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Abstract. This is a semi-expository paper on some recent developments in the interplay between
function theory and operator theory in the context of Toeplitz, Hankel, and model operators. We
place special emphasis on the connections with the Beurling-Lax-Halmos Theorem, which charac-
terizes the shift-invariant subspaces of the vector-valued Hardy space.
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1 Introduction

Over the last several years, the authors have studied a natural interplay between function theory and
operator theory in the context of Toeplitz, Hankel, and model operators. For a long time, operator
theory has had deep connections with function theory. The intensive and fruitful study of Toeplitz
and Hankel operators has contributed in great measure to this synergy, including the study of the
spectral properties of Toeplitz and Hankel operators, which are intrinsically determined by their
symbols, i.e., by functions defined on the Hardy space. Also, the model operator for contractions,
introduced by B. Sz.-Nagy and C. Foiaş, has been a focus in the study of this field. In fact, the
model operator is a truncated backward shift operator on the model space constructed from an
inner function called the characteristic function of the model operator. Since the spectral theory
of the model operator is naturally determined by properties of its characteristic function, one is
drawn to the study the inner functions. In particular, we pay close attention to the Beurling-Lax-
Halmos Theorem, which characterizes the invariant subspaces of the shift operator acting on the
vector-valued Hardy space. There are several interesting questions emerging from the Beurling-
Lax-Halmos Theorem. A study of those questions invites a detailed analysis of matrix-valued
functions and operator-valued functions.

In this semi-expository paper, we combine a brief survey of recent developments in function
theory associated with Toeplitz, Hankel, and model operators with some new results on this subject.

For this study, we need some new notions; e.g., strong L2-functions, complementary factors, and
degree of non-cyclicity. In Section 2, we give a brief sketch of these notions. Section 3 is devoted
to the matrix-valued function theory associated with Toeplitz, Hankel, and model operators. The
first subject of Section 3 deals with the product of Hankel operators. It is well known that if
the product of two (classical) Hankel operators is zero then one of them must be zero. However,
this is not the case for matrix-valued symbols. To get an affirmative answer for matrix-valued
symbols, we introduce a notion of tensored-scalar singularity and then prove a new result under
such a condition. The second subject of Section 3 is the spectral multiplicity of the model operator
with a matrix-valued characteristic function. Here we introduce the Beurling degree of an inner
matrix function and then obtain an elegant formula: the spectral multiplicity of the model operator
is equal to the Beurling degree of its characteristic function. The third subject of this section is
Halmos’ Problem 5: Is every subnormal Toeplitz operator either normal or analytic? Abrahamse’s
theorem gave a general sufficient condition for the answer to be affirmative. However, Abrahamse’s
theorem may fail for Toeplitz operators with matrix-valued symbols. Despite this, one can obtain
a matrix-valued version under the constraint of tensored-scalar singularity of the symbol. The
last subject of Section 3 is an H∞-functional calculus for compressions of the shift operator. We
review this functional calculus and then extend it to an H∞ +H∞-functional calculus.

Section 4 is devoted to operator-valued function theory. Firstly, we review meromorphic pseudo-
continuations of bounded type and give an application to C0-contractions. Secondly, we consider
a canonical decomposition of strong L2-functions, which generalizes the Douglas-Shapiro-Shields
factorization for functions of bounded type. This idea provides a description of a set F such that

complementary factors, the Beurling degree, tensored-scalar singularity, meromorphic pseudo-continuation of bounded
type, model operators, Hankel operators, Toeplitz operators.
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given a model space, i.e., a backward shift-invariant subspace, the smallest invariant subspace of the
backward shift operator containing F is equal to the model space. Thirdly, we examine a question
on the spectrum of the model operator. In fact, if the characteristic function of the model operator
is two-sided inner, then by the operator-valued version of the Livšic-Moeller Theorem, the spectrum
of the model operator is computed from the spectrum of the characteristic function. However,
this is not the case for general model operators. We give a partial answer to this question for
general model operators using the complementary factor of the characteristic function. Fourthly,
we introduce operator-valued rational functions and give an operator-valued extension of Potapov’s
matrix-valued factorization theorem. Lastly, we pose some unsolved problems on hyponormality
and subnormality of Toeplitz operators with operator-valued symbols.

2 Preliminaries and basic theory

In this section we provide the notation, basic notions and basic results which will be used in this
paper. For instance, we introduce the notions of strong L2-functions, the Beurling-Lax-Halmos
Theorem, the Douglas-Shapiro-Shields factorization, the complementary factor of an inner function,
and the degree of non-cyclicity.

2.1 Basic notions

Throughout the paper, we suppose that D and E are separable complex Hilbert spaces. We write
B(D,E) for the set of all bounded linear operators from D to E and abbreviate B(E,E) as B(E).
For A,B ∈ B(E), we let [A,B] := AB − BA. An operator T ∈ B(E) is said to be normal if
[T ∗, T ] = 0 and hyponormal if [T ∗, T ] ≥ 0. For an operator T ∈ B(E), we write kerT and ranT
for the kernel and the range of T , respectively. For a subset M ⊆ E, clM and M⊥ denote the
closure and the orthogonal complement of M, respectively.

If A : D → E is a linear operator whose domain is a subspace of D, then A is also a linear
operator from the closure of the domain of A into E. So we will only consider those A such that
the domain of A is dense in D. Such an operator A is said to be densely defined. If A : D → E is
densely defined, write domA∗ =

{
e ∈ E : d 7→ ⟨Ad, e⟩ is a bounded linear functional on domA

}
. If

e ∈ domA∗, then there exists a unique f ∈ E such that ⟨Ad, e⟩ = ⟨d, f⟩ for all d ∈ domA. Denote
this unique vector f by f ≡ A∗e. Thus ⟨Ad, e⟩ = ⟨d,A∗e⟩ for all d ∈ domA and e ∈ domA∗. We
call A∗ the adjoint of A. It is well known from unbounded operator theory (cf. [Go], [Con]) that
if A is densely defined, then kerA∗ = (ranA)⊥, so that kerA∗ is closed even though kerA may not
be closed.

We write D for the open unit disk in the complex plane C and T for the unit circle in C. For
ϕ ∈ L2, write

ϕ̆(z) := ϕ(z) and ϕ̃(z) := ϕ(z).

For ϕ ∈ L2, write
ϕ+ := P+ϕ and ϕ̆− := P−ϕ,

where P+ and P− are the orthogonal projections from L2 onto H2 and L2⊖H2, respectively. Thus,
we may write ϕ = ϕ̆− + ϕ+. We recall ([Ab], [Co2], [GHR], [Ni1]) that a meromorphic function
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ϕ : D → C is said to be of bounded type (or in the Nevanlinna class N ) if there are functions

ψ1, ψ2 ∈ H∞ such that ϕ(z) = ψ1(z)
ψ2(z)

for almost all z ∈ T. We can easily check that if ϕ ∈ L2 is of
bounded type, then ϕ can be written as

ϕ = θa, (1)

where θ is inner, a ∈ H2 and θ and a are coprime. Write De := {z : 1 < |z| ≤ ∞}. For a function

g : De → C, define a function gD : D → C by gD(ζ) := g(1/ζ) (ζ ∈ D). For a function g : De → C,
we say that g belongs to Hp(De) if gD ∈ Hp (1 ≤ p ≤ ∞). A function g : De → C is said to be
of bounded type if gD is of bounded type. If f ∈ H2, then the function f̂ defined in De is called a
pseudo-continuation of f if f̂ is a function of bounded type and f̂(z) = f(z) for almost all z ∈ T
(cf. [BoB], [Ni1], [Sh]). Then we can easily show that f̆ is of bounded type if and only if f has a
pseudo-continuation f̂ . In this case, f̂D(z) = f(z) for almost all z ∈ T. In particular,

ϕ ≡ ϕ̆− + ϕ+ ∈ L2 is of bounded type ⇐⇒ ϕ− has a pseudo-continuation. (2)

Let m denote the normalized Lebesgue measure on T. For a complex Banach space X and
1 ≤ p ≤ ∞, let

LpX ≡ Lp(T, X) :=
{
f : T → X : f is strongly measurable and ||f ||p <∞

}
,

where

||f ||p ≡ ||f ||Lp
X
:=


(∫

T ||f(z)||
p
Xdm(z)

) 1
p

(1 ≤ p <∞);

ess supz∈T ||f(z)||X (p = ∞).

Then we can see that LpX forms a Banach space. For f ∈ L1
X , the n-th Fourier coefficient of f ,

denoted by f̂(n), is defined by

f̂(n) :=

∫
T
znf(z) dm(z) for each n ∈ Z.

Also, Hp
X ≡ Hp(T, X) is defined by the set of f ∈ LpX with f̂(n) = 0 for n < 0.

We write Mn×m for the set of n × m complex matrices, and abbreviate Mn×n to Mn. We
observe that L2

Cn = L2⊗Cn and H2
Cn = H2⊗Cn. For a matrix-valued function Φ ≡

(
φij

)
∈ L∞

Mn
,

we say that Φ is of bounded type if each entry φij is of bounded type, and we say that Φ is rational
if each entry φij is a rational function. Let Φ ≡

(
φij

)
∈ L∞

Mn
be such that Φ∗ is of bounded type.

Then each φij is of bounded type. Thus in view of (1), we may write φij = θijbij , where θij is
inner and θij and bij are coprime; in other words, there does not exist a nonconstant common inner
divisor of θij and bij . Thus if θ is the least common multiple of {θij : i, j = 1, 2, · · · , n}, then we
may write

Φ =
(
φij

)
=

(
θijbij

)
=

(
θaij

)
≡ θA∗ (where A ≡

(
aji

)
∈ H2

Mn
). (3)

In particular, A(α) is nonzero whenever θ(α) = 0 and |α| < 1.
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2.2 Strong L2-functions

We often need to consider operator-valued functions defined on the unit circle constructed by
arranging the vectors in a given set F ⊆ H2

s (B(D,E)) as their column vectors. Using this view-
point, we consider operator-valued functions whose “column” vectors are Lp-functions. Note that
(bounded linear) operators between separable Hilbert spaces may be represented as infinite ma-
trices, so that column vectors of operators are well justified. This viewpoint leads us to define
(operator-valued) strong Lp-functions.

For 1 ≤ p < ∞, we define the class Lps(B(D,E)) ≡ Lps(T,B(D,E)) as the set of all (WOT)
measurable B(D,E)-valued functions Φ on T such that Φ(·)x ∈ LpE for each x ∈ D. A function
Φ ∈ Lps(B(D,E)) is called a strong Lp-function. Thus if Φ ∈ L1

s(B(D,E)) and x ∈ D, then Φ(·)x ∈
L1
E , so that the n-th Fourier coefficient Φ̂(·)x(n) of Φ(·)x is given by Φ̂(·)x(n) =

∫
T z

nΦ(z)x dm(z).

Now define the n-th Fourier coefficient of Φ ∈ L1
s(B(D,E)), denoted by Φ̂(n), by

Φ̂(n)x := Φ̂(·)x(n) (n ∈ Z, x ∈ D).

Define

Hp
s (B(D,E)) ≡ Hp

s (T,B(D,E)) :=
{
Φ ∈ Lps(B(D,E)) : Φ̂(n) = 0 for n < 0

}
,

or equivalently, Hp
s (B(D,E)) is the set of all (WOT) measurable functions Φ on T such that

Φ(·)x ∈ Hp
E for each x ∈ D. The terminology of a “strongH2-function” is reserved for the operator-

valued functions on the unit disk D, following N.K. Nikolskii [Ni1]: A function Φ : D → B(D,E) is
called a strong H2-function if Φ(·)x ∈ H2(D, E) for each x ∈ D. Let L∞(B(D,E)) be the space of
all bounded (WOT) measurable B(D,E)-valued functions on T and let

H∞(B(D,E)) :=
{
Φ ∈ L∞(B(D,E)) : Φ̂(n) = 0 for n < 0

}
.

We can show that (cf. [CHL4, Appendix A])

(a) If dim D <∞, then L2
s(B(D,E)) = L2

B(D,E) and H2
s (B(D,E)) = H2

B(D,E).

