
Normal singular Cauchy integral operators with

operator-valued symbols

Caixing Gu1, In Sung Hwang2, Dong-O Kang3 and Woo Young Lee4

October 4, 2016

Abstract

In this paper we characterize a class of normal (isometric, coisometric,
unitary, hyponormal) singular Cauchy integral operators with operator-
valued (or matrix-valued) symbols on vector-valued (or Cn-valued) L2

spaces.
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1 Introduction

Let T denote the unit circle in the complex plane C and let m denote the
normalized Lebesgue measure on T. Let Lp = Lp(T) be the usual Lebesgue
space on T and Hp = Hp(T) denotes the usual Hardy space on T, 1 ≤ p ≤ ∞.
Consider a singular integral operator S acting on L2 with the Cauchy kernel,
defined by

Sf(ζ) =
1

πi

∫
T

f(z)

z − ζ
dz,

where the integral is understood in the sense of Cauchy’s principal value of
f ∈ L2. If f ∈ L1, then Sf(ζ) exists a.e. on T and Sf(ζ) is a measurable
function. We define P := (I + S)/2 and Q := (I − S)/2, where I denotes

the identity operator. Then (P − Q)f(ζ) = Sf(ζ) = if̃(ζ) +
∫
T fdm, where
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f̃ denotes the harmonic conjugate function of f with f̃(0) = 0. For functions
φ,ψ ∈ L∞, the operator Sφ,ψ on L2 defined by

Sφ,ψ = φP + ψQ =
φ− ψ

2
S +

φ+ ψ

2
I

is called a singular Cauchy integral operator on L2. This operator has been
studied by many authors. Very recently, Nakazi and Yamamoto [17] have con-
sidered the normality of Sφ,ψ, in the viewpoint of the Brown-Halmos theorem
for normal Toeplitz operators on the Hardy space H2 of the unit circle. In this
paper we characterize classes of normal, isometric, unitary, hyponormal singu-
lar Cauchy integral operators with operator-valued symbols on vector-valued L2

spaces. This work was inspired by the recent results of Nakazi and Yamamoto
[17] on scalar-valued L2 spaces. Even though our results and their proofs are
much more complicated than the scalar case due to the noncommutativity of
the symbols, our approach does give simple proofs of some results of Nakazi
and Yamamoto. Our proofs use the recent work on normal Toeplitz operators
with operator-valued symbols in [12] and also the work on commuting abstract
Toeplitz and Hankel operators in [10].

Let E be a complex Hilbert space and B(E) be the algebra of all bounded
linear operators on E. Let L2

E = L2
E(T) be the Hilbert space of E-valued norm

square-integrable measurable functions on T and let L∞
B(E) be the space of all

bounded B(E)-valued functions with respect to operator supremum norm. For
an operator-valued function Φ ∈ L∞

B(E), the operator MΦ denotes the multipli-

cation operator by Φ on L2
E . For Φ,Ψ ∈ L∞

B(E), the singular integral operator

SΦ,Ψ : L2
E → L2

E is defined by

SΦ,Ψ(f) = ΦPf +ΨQf (f ∈ L2
E),

where P is the projection from L2
E onto H2

E and Q = I−P is the projection onto(
H2
E

)⊥
= L2

E ⊖H2
E = zH2

E . Throughout the paper, I will denote the identity
operator on different Hilbert spaces. To emphasize, we sometimes use IE to
denote the identity operator on the space E. Noting that SΦ,Ψ =MΨ+SΦ−Ψ,0,
we can think of SΦ,Ψ is a perturbation of MΨ which is normal if and only if the
symbol function Ψ is normal (Ψ∗Ψ = ΨΨ∗). Note that for f, g ∈ L2

E ,

⟨SΦ,Ψ(f), g⟩ = ⟨ΦPf +ΨQf, g⟩ = ⟨f, P [Φ∗g]⟩+ ⟨f,Q [Ψ∗g]⟩ .

Thus the adjoint S∗
Φ,Ψ is given by the formula

S∗
Φ,Ψg = P [Φ∗g] +Q [Ψ∗g] , g ∈ L2

E . (1)

Let J denote the unitary operator on L2
E given by

(Jf)(z) = zf(z) for f ∈ L2
E .

Note that J maps H2
E onto zH2

E , J
2 = I and J∗ = J on L2

E .We can also define
J on L∞

B(E) similarly,

(JΦ)(z) = zΦ(z),Φ ∈ L∞
B(E).
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A Toeplitz operator TΦ and a Hankel operator HΦ on H2
E are defined by

TΦf = P (Φf) and HΦf = JQ(Φf) = PJ(Φf), f ∈ H2
E .

Toeplitz operators TΦ and Hankel operators HΦ are characterized by the oper-
ator equations S∗TΦS = TΦ and HΦS = S∗HΦ, respectively, where S = TzIE
is the unilateral shift on H2

E with multiplicity dimE. See [10] for an abstract
approach to Toeplitz operators and Hankel operators where S is replaced by an
arbitrary isometry. For Φ ∈ L∞

B(E), write

Φ̃(z) := Φ∗(z) = (Φ(z))∗ = z(JΦ)∗.

One can easily see that
˜̃
Φ(z) = Φ(z).

The following lemma lists basic identities for Toeplitz and Hankel operators
which will be used throughout the paper, often without referring back to this
lemma.

Lemma 1.1 The following hold.

PJ = JQ;

J [Φf ] = z (JΦ) (Jf) for Φ ∈ L∞
B(E) and f ∈ L2

E ;

T ∗
Φ = TΦ∗ ,H∗

Φ = HΦ̃;

TΦΨ − TΦTΨ = H∗
Φ∗HΨ;

T ∗
ΦTΦ − TΦT

∗
Φ = TΦ∗Φ−ΦΦ∗ +H∗

Φ∗HΦ∗ −H∗
ΦHΦ;

HΦTΨ = HΦΨ, T
∗
Ψ̃
HΦ = HΨΦ for Ψ ∈ H∞

B(E).

The following lemma provides a direct connection of singular integral oper-
ator SΦ,Ψ with Hankel and Toeplitz operators.

Lemma 1.2 With respect to the decomposition L2
E = H2

E ⊕ zH2
E , we have

SΦ,Ψ =

[
TΦ H∗

Ψ∗J
JHΦ JTz(JΨ)J

]
=

[
TΦ HΨ̃∗J
JHΦ JT ∗

Ψ̃
J

]
=

[
I 0
0 J

] [
TΦ H∗

Ψ∗

HΦ Tz(JΨ)

] [
I 0
0 J

]
.

Proof. We will justify the (2, 2)-entry in the first block matrix form. Let

g1, g2 ∈ zH2
E . Then

⟨(QSΦ,Ψ) g1, g2⟩ = ⟨(SΦ,Ψ) g1, g2⟩ = ⟨ΦPg1 +ΨQg1, g2⟩
= ⟨Ψg1, g2⟩ = ⟨J (ΨQg1) , Jg2⟩
= ⟨z (JΨ) (Jg1), Jg2⟩ ,

where the last equality follows from Lemma 1.1. On the other hand,⟨(
JTz(JΨ)J

)
g1, g2

⟩
=
⟨(
Tz(JΨ)J

)
g1, Jg2

⟩
= ⟨P [z (JΨ)Jg1] , Jg2⟩

= ⟨z (JΨ)Jg1, Jg2⟩ ,
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where the last equality follows from the fact P (Jg2) = Jg2. The second block
matrix form follows by noting that

z (JΨ) =
[
Φ̃(z)

]∗
.

The proof is complete.

The paper is organized as follows. In Section 2 we give characterizations
of the self-adjoint-ness and the positivity of singular integral operators SΦ,Ψ.
Section 3 is devoted to a characterization of the normality of SΦ,Ψ with operator-
valued symbols and Section 4 is devoted to characterizations of the normality,
the isometry and the coisometry of SΦ,Ψ with matrix-valued symbols. In Section
5, we consider the hyponormality of SΦ,Ψ with matrix-valued symbols.

