CIRCLE COMPANIONS OF HARDY SPACES OF THE UNIT DISK

RAÚL E. CURTO, IN SUNG HWANG, SUMIN KIM AND WOO YOUNG LEE

Abstract

This paper gives a complete answer to the following problem: Find the circle companion of the Hardy space of the unit disk with values in the space of all bounded linear operators between two separable Hilbert spaces. Classically, the problem asks whether for each function h on the unit disk, there exists a "boundary function" $b h$ on the unit circle such that the mapping $b h \mapsto h$ is an isometric isomorphism between Hardy spaces of the unit circle and the unit disk with values in some Banach space. For the case of bounded linear operator-valued functions, we construct a Hardy space of the unit circle such that its elements are SOT measurable, and their norms are integrable: indeed, this new space is isometrically isomorphic to the Hardy space of the unit disk via a "strong Poisson integral."

1. Introduction

We solve an old and outstanding problem in the theory of Hardy spaces. For $1 \leq p \leq \infty$ and X a Banach space, consider the Hardy space $H^{p}(\mathbb{D}, X)$ of X-valued functions defined on the unit disk \mathbb{D}. For each $h \in H^{p}(\mathbb{D}, X)$, we try to associate a function $b h$, which captures the boundary values of h. Our goal is to identify a Banach space \mathcal{C} of X-valued functions defined on the unit circle \mathbb{T} which represent, in a natural and canonical way, the boundary values of functions in $H^{p}(\mathbb{D}, X)$. When the mapping $h \mapsto b h$ is an isometric isomorphism from $H^{p}(\mathbb{D}, X)$ onto \mathcal{C}, we say that \mathcal{C} is the "circle companion" of $H^{p}(\mathbb{D}, X)$.

In this paper, we find the circle companion of the Hardy space of the unit disk with values in $\mathcal{B}(D, E)$, the space of all bounded linear operators between two separable Hilbert spaces D and E. That is, we focus on the cases where the above-mentioned Banach space X is $\mathcal{B}(D, E)$.

A study on the boundary values of functions in Banach-space-valued Hardy spaces $H^{p}(\mathbb{D}, X)$ of the unit disk was initiated in 1976 by A.V. Bukhvalov $[\mathrm{Bu}]$. Since then, many researchers have studied the spaces of boundary values of functions in $H^{p}(\mathbb{D}, X)$ (see the bibliographical references at the end of this paper). In particular, in $1982 \mathrm{~A} . V$. Bukhvalov and A.A. Danilevich [BD] showed that if a Banach space X has the analytic Radon-Nikodým property (ARNP) (or equivalently, every function in $H^{1}(\mathbb{D}, X)$ has radial limits a.e. on \mathbb{T}; cf. $[\mathrm{Bl}],[\mathrm{BD}],[\mathrm{DE}],[\mathrm{Do}],[\mathrm{Ed}])$, then the space of boundary values of

[^0]functions in $H^{p}(\mathbb{D}, X)$ is $H^{p}(\mathbb{T}, X)$; more precisely, the mapping $h \mapsto b h$ is an isometric isomorphism from $H^{p}(\mathbb{D}, X)$ onto $H^{p}(\mathbb{T}, X)$ and moreover, $P[b h]=h$, where $P[\cdot]$ denotes the Poisson integral, or equivalently, the mapping $f \mapsto P[f]$ is an isometric isomorphism from $H^{p}(\mathbb{T}, X)$ onto $H^{p}(\mathbb{D}, X)$. However, this is no longer true for spaces of operatorvalued functions. Indeed, if $X=\mathcal{B}(D, E)$, then X need not satisfy the ARNP in general, so that we cannot guarantee that the mapping $f \mapsto P[f]$ is an isometric isomorphism from $H^{p}(\mathbb{T}, X)$ onto $H^{p}(\mathbb{D}, X)$. In fact, for each $1 \leq p \leq \infty$, there exists a function $h \in H^{p}\left(\mathbb{D}, \mathcal{B}\left(\ell^{2}\right)\right)$ such that $h \neq P[f]$ for any $f \in H^{p}\left(\mathbb{T}, \mathcal{B}\left(\ell^{2}\right)\right)$ (see Example 2.2). Thus, the following problem remained unsolved until now:
\[