(b) L∞
B(D,E) ⊆ L∞(B(D,E)) ⊆ Lps(B(D,E)).

A function ∆ ∈ H∞(B(D,E)) is called an inner function with values in B(D,E) if ∆(z) is an
isometric operator from D into E for almost all z ∈ T, i.e., ∆∗∆ = ID a.e. on T. Also, ∆ is called
a two-sided inner function if ∆∆∗ = IE a.e. on T and ∆∗∆ = ID a.e. on T. If ∆ is an inner
function with values in B(D,E), we may assume that D is a subspace of E, and if further ∆ is
two-sided inner then we may assume that D = E. We write PD for the set of all polynomials with
values in D, i.e., p(z) =

∑n
k=0 p̂(k)z

k, where p̂(k) ∈ D. If F ∈ H2
s (B(D,E)), then the function Fp

belongs to H2
E for all p ∈ PD. A function F ∈ H2

s (B(D,E)) is called outer if clFPD = H2
E . We

then have an analogue of the scalar factorization theorem:

Inner-Outer Factorization for H2
s -functions. If F ∈ H2

s (B(D,E)), then F can be expressed
in the form F = F iF e, where F e is an outer function with values in B(D,E′) and F i is an inner
function with values in B(E′, E) for some subspace E′ of E.
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The proof of the above inner-outer factorization for H2
s -functions is identical to the proof for

strong H2-function (cf. [Ni1, Corollary I.9]).
For a function Φ : T → B(D,E), write

Φ̆(z) := Φ(z), Φ̃ := Φ̆∗.

We call Φ̆ the flip of Φ. For Φ ∈ L2
s(B(D,E)), we denote by Φ̆− ≡ P−Φ and Φ+ ≡ P+Φ the

functions
((P−Φ)(·))x := P−(Φ(·)x) a.e. on T (x ∈ D);

((P+Φ)(·))x := P+(Φ(·)x) a.e. on T (x ∈ D),

where P+ and P− are the orthogonal projections from L2
E onto H2

E and L2
E ⊖ H2

E , respectively.

Then we may write Φ ≡ Φ̆− +Φ+. Note that if Φ ∈ L2
s(B(D,E)), then Φ+, Φ− ∈ H2

s (B(D,E)).

For a function Φ ∈ H2
s (B(D,E)), we say that an inner function ∆ with values in B(D′, E)

is a left inner divisor of Φ if Φ = ∆A for A ∈ H2
s (B(D,D′)). For Φ ∈ H2

s (B(D1, E)) and
Ψ ∈ H2

s (B(D2, E)), we say that Φ and Ψ are left coprime if the only common left inner divisor of
both Φ and Ψ is a unitary operator. Also, we say that Φ and Ψ are right coprime if Φ̃ and Ψ̃ are left
coprime. The determination of left or right coprime-ness seems to be a somewhat delicate problem.
For matrix-valued functions, left and right coprime-ness was developed in [CHKL], [CHL1], [CHL2],
[CHL3] and [FF].

If θ is an inner function, write Iθ := θI (where I is the identity operator). We also write
left-g.c.d.(·) and left-l.c.m.(·) for the greatest common left inner divisor and the least common left
inner multiple, respectively. By contrast with scalar-valued functions, in (3), Iθ and A need not
be (right) coprime. If Ω = left-g.c.d. {Iθ, A} in the representation (3), that is, Φ = θA∗, then
Iθ = ΩΩℓ and A = ΩAℓ for some inner matrix Ωℓ (where Ωℓ ∈ H2

Mn
because det (Iθ) ̸= 0) and some

Al ∈ H2
Mn

. Therefore if Φ∗ ∈ L∞
Mn

is of bounded type then we can write

Φ = Aℓ
∗Ωℓ, where Aℓ and Ωℓ are left coprime. (4)

In this case, A∗
ℓΩℓ is called the left coprime factorization of Φ. Similarly, we can write

Φ = ΩrA
∗
r , where Ar and Ωr are right coprime. (5)

In this case, ΩrA
∗
r is called the right coprime factorization of Φ. We also say that Ωℓ and Ωr are

called the inner parts of those factorizations.
For an inner function ∆ ∈ H∞(B(D,E)), H(∆) denotes the orthogonal complement of the

subspace ∆H2
D in H2

E , i.e.,
H(∆) := H2

E ⊖∆H2
D.

The space H(∆) is often called a model space or a de Branges-Rovnyak space (cf. [dBR], [Sa],
[SFBK]). The name “model space” comes from the model theory of Sz.-Nagy and Foiaş contractions
(see § 2.3).
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2.3 The Douglas-Shapiro-Shields factorization

We first review the definition of (vectorial) Toeplitz operators and (vectorial) Hankel operators,
and for that we will use [BS], [Do1], [Do2], [Ni1], [Ni2], and [Pe] for general references. For
Φ ∈ L2

s(B(D,E)), the Hankel operator HΦ : H2
D → H2

E is a densely defined operator given by

HΦp := JP−(Φp) (p ∈ PD),

where J denotes the unitary operator from L2
E to L2

E given by (Jg)(z) := zg(z) for g ∈ L2
E . Also

a Toeplitz operator TΦ : H2
D → H2

E is a densely defined operator defined by

TΦp := P+(Φp) (p ∈ PD).

The following basic properties can be easily derived: For Φ ∈ L∞(B(D,E)) and Ψ ∈ L∞(B(D′, D))

T ∗
Φ = TΦ∗ , H∗

Φ = H
Φ̃
; (6)

TΦΨ − TΦTΨ = H∗
Φ∗HΨ. (7)

The shift operator on H2
E is defined by

(SEf)(z) := zf(z) for each f ∈ H2
E .

The following theorem characterizes the invariant subspaces for the shift operator.

The Beurling-Lax-Halmos Theorem. [Be], [La], [Ha1], [FF], [Pe] A subspace M of H2
E is

invariant for the shift operator SE on H2
E if and only if

M = ∆H2
E′ ,

where E′ is a subspace of E and ∆ is an inner function with values in B(E′, E). Furthermore, ∆
is unique up to a unitary constant right factor, i.e., if M = ΘH2

E′′ , where Θ is an inner function
with values in B(E′′, E), then ∆ = ΘV , where V is a unitary operator from E′ onto E′′.

As customarily done, we say that two inner functions A,B ∈ H∞(B(D,E)) are equal if they
are equal up to a unitary constant right factor.

By the Beurling-Lax-Halmos Theorem, H(∆) is an invariant subspace for the backward shift
operator S∗

E . Thus the truncated backward shift S∗
E |H(∆) is well-defined. We here recall the Model

Theorem ([Ni1], [SFBK]): If T ∈ B(H) for a Hilbert space H is a contraction (i.e., ||T || ≤ 1)
satisfying

lim
n→∞

Tnx = 0 for each x ∈ H, (8)

then T is unitarily equivalent to a truncated backward shift S∗
E |H(∆) for some inner function ∆

with values in B(E′, E). In this case, S∗
E |H(∆) is called the model operator of T and ∆ is called

the characteristic function of T . We often write T ∈ C0 • for a contraction T ∈ B(H) satisfying the
condition (8).

On the other hand, if Φ ∈ L∞(B(D,E)), then HΦ∗SE = S∗
EHΦ∗ , which implies that the kernel

of HΦ∗ is an invariant subspace of the shift operator SE on H2
E . Thus, by the Beurling-Lax-Halmos

Theorem, kerHΦ∗ = ∆H2
E′ for some inner function ∆ with values in B(E′, E). We note that ∆

need not be two-sided inner.
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Theorem 2.1. ([CHL4, Lemma 2.4]) If Φ ∈ L∞(B(D,E)) and ∆ is a two-sided inner function
with values in B(E), then the following are equivalent:

(a) kerHΦ∗ = ∆H2
E ;

(b) Φ = ∆A∗, where A ∈ H∞(B(E,D)) is such that ∆ and A are right coprime;

The factorization in Theorem 2.1(b) is called the Douglas-Shapiro-Shields (briefly, DSS) factor-
ization of Φ ∈ L∞(B(D,E)) (see [DSS], [FB], [Fu2]; in particular, [Fu2] contains many important
applications of the DSS factorization to linear system theory). Consequently, Theorem 2.1 may be
rephrased as: If Φ ∈ L∞(B(D,E)), then the following are equivalent:

(a) Φ admits a DSS factorization;

(b) kerHΦ∗ = ∆H2
E for some two-sided inner function ∆ ∈ H∞(B(E)).

It is known (cf. [CHL2], [FB], [GHR]) that if Φ ∈ L∞(B(D,E)) admits a DSS factorization
Φ = ∆A∗, then ∆ can be obtained from the equation

kerHΦ∗ = ∆H2
E ; (9)

in this case, ∆ and A are right coprime. The DSS factorization satisfying (9) is called canonical.
Consequently, each function that admits a DSS factorization can be arranged in a canonical form.
It is also known that if Φ is a matrix-valued function then (cf. [CHL4], [GHR])

Φ∗ is of bounded type ⇐⇒ Φ admits a (canonical) DSS factorization. (10)

If the condition “∆ is two-sided” is dropped in a DSS factorization Φ = ∆A∗, what can we say
about a DSS factorization ? More concretely, we may ask: If Φ ∈ L∞(B(E′, E)) is expressed as
Φ = ∆A∗, where ∆ ∈ H∞(B(D,E)) is inner and A ∈ H∞(B(D,E′)), does it follows that ∆ can be
obtained from the equation kerHΦ∗ = ∆H2

E ?
An answer to this question is affirmative.

Theorem 2.2. ([GHL]) If Φ ∈ L∞(B(E′, E)) is expressed as Φ = ∆A∗, where ∆ ∈ H∞(B(D,E))
is inner and A ∈ H∞(B(D,E′)), then we can write Φ = ∆AB

∗
0 , where B0 ∈ H∞(B(E0, E

′)) and
∆A ∈ H∞(B(E0, E)) is an inner function which comes from the equation kerHΦ∗ = ∆AH

2
E0

for
some Hilbert space E0. Moreover, ∆A and B0 are right coprime.

The expression Φ = ∆A∗ in Theorem 2.2 is called a pseudo-DSS factorization and the expression
Φ = ∆AB

∗
0 is called a canonical pseudo-DSS factorization. Thus Theorem 2.2 says that if a function

Φ ∈ L∞(B(E′, E)) admits a pseudo-DSS factorization then we can always arrange the pseudo-DSS
factorization of Φ in a canonical form.
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2.4 Complementary factors

We now consider the following question: If ∆ is an inner function with values in B(D,E), what is
the kernel of H∆∗ ? We are tempted to guess that the answer is ∆H2

E , which is wrong in general.
We examine an answer to the above question.

For Φ ∈ L∞(B(D,E)), we symbolically define the kernel of Φ by

kerΦ :=
{
f ∈ H2

D : Φ(z)f(z) = 0 for almost all z ∈ T
}
.

Note that the kernel of Φ consists of functions in H2
D, but not in L2

D, such that Φf = 0 a.e. on
T. Since kerΦ is an invariant subspace for SD, it follows from the Beurling-Lax-Halmos Theorem
that kerΦ = ΩH2

D′ , for some inner function Ω ∈ H∞(D′, D).
We recall a notion from classical Banach space theory, about regarding a vector as an operator

acting on the scalars. This notion is important as motivation for the study of strong L2-functions.
Let E be a separable complex Hilbert space. For a function f : T → E, define [f ] : T → B(C, E)
by

[f ](z)α := αf(z) (α ∈ C). (11)

Let ∆ be an inner function with values in B(D,E). If g ∈ ker∆∗, then g ∈ H2
E , so that we can

see that [g] ∈ H2
s (B(C, E)). Write

[g] = [g]i[g]e (inner-outer factorization),

where [g]e is an outer function with values in B(C, E′) and [g]i is an inner function with values
in B(E′, E) for some subspace E′ of E. If g ̸= 0, then [g]e is a nonzero outer function, so that
E′ = C. Thus, [g]i ∈ H∞(B(C, E)). If instead g = 0, then E′ = {0}. Therefore, in this case,
[g]i ∈ H∞(B({0}, E)).