2 Self-Adjoint SΦ,Ψ

The characterizations of self-adjoint SΦ,Ψ and positive SΦ,Ψ are generalization
of the results in the scalar-valued case in Section 2 of [17]. The proofs appear
similar.

Theorem 2.1 Let Φ,Ψ ∈ L∞
B(E). Then the followings are equivalent.

(a) SΦ,Ψ is self-adjoint on L2
E.

(b) Both Φ and Ψ are self-adjoint operator-valued functions such that Φ−Ψ
is a (constant) self-adjoint operator in B(E).

(c) There exist F ∈ zH∞
B(E) and self-adjoint operators Φ0 and Ψ0 in B(E)

such that Φ = F + F ∗ +Φ0,Ψ = F + F ∗ +Ψ0.

(d) SΦ,Ψ = MΨ + SG0,0, where MΨ is self-adjoint and G0 is a (constant)
self-adjoint operator in B(E).

Proof. We first prove the equivalence of (a) and (b). By Lemma 1.2,

SΦ,Ψ =

[
I 0
0 J

] [
TΦ H∗

Ψ∗

HΦ Tz(JΨ)

] [
I 0
0 J

]
;

S∗
Φ,Ψ =

[
I 0
0 J

] [
T ∗
Φ H∗

Φ

HΨ∗ T ∗
z(JΨ)

] [
I 0
0 J

]
.

Therefore SΦ,Ψ is self-adjoint if and only if

TΦ = T ∗
Φ, Tz(JΨ) = T ∗

z(JΨ); (2)

HΦ = HΨ∗ . (3)

Equation (2) holds if and only if both Φ and Ψ are self-adjoint operator-valued
functions. Equivalently, Φ = F + F ∗ + Φ0 and Ψ = G + G∗ + Ψ0 for some
F,G ∈ zH∞

B(E) and two self-adjoint operators Φ0 and Ψ0 in B(E). Equation

(3) holds if and only Φ − Ψ∗ ∈ H∞
B(E). But Φ − Ψ∗ = Φ − Ψ is self-adjoint, so

Φ−Ψ = Φ0 −Ψ0 and F = G. The proofs of other equivalences are similar.
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Theorem 2.2 Let Φ,Ψ ∈ L∞
B(E). Then the followings hold:

(a) If SΦ,Ψ is a positive operator on L2
E , then for each θ ∈ [0, 2π), both Φ(eiθ)

and Ψ(eiθ) are positive operators in B(E) and Φ−Ψ is a (constant) self-
adjoint operator in B(E).

(b) If for each θ ∈ [0, 2π), both Φ(eiθ) and Ψ(eiθ) are positive operator in
B(E) and Φ−Ψ = G0, where G0 is either a positive or negative operator
in B(E), then SΦ,Ψ is a positive operator on L2

E .

Proof. We generalize the proof of Theorem 2.2 in [17] for the scalar-valued
case to the operator-valued case. For part (b), the additional condition on G0 is
automatically satisfied in the scalar case. The proof of part (b) is made possibly
by this assumption.

We first prove (a). Let f ∈ H2 be a scalar function and e ∈ E. Then
f(z)e ∈ H2

E , and hence

⟨SΦ,Ψf(z)e, f(z)e⟩L2
E
= ⟨ΦP [f(z)e] + ΨQ [f(z)e] , f(z)e⟩L2

E

= ⟨Φ(z)f(z)e, f(z)e⟩L2
E

=
1

2π

∫ 2π

0

⟨
Φ(eiθ)f(eiθ)e, f(eiθ)e

⟩
E
dθ

=
1

2π

∫ 2π

0

⟨
Φ(eiθ)e, e

⟩
E

∣∣f(eiθ)∣∣2 dθ ≥ 0.

Since f ∈ H2 is arbitrary, it follows that
⟨
Φ(eiθ)e, e

⟩
E

≥ 0 for any e ∈ E and

Φ(eiθ) is a positive operator for each θ ∈ [0, 2π). Similarly, let g ∈ zH2 be a

scalar-valued function and e ∈ E. Then g(z)e ∈ zH2
E and

⟨SΦ,Ψg(z)e, g(z)e⟩L2
E
= ⟨Ψ(z)g(z)e, g(z)e⟩L2

E

=
1

2π

∫ 2π

0

⟨
Ψ(eiθ)e, e

⟩
E
g(eiθ)g(eiθ)dθ ≥ 0.

Therefore
⟨
Ψ(eiθ)e, e

⟩
E
≥ 0 for any e ∈ E and Ψ(eiθ) is a positive operator for

each θ ∈ [0, 2π).
To prove (b), write Φ − Ψ = G0 for some self-adjoint operator G0 ∈ B(E).

Let h ∈ L2
E be fixed. Write h = f +g (f = Pf, g = Qf). Since G0 is a constant

operator, G0g ∈ zH2 and ⟨G0g, f⟩L2
E

= ⟨G0f, g⟩L2
E

= 0. If G0 is a negative

operator, then ⟨G0g, g⟩L2
E
≤ 0 and

⟨SΦ,Ψh, h⟩L2
E
= ⟨SΦ,Ψ(f + g), (f + g)⟩L2

E
= ⟨Φf + (Φ−G0) g, f + g⟩L2

E

= ⟨Φ(f + g) , f + g⟩L2
E
− ⟨G0g, f + g⟩L2

E

= ⟨Φ(f + g) , f + g⟩L2
E
− ⟨G0g, g⟩L2

E
≥ ⟨Φ(f + g) , f + g⟩L2

E

=
1

2π

∫ 2π

0

⟨
Φ(eiθ)h(eiθ), h(eiθ)

⟩
E
dθ ≥ 0
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since for each θ,Φ(eiθ) is a positive operator. If instead G0 is a positive operator,
then similarly, ⟨SΦ,Ψh, h⟩L2

E
≥ 0.

3 Normal SΦ,Ψ with operator-valued symbols

In this section we consider when SΦ,Ψ with operator-valued symbols is normal.
Here we also characterize when SΦ,Ψ is an isometry, a coisometry or a unitary
operator. Set

U =

[
I 0
0 J

]
.

Lemma 3.1 Let Φ,Ψ ∈ L∞
B(E) and let Ω := Φ−Ψ. Then SΦ,Ψ is normal if and

only if the following three conditions are satisfied:

TΦ∗Φ−ΦΦ∗ +H∗
Φ∗HΦ∗ −H∗

Ψ∗HΨ∗ = 0; (4)

TΨ̃Ψ̃∗−Ψ̃∗Ψ̃ +H∗
Ψ̃
HΨ̃ −H∗

Φ̃
HΦ̃ = 0; (5)

HΨ∗Φ−ΦΨ∗ + TΩ̃∗HΨ∗ −HΦTΩ∗ = 0. (6)

Proof. By Lemma 1.2, we have

US∗
Φ,ΨSΦ,ΨU =

[
T ∗
Φ H∗

Φ

HΨ∗ T ∗
z(JΨ)

] [
TΦ H∗

Ψ∗

HΦ Tz(JΨ)

]
=

[
T ∗
ΦTΦ +H∗

ΦHΦ T ∗
ΦH

∗
Ψ∗ +H∗

ΦTz(JΨ)

HΨ∗TΦ + T ∗
z(JΨ)HΦ HΨ∗H∗

Ψ∗ + T ∗
z(JΨ)Tz(JΨ)

]
; (7)

USΦ,ΨS
∗
Φ,ΨU =

[
TΦT

∗
Φ +H∗

Ψ∗HΨ∗ TΦH
∗
Φ +H∗

Ψ∗Tz(JΨ)

HΦT
∗
Φ + Tz(JΨ)HΨ∗ HΦH

∗
Φ + Tz(JΨ)T

∗
z(JΨ)

]
. (8)

Then a direct calculation together with (7), (8), and Lemma 1.1 gives

U
[
S∗
Φ,ΨSΦ,Ψ − SΦ,ΨS

∗
Φ,Ψ

]
U

=

[
TΦ∗Φ−ΦΦ∗ +H∗

Φ∗HΦ∗ −H∗
Ψ∗HΨ∗ H∗

Ψ∗Φ−ΦΨ∗ +H∗
Ψ∗TΩ̃ − TΩH

∗
Φ

HΨ∗Φ−ΦΨ∗ + TΩ̃∗HΨ∗ −HΦTΩ∗ TΨ̃Ψ̃∗−Ψ̃∗Ψ̃ +H∗
Ψ̃
HΨ̃ −H∗

Φ̃
HΦ̃

]
,

giving the result.

