of elementary operators on the ideal of Hilbert-
Schmidt operators in [11] and [12]. This result was proved in Theorem 2.10 of [16]. Simple
proofs of slightly improved versions of this result were given in [19] and [23]. A converse to
Theorem 5.3 was obtained in Theorem 7 of [17].
We now prove an analogous result of Theorem 7 of [17] for tensor products of 1-

isometries.

Theorem 5.4 Let T 2 B(H) and S 2 B(K): Then T 
 S on H 
K is an 1-isometry if
and only if both �T and S=� are 1-isometries on H and K respectively for some constant
�.

Proof. Note that for T1 = T 
 IK and T2 = IH 
 S; formula (16) becomes

�m(T 
 S) =
mX
k=0

�
m

k

�
T �k�m�k(T )T

k 
 �k(S):

One way of the theorem is Corollary 5.2 by noting that (�T )
 (S=�) = T 
 S.
Now assume T 
 S is an 1-isometry. By Proposition 2.1, either �(T 
 S) � @D or

�(T 
 S) = D�: By a theorem from Brown and Pearcy [13], �(T 
 S) = �(T ) � �(S):
In particular 1 = r(T 
 S) = r(T ) � r(S): If � = 1

r(T )
; then r(�T ) = r( 1

�
S) = 1: Since
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�T 
 1
�
S = T 
 S; we may assume r(T ) = r(S) = 1: We will prove that S is an1-isometry

and the proof for T is similar.
By the assumption r(T ) = 1; there is a � 2 @D such that � 2 �ap(T ): Let hi be a sequence

of unit vectors in H such that (T � �)hi �! 0: Then for any k � 0;


T khi

2 ! j�j2k = 1 as

i!1: Thus as in the proof of Proposition 2.1, for each j > 0; k � 0;

�j(T )T

khi; T
khi
�
=

jX
l=0

(�1)j�l
�
j

l

�

T lT khi

2
!

jX
l=0

(�1)j�l
�
j

l

�
= 0 as i!1: (19)

Since by (19),


�m�k(T )T

khi; T
khi
�
! 0 for k 6= m; therefore for any unit vector x 2 K,

h�m(T 
 S)(hi 
 x); hi 
 xi

=
mX
k=0

�
m

k

�

T �k�m�k(T )T

khi 
 �k(S)x; hi 
 x
�

=
mX
k=0

�
m

k

�

�m�k(T )T

khi; T
khi
�

 h�k(S)x; xi

! h�m(S)x; xi as i!1:
Thus

k�m(T 
 S)k � jh�m(T 
 S)(hi 
 x); hi 
 xij and k�m(T 
 S)k � jh�m(S)x; xij :
Since �m(S) is a self-adjoint operator, we have

k�m(T 
 S)k � k�m(S)k :
This implies that if lim supm!1 k�m(T 
 S)k

1=m = 0; then lim supm!1 k�m(S)k
1=m = 0: So,

S is an 1-isometry on H.
A little re�ection yields the following interesting corollary.

Corollary 5.5 Let T 2 B(H) and S 2 B(K): Then for m � 1
k�m(T 
 S)k � k�m(r(T )S)k and k�m(T 
 S)k � k�m(r(S)T )k :

We remark that several previous results for1-isometries also have corresponding results
for 1-unitaries. We state one of them.
Theorem 5.6 Let T 2 B(H) and S 2 B(K): Then T 
 S on H 
 K is an 1-unitary if
and only if both �T and S=� are 1-unitary on H and K respectively for some constant �.
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