The following theorem provides a description of the kernels of H∆∗ and ∆∗ ([CHL4, Lemma
2.7])).

Theorem 2.3. Let ∆ be an inner function with values in B(D,E). Then ker∆∗ = ∆cH
2
D′ , where

∆c := left-g.c.d.
{
[g]i : g ∈ ker∆∗},

which is an inner function with values in B(D′, E). Moreover, [∆,∆c] is an inner function with
values in B(D ⊕D′, E) and

kerH∆∗ = [∆,∆c]H
2
D⊕D′ ≡ ∆H2

D

⊕
∆cH

2
D′ . (12)

The inner function ∆c is called the complementary factor of the inner function ∆.

Example 2.4. If ∆ =

[
z
0

]
, then ∆ is inner. A straightforward calculation shows that ∆c =

[
0
1

]
.

Indeed,

kerH∆∗ = ker
[
Hz 0

]
= zH2 ⊕H2 =

[
z 0
0 1

]
H2

C2 =
[
∆ ∆c

]
H2

C2 .
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On the other hand, it is known ([Ab, Lemma 4]) that if ϕ ∈ L∞, then

ϕ is of bounded type ⇐⇒ kerHϕ ̸= {0}. (13)

The following corollary shows that (13) still holds for L2-functions ([CHL4, Corollaries 2.18 and
2.19]).

Corollary 2.5. If ϕ ∈ L2, then ϕ is of bounded type if and only if kerH∗
ϕ ̸= {0}. Moreover, if ∆

is an inner matrix function then the following are equivalent:

(a) ∆∗ is of bounded type;

(b) ∆̆ is of bounded type;

(c) [∆,∆c] is two-sided inner.

R.G. Douglas and J.W. Helton [DH] have considered a problem from engineering circuit the-
ory called Darlington synthesis which mathematically translates to: given a contractive analytic
operator-valued function S on the unit disk, can one embed S into a two-sided 2× 2 inner matrix
function Θ =

[
S A
B C

]
? The special case where S = ∆ is inner and the second block-row is vacuous

amounts to our problem of finding Ω so that [∆,Ω] is two-sided inner. Thus, Corollary 2.5 can be
obtained from [DH, Theorem].

2.5 Degree of non-cyclicity

By the Beurling-Lax-Halmos Theorem, every invariant subspace for the backward shift operator
S∗
E on H2

E is a model space H(∆) for some inner function ∆ with values in B(D,E). For a subset
F of H2

E , let E
∗
F denote the smallest S∗

E-invariant subspace containing F , i.e.,

E∗
F :=

∨{
S∗n
E F : n ≥ 0

}
.

Then by the Beurling-Lax-Halmos Theorem, E∗
F = H(∆) for an inner function ∆ with values in

B(D,E). In general, if dimE = 1, then every S∗
E-invariant subspace M admits a cyclic vector,

i.e., M = E∗
f for some f ∈ H2. However, if dimE ≥ 2, then this is not such a case. For example,

if M = H(∆) with ∆ = [ z 0
0 z ], then M does not admit a cyclic vector, i.e., M ̸= E∗

f for any vector

f ∈ H2
C2 .

We thus introduce:

Definition 2.6. Let F ⊆ H2
E . The degree of non-cyclicity of F , denoted by nc(F ), is defined by

the number
nc(F ) := sup

ζ∈D
dim

{
g(ζ) : g ∈ H2

E ⊖ E∗
F

}
.

We will often refer to nc(F ) as the nc-number of F . Since E∗
F is an invariant subspace for S∗

E , it
follows from the Beurling-Lax-Halmos Theorem that E∗

F = H(∆) for some inner function ∆ with
values in B(D,E). Thus

nc(F ) = sup
ζ∈D

dim
{
g(ζ) : g ∈ ∆H2

D

}
= dimD.
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In particular, nc(F ) ≤ dimE. We note that nc(F ) may take the value ∞. So it is customary to
make the following conventions: (i) if n is a natural number then n+∞ = ∞; (ii) ∞+∞ = ∞.

If dimE = r <∞, then nc(F ) ≤ r for every subset F ⊆ H2
E . If F ⊆ H2

E and dimE = r <∞,
then the degree of cyclicity of F , denoted by dc(F ), is defined by the number (cf. [VN]): dc(F ) :=
r − nc(F ). In particular, if E∗

F = H(∆), then ∆ is two-sided inner if and only if dc(F ) = 0.
To understand E∗

F for a subset F ⊆ H2
E , we need to consider the kernels of the adjoints

of unbounded Hankel operators with strong L2-symbols involved with F . Thus we deal with
unbounded Hankel operators HΦ with strong L2-symbols Φ. However, the adjoint of an unbounded
Hankel operator need not be a Hankel operator. But if Φ is an L∞-function then HΦ∗ = H∗

Φ̆
. Thus

for a bounded symbol Φ, we may use the notations HΦ∗ and H∗
Φ̆

interchangeably. By contrast,

for a strong L2-function Φ, HΦ∗ may not be equal to H∗
Φ̆
even when Φ∗ is a strong L2-function.

In particular, the kernel of an unbounded Hankel operator HΦ∗ is likely to be trivial because it
is defined on the dense subset of polynomials. From this viewpoint, to avoid potential technical
issues in our arguments, we deal with the operator H∗

Φ̆
in place of HΦ∗ . In spite of this, and since

the kernel of the adjoint of an unbounded operator is always closed, we can show that via the
Beurling-Lax-Halmos Theorem, the kernel of H∗

Φ̆
, with strong L2-symbol Φ, is still of the form

∆H2
E′ (see [CHL4, Corollary 2.6]).
The next question arises naturally from the Beurling-Lax-Halmos Theorem.

Question 2.7. Recall that, by the Beurling-Lax-Halmos Theorem, ker H∗
Φ̆
= ΘH2

E′ for some inner

function Θ. Which property of Φ determines the dimension of the space E′ ? In particular, if Φ is
an n×m matrix-valued L2-function and dimE′ = r, which property of Φ determines the number
r ?

If Φ ∈ H2
s (B(D,E)) and {dk}k≥1 is an orthonormal basis for D, write

ϕk := Φdk ∈ H2
E
∼= H2

s (B(C, E)).

We then define
{Φ} := {ϕk}k≥1 ⊆ H2

E .

Hence, {Φ} may be regarded as the set of “column” vectors ϕk (in H2
E) of Φ, in which case we may

think of Φ as an infinite matrix-valued function. Then it was shown in [CHL4, Lemma 2.9] that
for Φ ∈ H2

s (B(D,E)),
E∗

{Φ} = cl ranHzΦ̆. (14)

By definition, {Φ} depends on the orthonormal basis of D. However, (14) shows that E∗
{Φ} is

independent of a particular choice of the orthonormal basis of D because the right-hand side of
(14) is independent of the orthonormal basis of D.

The following theorem gives an answer to Question 2.7 (cf. [CHL4, Theorem 2.13]).

Theorem 2.8. Let Φ be a strong L2-function with values in B(D,E). In view of the Beurling-
Lax-Halmos Theorem we may write E∗

{Φ+} = H(∆) and kerH∗
Φ̆
= ΘH2

E′ for some inner functions

∆ and Θ with values in B(E′′, E) and B(E′, E), respectively. Then ∆ = Θ∆1 for some two-sided
inner function ∆1 with values in B(E′′, E′). Hence, in particular,

kerH∗
Φ̆
= ΘH2

E′ ⇐⇒ nc{Φ+} = dimE′. (15)
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Example 2.9. If

Φ :=


z 0
0 z
0 0
a 0

 (with a ∈ H∞ not of bounded type),

then a straightforward calculation shows that

kerH∗
Φ̆
= ker

[
Hz 0 0 Ha

0 Hz 0 0

]
= zH2 ⊕ zH2 ⊕H2 ⊕ {0} =


z 0 0
0 z 0
0 0 1
0 0 0

H2
C3 ,

which implies, by (15), nc{Φ} = 3.

On the other hand, if Φ is an n×m matrix L2-function then Theorem 2.8 gives

kerH∗
Φ = ∆H2

Cn for some two-sided inner matrix function ∆ ⇐⇒ dc {Φ̃−} = 0. (16)

Also, by an argument of [Ni1, p.47],

dc {Φ̃−} = 0 ⇐⇒ Φ is of bounded type. (17)

Consequently, by (16) and (17), we can see that if Φ ∈ L2
Mn×m

, then

Φ is of bounded type ⇐⇒ kerH∗
Φ = ∆H2

Cn for some two-sided inner matrix function ∆. (18)

3 Matrix-valued function theory

In this section, we consider matrix-valued function theory associated with Toeplitz and Hankel
operators. We focus on the notions of tensored-scalar singularity, Beurling degree of inner matrix
functions, Abrahamse’s Theorem for matrix-valued symbols, and the H∞-functional calculus for
the compressions of the shift.

3.1 Tensored-scalar singularities

We ask a question: How does one define a singularity for matrix functions? Conventionally, the
singularity (or the existence of a pole) of matrix L∞-functions is defined by a singularity (or a
pole) of some entry of the matrix function (cf. [BGR], [BR]). However we propose another notion
of singularity which is more useful for the study of Hankel and Toeplitz operators. To do so, we
recall that if the product of two Hankel operators is zero then one of the operators must be zero.
However, this is not such the case for Hankel operators with matrix-valued symbols. For example,
if we take

Ψ =

[
1 0 z
0 1 0

]
and Φ =

z 0
0 z
0 0

 , (19)
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then

HΨHΦ =

[
0 0 Hz

0 0 0

]Hz 0
0 Hz

0 0

 = 0,

but HΦ ̸= 0 and HΨ ̸= 0. In this section, we examine the following question: Under what
conditions, does it follow that

HΨHΦ = 0 =⇒ HΨ = 0 or HΦ = 0 ? (20)

To examine this question, in [CHL3] the notion of “tensored-scalar singularity” was introduced
for square matrix functions of bounded type. In [CHL3, Theorem 5.4], it was shown that the
answer to question (20) is affirmative for bounded type matrix functions such that Φ or Ψ has
a tensored-scalar singularity. In this subsection we extend the above result for general matrix-
valued L∞-functions having a tensored-scalar singularity. To see this, we introduce the notion of
tensored-scalar singularity for general L∞-matrix functions.

Definition 3.1. For Φ ∈ L∞
n×m, we say that Φ has a tensored-scalar singularity (with respect to θ)

if there exists a nonconstant inner function θ such that

{0} ̸= kerHΦ ⊆ θH2
Cm .

Note 3.2. Every bounded type function φ ∈ L2 has, trivially, a tensored-scalar singularity; for, if
φ is of bounded type, then by Beurling’s Theorem, kerHφ = θH2 for an inner function θ ∈ H∞.
Also we can easily see that if Φ ∈ L∞

Mn
is of bounded type and Φ = AΘ∗ (right coprime) then (cf.

[CHL3, Lemma 5.2])

Φ has a tensored-scalar singularity ⇐⇒ Θ has a diagonal-constant inner divisor. (21)

From this viewpoint, if Φ ∈ L∞
Mn

has the coprime factorization Φ− = θB∗ (coprime), then clearly,
Φ has a tensored-scalar singularity.

Example 3.3. In Definition 3.1, we cannot conclude that m ≤ n. To see this, let h(z) := e
1

z−3 .
Then h ∈ H∞ and h is not of bounded type. Let

f(z) :=
h(z)√
2||h||∞

.

Clearly, f is not of bounded type. Let h1(z) :=
√

1− |f(z)|2. Then h1 ∈ L∞ and |h1| ≥ 1√
2
.

Thus there exists an outer function g such that |h1| = |g| a.e. on T (see [Do1, Corollary 6.25]). Let

∆ :=

[
zf
zg

]
.

Then

kerH∆∗ =

[
zf
zg

]
⊆ zH2

C2 ,

which implies ∆∗ has a tensored-scalar singularity with respect to z.
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Remark 3.4. Let Φ ∈ L2
n×m. Then we may ask whether Φ has a tensored-scalar singularity if

and only if Φ̃ has a tensored-scalar singularity. The answer is negative. For example, let

Φ :=

z 0
0 z
0 0

 .
Then a straightforward calculation shows that Φ has a tensored-scalar singularity with respect to
z, but Φ̃ has no tensored-scalar singularity.