The first two equations (4) and (5) of Lemma 3.1 are of the same nature and
we can use the techniques in [12] to study them.

Lemma 3.2 Let Φ,Ψ ∈ L∞
B(E). Then TΦ∗Φ−ΦΦ∗ +H∗

Φ∗HΦ∗ −H∗
Ψ∗HΨ∗ = 0 if

and only if TΦ∗Φ−ΦΦ∗ = 0 and H∗
Φ∗HΦ∗ −H∗

Ψ∗HΨ∗ = 0.

Proof. Note that for m ≥ 1,

0 = S∗m(TΦ∗Φ−ΦΦ∗ +H∗
Φ∗HΦ∗ −H∗

Ψ∗HΨ∗)Sm

= S∗mTΦ∗Φ−ΦΦ∗Sm + S∗mH∗
Φ∗HΦ∗S∗m − S∗mH∗

Ψ∗HΨ∗Sm

= TΦ∗Φ−ΦΦ∗ +H∗
Φ∗SmS∗mHΦ∗ −H∗

Ψ∗SmS∗mHΨ∗ .
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Since SmS∗m is the projection on the space zmH2
E , S

mS∗m → 0 strongly as m
tends to ∞. Thus both S∗mH∗

Φ∗HΦ∗Sm and S∗mH∗
ΦHΦS

m strongly converge
to 0. Therefore TΦ∗Φ−ΦΦ∗ = 0, which in turn implies H∗

Φ∗HΦ∗ −H∗
Ψ∗HΨ∗ = 0

as well.
It is known ([12]) that an operator-valued L∞-function Φ ∈ L∞

B(E) can be
decomposed as

Φ(z) = Φ+(z) + Φ0 +Φ∗
−(z),

where Φ+,Φ− ∈ zH2
B(E) and Φ0 ∈ B(E).

The following theorem is essentially one of the main theorems in [12], see
Theorem 11 in [12]. Here we state it in terms of Hankel operators. The result
stated here is in fact in a slightly more general form in the sense that the
functions Φ+ and Ψ+ come from two different L∞

B(E) functions Φ and Ψ while

in [12] two functions Φ+ and Φ− come from one L∞
B(E) function Φ.

Theorem 3.3 [12] Let Φ,Ψ ∈ L∞
B(E). Then H

∗
Φ∗HΦ∗ = H∗

Ψ∗HΨ∗ if and only if
there exist a coisometry W such that Φ+ = Ψ+W or Ψ+ = Φ+W .

It turns out that operator equations similar to equation (6) were studied in
[10]. Since the approach in [10] is quite abstract, we provide a self-contained
treatment here. See Lemma 1, Theorem 1, Theorem 4 and Proposition 3 in [10]
for related results. Let P0 = (I − SS∗) denote the projection of L2

E onto E
which is comprised of all constant elements in L2

E , that is,

P0(f) = P0(f+ + f0 + f−) = f0 for f ∈ L2
E ,

where f+, f− ∈ zH2
E and f0 ∈ E. The following lemma is essentially Lemma 1

in [10] and we include the proof for completeness.

Lemma 3.4 [10] Let Φi ∈ L∞
B(E) for i = 1, 2, 3, 4, 5. Then we have

S∗(TΦ1HΦ2 −HΦ3TΦ4 +HΦ5)− (TΦ1HΦ2 −HΦ3TΦ4 +HΦ5)S

= TzΦ1P0HΦ2 +HΦ3P0TzΦ4 .

Proof. Immediate from a direct calculation.

The following lemma is essentially Theorem 1 in [10] and is in some sense in
a slightly more general form.

Lemma 3.5 Let Φi ∈ L∞
B(E) for i = 1, 2, 3, 4, 5. Then TΦ1HΦ2 − HΦ3TΦ4 +

HΦ5 = 0 if and only if

TzΦ1P0HΦ2 +HΦ3P0TzΦ4 = 0; (9)

(TΦ1HΦ2 −HΦ3TΦ4 +HΦ5)P0 = 0. (10)

Proof. The necessity is clear from Lemma 3.4. Now we prove sufficiency. Let

D = TΦ1HΦ2 −HΦ3TΦ4 +HΦ5 .
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By Lemma 3.4, the assumption (9) says S∗D = DS. Thus if h ∈ ker(D), then
DSh = S∗Dh = 0 implies that Sh ∈ ker(D). Therefore ker(D) is an invariant
subspace for S. But the assumption (10) says ker(D) ⊇ ran (P0) = E. By
iteration, ker(D) ⊇ SnE for n ≥ 0. That is, ker(D) = L2

E and D = 0.

Remark 3.6 When E is finite dimensional, equations (9) and (10) can be stud-
ied more explicitly as we will see in next section.

Theorem 3.7 Let Φ,Ψ ∈ L∞
B(E). Then SΦ,Ψ is normal if and only if

(a) Φ∗Φ− ΦΦ∗ = 0,Ψ∗Ψ−ΨΨ∗ = 0;

(b) There exist coisometries W1 and W2 in B(E) such that Φ+ = Ψ+W1 or
Ψ+ = Φ+W1 and Φ− =W2Ψ− or Ψ− =W2Φ−;

(c) TzΩ̃∗P0HΨ∗ +HΦP0TzΩ∗ = 0 and (HΨ∗Φ−ΦΨ∗ +TΩ̃∗HΨ∗ −HΦTΩ∗)P0 = 0.

Proof. (a) follows from applying Lemma 3.2 to (4), (b) follows from applying
Theorem 3.3 to (5) and (c) follows from applying Lemma 3.5 to (6).

The special case when W1 =W2 = I gives the following result which gener-
alizes Theorem 3.3 in [17].

Corollary 3.8 Let Φ,Ψ ∈ L∞
B(E). Assume Φ − Ψ = G0 for some operator G0

in B(E). Then SΦ,Ψ is normal if and only if Φ∗Φ− ΦΦ∗ = 0,Ψ∗Ψ−ΨΨ∗ = 0
and Ψ∗G0 −ΨG∗

0 = F0 for some self-adjoint operator F0 in B(E).

Proof. Immediate from a direct calculation.

If G0 is an invertible operator, then equation Ψ∗G0−ΨG∗
0 = F0 leads to the

following representation of Ψ. Write

Ψ = Ψ+ +Ψ0 +Ψ∗
−.

Then Ψ∗G0 − ΨG∗
0 = F0 implies that Ψ∗

+G0 = Ψ∗
−G

∗
0,Ψ−G0 = Ψ∗

+G
∗
0. There-

fore

Ψ = Ψ+ +Ψ0 +Ψ∗
− = G∗−1

0 G0Ψ− +Ψ∗
− +Ψ0

= G∗−1
0 (G0Ψ− +G∗

0Ψ
∗
−) + Ψ0

= G∗−1
0 (F + F ∗) + Ψ0,

where F = G0Ψ− and F+F ∗ is a self-adjoint operator-valued function in L∞
B(E).