$$
\begin{equation*}
\text { Find the circle companion of } H^{p}(\mathbb{D}, \mathcal{B}(D, E)) \text { for } 1 \leq p \leq \infty \tag{1}
\end{equation*}
$$

\]

Although not necessarily explicitly stated as an open problem, the problem (1) appears in Nikolski's book [Ni, p. 62, lines 14-15], where it is mentioned implicitly. In this paper, we solve problem (1). Our solution aims to shed additional insights into the study of boundary values, and how the Poisson transform serves as a bridge between those boundary values and the initial Hardy space function. Towards our solution, we introduce a new space $L_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))(1 \leq p \leq \infty)$ defined by the space of all (equivalence classes of) SOT measurable functions $f: \mathbb{T} \rightarrow \mathcal{B}(X, Y)$ such that $N(f) \in L^{p}(\mathbb{T})$ (where $N(f)(z):=$ $\left.\|f(z)\|_{\mathcal{B}(X, Y)}\right)$; we identify f and g when $f(z)=g(z)$ for almost all $z \in \mathbb{T}$. In this case, let

$$
\|f\|_{L_{s o t}^{p}(\mathbb{T}, \mathcal{B}(X, Y))}:=\|N(f)\|_{L^{p}(\mathbb{T})} .
$$

Also for $1 \leq p \leq \infty$, let $H_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ be defined by the space of functions in $L_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ such that $f(\cdot) x \in H^{p}(\mathbb{T}, Y)$ for every $x \in X$. On the other hand, we define the "strong Poisson integral" $P_{s}[f]$ of f in $H_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ by

$$
P_{s}[f](\zeta) x:=P[f(\cdot) x](\zeta) \quad(x \in X, \zeta \in \mathbb{D}) .
$$

The aim of this paper is to prove that for $1 \leq p \leq \infty$, the mapping $f \mapsto P_{s}[f]$ is an isometric isomorphism from $H_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(D, E))$ onto $H^{p}(\mathbb{D}, \mathcal{B}(D, E))$. In $[\mathrm{Ni}$, p. 53 , Theorem 3.11.10] it is shown that the mapping $f \mapsto P_{s}[f]$ provides an isometric isomorphism from $H_{W O T}^{\infty}(\mathbb{T}, \mathcal{B}(D, E))$ onto $H^{\infty}(\mathbb{D}, \mathcal{B}(D, E))$ when D and E are separable Hilbert spaces in fact, we can show that $H_{W O T}^{\infty}(\mathbb{T}, \mathcal{B}(D, E))=H_{\text {sot }}^{\infty}(\mathbb{T}, \mathcal{B}(D, E))$ in our language. This provides a sound rationale for denoting this new space as $H_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(D, E))$, in a manner fully consistent with the well-known result. In fact, we can get a more general version of the Banach space setting. The following is the main result of this paper.

Theorem 1.1. Let X be a separable Banach space and Y be a Banach space satisfying the analytic Radon-Nikodým property. Then, for $1 \leq p \leq \infty$, the mapping $f \mapsto P_{s}[f]$ is an isometric isomorphism from $H_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ onto $H^{p}(\mathbb{D}, \mathcal{B}(X, Y))$.

The following corollary is immediate from Theorem 1.1.
Corollary 1.2. Let D and E be separable Hilbert spaces. Then, for $1 \leq p \leq \infty$, the mapping $f \mapsto P_{s}[f]$ is an isometric isomorphism from $H_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(D, E))$ onto $H^{p}(\mathbb{D}, \mathcal{B}(D, E))$. As a result, $H_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(D, E))$ is the circle companion of $H^{p}(\mathbb{D}, \mathcal{B}(D, E))$.