We now have:

Theorem 3.5. Let Φ ∈ L∞
n×m and Ψ ∈ L∞

r×n. If Φ̃ or Ψ has a tensored-scalar singularity then

HΨHΦ = 0 =⇒ HΦ = 0 or HΨ = 0.

Proof. Suppose that Φ̃ has a tensored-scalar singularity with respect to δ. Then by the Beurling-
Lax-Halmos Theorem, there exists an inner matrix function ∆ ∈ H∞

n×p such that kerH∗
Φ = ∆H2

Cp ⊆
δH2

Cn . If HΨHΦ = 0, then we have

H(Iδ) ⊆ cl ranHΦ ⊆ kerHΨ ≡ ΩH2
Cq , (22)

where Ω ≡
(
ωij

)
is an n × q inner function. Since δ is not constant, H(δ) has at least an outer

function g that is invertible in H∞ (cf. [CHL1, Lemma 3.4]). Put

e1 =


g
0
...
0

 , e2 =

0
g
...
0

 , · · · , en =


0
0
...
g

 .
Then for each j = 1, 2, · · · , n, ej ∈ H(Iδ) and hence by (22), ej ∈ ΩH2

Cq . Then

q = max
{
rankΩ(ζ) : ζ ∈ D

}
≥ n,

which implies n = q. For all j = 1, 2, · · · , n, it follows from (22) that Ω∗ej ∈ H2
Cn , which implies

that
ωij g ∈ H2 for each i, j = 1, 2, · · · , n,

so that ωij ∈ 1
gH

2 ⊆ H2 for each i, j. Therefore each ωij is constant and hence, Ω is a unitary

matrix. Thus, again by (22), kerHΨ = H2
Cq . Therefore HΨ = 0. Suppose that Ψ has a tensored-

scalar singularity and HΨHΦ = 0. Then H
Φ̃
H

Ψ̃
= 0, so that H

Φ̃
= 0 by what we proved just

above, and hence HΦ = 0. This completes the proof.

In Theorem 3.5, the condition “Φ̃ or Ψ has a tensored-scalar singularity” cannot be replaced
by the condition “Φ or Ψ has a tensored-scalar singularity.” For example, if Φ,Ψ are given in (19),
then by Remark 3.4, Φ has a tensored-scalar singularity, but Φ̃ has no tensored-scalar singularity.
Note that, in such a case, HΨHΦ = 0, but HΦ ̸= 0 and HΨ ̸= 0.
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On the other hand, we recall ([GHR, Theorem 3.3]) that if Φ ∈ L∞
Mn

then

H∗
Φ∗HΦ∗ ≥ H∗

ΦHΦ ⇐⇒ ∃K ∈ H∞
Mn

such that ||K||∞ ≤ 1 and Φ−KΦ∗ ∈ H∞
Mn
. (23)

The following theorem extends [CHL3, Theorem 5.5] for general matrix-valued L∞-functions.

Theorem 3.6. Let Φ,Ψ ∈ L∞
Mn

. If Φ or Ψ has a tensored-scalar singularity then

H∗
ΦHΦ = H∗

ΨHΨ ⇐⇒ Φ− UΨ ∈ H∞
Mn

for some unitary matrix U ∈Mn.

Proof. Suppose H∗
ΦHΦ = H∗

ΨHΨ. Then kerHΨ = kerHΦ, which implies that Φ has a tensored-
scalar singularity if and only if Ψ does. Thus, without loss of generality, we may assume that Φ
has a tensored-scalar singularity with respect to θ. Then kerHΦ ⊆ θH2

Cn , so that

H(Iθ) ⊆ cl ranH
Φ̃
. (24)

By our assumption together with (23), there exist U,U ′ ∈ H∞
Mn

with ||U ||∞ ≤ 1 and ||U ′||∞ ≤ 1
such that

Φ∗
− − UΨ∗

− ∈ H2
Mn

and Ψ∗
− − U ′Φ∗

− ∈ H2
Mn
, (25)

which implies HΦ∗
−
− HUU ′Φ∗

−
= 0, and hence (I − T ∗

ŨU ′)HΦ = 0. By the same argument as in

[CHL3, Proof of Theorem 5.5], we can see that UU ′ = In. Therefore U is a unitary constant and
by (25), Φ− UΨ ∈ H∞

Mn
. The converse is clear.

If Φ ∈ L∞
Mn

, then by (7),

[T ∗
Φ, TΦ] = H∗

Φ∗HΦ∗ −H∗
ΦHΦ − TΦ∗Φ−ΦΦ∗ .

Thus if Φ is normal, i.e., Φ∗Φ = ΦΦ∗ a.e. on T, then it follows at once that

TΦ is normal ⇐⇒ H∗
Φ∗HΦ∗ = H∗

ΦHΦ. (26)

Therefore if Φ ∈ L∞
Mn

is normal and has a tensored-scalar singularity then by Theorem 3.6 and
(26), TΦ is normal if and only if Φ− UΦ∗ ∈ H∞

Mn
for some unitary matrix U ∈Mn.

3.2 The Beurling degree of an inner matrix function

In this subsection we consider the following question: If ∆ is an n× r inner matrix function, does
there exist a function Φ ∈ L2

Mn×m
satisfying the equation

kerH∗
Φ̆
= ∆H2

Cr ? (27)

To formulate an answer to question (27), we consider whether there exists an inner function Ω
satisfying kerHΩ∗ = ∆H2

Cr when ∆ is an n× r inner matrix function. In fact, the answer to this
question is negative. Indeed, if kerHΩ∗ = ∆H2

Cr for some inner matrix function Ω ∈ H∞
Mn×m

, then
by Theorem 2.3, we have [Ω,Ωc] = ∆, and hence ∆c = 0. Conversely, if ∆c = 0 then again by
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Theorem 2.3, we should have kerH∆∗ = ∆H2
Cr . Consequently, kerHΩ∗ = ∆H2

Cr for some inner

function Ω if and only if ∆c = 0. Thus if ∆ :=

[
1
0

]
, then there exists no inner function Ω such

that kerHΩ∗ = ∆H2. On the other hand, we note that the solution Φ is not unique although there
exists an inner function Φ satisfying the equation (27). For example, if ∆ := diag (z, 1, 1), then
the following Φ’s are such solutions:

Φ =

z0
0

 ,
z 0
0 1
0 0

 , ∆.

The following theorem gives an affirmative answer to question (27): indeed, we can always find an
analytic solution Φ ∈ H∞

Mn×m
([CHL4, Corollary 4.2]).

Theorem 3.7. For a given n×r inner matrix function ∆, there exists at least a solution Φ ∈ H∞
Mn×m

(with m ≤ r + 1) of the equation kerH∗
Φ̆
= ∆H2

Cr .

Remark 3.8. In view of Theorem 3.7, it is reasonable to ask whether such a solution Φ ∈ L2
Mn×m

of the equation kerH∗
Φ̆
= ∆H2

Cr (∆ an n × r inner matrix function) exists for each m = 1, 2, · · ·
even though it exists for some m. However, the answer is negative in general, i.e., a solution exists
for some m, but may not exist for another m0 < m. To see this, let

∆ :=


z 0 0
0 z 0
0 0 1
0 0 0

 ∈ H∞
M4×3

. (28)

Then ∆ is inner. A straightforward calculation shows that there exists no solution Φ, in L2
M4×1

(the case m = 1), of the equation ker H∗
Φ̆
= ∆H2

C3 . By contrast, if m = 2, then we can find a

solution Φ ∈ L2
M4×2

. Indeed, let

Φ :=


z 0
0 z
0 0
a 0

 ,
where a ∈ H∞ is such that a is not of bounded type. Then kerHΦ∗ = ∆H2

C3 . Thus we obtain a
solution for m = 2 although there exists no solution for m = 1.

Let ∆ be an n×r inner matrix function. In view of Remark 3.8, we may ask how to determine a
possible value m for which there exists a solution Φ ∈ L2

Mn×m
of the equation kerH∗

Φ̆
= ∆H2

Cr . In

fact, if we have a solution Φ ∈ L2
Mn×m

of the equation kerH∗
Φ̆
= ∆H2

Cr , then a solution Ψ ∈ L2
Mn×q

also exists if q ≥ m: indeed, if 0 denotes the zero operator in Mn×(q−m) and Ψ := [Φ,0], then it
follows that kerH∗

Φ̆
= kerH∗

Ψ̆
. Thus we would like to ask what is the infimum of the set of positive

integers m such that there exists a solution Φ ∈ L2
Mn×m

of the equation kerH∗
Φ̆
= ∆H2

Cr . To answer
this question, we introduce a notion of the “Beurling degree” for an inner function.



3 MATRIX-VALUED FUNCTION THEORY 17

Definition 3.9. If ∆ is an n× r inner matrix function then the Beurling degree of ∆, denoted by
degB(∆), is defined by

degB(∆) = inf
{
m : kerH∗

Φ̆
= ∆H2

Cr for some Φ ∈ L2
Mn×m

}
. (29)

We recall that the spectral multiplicity for T ∈ B(E) is defined by the number µT :

µT := inf dim
∨

{f : f ∈ F},

where F ⊆ E, the infimum being taken over all generating subsets F , i.e., subsets such that∨
{TnF : n ≥ 0} = E. It was shown in [CHL4, Theorem 4.6] that if ∆ is the characteristic

function of the model operator T with values in Mn×r, then the spectral multiplicity of the model
operator is equal to the Beurling degree of ∆.

Theorem 3.10. (The Beurling degree and the spectral multiplicity) Given an n× r inner matrix
function ∆, let T := S∗

E |H(∆). Then
µT = degB(∆). (30)

Example 3.11. If ∆ is given by (28), then by the preceding argument and (29), degB(∆) = 2.
Thus if T := S∗

C4 |H(∆), then by (30), µT = 2.

For an inner matrix function ∆ ∈ H∞
Mn

, write

S∆ := PH(∆)SCn |H(∆).

It is known (cf. [Ni1, Appendix]) that if ∆ ∈ H∞
Mn

is square-inner, then the spectral multiplicity
of S∆ can be computed from its characteristic function ∆ by using the Jordan model theory for
C0 contractions due to Sz.-Nagy and Foiaş (cf. [SFBK]) and the Moore–Nordgren theory of quasi-
equivalence (cf. [MN],[No]). To see this, for an inner matrix function ∆ ∈ H∞

Mn
, write

δk := g.c.d.
{
all inner parts of the minors of order n− k of ∆

}
(31)

for k = 0, 1, 2, · · · , n. If T := S∆, then

µT = max
{
k : δk−1 ̸= δk up to constant

}
. (32)

It is also known ([Ni1, Lemma on the Function Θt, p.75]) that S∗
Cn |H(∆) is unitarily equivalent

to S
∆̃
. Moreover, if ∆ is an inner matrix function in H∞

Mn
and δk is given in (31), then we can

easily check that for k = 0, 1, 2, · · · , n,

δ̃k = g.c.d.
{
all inner parts of the minors of order n− k of ∆̃

}
. (33)

Therefore, by (32) and Theorem 3.10 together with this argument, we can get

Corollary 3.12. If ∆ is an inner matrix function in H∞
Mn

, then

degB(∆) = max
{
k : δk−1 ̸= δk up to constant

}
. (34)
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We would like to pose:

Problem 3.13. Give a direct (matricial) proof for (34) without using the formula (32), which relies
upon the Jordan model theory of Sz.-Nagy and Foiaş.

In general, we wish to ask:

Problem 3.14. If ∆ is an n× r inner matrix function, describe degB(∆) in terms of entries of ∆
(or matrices involving ∆).

3.3 Abrahamse’s Theorem for matrix-valued symbols

In 1970, P.R. Halmos addressed the following problem, listed as Problem 5 in his lecture “Ten
problems in Hilbert space” [Ha2], [Ha3]:

Is every subnormal Toeplitz operator either normal or analytic ?