If Ψ is a scalar function, then TΨ is a normal Toeplitz operator characterized in
[1].

To see the power of the Theorem 3.7, we first give a proof of normal singular
integral operators obtained in Theorem 3.1 of [17]. This proof will also guide
us to the matrix-valued case in next section.
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Theorem 3.9 [17] Assume E is one dimensional. Then SΦ,Ψ is normal if and
only if there exist unimodular constant w and constant b such that Φ = wΨ+ b
and (w − 1) [ΨΨ∗] + bΨ∗ − wbΨ ∈ H∞.

Proof. Condition (a) in Theorem 3.7 is automatically satisfied in the scalar-
valued case. Condition (b) says that there exist two unimodular constants w1

and w2 such that
Φ+ = w1Ψ+ and Φ− = w2Ψ−. (11)

Note that P0 = e0 ⊗ e0, where e0 = 1 is a constant function. Equation
TzΩ̃∗P0HΨ∗ +HΦP0TzΩ∗ = 0 becomes

TzΩ̃∗ (e0 ⊗ e0)HΨ∗
+
+HΦ∗

−
(e0 ⊗ e0)TzΩ∗ = 0;

TzΩ̃∗e0 ⊗H∗
Ψ∗

+
e0 +HΦ∗

−
e0 ⊗ T ∗

zΩ∗e0 = 0.

By definitions,

TzΩ̃∗e0 = zΩ̃−,H
∗
Ψ∗

+
e0 = zΨ+,HΦ∗

−
e0 = zΦ̃−, T

∗
zΩ∗e0 = zΩ+. (12)

Therefore zΩ̃− ⊗ zΨ+ + zΦ̃− ⊗ zΩ+ = 0. If both Ψ+ and Φ− are not identically

zero, then for some constant a, Ω+ = aΨ+ and Ω̃− = −aΦ̃−. Hence

Φ+ = (a+ 1)Ψ+,Ψ− = (a+ 1)Φ−. (13)

Comparing (13) with (11), we have w1 = w2 = (a+ 1). If we set w = w1 = w2,
then equation (11)

Φ = wΨ+ b (14)

for a unimodular constant w and a constant b. Note in the scalar case Ψ∗Φ −
ΦΨ∗ = 0. Note also

HΦ∗
−
TΩ∗e0 = HΦ∗

−
(Ω∗

0 +Ω−) = PJ
[
Φ∗

−(Ω
∗
0 +Ω−)

]
;

TΩ̃∗HΨ∗ = TΩ̃∗PJ
[
Ψ∗

+

]
= P

[
Ω̃∗J

[
Ψ∗

+

]]
= PJ

[
ΩΨ∗

+

]
.

Now the equation (HΨ∗Φ−ΦΨ∗ + TΩ̃∗HΨ∗
+
−HΦ∗

−
TΩ∗)P0 = 0 is the same as

PJ
[
ΩΨ∗

+ − Φ∗
−(Ω

∗
0 +Ω−)

]
= 0.

Equivalently,
ΩΨ∗

+ − Φ∗
−(Ω

∗
0 +Ω−) ∈ H2

B(E),

or equivalently, by (11) and the fact that
(
Ψ∗

− −Ψ
)
, (Ψ∗ −Ψ∗

+) ∈ H2,

(w − 1) [ΨΨ∗] + bΨ∗ − wbΨ ∈ H∞.

The proof is complete.
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Remark 3.10 A reflection reveals that we do not need the scalar version of
Theorem 3.3 (Lemma 3.2 in [17]) in the above proof since the existence of
w1, w2 such w1 = w2 can be seen from equation (13) and then it follows from
H∗

Φ∗HΦ∗ −H∗
Ψ∗HΨ∗ = 0 that |w1| = 1.

We now characterize when SΦ,Ψ is an isometry or a coisometry.

Proposition 3.11 SΦ,Ψ is an isometry if and only if Φ∗Φ = IE ,Ψ
∗Ψ = IE

and Ψ∗Φ ∈ H∞
B(E).

Proof. By equation (7),

US∗
Φ,ΨSΦ,ΨU =

[
T ∗
ΦTΦ +H∗

ΦHΦ T ∗
ΦH

∗
Ψ∗ +H∗

ΦTz(JΨ)

HΨ∗TΦ + T ∗
z(JΨ)HΦ HΨ∗H∗

Ψ∗ + T ∗
z(JΨ)Tz(JΨ)

]
=

[
T ∗
ΦTΦ +H∗

ΦHΦ H∗
Ψ∗Φ

HΨ∗Φ HΨ∗H∗
Ψ∗ + T ∗

z(JΨ)Tz(JΨ)

]
. (15)

Therefore SΦ,Ψ is an isometry if and only if

T ∗
ΦTΦ +H∗

ΦHΦ = I = TIE ; (16)

HΨ∗H∗
Ψ∗ + T ∗

z(JΨ)Tz(JΨ) = I = TIE ; (17)

HΨ∗Φ = 0. (18)

From equation (16) we have

T ∗
ΦTΦ − TΦ∗Φ +H∗

ΦHΦ = TIE−Φ∗Φ.

Thus we have −H∗
ΦHΦ + H∗

ΦHΦ = TIE−Φ∗Φ, from which we conclude that
Φ∗Φ = IE . In a similar way, equation (17) gives

z (JΨ)
∗
z (JΨ) = Ψ̃Ψ̃∗ = IE or Ψ∗Ψ = IE .

Equation (18) gives Ψ∗Φ ∈ H∞
B(E). The proof is complete.

Proposition 3.12 SΦ,Ψ is a coisometry if and only if the following conditions
are satisfied.

(a) ΦΦ∗ = IE ,ΨΨ∗ = IE.

(b) There exist coisometries W1,W2 ∈ B(E) such that W1 satisfies either
Φ+ = Ψ+W1 or Ψ+ = Φ+W1 and W2 satisfies either Ψ− = W2Φ− or
Φ−Ψ− =W2Ψ−.

(c) HΦP0TzΦ∗ + T(JΨ)P0HΨ∗ = 0 and
(
HΦT

∗
Φ + Tz(JΨ)HΨ∗

)
P0 = 0.

Proof. By equation (3.12),

USΦ,ΨS
∗
Φ,ΨU =

[
TΦT

∗
Φ +H∗

Ψ∗HΨ∗ TΦH
∗
Φ +H∗

Ψ∗Tz(JΨ)

HΦT
∗
Φ + Tz(JΨ)HΨ∗ HΦH

∗
Φ + Tz(JΨ)T

∗
z(JΨ)

]
.
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Therefore SΦ,Ψ is a coisometry if and only if

TΦT
∗
Φ +H∗

Ψ∗HΨ∗ = I = TIE ; (19)

HΦH
∗
Φ + Tz(JΨ)T

∗
z(JΨ) = I = TIE ; (20)

HΦT
∗
Φ + Tz(JΨ)HΨ∗ = 0. (21)

From (19) we have

ΦΦ∗ = IE and H∗
Ψ∗HΨ∗ = H∗

Φ∗HΦ∗ .

By Theorem 3.3, there exist a coisometry W1 in B(E) such that Φ+ = Ψ+W1

or Ψ+ = Φ+W1. (20) gives

z (JΨ) z (JΨ)
∗
z (JΨ) = Ψ̃∗Ψ̃ = IE and

HΦH
∗
Φ = H∗

Φ̃
HΦ̃ = H∗

z(JΨ)∗Hz(JΨ)∗ = H∗
Ψ̃
HΨ̃.