In Section 2, we give a few essential facts that will be needed to prove Theorem 1.1. Section 3 is devoted to a proof of Theorem 1.1. In the Appendix, we consider relevant results for strong H^{p}-spaces.

2. Preliminaries

We review here the preliminary background needed to prove the main theorem, using [HNVW] and [Ni] as general references. Let m be the normalized Lebesgue measure on \mathbb{T}. For a Banach space X, a function $f: \mathbb{T} \rightarrow X$ is said to be essentially separably valued if there exists a Lebesgue measurable set $\mathbb{T}^{\prime} \subseteq \mathbb{T}$ such that the range $f\left(\mathbb{T}^{\prime}\right)$ is separable and $m\left(\mathbb{T} \backslash \mathbb{T}^{\prime}\right)=0$.

We begin with:
Pettis Measurability Theorem ([HNVW]). Let X be a Banach space and X^{*} denote the dual space of X. For a function $f: \mathbb{T} \rightarrow X$, the following are equivalent:
(a) f is strongly measurable (i.e., there exists a sequence of simple functions f_{n} such that $f(z)=\lim _{n \rightarrow \infty} f_{n}(z)$ for almost all $z \in \mathbb{T}$);
(b) f is essentially separably valued and weakly measurable (i.e., the mapping $z \mapsto$ $\left\langle f(z), x^{*}\right\rangle$ is Lebesgue measurable for every $\left.x^{*} \in X^{*}\right)$.

Observation. By the Pettis Measurability Theorem, the almost everywhere limit of a sequence of strongly measurable functions is also strongly measurable.

Given a function $f: \mathbb{T} \rightarrow X$, let

$$
N(f)(z):=\|f(z)\|_{X}
$$

For $1 \leq p \leq \infty$, let $L^{p}(\mathbb{T}, X)$ be the space of all (equivalence classes of) strongly measurable functions $f: \mathbb{T} \rightarrow X$ such that $N(f) \in L^{p}(\mathbb{T})$. Endowed with the norm

$$
\|f\|_{L^{p}(\mathbb{T}, X)}:=\|N(f)\|_{L^{p}(\mathbb{T})}
$$

the space $L^{p}(\mathbb{T}, X)$ is a Banach space. For $f \in L^{1}(\mathbb{T}, X)$, the n-th Fourier coefficient of f, denoted by $\widehat{f}(n)$, is defined by

$$
\widehat{f}(n):=\int_{\mathbb{T}} \bar{z}^{n} f(z) d m(z) \quad \text { for each } n \in \mathbb{Z}
$$

where the integral is understood in the sense of the Bochner integral. Also, $H^{p}(\mathbb{T}, X)$ is defined as the space of functions $f \in L^{p}(\mathbb{T}, X)$ with $\widehat{f}(n)=0$ for $n<0$.

Hereafter, let X and Y be Banach spaces and $\mathcal{B}(X, Y)$ denote the space of all bounded linear operators from X to Y, and abbreviate $\mathcal{B}(X, X)$ as $\mathcal{B}(X)$. We write $\operatorname{Hol}(\mathbb{D}, X)$ for the set of all X-valued functions holomorphic in \mathbb{D}.

Equivalent conditions of holomorphic functions ([Ni]). If $h: \mathbb{D} \rightarrow \mathcal{B}(X, Y)$, then the following are equivalent.
(a) $h \in \operatorname{Hol}(\mathbb{D}, \mathcal{B}(X, Y))$;
(b) $h(\cdot) x \in \operatorname{Hol}(\mathbb{D}, Y)$ for all $x \in X$;
(c) $\left\langle h(\cdot) x, y^{*}\right\rangle \in \operatorname{Hol}(\mathbb{D}, \mathbb{C})$ for all $x \in X$ and $y^{*} \in Y^{*}$.