Any analytic Toeplitz operator Tφ (φ ∈ H∞) is easily seen to be subnormal: indeed, Tφh =
P (φh) = φh = Mφh for h ∈ H2, where Mφ is the normal operator of multiplication by φ on L2.
The question is natural because normal and analytic Toeplitz operators are fairly well understood,
and they are both subnormal. In 1984, Halmos’ Problem 5 was answered in the negative by C.
Cowen and J. Long [CoL]. However, Cowen and Long’s construction does not provide an intrinsic
connection between subnormality and the theory of Toeplitz operators. Until now researchers have
been unable to characterize subnormal Toeplitz operators in terms of their symbols. Thus, we may
reformulate Halmos’ Problem 5: Which Toeplitz operators are subnormal ? The most interesting
partial answer to Halmos’ Problem 5 was given by M.B. Abrahamse [Ab], who gave a general
sufficient condition for the answer to Halmos’ Problem 5 to be affirmative.

Abrahamse’s Theorem ([Ab]). Let φ ∈ L∞ be such that φ or φ is of bounded type. If Tφ is
hyponormal and ker [T ∗

φ, Tφ] is invariant under Tφ, then Tφ is normal or analytic.

Consequently, if φ ∈ L∞ is such that φ or φ is of bounded type, then every subnormal Toeplitz
operator must be either normal or analytic, since ker [S∗, S] is invariant under S for every subnormal
operator S. We say that a Toeplitz operator TΦ with matrix-valued symbol Φ is analytic if
Φ ∈ H∞

Mn
. Evidently, any analytic Toeplitz operator with a normal symbol is subnormal because

the multiplication operator MΦ is a normal extension of TΦ. As a first inquiry in the above
reformulation of Halmos’ Problem 5 the following question can be raised: Is Abrahamse’s Theorem
valid for Toeplitz operators with matrix-valued symbols ? In general, a straightforward matrix-valued
version of Abrahamse’s Theorem is doomed to fail: for instance, if Φ :=

[
z+z 0
0 z

]
, then clearly, both

Φ and Φ∗ are of bounded type and TΦ =
[
U+U∗ 0

0 U

]
(where U is the shift on H2) is subnormal, but

neither normal nor analytic.
We here extend the above result to the case of bounded type symbols: we shall say that TΦ has

a bounded type symbol if both Φ and Φ∗ are of bounded type.
It was shown in [CHL1] that if TΦ has a bounded type symbol with

Φ− = θB∗ (coprime) (35)
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and if TΦ is hyponormal and ker [T ∗
φ, Tφ] is invariant under Tφ, then TΦ is normal or analytic.

However, the condition (35) forces the inner part of the right coprime factorization (5) of Φ− to
be diagonal-constant. Also, it was shown in [CHKL] that if Φ is a matrix-valued rational function
then the condition (35) can be weakened to the condition that the inner part of the right coprime
factorization (5) of Φ− has a nonconstant diagonal-constant inner divisor. We note that in view
of (21), those conditions of [CHL1] and [CHKL] are special cases of the condition of “having a
tensored-scalar singularity.” Indeed, it was shown in [CHL3, Theorem 7.3] that for a bounded type
symbols Φ ∈ L∞

Mn
, if Φ has a tensored-scalar singularity then we get a full-fledged matrix-valued

version of Abrahamse’s Theorem.

Theorem 3.15. (Abrahamse’s Theorem for matrix-valued symbols) Let Φ ∈ L∞
Mn

be such that Φ
and Φ∗ are of bounded type. Assume Φ has a tensored-scalar singularity. If TΦ is hyponormal
and ker [T ∗

Φ, TΦ] is invariant under TΦ, then TΦ is normal. Hence, in particular, if TΦ is subnormal
then TΦ is normal.

Remark 3.16. (a) We note that the assumption “Φ has a tensored-scalar singularity” is essential
in Theorem 3.15. As we saw before, if Φ :=

[
z+z 0
0 z

]
, then TΦ is neither normal nor analytic. But

since kerHΦ = kerH[ z 0
0 0 ]

= [ z 0
0 1 ]H

2
Cn , it follows that Θ ≡ [ z 0

0 1 ] does not have any nonconstant

diagonal-constant inner divisor, so that Φ does not have a tensored-scalar singularity.
(b) If n = 1, then Θ ≡ θ ∈ H∞ is vacuously diagonal-constant, so that Theorem 3.15 reduces

to the original Abrahamse’s Theorem.

3.4 H∞-functional calculus for the compressions of the shift

It is well known that the functional calculus for polynomials of compressions of the shift results in
the Hermite-Fejér matrix via the classical Hermite-Fejér Interpolation Problem. We now extend the
polynomial calculus to an H∞-functional calculus (so-called the Sz.-Nagy-Foiaş functional calculus)
via the triangularization theorem, and then extend it further to an H∞ +H∞-functional calculus
for compressions of the shift operator. Let

Sθ := PH(θ)S|H(θ)

be the compression of the shift operator S to H(θ). We briefly review a functional calculus for
polynomials of Sθ. (cf. [FF]).

Let θ be a finite Blaschke product of degree d. Let W be the unitary operator from
⊕d

1 Cn
onto H(Iθ). It is known [FF, Theorem X.1.5] that Sθ is unitarily equivalent to the lower triangular
matrix M on Cd. Now let P (z) ∈ H∞

Mn
be a matrix polynomial of degree k. Then the matrix

P (M) on Cn×d is defined by

P (M) :=

k∑
i=0

Pi ⊗M i, where P (z) =

k∑
i=0

Piz
i. (36)

If the matrix P (M) is the Hermite-Fejér matrix determined by (36) and if (TP )Θ := PH(Θ)TP |H(Θ)

is the compression of TP to H(Θ) (where Θ := Iθ for an inner function θ), then it is known [FF,
Theorem X.5.6] that

W ∗(TP )ΘW = P (M), (37)
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which says that P (M) is a matrix representation for (TP )Θ.

We now extend the representation (37) to the case of matrix H∞-functions. We refer to [AC]
and [Ni1] for details on this representation. For an explicit criterion, we need to introduce the
Triangularization Theorem concretely. There are three cases to consider.

Case 1 : Let B be a Blaschke product and let Λ := {λn : n ≥ 1} be the sequence of zeros of B
counted with their multiplicities. Write

β1 := 1, βk :=
k−1∏
n=1

λn − z

1− λnz
· |λn|
λn

(k ≥ 2),

and let

δj :=
dj

1− λjz
βj (j ≥ 1),

where dj := (1 − |λj |2)
1
2 . Let µB be the measure on N given by µB({n}) := 1

2d
2
n, (n ∈ N). Then

the map VB : L2(µB) → H(B) defined by

VB(c) :=
1√
2

∑
n≥1

c(n)dnδn, c ≡ {c(n)}n≥1, (38)

is unitary.

Case 2 : Let s be a singular inner function with continuous representing measure µ ≡ µs. Let µλ
be the projection of µ onto the arc {ζ : ζ ∈ T, 0 < argζ ≤ argλ} and let

sλ(ζ) := exp
(
−
∫
T

t+ ζ

t− ζ
dµλ(t)

)
(ζ ∈ D).

Then the map Vs : L
2(µ) → H(s) defined by

(Vsc)(ζ) =
√
2

∫
T
c(λ)sλ(ζ)

λdµ(λ)

λ− ζ
(ζ ∈ D) (39)

is unitary.

Case 3 : Let ∆ be a singular inner function with pure point representing measure µ ≡ µ∆. We
enumerate the set {t ∈ T : µ({t}) > 0} as a sequence {tk}k∈N. Write µk := µ({tk}), k ≥ 1.
Further, let µ∆ be a measure on R+ = [0,∞) such that dµ∆(λ) = µ[λ]+1dλ and define a function
∆λ on the unit disk D by the formula

∆0 := 1, ∆λ(ζ) := exp

{
−

[λ]∑
k=1

µk
tk + ζ

tk − ζ
− (λ− [λ])µ[λ]+1

t[λ]+1 + ζ

t[λ]+1 − ζ

}
,

where [λ] is the integer part of λ (λ ∈ R+). Then the map V∆ : L2(µ∆) → H(∆) defined by

(V∆c)(ζ) :=
√
2

∫
R+

c(λ)∆λ(ζ)(1− t[λ]+1ζ)
−1dµ∆(λ) (ζ ∈ D) (40)
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is unitary.

Collecting together the above three cases we get:

Triangularization Theorem. ([Ni1, p.123]) Let θ be an inner function with the canonical factor-
ization θ = B · s ·∆, where B is a Blaschke product, and s and ∆ are singular inner functions with
representing measures µs and µ∆ respectively, with µs continuous and µ∆ a pure point measure.
Then the map V : L2(µB)× L2(µs)× L2(µ∆) → H(θ) ≡ B(B)⊕BH(s)⊕BsH(∆) defined by

V :=

VB 0 0
0 BVs 0
0 0 BsV∆

 (41)

is unitary, where VB, µB, VS , µS , V∆, µ∆ are defined in (38), (39), (40) and M := V ∗SθV is a
lower-triangular operator.

Now we note that every compression of the shift operator is completely non-unitary. Therefore
M is an absolutely continuous contraction. Thus if Φ ∈ H∞

Mn
, then we can define Φ(M) as a H∞-

functional calculus (the Sz.-Nagy-Foiaş functional calculus). The following theorem was proved in
[CHL3, Theorem 6.3].

Theorem 3.17. Let Φ ∈ H∞
Mn

and let θ ∈ H∞ be an inner function. If we write

M := V ∗SθV and V := V ⊗ In, (42)

where V : L2(µB)× L2(µs)× L2(µ∆) → H(θ) is unitary as in (41), then

V∗(TΦ)ΘV = Φ(M), (43)

where Θ := Iθ and (TΦ)Θ := PH(Θ)TΦ|H(Θ)

Remark 3.18. Φ(M) is called a matrix representation for (TΦ)Θ.

An application of the functional calculus. In [GHR], it was shown that (i) if Φ ∈ L∞
Mn

is such
that TΦ is hyponormal, i.e., [T ∗

Φ, TΦ] ≥ 0, then Φ is normal, i.e., Φ∗Φ = ΦΦ∗ a.e. on T and that (ii)
if Φ ∈ L∞

Mn
is normal and

C(Φ) := {K ∈ H∞
Mn

: Φ−KΦ∗ ∈ H∞
Mn

},

then
TΦ is hyponormal ⇐⇒ ∃K ∈ C(Φ) with ||K||∞ ≤ 1.

In [CHL2, Theorem 3.3], it was shown from (43) that if Φ := Φ∗
−+Φ+ ∈ L∞

Mn
is normal of the form

Φ+ = θ0θ1A
∗ and Φ− = θ1B

∗ (A,B ∈ H∞
Mn

) (44)

and if (TA)θ0θ1 := PH(θ0θ1)TA|H(θ0θ1) has dense range then

K(M) is contractive ⇐⇒ TΦ is hyponormal, (45)

where K ∈ C(Φ) and M is given by (42) with θ := θ0θ1. Note that the form (44) is a necessary
condition for TΦ to be hyponormal when Φ and Φ∗ are of bounded type.

We consider a revealing example that illustrates (45).
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Example 3.19. Let θ be an inner function and consider the matrix-valued function

Φ :=

[
z zθ + zθ

zθ + zθ z

]
.

We now use the equivalence (45) to determine the hyponormality of TΦ. Under the above notation
we have

θ0 = 1, θ1 = zθ, A =

[
0 1
1 0

]
, B =

[
θ 1
1 θ

]
.

If we put K(z) :=
[
1 θ
θ 1

]
, then a straightforward calculation shows that K ∈ C(Φ). We can also

see that that

(TA)θ0θ1 =

[
0 1
1 0

]
is invertible.

But since K(M) =
[

1 θ(M)
θ(M) 1

]
, it follows that

I −K(M)∗K(M) = −
[
θ(M)∗θ(M) θ(M) + θ(M)∗

θ(M) + θ(M)∗ θ(M)∗θ(M)

]
,

which is not positive (simply by looking at the upper-left entry). It therefore follows from (45)
that TΦ is not hyponormal.