Again by Theorem 3.3, there exists a coisometry W2 in B(E) such that Φ̃− =

Ψ̃−W2 or Ψ̃− = Φ̃−W2. By Lemma 3.5, equation (21) holds if and only if

HΦP0TzΦ∗ + T(JΨ)P0HΨ∗ = 0;(
HΦTΦ∗ + Tz(JΨ)HΨ∗

)
P0 = 0.

The proof is complete.

Theorem 3.13 SΦ,Ψ is a unitary operator if and only if Φ∗Φ = ΦΦ∗ = IE ,Ψ
∗Ψ =

ΨΨ∗ = IE and Φ = ΨW0 for some constant unitary operator W0 in B(E).

Proof. Assume SΦ,Ψ is a unitary operator. By Proposition 3.11, Φ∗Φ =
IE ,Ψ

∗Ψ = IE and Φ∗Ψ ∈ H2
E . By Proposition 3.12, ΦΦ∗ = IE and ΨΨ∗ = IE .

Let e ∈ E. Then by (1),

SΦ,ΨS
∗
Φ,Ψ(Ψe) = SΦ,Ψ (P [Φ∗Ψe] +Q [Ψ∗Ψe])

= SΦ,Ψ (P [Φ∗Ψe] +Q [e])

= SΦ,ΨP [Φ∗Ψe] = ΦP [Φ∗Ψe] = Ψe,

where in second equality, we use Ψ∗Ψ = I. Hence for any e ∈ E, by Φ∗Φ = I,

ΦP [Φ∗Ψe] = Ψe or P [Φ∗Ψe] = Φ∗Ψe.

Thus Φ∗Ψe ∈ H2
E and Φ∗Ψ ∈ H∞

B(E). Since both Φ∗Ψ and Φ∗Ψ are in H∞
B(E),

we conclude Ψ∗Φ =W0 or Φ = ΨW0 for some constant unitary operator W0 in
B(E).

We now prove the other direction. Suppose Φ∗Φ = ΦΦ∗ = IE ,Ψ
∗Ψ =

ΨΨ∗ = IE and Φ = ΨW0. Then by Proposition 3.11, SΦ,Ψ is an isometry.
We now directly verify that SΦ,Ψ is is a coisometry as well. It follows from
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the proof of Proposition 3.12 that we need only to verify the equation HΦT
∗
Φ +

Tz(JΨ)HΨ∗ = 0 as follows:

HΦT
∗
Φ + Tz(JΨ)HΨ∗ = HΨW0T

∗
ΨW0

+ Tz(JΨ)HΨ∗

= HΨTW0T
∗
W0
T ∗
Ψ + Tz(JΨ)HΨ∗

= HΨT
∗
Ψ + Tz(JΨ)HΨ∗

= HΨΨ∗ = 0,

where the 4th equality follows from (7). The proof is complete.

The scalar version of the above theorem is Theorem 3.4 in [17].

4 Normal SΦ,Ψ with matrix-valued symbols

In this section we assume that E is a Hilbert space of finite dimension n. We
first fix a basis for E. Then a function Φ ∈ L∞

B(E) is an n × n matrix whose
entries are scalar-valued L∞-functions. Thus we let E = Cn and we will write
L∞
Mn

instead of L∞
B(E), where Mn denotes the set of all n×n complex matrices.

Let det(Φ+) denote the determinant of Φ+.
Let H be a Hilbert space. For a, b ∈ H, the rank one operator a⊗ b on H is

defined by
[a⊗ b] e = ⟨b, e⟩ a, e ∈ H.

Note that [a⊗ b]
∗
= b⊗ a and for a complex number λ,

λ [a⊗ b] = (λa)⊗ b = a⊗
(
λb
)
.

We first need a lemma on operator equations involving finite rank operators.

Lemma 4.1 Let ai, bi, ci, di for i = 1, 2, · · · , n be vectors in a Hilbert space H.
Assume {bi}ni=1 are linearly independent and {ci}ni=1 are linearly independent.
Then

n∑
i=1

ai ⊗ bi +

n∑
i=1

ci ⊗ di = 0

if and only if there exists a matrix A such that

d = Ab, a = −A∗c,

where

a = [a1, · · · , an]T , b = [b1, · · · , bn]T , c = [c1, · · · , cn]T , d = [d1, · · · , dn]T .

Proof. We prove lemma for n = 2 since the proof for the general case is anal-
ogous. In fact, n = 2 case illustrates the idea most clearly. We also substitute
c by −c for convenience in the proof. Assume

a1 ⊗ b1 + a1 ⊗ b1 = c1 ⊗ d1 + c2 ⊗ d2 (22)
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Since c1 and c2 are linearly independent, by equating the range of the operators
on two sides of the above equation, we see that there exists a constant 2 × 2
matrix A = (aij) such that[

d1
d2

]
=

[
a11 a12
a21 a22

] [
b1
b2

]
.

Plugging the above equation into the right side of (22), we have

a1 ⊗ b1 + a2 ⊗ b2 = c1 ⊗ (a11b1 + a12b2) + c2 ⊗ (a21b1 + a22b2)

= (a11c1 + a21c2)⊗ b1 + (a12c1 + a22c2)⊗ b2.

Since b1 and b2 are linearly independent,

a1 = (a11c1 + a21c2) , a2 = (a12c1 + a22c2) .

Equivalently, [
a1
a2

]
=

[
a11 a12
a21 a22

]∗ [
c1
c2

]
.

The proof is complete.

We are ready to characterize normal operator SΦ,Ψ under a nondegenerate
condition on the matrix-valued symbol functions Φ and Ψ.

Theorem 4.2 Let Φ,Ψ ∈ L∞
Mn

. Assume that neither of det(Φ+) and det(Φ−) is
identically zero. Then SΦ,Ψ is normal if and only if the following three conditions
hold.

(a) Φ∗Φ− ΦΦ∗ = 0,Ψ∗Ψ−ΨΨ∗ = 0.

(b) There exists a unitary matrix W0 and constant matrix G0 such that Φ =
ΨW0 +G0.

(c) Ψ∗Ψ(W0 − I) + Ψ∗G0 −ΨW0G
∗
0 ∈ H∞

Mn
.

Proof. Condition (a) follows from Theorem 3.7. Since a coisometry in Mn is
just an unitary matrix. By Theorem 3.7(b), there exist unitary matrices W1

and W2 in Mn such that

Φ+ = Ψ+W1 and Ψ− =W2Φ−. (23)

We will prove W1 = W2. Let {ei, i = 1, 2, · · · , n} be the standard basis of Cn.
Equation TzΩ̃∗P0HΨ∗ +HΦP0TzΩ∗ = 0 becomes

TzΩ̃∗

(
n∑
i=1

ei ⊗ ei

)
HΨ∗

+
+HΦ∗

−

(
n∑
i=1

ei ⊗ ei

)
TzΩ∗ = 0;

n∑
i=1

TzΩ̃∗ei ⊗H∗
Ψ∗

+
ei +

n∑
i=1

HΦ∗
−
ei ⊗ T ∗

zΩ∗ei = 0.
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Since we assumed neither of det(Φ+) and det(Φ−) is identically zero, equation
(23) says det(Ψ+) and det(Ψ−) are both nonzero functions. Hence{

H∗
Ψ∗

+
ei, i = 1, 2, · · · , n

}
are linearly independent and

{
HΦ∗

−
ei, i = 1, 2, · · · , n

}
are linearly independent.

By Lemma 4.1, there exists a constant n× n matrix A such that

[T ∗
zΩ∗e1, · · · , T ∗

zΩ∗en]
T
= A

[
H∗

Ψ∗
+
e1, · · · ,H∗

Ψ∗
+
en

]T
;[

TzΩ̃∗e1, · · · , TzΩ̃∗en
]T

= −A∗
[
HΦ∗

−
e1, · · · ,HΦ∗

−
en

]T
.