Let us associate to any function $h: \mathbb{D} \rightarrow X$, a family of functions h_{r} on \mathbb{T}, defined by

$$
h_{r}(z):=h(r z) \quad(z \in \mathbb{T}, 0 \leq r<1)
$$

For $1 \leq p \leq \infty$, let $H^{p}(\mathbb{D}, X)$ be the space of all functions $h \in \operatorname{Hol}(\mathbb{D}, X)$ satisfying

$$
\|h\|_{H^{p}(\mathbb{D}, X)}:=\sup \left\{\left\|N\left(h_{r}\right)\right\|_{L^{p}(\mathbb{T})}: r<1\right\}<\infty .
$$

Then $H^{p}(\mathbb{D}, X)$ is a Banach space (cf. [Do]). If $h \in \operatorname{Hol}(\mathbb{D}, X)$, then we may write

$$
h(\zeta)=\sum_{n=0}^{\infty} x_{n} \zeta^{n} \quad\left(\zeta \in \mathbb{D}, x_{n} \in X\right)
$$

Hence for each $0 \leq r<1$,

$$
h_{r}(z)=\sum_{n=0}^{\infty} x_{n} r^{n} z^{n} \quad(z \in \mathbb{T})
$$

which implies that h_{r} is essentially separably valued. For each $x^{*} \in X^{*}$,

$$
\left\langle h_{r}(z), x^{*}\right\rangle=\sum_{n=0}^{\infty}\left\langle x_{n} r^{n}, x^{*}\right\rangle z^{n} \quad(z \in \mathbb{T})
$$

which implies that h_{r} is weakly measurable. Thus, by the Pettis Measurability Theorem, h_{r} is strongly measurable. Therefore we have that

$$
\|h\|_{H^{p}(\mathbb{D}, X)}=\sup _{0 \leq r<1}\left\|h_{r}\right\|_{L^{p}(\mathbb{T}, X)}
$$

For $f \in L^{1}(\mathbb{T}, X)$, let $P[f]$ denote the Poisson integral of f defined by

$$
\begin{equation*}
P[f](\zeta):=\int_{\mathbb{T}} P_{\zeta}(z) f(z) d m(z) \quad(\zeta \in \mathbb{D}) \tag{2}
\end{equation*}
$$

where $P_{\zeta}(z)$ is the Poisson kernel.
The following are basic properties of Poisson integrals.
Lemma 2.1. [Ni, Lemma 3.11.6.] If $f \in L^{p}(\mathbb{T}, X)(1 \leq p \leq \infty)$, then
(a) $\left\|(P[f])_{r}\right\|_{L^{p}(\mathbb{T}, X)} \leq\|f\|_{L^{p}(\mathbb{T}, X)}$ for all $0 \leq r<1$;
(b) If $p<\infty$, then $\lim _{r \rightarrow 1}\left\|(P[f])_{r}-f\right\|_{L^{p}(\mathbb{T}, X)}=0$;
(c) $\lim _{r \rightarrow 1}\left\|(P[f])_{r}(z)-f(z)\right\|_{X}=0$ for almost all $z \in \mathbb{T}$.

On the other hand, the function $P: H^{p}(\mathbb{T}, X) \rightarrow H^{p}(\mathbb{D}, X)$ given by (2), is an isometry for all $1 \leq p \leq \infty(\mathrm{cf}$. [Bl]). As we noticed in the introduction, if X has the ARNP and $1 \leq p \leq \infty$, then the function $P: H^{p}(\mathbb{T}, X) \rightarrow H^{p}(\mathbb{D}, X)$ given by (2) is an isometric isomorphism (cf. [BD]). However, the function $P: H^{p}(\mathbb{T}, \mathcal{B}(D, E)) \rightarrow H^{p}(\mathbb{D}, \mathcal{B}(D, E))$ given by (2) is not onto in general, as we see in the following example.