We next extend the representation (43) to H∞
Mn

+H∞
Mn

(where H∞
Mn

denotes the set of n × n

matrix functions whose entries belong to H∞ := {g : g ∈ H∞}). Let Q ∈ H∞
Mn

+H∞
Mn

be of the
form Q = Q∗

− +Q+. If Θ := Iθ for an inner function θ, then we define

(TQ)Θ := PH(Θ)TQ|H(Θ) .

Then
(TQ)Θ = (TQ∗

−
)Θ + (TQ+)Θ = (TQ−)

∗
Θ + (TQ+)Θ.

If M := V ∗SθV , where V : L ≡ L2(µB) × L2(µs) × L2(µ∆) → H(θ) is unitary as in (41), we also
define Q(M) by

Q(M) := (Q−(M))∗ +Q+(M), (46)

where Q±(M) is defined by the Sz.-Nagy-Foiaş functional calculus.

We then have ([CHL3, Lemma 6.8]):

Theorem 3.20. Let Q ∈ H∞
Mn

+ H∞
Mn

and Θ := Iθ for an inner function θ. Then V∗(TQ)ΘV =
Q(M) and Q(M)∗ = Q∗(M), where V and M are given by (42).

Remark 3.21. We are tempted to guess that Q(M)∗Q(M) = (Q∗Q)(M). But this is not the

case. To see this, let θ = z3 and let Q(z) :=
[
z2 0
0 z2

]
. Then we have

M =

0 0 0
1 0 0
0 1 0
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and

Q(M) ≡
[
1 0
0 1

]
⊗M2 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

 .

Thus

Q(M)∗Q(M) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 and (Q∗Q)(M) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

which gives Q∗(M)Q(M) ̸= (Q∗Q)(M).

4 Operator-valued function theory

In this section we consider operator-valued function theory related with Hankel, Toeplitz and
model operators. We focus on meromorphic pseudo-continuation of bounded type, a canonical
decomposition of strong L2-functions, spectra of model operators, an operator-valued version of
Potapov’s matrix-valued factorization theorem, and hyponormality and subnormality of Toeplitz
operators with operator-valued symbols.

4.1 Meromorphic pseudo-continuations of bounded type

We introduce the notion of “bounded type” for strong L2-functions. Recall that a matrix-valued
function of bounded type was defined by a matrix whose entries are of bounded type. But this
definition is not appropriate for operator-valued functions, in particular strong L2-functions, even
though the terminology of matrix “entry” can be properly interpreted. Thus we need a new idea
for a suitable definition of “bounded type” strong L2-function, which is equivalent to the condition
that each entry is of bounded type when the function is matrix-valued. Our motivation stems from
the equivalence in (18) for the case of matrix-valued functions.

Definition 4.1. A function Φ ∈ L2
s(B(D,E)) with values in B(D,E) is said to be of bounded type

if kerH∗
Φ = ΘH2

E for some two-sided inner function Θ with values in B(E).

It is known that if ∆ is an inner function with values in B(D,E), then (cf. [CHL4, Corollary
2.25])

∆̆ is of bounded type ⇐⇒ [∆,∆c] is two-sided inner. (47)
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On the other hand, in general, if a strong L2-function Φ is of bounded type then we cannot guarantee
that each entry ϕij ≡ ⟨Φdj , ei⟩ is of bounded type, where {dj} and {ei} are orthonormal bases of
D and E, respectively. We may ask:

Question 4.2. Under what conditions can we guarantee that each entry of Φ is of bounded type?

To examine this question, given a function

Ψ : De ≡ {z : 1 < |z| ≤ ∞} → B(D,E),

we define ΨD : D → B(E,D) by ΨD(ζ) := Ψ∗(1/ζ) for ζ ∈ D. If ΨD is a strong H2-function,
inner, and two-sided inner with values in B(E,D), then we shall say that Ψ is a strong H2-function,
inner, and two-sided inner in De with values in B(D,E), respectively. A B(D,E)-valued function
Ψ is said to be meromorphic of bounded type in De if it can be represented by Ψ = G

θ , where G
is a strong H2-function in De, with values in B(D,E) and θ is a scalar inner function in De (cf.
[Fu1], [Fu2]). A function Φ ∈ L2

s(B(D,E)) is said to have a meromorphic pseudo-continuation Φ̂
of bounded type in De if Φ̂ is meromorphic of bounded type in De and Φ is the nontangential SOT
limit of Φ̂, that is, for all x ∈ D,

Φ(z)x = Φ̂(z)x := lim
rz→z

Φ̂(rz)x for almost all z ∈ T.

Note that for almost all z ∈ T,

Φ(z)x = lim
rz→z

Φ̂(rz)x = lim
rz→z

Φ̂∗
D(r

−1z)x = Φ̂∗
D(z)x (x ∈ D).

The following proposition was proved in [Fu1] under the more restrictive setting ofH∞(B(D,E)).

Proposition 4.3. ([CHL4, Lemma 2.28 and Corollary 2.29])
Let Φ ∈ L∞(B(D,E)) ∪ L2

B(D,E). Then the following are equivalent:

(a) Φ has a meromorphic pseudo-continuation of bounded type in De;

(b) θH2
E ⊆ kerHΦ∗ for some scalar inner function θ.

The following proposition gives an answer (for L2
B(D,E)) to Question 4.2 (cf. [CHL4, Proposition

2.30]).

Proposition 4.4. Let D and E be separable complex Hilbert spaces and let {dj} and {ei} be
orthonormal bases ofD and E, respectively. If Φ ∈ L2

B(D,E) has a meromorphic pseudo-continuation

of bounded type in De, then ϕ̆ij(z) ≡ ⟨Φ̆(z)dj , ei⟩E is of bounded type for each i, j.

Remark 4.5. For a function Φ ∈ L2
s(B(D,E)), we can show (cf. [CHL4, Lemma 2.27]) that if Φ

has a meromorphic pseudo-continuation of bounded type in De, then Φ̆ is of bounded type and that
the converse is also true when Φ is matrix-valued. However, the converse is not true in general.
To see this, let {αn} be a sequence of distinct points in D such that

∑∞
n=1(1− |αn|) = ∞ and put

∆ := diag(bαn), where bαn(z) :=
z−αn
1−αnz

. Then ∆ is two-sided inner, and hence ∆̆ is of bounded

type. On the other hand, by Lemma 2.3, kerH∆∗ = ∆H2
ℓ2 . Thus if ∆ had a meromorphic
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pseudo-continuation of bounded type in De, then by Proposition 4.3, we would have θH2
ℓ2 ⊆ ∆H2

ℓ2

for a scalar inner function θ, so that we should have θ(αn) = 0 for each n = 1, 2, · · · , and hence
θ = 0, a contradiction. Therefore, ∆ cannot have a meromorphic pseudo-continuation of bounded
type in De.

Remark 4.6. By contrast to the matrix-valued case, it may happen that an L∞-function Φ is not
of bounded type in the sense of Definition 4.1 even though each entry ϕij of Φ is of bounded type.
To see this, let {αj} be a sequence of distinct points in (0, 1) satisfying

∑∞
j=1(1 − αj) < ∞. For

each j ∈ Z+, choose a sequence {αij} of distinct points on the circle Cj := {z ∈ C : |z| = αj}. Let

Bij :=
bαij

(i+ j)!
(i, j ∈ Z+),

where bα(z) :=
z−α
1−αz , and let

Φ := [Bij ] =


bα11
2!

bα12
3!

bα13
4! · · ·

bα21
3!

bα22
4!

bα23
5! · · ·

bα31
4!

bα32
5!

bα33
6! · · ·

...
...

...

 .

Observe that ∑
i,j

|Bij(z)|2 =
∑
i

i

((1 + i)!)2
≤

∑
i

1

(1 + i)2
<∞,

which implies that Φ ∈ L∞(B(ℓ2)). For a function f ∈ H2
ℓ2 , we write f = (f1, f2, f3, · · · )t (fn ∈ H2).

Thus if f = (f1, f2, f3, · · · )t ∈ kerHΦ, then
∑

j

bαij

(i+j)!fj ∈ H2 for each i ∈ Z+, which forces that

fj(αij) = 0 for each i, j. Thus fj = 0 for each j (by the Identity Theorem). Therefore we can

conclude that kerH∗
Φ̃
= {0}, so that Φ̃ is not of bounded type. But we note that every entry of Φ̃

is of bounded type.

We next consider an application to C0-contractions.
The class C00 denotes the set of all contractions T ∈ B(H) such that limn→∞ Tnx = 0 and

limn→∞ T ∗nx = 0 for each x ∈ H. It is known ([Ni1, p.43]) that if T is a C0 •-contraction with
characteristic function ∆ (i.e., T ∼= S∗

E |H(∆)), then

T ∈ C00 ⇐⇒ ∆ is two-sided inner. (48)

A contraction T ∈ B(H) is called a completely non-unitary (c.n.u.) if there exists no nontrivial
reducing subspace on which T is unitary. The class C0 is the set of all c.n.u. contractions T such
that there exists a nonzero function φ ∈ H∞ annihilating T , i.e., φ(T ) = 0, where φ(T ) is given by
the Sz.-Nagy and Foiaş functional calculus. We can easily check that C0 ⊆ C00. Moreover, it is
well known ([Ni1, p.73]) that if T := PH(∆)SE |H(∆) ∈ C00 and φ ∈ H∞, then

φ(T ) = 0 ⇐⇒ ∃G ∈ H∞(B(E)) such that G∆ = ∆G = φIE . (49)
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The theory of spectral multiplicity for operators of class C0 has been well developed (see [Ni1,
Appendix 1], [SFBK]). If T ∈ C0, then there exists an inner function mT such that mT (T ) = 0
and

φ ∈ H∞, φ(T ) = 0 =⇒ φ/mT ∈ H∞.

The function mT is called the minimal annihilator of the operator T .
In view of (48), we may ask: What is a condition on the characteristic function ∆ of T for

a C0 •-contraction T to belong to the class C0. An answer to this question was given in [CHL4,
Proposition 2.34].

Theorem 4.7. Let T := S∗
E |H(∆) for an inner function ∆ with values in B(D,E). Then T ∈ C0

if and only if ∆ is two-sided inner and has a meromorphic pseudo-continuation of bounded type in
De. Hence, in particular, if ∆ is an inner matrix function then T ∈ C0 if and only if T ∈ C00.

4.2 A canonical decomposition of strong L2-functions

There exists a matrix-valued L2-function that does not admit a DSS factorization. To see this,
assume that θ1 and θ2 are coprime inner functions. Consider

Φ :=

θ1 0 0
0 θ2 0
0 0 a

 ≡ [ϕ1, ϕ2, ϕ3] ∈ H∞
M3
,

where a ∈ H∞ is such that a is not of bounded type. Then a direct calculation shows that

kerHΦ∗ =

θ1 0
0 θ2
0 0

H2
C2 ≡ ∆H2

C2 .

Since ∆ is not two-sided inner, it follows from Lemma 2.1 that Φ does not admit a DSS factorization.
For a decomposition of Φ, suppose that Φ = ΩA∗, where Ω, A ∈ H2

M3×k
(k = 1, 2), Ω is an inner

function, and Ω and A are right coprime. We then have Φ∗Ω = A ∈ H2
M3×k

. But since a
is not of bounded type, it follows that the third row vector of Ω is zero. Thus we must have
a = 0, a contradiction. Therefore we could not get any decomposition of the form Φ = ΩA∗

with a 3 × k inner matrix function Ω for each k = 1, 2, 3. To get to another idea, we note that
ker∆∗ = [0 0 1]tH2 ≡ ∆cH

2. Then by a direct manipulation, we can get

Φ =

θ1 0 0
0 θ2 0
0 0 a

 =

θ1 0
0 θ2
0 0

1 0
0 1
0 0

∗

+

00
1

 [
0 0 a

]
≡ ∆A∗ +∆cC (50)

where ∆ and A are right coprime because ∆̃H2
C3

∨
ÃH2

C3 = H2
C2 . The example (50) seems to

signal that the decomposition of a matrix-valued H2-functions Φ satisfying kerH∗
Φ̆
= ∆H2

Cn may
be affected by the kernel of ∆∗ and in turn, the complementary factor ∆c of ∆. The following
theorem gives a canonical decomposition of strong L2-functions which realizes the idea inside the
above example ([CHL4, Theorem 3.1]).
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Theorem 4.8. (A canonical decomposition of strong L2-functions) If Φ is a strong L2-function
with values in B(D,E), then Φ can be expressed in the form

Φ = ∆A∗ +B, (51)

where
(i) ∆ is an inner function with values in B(E′, E), Ã ∈ H2

s (B(D,E′)), and B ∈ L2
s(B(D,E));

(ii) ∆ and A are right coprime;
(iii) ∆∗B = 0; and
(iv) nc{Φ+} ≤ dimE′.
In particular, if dimE′ < ∞ (for instance, if dimE < ∞), then the expression (51) is unique (up

to a unitary constant right factor).