Note that TzΩ̃∗ei is the i-th column of the matrix zΩ̃− and so on. The above
two equations are equivalent to

zΩ+ = zΨ+A
T and zΩ̃− = −zΦ̃−A

∗T .

Therefore we have

Ω+ = Ψ+A
T ,Ω− = −ATΦ−;

Φ+ = Ψ+(A
T + 1),Ψ− = (AT + 1)Φ−.

Since neither of det(Φ+) and det(Φ−) is identically zero, comparing the above
equations with (23) yields W1 = W2 = (A + 1). Set W = W1 = W2, then
equation (23) implies

Φ−ΨW0 = Φ+ −Ψ+W1 +Φ∗
− −Ψ∗

+W2 +Φ0 −Ψ0W

= Φ0 −Ψ0W.

Thus we conclude that
Φ = ΨW +G (24)

for some unitary matrix W and constant matrix G. This proves Condition (b).
Next we prove Condition (c). The equation

(HΨ∗Φ−ΦΨ∗ + TΩ̃∗HΨ∗
+
−HΦ∗

−
TΩ∗)P0 = 0

is the same as

(HΨ∗Φ−ΦΨ∗ + TΩ̃∗HΨ∗ −HΦTΩ∗)ei = 0, i = 1, 2, · · · , n. (25)

Note that

HΦ∗
−
TΩ∗ei = HΦ∗

−
(Ω∗

0 +Ω−)ei = PJ
[
Φ∗

−(Ω
∗
0 +Ω−)ei

]
;

TΩ̃∗HΨ∗ei = TΩ̃∗PJ
[
Ψ∗

+ei
]
= P

[
Ω̃∗J

[
Ψ∗

+ei
]]

= PJ
[
ΩΨ∗

+ei
]
;

HΨ∗Φ−ΦΨ∗ei = PJ [Ψ∗Φei − ΦΨ∗ei] .
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Thus equation (25) becomes

PJ
[
Ψ∗Φ− ΦΨ∗ +ΩΨ∗

+ − Φ∗
−(Ω

∗
0 +Ω−)

]
= 0; (26)

Ψ∗Φ− ΦΨ∗ +ΩΨ∗
+ − Φ∗

−(Ω
∗
0 +Ω−) ∈ H2

Mn
.

But since ΨΨ∗ = Ψ∗Ψ and
(
Ψ∗

− −Ψ
)
,
(
Ψ∗ −Ψ∗

+

)
∈ H2

Mn
, (26) becomes

Ψ∗Ψ(W − I) + Ψ∗G−ΨWG∗ ∈ H∞
Mn

.

The proof is complete.

A reflection on the above proof leads us to the following result.

Proposition 4.3 Let Φ ∈ L∞
Mn

and Φ = ΨW0 + G0 for some unitary matrix
W0 and constant matrix G0 in Mn. Then SΦ,Ψ is normal if and only if the
following two conditions hold.

(a) Φ∗Φ− ΦΦ∗ = 0,Ψ∗Ψ−ΨΨ∗ = 0.

(b) Ψ∗Ψ(W0 − I) + Ψ∗G0 −ΨW0G
∗
0 ∈ H∞

B(E).

Proof. Note that det(Φ+) and det(Φ−) are not assumed to be nonzero func-
tions. The necessity of (b) follows from the proof of Condition (c) in the above
theorem. For sufficiency, from the proof of W1 =W2 in the above theorem, the
assumption Φ = ΨW0 + G0 implies TzΩ̃∗P0HΨ∗ +HΦP0TzΩ∗ = 0. Also by the
proof of Condition (c) in the above theorem, Condition (b) implies

(HΨ∗Φ−ΦΨ∗ + TΩ̃∗HΨ∗
+
−HΦ∗

−
TΩ∗)P0 = 0.

Now by Theorem 3.7, SΦ,Ψ is normal.

IfW0G0 = G0W0,ΨG0 = G0Ψ, ΨW0 =W0Ψ and (W0−I) is invertible (this
is true in the scalar-valued case except when Φ − Ψ is a constant), Condition
(ii) above reduces to the following more compact condition which is observed in
Theorem 3.2 of [17] in the scalar-valued case.

Since W0 is a unitary operator, W0G0 = G0W0, which implies that W0G
∗
0 =

G∗
0W0. Note also W0(W0 − I)−1 = −(W ∗

0 − I)−1. Thus

[Ψ∗Ψ(W0 − I) + Ψ∗G0 −ΨW0G
∗
0](W0 − I)−1

=
[
Ψ∗Ψ+Ψ∗G0(W0 − I)−1 −ΨW0G

∗
0(W0 − I)−1

]
=
[
Ψ∗Ψ+Ψ∗G0(W0 − I)−1 −ΨG∗

0W0(W0 − I)−1
]

=
[
Ψ∗Ψ+Ψ∗G0(W0 − I)−1 −ΨG∗

0W0(W0 − I)−1
]

=
[
Ψ∗Ψ+Ψ∗G0(W0 − I)−1 +ΨG∗

0(W
∗
0 − I)−1

]
=
(
Ψ+G∗

0(W
∗
0 − I)−1

)∗ (
Ψ+G0(W0 − I)−1

)
−G0(W0 − I)−1G∗

0(W
∗
0 − I)−1.
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Therefore Ψ∗Ψ(W0 − I) + Ψ∗G0 −ΨW0G
∗
0 ∈ H∞

B(E) if and only if(
Ψ+G0(W0 − I)−1

)∗ (
Ψ+G0(W0 − I)−1

)
∈ H∞

B(E).

Thus we have(
Ψ+G0(W0 − I)−1

)∗ (
Ψ+G0(W0 − I)−1

)
= F ∗

0 F0

for some constant operator F0 ∈ B(E).
Next we study when SΦ,Ψ is an isometry.

Theorem 4.4 Let Φ,Ψ ∈ L∞
Mn

. Then SΦ,Ψ is an isometry if and only if Ψ∗Ψ =
I and Φ = ΨΘ for some inner matrix Θ. Furthermore SΦ,Ψ is a unitary operator
if and only if Θ is a constant unitary matrix.

Proof. By Proposition 3.11, Φ∗Φ = I,Ψ∗Ψ = I and Ψ∗Φ ∈ H∞
Mn

. Since Ψ is
matrix-valued, ΨΨ∗ = I. Set Ψ∗Φ = Θ. Then Θ∗Θ = Φ∗ΨΨ∗Φ = Φ∗Φ = I.
Hence Θ is an inner matrix. It is also clear that Φ = ΨΘ. The characterization
of unitary SΦ,Ψ follows from Theorem 3.13.

In the scalar case, the above theorem reduces to Lemma 3.10 and Theorem
3.4 in [17].

Surprisingly, in the matrix-valued case we prove that if SΦ,Ψ is a coisometry,
then SΦ,Ψ is an unitary.

Theorem 4.5 Let Φ,Ψ ∈ L∞
Mn

. Then SΦ,Ψ is a coisometry if and only if SΦ,Ψ

is an unitary operator.

Proof. If SΦ,Ψ is a coisometry, by Proposition 3.12, ΦΦ∗ = I,ΨΨ∗ = I. Since
Φ and Ψ are matrix-valued functions, Φ∗Φ = I and Ψ∗Ψ = I as well. The
remaining proof is similar to that of Theorem 3.13.

In the scalar-valued case (n = 1), the above result was first noted in [11].

5 Hyponormal SΦ,Ψ with matrix-valued symbols

In this section we consider hyponormality of SΦ,Ψ with matrix-valued symbols.
For matrix-valued functions

A(z) :=
∑∞
j=−∞Ajz

j ∈ L2
Mn×m

and B(z) :=
∑∞
j=−∞Bjz

j ∈ L2
Mn×m

,

we define the inner product of A and B by

⟨A,B⟩ :=
∫
T tr (B

∗A) dµ =
∑∞
j=−∞ tr (B∗

jAj) ,

where tr (·) denotes the trace of a matrix and define ||A||2 := ⟨A,A⟩ 1
2 . We also

define, for A ∈ L∞
Mn×m

,

||A||∞ := ess supz∈T||A(z)|| (|| · || denotes the spectral norm of a matrix).