Example 2.2. Let $h: \mathbb{D} \rightarrow \mathcal{B}\left(\ell^{2}\right)$ be defined by $(h(\zeta) x)(n):=\zeta^{n} x(n)$ for each $x \in \ell^{2}$. Then $h \in \operatorname{Hol}\left(\mathbb{D}, \mathcal{B}\left(\ell^{2}\right)\right)$ and $\|h\|_{H^{\infty}\left(\mathbb{D}, \mathcal{B}\left(\ell^{2}\right)\right)}=1$, so that $h \in H^{p}\left(\mathbb{D}, \mathcal{B}\left(\ell^{2}\right)\right)$ for all $1 \leq p \leq$ ∞. Suppose that there exists $p \in[1, \infty]$ such that $P: H^{p}\left(\mathbb{T}, \mathcal{B}\left(\ell^{2}\right)\right) \rightarrow H^{p}\left(\mathbb{D}, \mathcal{B}\left(\ell^{2}\right)\right)$ is onto. Then there exists a function $f \in H^{p}\left(\mathbb{T}, \mathcal{B}\left(\ell^{2}\right)\right)$ such that $P[f]=h$. For each $z \in \mathbb{T}$, define a "strong boundary function" bh: $\mathbb{T} \rightarrow \mathcal{B}\left(\ell^{2}\right)$ by

$$
\begin{equation*}
(b h)(z) x:=\lim _{r \rightarrow 1} h_{r}(z) x=\left(z^{n} x(n)\right) \quad\left(x \equiv(x(n)) \in \ell^{2}\right) . \tag{3}
\end{equation*}
$$

Then it follows from Lemma 2.1(c) that for all $x \in \ell^{2}$,

$$
(b h)(z) x=\lim _{r \rightarrow 1}(P[f])_{r}(z) x=f(z) x
$$

for almost all $z \in \mathbb{T}$, which implies $f=b h$. Let $z_{1} \neq z_{2}$ in \mathbb{T}. For $k=1,2$, write $z_{k}=e^{i \theta_{k}}$ $\left(0 \leq \theta_{k}<2 \pi\right)$. Then there exists $n_{0} \in \mathbb{N}$ such that $\frac{\pi}{2}<n_{0}\left|\theta_{2}-\theta_{1}\right| \leq \pi(\bmod 2 \pi)$. Let $\left\{e_{n}: n=1,2, \cdots\right\}$ be the canonical orthonormal basis for ℓ^{2}. Then it follows from (3) that

$$
\left\|\left(f\left(z_{1}\right)-f\left(z_{2}\right)\right) e_{n_{0}}\right\|_{\ell^{2}}=\left|z_{1}^{n_{0}}-z_{2}^{n_{0}}\right|=\left|1-\left(z_{2} \overline{z_{1}}\right)^{n_{0}}\right|>\sqrt{2},
$$

which implies that f is not essentially separably valued. Thus, by the Pettis Measurability Theorem, f is not strongly measurable, a contradiction. Therefore, $P: H^{p}\left(\mathbb{T}, \mathcal{B}\left(\ell^{2}\right)\right) \rightarrow$ $H^{p}\left(\mathbb{D}, \mathcal{B}\left(\ell^{2}\right)\right)$ is not onto for any $p \in[1, \infty]$.

3. Proof of the main result

A function $f: \mathbb{T} \rightarrow \mathcal{B}(X, Y)$ is called SOT measurable if the mapping $z \mapsto f(z) x$ is strongly measurable for every $x \in X$.