If Φ̆ is of bounded type then ∆ should be two-sided, and hence B = 0 in (51). Thus if Φ̆ is
of bounded type the decomposition (51) reduces to the DSS factorization. From the viewpoint
that the decomposition (51) is unique (except the case of dimE′ = ∞), we persist to say that the
decomposition (51) is canonical. On the other hand, we can show (cf. [CHL4, Proof of Theorem
4.16]) that the inner function ∆ in a canonical decomposition (51) of a strong L2-function Φ can
be obtained from the equation kerH∗

Φ̆
= ∆H2

E′ which is guaranteed by the Beurling-Lax-Halmos
Theorem. In this case, the expression (51) will be called the BLH-canonical decomposition of Φ
in the viewpoint that ∆ comes from the Beurling-Lax-Halmos Theorem. However, if dimE′ = ∞
(even though dimD < ∞), then it is possible to get another inner function Θ of a canonical
decomposition (51) for the same function: in this case, kerH∗

Φ̆
̸= ΘH2

E′′ . Indeed, we can show that

the canonical decomposition (51) is not unique in general. Indeed, if dimE′ = ∞ (even though
dimD < ∞), the canonical decomposition (51) may not be unique even if Φ̆ is of bounded type.
To see this, let Φ be an inner function with values in B(C2, ℓ2) defined by

Φ :=



θ1 0
0 0
0 θ2
0 0
0 0
0 0
...

...


,

where θ1 and θ2 are scalar inner functions. Then

kerH∗
Φ̆
= kerHΦ∗ = diag(θ1, 1, θ2, 1, 1, 1, · · · )H2

ℓ2 ≡ ΘH2
ℓ2 ,

which implies that Φ̆ is of bounded type since Θ is two-sided inner (see Definition 4.1). Let

A := Φ∗Θ =

[
1 0 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 · · ·

]
and B := 0.

Then Ã belongs to belongs to H2
s (B(C2, ℓ2)) and Θ̃H2

ℓ2
∨
ÃH2

C2 = H2
ℓ2 , which implies that Θ and

A are right coprime. Clearly, Θ∗B = 0 and nc{Φ+} ≤ dim ℓ2 = ∞. Therefore, Φ = ΘA∗ is the
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BLH-canonical decomposition of Φ. On the other hand, to get another canonical decomposition
of Φ, let

∆ :=



θ1 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 · · ·
0 θ2 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 · · ·
0 0 0 1 0 0 0 · · ·
0 0 0 0 1 0 0 · · ·
...

...
...

...
...

...
...

. . .


.

Then ∆ is an inner function. If we define

A1 :=

[
1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·

]
and B := 0 ,

then Ã1 belongs to H2
s (B(C2, ℓ2)) such that ∆ and A1 are right coprime, ∆∗B = 0 and nc{Φ+} ≤

dim ℓ2 = ∞. Therefore Φ = ∆A∗
1 is also a canonical decomposition of Φ. In this case, kerH∗

Φ̆
̸=

∆H2
ℓ2 . Therefore, the canonical decomposition of Φ is not unique.

We are also interested in the following problem: Given an inner function ∆ ∈ B(E′, E), with
dim E′ < ∞, describe the set F in H2

E such that H(∆) = E∗
F . As a corollary of Theorem 4.8, we

get an answer to the problem ([CHL4, Corollary 4.9]):

Corollary 4.9. Suppose ∆ is an inner function with values in B(E′, E), with dimE′ < ∞. If
Φ = ∆A∗ + B is a canonical decomposition of Φ in L2

s(B(D,E)), we define a function F by
F (z) := z

(
Φ+(z)− Φ̂(0)

)
. We then have E∗

{F} = H(∆).

4.3 Spectra of model operators

If θ is a scalar inner function, then the spectrum, σ(θ), of θ is defined by the complement (in clD)
of the set of all points λ ∈ clD, such that the function 1

θ can be continued analytically into a (full)
neighborhood of λ. We recall that if θ is a scalar inner function, then we may write

θ(ζ) = B(ζ)exp

(
−
∫
T

z + ζ

z − ζ
dµ(z)

)
,

where B is a Blaschke product and µ is a singular measure on T. It is known that the spectrum
σ(θ) of θ is given as

σ(θ) = cl θ−1(0)
∪

suppµ (cf.[Ni1, p.63]). (52)

It is also known that if S := PH(∆)SE |H(∆) ∈ C0, then (cf. [Ni1, p.72])

σ(S) = σ(mS), (53)

where mS is the minimal annihilator of S.
On the other hand, if ∆ is a two-sided inner function with values in B(E), then the spectrum,

denoted by σ(∆), of ∆ is defined as the complement (in clD) of the set of values λ ∈ clD for which
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∆(ζ)−1 exists in a certain relative neighborhood of λ and admits an analytic continuation to a (full)
neighborhood of λ. By the operator-valued version of the Livšic-Moeller Theorem ([Ni1, p.75]), we
know that if ∆ is two-sided inner and T := S∗

E |H(∆), then

σ(T ) = σ(∆̃). (54)

Now, we may ask, what is the spectrum of the model operator S∗
E |H(∆) (for an one-sided inner

function ∆)? Here is a partial answer.

Proposition 4.10. Let T := S∗
E |H(∆) for an inner function ∆ with values in B(D,E). If ∆̆ is of

bounded type then

σ(T ) ⊆ σ( ˜[∆,∆c])
∪

σ(SE |∆cH2
D′
), (55)

where ∆c is the complementary factor of ∆, with values in B(D′, E). Moreover, if ∆ has a
meromorphic pseudo-continuation of bounded type in De, then

σ( ˜[∆,∆c]) ⊆ σ(T ). (56)

Proof. Suppose first that ∆̆ is of bounded type. Then by (47), [∆,∆c] is two-sided inner. Observe
that

[∆,∆c]H
2
D⊕D′ = ∆H2

D ⊕∆cH
2
D′ ,

and hence
H(∆) = H([∆,∆c])⊕∆cH

2
D′ .

Thus we may write

T =

[
T1 ∗
0 T2

]
:

[
H([∆,∆c])
∆cH

2
D′

]
→

[
H([∆,∆c])
∆cH

2
D′

]
. (57)

Note that T1 = S∗
E |H([∆,∆c]). Thus by (54), σ(T1) = σ( ˜[∆,∆c]). Also, since T2 = P∆cH2

D′
S∗
E |∆cH2

D′
,

it follows that σ(T2) = σ(T ∗
2 ) = σ(SE |∆cH2

D′
). Since σ(T ) ⊆ σ(T1) ∪ σ(T2), the assertion (55)

follows at once.
Suppose next that ∆ has a meromorphic pseudo-continuation of bounded type in De. Then ∆̆

is of bounded type, so that again by (47), [∆,∆c] is two-sided inner. Observe, by (12),

ker H∆∗ = [∆,∆c]H
2
D⊕D′ = kerH[∆,∆c]∗ .

Thus by Proposition 4.3, [∆,∆c] has a meromorphic pseudo-continuation of bounded type in De.
Then by Theorem 4.7, T1 ≡ S∗

E |H([∆,∆c]) belongs to the class C0. By the Model Theorem, T1 is
equivalent to D ≡ P

H( ˜[∆,∆c])
SE |H( ˜[∆,∆c])

(cf. [Ni1, p.75]). Thus by (53),

σ(T1) = σ(mD) = clm−1
D (0)

∪
suppµD

(µD is a singular measure corresponding to mD), which has no interior points. Thus σ(T1)∩ σ(T2)
has no interior points. Thus we have σ(T ) = σ(T1) ∪ σ(T2) because in the Banach space setting,
the passage from σ

(
A C
0 B

)
to σ(A) ∪ σ(B) consists of filling in certain holes in σ

(
A C
0 B

)
, occurring

in σ(A) ∩ σ(B) (cf. [HLL]). Therefore, (55) holds with equality in place of inclusion, which gives
(56). This complete the proof.
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We would like to pose:

Problem 4.11. If T := S∗
E |H(∆) for an inner function ∆ with values in B(D,E) such that ∆̆ is of

bounded type, describe the spectrum of T in terms of ∆.

4.4 An extension of Potapov’s factorization theorem

In 1955, V.P. Potapov [Po] showed that every rational inner n × n matrix-valued function can be
written as a finite Blaschke-Potapov product. We extend this result to the case of operator-valued
functions.

As customarily done, we say that two inner functions A,B ∈ H∞(B(E)) are equal if they are
equal up to a unitary constant right factor, i.e., there exists a unitary (constant) operator V ∈ B(E)
such that A = BV . Note that if V is a unitary operator in B(E), then for every Φ ∈ H∞(B(E)),

Φ = V (V ∗Φ) = (ΦV ∗)V,

which implies that V is an inner divisor of Φ. If M is a nonzero closed subspace of a Hilbert space
E, then a function of the form

bαPM + (IE − PM ) (where bα(z) :=
z − α

1− αz
)

is called a (operator-valued) Blaschke-Potapov factor, where PM is the orthogonal projection of E
onto M . A function D is called a (operator-valued) finite Blaschke-Potapov product if D is of the
form

D = V
M∏
m=1

(
bmPm + (I − Pm)

)
,

where V is a unitary operator, bm is a Blaschke factor, and Pm is a nonzero orthogonal projection
in E for each m = 1, · · · ,M . In particular, a scalar-valued function D reduces to a finite Blaschke
product D = ν

∏M
m=1 bm, where ν = eiω. It is known (cf. [Po]) that an n × n matrix function D

is rational and inner if and only if it can be represented as a finite Blaschke-Potapov product.
To proceed, we consider the follwoing question: What is a left inner divisor of zIn ? For this

question, we may guess that each left inner divisor of zIn is a Blaschke-Potapov factor. More
specifically, we wonder if a left inner divisor of [ z 0

0 z ] ≡ zI2 should be of the following form up to a
unitary constant right factor (also up to unitary equivalence):[

1 0
0 1

]
,

[
1 0
0 z

]
,

[
z 0
0 1

]
or

[
z 0
0 z

]
.

For example, A ≡ 1√
2

[
1 −z
1 z

]
is a left inner divisor of [ z 0

0 z ] ≡ zI2: indeed,

A · 1√
2

[
z z
−1 1

]
=

[
z 0
0 z

]
.

In this case, if we take a unitary operator V := 1√
2

[
1 1
−1 1

]
, then[

1 0
0 z

]
= V · 1√

2

[
1 −z
1 z

]
=

[
V · 1√

2

[
1 −z
1 z

]
· V ∗

]
· V.
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In fact, it was shown in [CHL1, Lemma 2.5] that

every left inner divisor of zIn ∈ H∞
Mn

is a Blaschke-Potapov factor. (58)

This fact is useful for the study of coprime-ness of functions (cf. [CHL2]). In [CHL3, p.23], the
authors asked:

Question 4.12. Is the statement in (58) still true for operator-valued functions ?

We will call a function of the form zIE the operator-valued coordinate function. This allows us
to rephrase Question 4.12 as follows: Is every left inner divisor of the operator-valued coordinate
function a Blaschke-Potapov factor ? For Question 4.12, we wish to study a more general case, and
we first observe that if A is an inner divisor of zNIE , then there exists a function Ω ∈ H∞(B(E))
such that AΩ = ΩA = zNIE a.e. on T, so that A∗zNIE = Ω ∈ H∞(B(E)), which implies that A is
a polynomial of degree at most N .