In 2006, the hyponormality of Toeplitz operators with matrix-valued symbols
was characterized by their symbols.
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Lemma 5.1 [13] For each Φ ∈ L∞
Mn

, let

E(Φ) :=
{
K ∈ H∞

Mn
: ||K||∞ ≤ 1 and Φ−KΦ∗ ∈ H∞

Mn

}
.

Then TΦ is hyponormal if and only if Φ is normal and E(Φ) is nonempty.

As in the hyponormality of TΦ, the normality of the symbols is necessary for
the hyponormality of SΦ,Ψ.

Lemma 5.2 Let Φ,Ψ ∈ L∞
Mn

. If SΦ,Ψ is hyponormal then Φ and Ψ are normal
on T.

Proof. Suppose SΦ,Ψ is hyponormal. Then it follows from Lemma 3.1 that[
TΦ∗Φ−ΦΦ∗ +H∗

Φ∗HΦ∗ −H∗
Ψ∗HΨ∗ H∗

Ψ∗Φ−ΦΨ∗ +H∗
Ψ∗TΩ̃ − TΩH

∗
Φ

HΨ∗Φ−ΦΨ∗ + TΩ̃∗HΨ∗ −HΦTΩ∗ TΨ̃Ψ̃∗−Ψ̃∗Ψ̃ +H∗
Ψ̃
HΨ̃ −H∗

Φ̃
HΦ̃

]
≥ 0,

where Ω = Φ − Ψ. Thus TΦ∗Φ−ΦΦ∗ + H∗
Φ∗HΦ∗ − H∗

Ψ∗HΨ∗ ≥ 0. Therefore for
each m ∈ N,

0 ≤ S∗m(TΦ∗Φ−ΦΦ∗ +H∗
Φ∗HΦ∗ −H∗

Ψ∗HΨ∗)Sm

= S∗mTΦ∗Φ−ΦΦ∗Sm + S∗mH∗
Φ∗HΦ∗Sm − S∗mH∗

Ψ∗HΨ∗Sm

= TΦ∗Φ−ΦΦ∗ +H∗
Φ∗SmS∗mHΦ∗ −H∗

Ψ∗SmS∗mHΨ∗ .

Since SmS∗m is the projection on the space zmH2
Cn , SmS∗m → 0 strongly as m

tends to ∞. Thus both H∗
Φ∗SmS∗mHΦ∗ and H∗

Ψ∗SmS∗mHΨ∗ strongly converge
to 0. Therefore TΦ∗Φ−ΦΦ∗ ≥ 0, which in turn implies the Poisson integral of
Φ∗Φ− ΦΦ∗ is positive semidefinite for z ∈ D. Since Φ is finite matrix, we have
Φ∗Φ = ΦΦ∗ a.e. on T. Similarly, we also have that Ψ is normal on T.

By Lemma 5.2, SΦ,Ψ is hyponormal if and only if Φ and Ψ are normal and[
H∗

Φ∗HΦ∗ −H∗
Ψ∗HΨ∗ H∗

Ψ∗Φ−ΦΨ∗ +H∗
Ψ∗TΩ̃ − TΩH

∗
Φ

HΨ∗Φ−ΦΨ∗ + TΩ̃∗HΨ∗ −HΦTΩ∗ H∗
Ψ̃
HΨ̃ −H∗

Φ̃
HΦ̃

]
≥ 0.

(27)

Definition 5.3 Let Φ ∈ L∞
Mn

. The pseudo-selfcommutator of TΦ is defined by

[T ∗
Φ, TΦ]p := H∗

Φ∗HΦ∗ −H∗
ΦHΦ.

The Toeplitz operator TΦ is said to be pseudo-hyponormal if [T ∗
Φ, TΦ]p is positive

semi-definite.

By Definition 5.3, we can see that TΦ is hyponormal if and only if TΦ is
pseudo-hyponormal and Φ is normal and that (via Theorem 3.3 of [13]) TΦ is
pseudo-hyponormal if and only if E(Φ) ̸= ∅.

We now have:

Theorem 5.4 Let Φ ∈ Mn and Ψ ∈ L∞
Mn

be normal. Then the followings are
equivalent.
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(a) SΦ,Ψ is hyponormal.

(b) Ψ∗ ∈ H∞
Mn

.

(c) SΦ,Ψ is hyponormal and S∗
Φ,ΨSΦ,Ψ − SΦ,ΨS

∗
Φ,Ψ is diagonal.

Proof. Let Φ ∈Mn and Ψ ∈ L∞
Mn

be normal. Then HΦ = HΦ̃ = HΦ∗ = 0, and
hence

U
[
S∗
Φ,ΨSΦ,Ψ − SΦ,ΨS

∗
Φ,Ψ

]
U =

[
−H∗

Ψ∗HΨ∗ H∗
Ψ∗Φ−ΦΨ∗ +H∗

Ψ∗TΩ̃
HΨ∗Φ−ΦΨ∗ + TΩ̃∗HΨ∗ H∗

Ψ̃
HΨ̃

]
.

(28)
Suppose SΦ,Ψ is hyponormal. Then it follows from (28) that[

−H∗
Ψ∗HΨ∗ H∗

Ψ∗Φ−ΦΨ∗ +H∗
Ψ∗TΩ̃

HΨ∗Φ−ΦΨ∗ + TΩ̃∗HΨ∗ H∗
Ψ̃
HΨ̃

]
≥ 0.

Thus −H∗
Ψ∗HΨ∗ ≥ 0, and hence HΨ∗ = 0, so that Ψ∗ ∈ H∞

Mn
. This proves the

implication (a) ⇒ (b). For the implication (b) ⇒ (c), suppose Ψ∗ ∈ H∞
Mn

. Then
HΨ∗ = 0, and hence it follows from Lemma 1.1 that HΨ∗Φ−ΦΨ∗ = HΨ∗TΦ −
T ∗
Φ̃
HΨ∗ = 0. It thus follows from (28) that

U
[
S∗
Φ,ΨSΦ,Ψ − SΦ,ΨS

∗
Φ,Ψ

]
U =

[
0 0
0 H∗

Ψ̃
HΨ̃

]
≥ 0

and
[
S∗
Φ,ΨSΦ,Ψ − SΦ,ΨS

∗
Φ,Ψ

]
is diagonal. This proves the implication (b) ⇒ (c).

The implication (c) ⇒ (a) is clear.

Corollary 5.5 Let Φ ∈ L∞
Mn

and Ψ ∈ Mn be normal. Then the followings are
equivalent.

(a) SΦ,Ψ is hyponormal.

(b) Φ ∈ H∞
Mn

.

(c) SΦ,Ψ is hyponormal and S∗
Φ,ΨSΦ,Ψ − SΦ,ΨS

∗
Φ,Ψ is diagonal.

Proof. Same as Theorem 5.4.

To proceed, we recall:

Definition 5.6 ([4]) For Φ ∈ L∞
Mn

, we say that Φ has a matrix pole if there
exists α ∈ D such that {0} ̸= kerHΦ ⊆ (z − α)H2

Cn .

If Θ ∈ H2
Mn×m

is an inner matrix function, we write

H(Θ) := H2
Cn ⊖ΘH2

Cm .

Note that
f ∈ H(Θ) ⇐⇒ ⟨f, Θg⟩ = 0 for all g ∈ H2

Cm

⇐⇒ ⟨Θ∗f, g⟩ = 0 for all g ∈ H2
Cm

⇐⇒ Θ∗f ∈ (H2
Cm)⊥ ≡ L2

Cm ⊖H2
Cm .
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Lemma 5.7 Let Θ ∈ H2
Mn

and ∆ ∈ H2
Mn×m

be inner matrix functions. Then

H(Θ∆) = H(Θ)⊕ΘH(∆).