We introduce a new normed space.
Definition 3.1. For $1 \leq p \leq \infty$, define $L_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ by the space of all (equivalence classes of) SOT measurable functions $f: \mathbb{T} \rightarrow \mathcal{B}(X, Y)$ such that $N(f) \in L^{p}(\mathbb{T})$; we identify f and g when $f(z)=g(z)$ for almost all $z \in \mathbb{T}$. In this case, define

$$
\|f\|_{L_{s o t}^{p}(\mathbb{T}, \mathcal{B}(X, Y))}:=\|N(f)\|_{L^{p}(\mathbb{T})} .
$$

We can easily check that $L_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ is a normed space and $L_{\text {sot }}^{q}(\mathbb{T}, \mathcal{B}(X, Y)) \subseteq L_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ if $1 \leq p \leq q \leq \infty$. Further, the space $L_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ is a Banach space.

Lemma 3.2. For $1 \leq p \leq \infty, L_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ is a Banach space.
Proof. The proof follows from a slight variation of the standard proof (cf. [Ru]) for the completeness of scalar-valued L^{p}-spaces, except for SOT-measurability. To be completely rigorous, we sketch a proof of the validity of SOT-measurability.

Suppose $\left(f_{n}\right)$ is a Cauchy sequence in $L_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$. Then we can choose a subsequence $\left(f_{n_{i}}\right)$ such that

$$
\left\|f_{n_{i+1}}-f_{n_{i}}\right\|_{L_{s o t}^{p}(\mathbb{T}, \mathcal{B}(X, Y))}<2^{-i} \text { for all } i=1,2,3, \cdots .
$$

If we put $g:=\sum_{i=1}^{\infty}\left(f_{n_{i+1}}-f_{n_{i}}\right)$, then it is easy to show that $g(z) \in \mathcal{B}(X, Y)$ for almost all $z \in \mathbb{T}$ and in turn,

$$
f(z):=f_{n_{1}}(z)+g(z)
$$

converges for almost all $z \in \mathbb{T}$. Therefore for each $x \in X, f(z) x=\lim _{i \rightarrow \infty} f_{n_{i}}(z) x$ for almost all $z \in \mathbb{T}$. Since $f_{n_{i}}$ is SOT measurable, the mapping $z \mapsto f_{n_{i}}(z) x$ is strongly measurable, so that the mapping $z \mapsto f(z) x$ is also strongly measurable. Therefore f is SOT measurable.

Remark 3.3. In the definition of $L_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$, we implicitly suppose $N(f)$ is (Lebesgue) measurable. In fact, we don't guarantee that if f is SOT measurable then $N(f)$ is measurable in general. To see this, let $\ell^{2}(\mathbb{T})$ be the set of all functions $x: \mathbb{T} \rightarrow \mathbb{C}$ such that $x(z)=0$ for all but a countable number of z^{\prime} 's and $\sum_{z \in \mathbb{T}}|x(z)|^{2}<\infty$. For x and y in $\ell^{2}(\mathbb{T})$ define

$$
\langle x, y\rangle:=\sum_{z \in \mathbb{T}} x(z) \overline{y(z)}
$$

Then $\ell^{2}(\mathbb{T})$ is a (non-separable) Hilbert space. Let F be a nonmeasurable set in \mathbb{T}. For $z \in \mathbb{T}$, let $f: \mathbb{T} \rightarrow \mathcal{B}\left(\ell^{2}(\mathbb{T})\right)$ be defined by

$$
(f(z) x)(s):= \begin{cases}x(z), & \text { if } s=z \in F \\ 0, & \text { if } z \notin F \text { or } s \neq z\end{cases}
$$

Then for each $x \in \ell^{2}(\mathbb{T})$, we have that $f(z) x=0$ for almost all $z \in \mathbb{T}$, and hence f is SOT measurable.