In [CHL5, Theorem 2.1], inner divisors of zNIE were characterized:

Theorem 4.13. Let A be a polynomial of degree N . Then A is an inner divisor of zNIE if and
only if A is a finite Blaschke-Potapov product of the form

A(z) = V

N∏
m=1

(
zPm + (I − Pm)

)
,

where Pm is the orthogonal projection from E onto
⊕N

n=m ran Â(n)∗, and

V := diag
(
Â(0)|ran Â(0)∗ , Â(1)|ran Â(1)∗ , · · · , Â(N)|ran Â(N)∗

)
.

The following corollary gives an affirmative answer to Question 4.12.

Corollary 4.14. If ∆ ∈ H∞(B(E)) is a left inner divisor of zIE , then ∆ is a Blaschke-Potapov
factor.

For Φ ∈ H∞(B(E)) and α ∈ D, write

Φα := Φ ◦ bα.

Then we can easily check the following:

(a) Φα ∈ H∞(B(E));

(b) If ∆ is an inner function with values in B(E), then so is ∆α.

Then the following corollary follows from Theorem 4.13 at once.

Corollary 4.15. Let A ∈ H∞(B(E)). Then A is an inner divisor of bNα IE if and only if A is a
finite Blaschke-Potapov product of the form

A = V
N∏
m=1

(
bαPm + (I − Pm)

)
,

where Pm and V are defined as in Theorem 4.13.
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We now introduce the notion of operator-valued “rational” function. Recall that a matrix-
valued function is rational if its entries are rational functions. But this definition is not appropriate
for operator-valued functions, in particular H∞-functions, even though the terminology of matrix
“entry” may be properly interpreted. Thus, the new idea should capture and encapsulate a
definition of operator-valued rational function which is equivalent to the condition that each entry
is rational when the function is matrix-valued. In the sequel, we give a formal definition of
operator-valued rational function.

To do so, we recall Definition 4.1 - the definition of bounded type: A function Φ ∈ L2
s(B(D,E))

is said to be of bounded type if kerH∗
Φ = ΘH2

E for some two-sided inner function Θ with values in
B(E).

We now introduce:

Definition 4.16. A function Φ ∈ H∞(B(D,E)) is said to be rational if

θH2
E ⊆ kerHΦ∗ (59)

for some finite Blaschke product θ.

Observe that if Φ ∈ H∞(B(D,E)), then

Φ is rational =⇒ Φ̆ is of bounded type. (60)

To see this, suppose Φ is rational. By definition and the Beurling-Lax-Halmos Theorem there exist
a finite Blaschke product θ and an inner function ∆ ∈ H∞(B(E′, E))) such that

θH2
E ⊆ kerHΦ∗ = ∆H2

E′ ,

which implies that ∆ is a left inner divisor of θIE . Thus ∆ is two-sided inner, so that Φ̆ is of
bounded type, which proves (60).

Also, if Φ ≡ (ϕij) ∈ H∞
Mm×n

is a rational function in the sense of Definition 4.16, then each entry
ϕij is rational. To see this suppose a matrix-valued function Φ satisfies the condition (59). Put
A := θΦ∗. Then A ∈ H∞

Mn×m
and Φ = θA∗. Thus ϕij can be written as ϕij = θaij (aij ∈ H∞).

Via Kronecker’s Lemma [Ni1, p.183], we can see that

ϕij is rational ⇐⇒ ϕij = θaij with a finite Blaschke product θ,

which says that each ϕij is rational.

In [CHL5, Corollary 3.7], Potapov’s matrix-valued factorization theorem was extended to operator-
valued functions.

Theorem 4.17. A two-sided inner function Φ ∈ H∞(B(E)) is rational if and only if it can be
represented as a finite Blaschke-Potapov product.

We now present a key difference between matrix-valued functions and operator-valued functions.
If Φ and Ψ are not left coprime, then there exists a common left inner divisor ∆ of both Φ and

Ψ such that ∆ is not a unitary operator. However, this is not the case for right coprime-ness. As
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we know, right coprime-ness is defined via left coprime-ness. As a result, there exist examples of
two functions with no common right inner divisor and which are not right coprime. Example 4.18
below shows such an instance. To see this, we first recall that if θ ∈ H∞ is an inner function, then
θ can be written as θ = cbs, where c is a constant of modulus 1, b is the Blaschke product formed
from the zeros of θ in D and s is a singular inner function given by

s(ζ) = exp

(
−
∫ π

−π

eit + ζ

eit − ζ
dµ(t)

)
(ζ ∈ D), (61)

where µ is a finite positive Borel measure on T which is singular with respect to Lebesgue measure.
If s is the singular inner function given by (61) then it is well known that

lim
r→1−

s(rz) = 0 for µ almost all z ∈ T. (62)

We then have:

Example 4.18. Let f and g be defined as in Example 3.3. Put

∆ :=

[
f
g

]
(f, g ∈ H∞).

Then ∆ is an inner function. Note that

∆(z) ̸= 0 for all z ∈ C. (63)

Put Φ := ∆̃. Clearly, ∆ and Φ are not right coprime. We claim that ∆ and Φ do not have a
common right inner divisor. Assume to the contrary that Φ has a right inner divisor Θ that is not
a unitary matrix, i.e.,

Φ = ΨΘ (Θ is inner and not a unitary matrix).

Then Ψ ∈ H∞
M1×2

and Θ ∈ H∞
M2

, and hence Θ is two-sided inner. Thus it follows that Θ∗ is of
bounded type. Thus we can write

Θ∗ =

[
θ1b1 θ2b2
θ3b3 θ4b4

]
, i.e., Θ =

[
θ1b1 θ3b3
θ2b2 θ4b4

]
,

where θi is inner and bi ∈ H∞. Let θ be the least common multiple of {θi : 1 ≤ i ≤ 4}. Then we
can write

Θ = θ

[
a1 a3
a2 a4

]
= θA∗ (where A ∈ H∞

M2
).

Thus ∆ = Θ̃Ψ̃ = θ̃ĂΨ̃. If θ has a zero in D then so is ∆, which contradicts (63). If instead θ is a
singular inner function of the form

θ(ζ) = exp

(
−
∫ π

−π

eit + ζ

eit − ζ
dµ(t)

)
,

then by (62), limr→1− ∆(rz) = 0 for µ almost all z ∈ T, which is a contradiction. �
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4.5 Hyponormality and subnormality of Toeplitz operators

In the literature, many authors have considered the special cases of the following (scalar-valued
or operator-valued) interpolation problem (cf. [Co1], [CHL2], [CHL3], [FF], [Ga], [Gu], [GHR],
[HKL1], [HKL2], [HL1], [HL2], [NT], [Zh]).

Problem 4.19. For Φ ∈ L∞(B(E)), when does there exist a function K ∈ H∞(B(E)) with
||K||∞ ≤ 1 satisfying

Φ−KΦ∗ ∈ H∞(B(E)) ? (64)

For notational convenience, we write, for Φ ∈ L∞(B(E)),

C(Φ) :=
{
K ∈ H∞(B(E)) : Φ−KΦ∗ ∈ H∞(B(E))

}
.

We then have:

Theorem 4.20. ([CHL4, Theorem C.19]) Let Φ ≡ Φ̆− + Φ+ ∈ L∞(B(E)). If C(Φ) is nonempty
then

kerH∗
Φ̆+

⊆ kerH∗
Φ∗

−
. (65)

In particular, nc{Φ+} ≤ nc{Φ̃−}.

If Φ is a matrix-valued rational function then using Kronecker’s Lemma we can show that the
condition (65) is sufficient for C(Φ) ̸= ∅ ([CHL2, Proposition 3.9]). Moreover, in this case, the
solution K ∈ C(Φ) is given by a polynomial via the classical Hermite-Fejér interpolation problem.
However we were unable to determine whether the condition (65) is sufficient for the existence of
a solution K ∈ C(Φ) when Φ ∈ L∞

Mn
is such that Φ and Φ∗ are of bounded type.

Problem 4.21. Let Φ ∈ L∞
Mn

be such that Φ and Φ∗ are of bounded type. If kerHΦ∗
+
⊆ kerHΦ∗

−
,

does there exist a solution K ∈ H∞
Mn

satisfying Φ−KΦ∗ ∈ H∞
Mn

?

For Φ ∈ L∞(B(E)), write

E(Φ) :=
{
K ∈ H∞(B(E)) : Φ−KΦ∗ ∈ H∞(B(E)) and ||K||∞ ≤ 1

}
,

i.e., E(Φ) = {K ∈ C(Φ) : ||K||∞ ≤ 1}. If dim E = 1 and Φ ≡ φ is a scalar-valued function then
an elegant theorem of C. Cowen (cf. [Co1], [NT], [CuL]) says that E(φ) is nonempty if and only
if Tφ is hyponormal, i.e., the self-commutator [T ∗

φ, Tφ] is positive semi-definite. Cowen’s Theorem
is to recast the operator-theoretic problem of hyponormality into the problem of finding a solution
of an interpolation problem. In [GHR], it was shown that the Cowen’s theorem still holds for a
Toeplitz operator TΦ with a matrix-valued symbol Φ ∈ L∞

Mn
.

As we saw in Section 3.3, Halmos’ Problem 5 has been partially answered in the affirmative by
many authors. Despite considerable efforts, to date researchers have been unable to characterize
subnormal Toeplitz operators in terms of their symbols. For cases of matrix-valued symbols, the
subnormality of Toeplitz operators was studied in [CHKL],[CHL1], [CHL2], [CHL3]. Also Theorem
3.15 shows that if the matrix-valued symbol Φ satisfies a general condition and TΦ is subnormal
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then it is either normal or analytic. Also in [CHKL], it was conjectured that every subnormal
Toeplitz operator with matrix-valued rational symbol is unitarily equivalent to a direct sum of a
normal operator and a Toeplitz operator with analytic symbol. In fact, if an n× n matrix-valued
function Φ is analytic then the normal extension of TΦ is the multiplication operatorMΦ, so clearly
TΦ is subnormal. However, this is not the case for the operator-valued symbols. We have such an
example (see Example 4.23 below). On the other hand, if Φ is matrix-valued and TΦ is subnormal
(even hyponormal), then Φ should be normal, i.e., Φ∗Φ = ΦΦ∗ a.e. on T (cf. [GHR]). However
this may also fail for operator-valued symbols.

Example 4.22. Let S := Tz on H2 and Φ(z) = Szn ∈ H∞(B(H2)) (n ≥ 0). Then

T ∗
ΦTΦ = TS∗S = IH2(B(H2)),

so that TΦ is quasinormal and hence subnormal. However,

Φ(z)Φ∗(z) = SS∗ ̸= S∗S = Φ∗(z)Φ(z) for all z ∈ T,

which implies that Φ is not normal. Here we don’t need to expect that the multiplication operator
MΦ : L2(B(H2)) → L2(B(H2)) is a normal extension of TΦ. Indeed, it is easy to show that MΦ is
not normal, and hence MΦ can never be a normal extension of TΦ. What is a normal extension
of TΦ ? Let B := Mz on L2 and Ψ(z) := Bzn ∈ H∞(B(L2)). Then a straightforward calculation
shows that the multiplication operator MΨ : L2(B(L2)) → L2(B(L2))) is a normal extension of TΦ.

The following simple example shows that analytic Toeplitz operators with operator-valued sym-
bols need not be even hyponormal.

Example 4.23. Let Φ(z) = S∗ ∈ H∞(B(H2)) and e0 be the constant function 1 ∈ H2(T). If
f(z) = e0z, then

⟨(TΦ∗TΦ − TΦTΦ∗)f, f⟩ = ⟨−e0z, e0z⟩ = −1 < 0,

which implies that TΦ is not hyponormal and hence not subnormal even though Φ is analytic.

We would like to pose:

Question 4.24. Which analytic Toeplitz operators with operator-valued symbols are subnormal ?

For a sufficient condition, one may be tempted to conjecture that if Φ ∈ H∞(B(H2)) and if
Φ(z) is subnormal for almost all z ∈ T, then TΦ is subnormal. We have not been able to decide
whether this is true.
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