Proof. Since Θ∆H2
Cm ⊆ ΘH2

Cn , it follows that H(Θ) ⊆ H(Θ∆). Observe
that for each g ∈ H(∆), (Θ∆)∗Θg = ∆∗g ∈ (H2

Cm)⊥, which implies ΘH(∆) ⊆
H(Θ∆). Thus H(Θ) ⊕ ΘH(∆) ⊆ H(Θ∆). For the reverse inclusion, let f ∈
H(Θ∆). Write f1 := PH(Θ)f . Then f − f1 ∈ PΘH2

Cn
, so that f − f1 = Θf2

for some f2 ∈ H2
Cn . Thus it suffices to show f2 ∈ H(∆). Since f1 ∈ H(Θ∆),

we have Θf2 = f − f1 ∈ H(Θ∆). Thus (Θ∆)∗Θf2 ∈ (H2
Cm)⊥, and hence

∆∗f2 ∈ (H2
Cm)⊥, which implies f2 ∈ H(∆).

We write Z(θ) for the set of zeros of an inner function θ. We recall:

Lemma 5.8 [6] Let B ∈ H2
Mn

and Θ := θIn with a finite Blaschke product θ.
Then the followings are equivalent.

(a) B(α) is invertible for each α ∈ Z(θ).

(b) B and Θ are right coprime.

(c) B and Θ are left coprime.

We now have:

Theorem 5.9 Let Φ,Ψ ∈ L∞
Mn

be normal and Φ+ = Ψ+. If Ψ∗ (or Ψ̃∗) has a
matrix pole, then the followings are equivalent.

(a) S∗
Φ,ΨSΦ,Ψ − SΦ,ΨS

∗
Φ,Ψ is diagonal.

(b) Ω := Φ−Ψ ∈Mn and Ψ∗Ω−ΨΩ∗ ∈Mn.

(c) SΦ,Ψ is normal.

Proof. For the implication (a) ⇒ (b), suppose Φ+ = Ψ+, and Ψ∗ has a matrix
pole. If S∗

Φ,ΨSΦ,Ψ − SΦ,ΨS
∗
Φ,Ψ is diagonal, then Ω∗ = (Φ − Ψ)∗ ∈ H2

Mn
and

HΨ∗Φ−ΦΨ∗ + TΩ̃∗HΨ∗ −HΦTΩ∗ = 0. Thus it follows from Lemma 3.5 that

TzΩ̃∗P0HΨ∗ +HΦP0TzΩ∗ = 0 (29)

and
(HΨ∗Φ−ΦΨ∗ + TΩ̃∗HΨ∗ −HΦTΩ∗)P0 = 0. (30)

Since Ω∗ ∈ H2
Mn

, we have P0TzΩ∗ = 0, and hence, by (29), TzΩ̃∗P0HΨ∗ = 0.
We now claim that

Ω ∈Mn. (31)

To prove (31) there are two cases to consider.

(Case 1) Suppose kerHΨ̃∗ = {0}. Then HΨ∗ has dense range. Thus
ranP0HΨ∗ is dense in Cn, so that the condition TzΩ̃∗P0HΨ∗ = 0, which im-

plies zΩ̃∗ ∈ (H2
Mn

)⊥, and hence Ω ∈Mn.
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(Case 2) Suppose kerHΨ̃∗ ̸= {0}. By Lemma 1.1, we have HΨ∗TzIn =
T ∗
zIn

HΨ∗ , so that kerHΨ∗ is invariant under TzIn . Since Ψ∗ has a matrix pole,
kerHΨ∗ ̸= {0}. Thus it follows from the Beurling-Lax-Halmos Theorem that
kerHΨ∗ = ΘH2

Cm for some inner matrix function Θ. Since Ψ∗ has a matrix
pole, there exists α ∈ D such that

ΘH2
Cm = kerHΨ∗ ⊆ (z − α)H2

Cn = bαH
2
Cn

(
bα(z) :=

z − α

1− αz

)
,

which implies that Bα ≡ bαIn is a left inner divisor of Θ (cf.[8, Corollary
IX.2.2]). Thus Θ = BαΘ1 for some inner matrix function Θ1 and we can write
Ψ∗ = A(BαΘ1)

∗, where A ∈ H∞
Mn

and A and BαΘ are right coprime. Thus A
and Bα are right coprime, so that by Lemma 5.8, A(α) is invertible. Observe

that Ψ̃∗ = B̃α
∗
Θ̃1

∗
Ã = Θ̃1

∗
ÃB∗

α. We thus have

f ∈ kerHΨ̃∗ =⇒ Θ̃1

∗
ÃB∗

αf ∈ H2
Cn

=⇒ ÃB∗
αf ∈ Θ̃1H

2
Cn ⊆ H2

Cn

=⇒ f ∈ kerHÃB∗
α
= bαH

2
Cn (since Ã(α) = A∗(α) is invertible).

Since kerHΨ̃∗ ̸= {0}, by the Beurling-Lax-Halmos Theorem, we have

∆H2
Cq = kerHΨ̃∗ ⊆ bαH

2
Cn for some inner matrix function ∆.

Thus ∆ = Bα∆1 for some inner matrix function ∆1. By Lemma 5.7, ranHΨ∗ =
H(Bα∆1) = H(Bα)⊕BαH(∆1) . Since H(Bα) = ⊕ni=1H(bα) and TzΩ̃∗P0HΨ∗ =

0, it follows zΩ̃∗ ∈ (H2
Mn

)⊥, so that Ω ∈Mn. This proves the claim (31). Now
since Ω ∈Mn, it follows from (30) that

0 = (HΨ∗Φ−ΦΨ∗ + TΩ̃∗HΨ∗ −HΦTΩ∗)P0 = H(Ψ∗Φ−ΦΨ∗+ΩΨ∗−ΦΩ∗)P0,

which implies Ψ∗Φ−ΦΨ∗+ΩΨ∗
+−Φ∗

−Ω
∗ ∈ H2

Mn
. Thus (by the proof of Corollary

3.8) we have that Ψ∗Ω−ΨΩ∗ = F0 for some self-adjoint F0 ∈Mn, which gives

the result. If Ψ̃∗ has a matrix pole, the same argument as the above gives the
result. This proves the implication (a) ⇒ (b). The implication (b) ⇒ (c) follows
at once from Corollary 3.8. The implication (c) ⇒ (a) is clear.

Corollary 5.10 Let Φ,Ψ ∈ L∞
Mn

with Φ− = Ψ−. If Ψ has a matrix pole, then
the followings are equivalent.

(a) S∗
Φ,ΨSΦ,Ψ − SΦ,ΨS

∗
Φ,Ψ is diagonal.

(b) Ω := Φ−Ψ ∈Mn and Ψ̃Ω− Ψ̃∗Ω∗ ∈Mn.

(c) SΦ,Ψ is normal.

Proof. Apply Theorem 5.9 to Ψ̃∗ in place of Ψ.
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Theorem 5.11 Let Φ,Ψ ∈ L∞
Mn

be normal and Φ − Ψ ∈ Mn. Then SΦ,Ψ is
hyponormal if and only if SΦ,Ψ is normal.

Proof. Suppose SΦ,Ψ is hyponormal and Φ−Ψ ∈ Mn. Then HΦ∗ = HΨ∗ and
HΨ̃ = HΦ̃. Thus by (27), we must have H∗

Ψ∗Φ−ΦΨ∗ +H∗
Ψ∗TΩ̃−TΩH∗

Φ = 0, which
implies SΦ,Ψ is normal.
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