We now claim that

$$
\begin{equation*}
N(f)=\mathbf{1}_{F} \quad\left(\mathbf{1}_{F} \text { denotes the indicator function of the set } F\right) \tag{4}
\end{equation*}
$$

which implies that $N(f)$ is not measurable because F is a nonmeasurable set. To see this, for each $z \in \mathbb{T}$, let

$$
x_{z}(s):= \begin{cases}1, & \text { if } s=z \\ 0, & \text { if } s \neq z\end{cases}
$$

Then, $x_{z} \in \ell^{2}(\mathbb{T})$ and $\left\|x_{z}\right\|=1$. If $z \in F$, then $\left(f(z) x_{z}\right)(s)=x_{z}(s)$, so that $\left\|f(z) x_{z}\right\|_{\ell^{2}(\mathbb{T})}=$ 1. But since $f(z)$ is a contraction, it follows that $N(f)(z)=1$ for all $z \in F$. If instead $z \notin F$, then $f(z)=0$, so that $N(f)(z)=0$. This proves (4).

We note that in the above remark, $\ell^{2}(\mathbb{T})$ is not separable. However, we can show that the SOT-measurability of f implies the measurability of $N(f)$ if X is a separable Banach space.

Lemma 3.4. Let X be a separable Banach space. If $f: \mathbb{T} \rightarrow \mathcal{B}(X, Y)$ is SOT measurable then $N(f)$ is measurable.
Proof. Suppose that $f: \mathbb{T} \rightarrow \mathcal{B}(X, Y)$ is SOT measurable. Then for all $x \in X$, the mapping $z \mapsto f(z) x$ is strongly measurable, and hence the mapping $z \mapsto\|f(z) x\|$ is
measurable. Thus the mapping $z \mapsto \frac{\|f(z) x\|}{\|x\|}$ is measurable for all nonzero $x \in X$. Choose a countable dense subset X_{0} of X. Then we can easily see that

$$
N(f)(z)=\sup \left\{\frac{\|f(z) x\|}{\|x\|}: 0 \neq x \in X_{0}\right\}
$$

Thus the mapping $z \mapsto N(f)(z)$ is measurable.
We now introduce a space which fits our purpose:
Definition 3.5. For $1 \leq p \leq \infty$, let $H_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ be the space of all (equivalence classes of) functions $f \in L_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ such that $f(\cdot) x \in H^{p}(\mathbb{T}, Y)$ for every $x \in X$.

Observe that for $1 \leq p \leq \infty, H_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ is a closed subspace of $L_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$, so that by Lemma $3.2, H_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ is a Banach space.

Example 3.6. In general, $H^{p}(\mathbb{T}, \mathcal{B}(X, Y)) \neq H_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ for all $1 \leq p \leq \infty$. To see this, let $H^{2} \equiv H^{2}(\mathbb{T})$ and define the function $f: \mathbb{T} \rightarrow \mathcal{B}\left(H^{2}\right)$ by

$$
f(z) x(s):=x(z s)
$$

Since the set of all polynomials on \mathbb{T} is dense in H^{2}, it follows that the mapping $z \mapsto f(z) x$ is (uniformly) continuous for each $x \in H^{2}$. Thus, by the Pettis Measurability Theorem, f is SOT measurable. Since $N(f)(z)=1$ for all $z \in \mathbb{T}$, it follows that $f \in L_{\text {sot }}^{\infty}\left(\mathbb{T}, \mathcal{B}\left(H^{2}\right)\right)$ with $\|f\|_{L_{\text {sot }}^{\infty}\left(\mathbb{T}, \mathcal{B}\left(H^{2}\right)\right)}=1$. Moreover for each $x \in H^{2}$ and $n \in \mathbb{Z}$,

$$
(\widehat{f}(n) x)(s)=\int_{\mathbb{T}} \bar{z}^{n} f(z) x(s) d m(z)=\left\langle x(z s), z^{n}\right\rangle_{H^{2}}=\widehat{x}(n) s^{n}
$$

which implies that $f \in H_{\text {sot }}^{\infty}\left(\mathbb{T}, \mathcal{B}\left(H^{2}\right)\right) \subseteq H_{\text {sot }}^{p}\left(\mathbb{T}, \mathcal{B}\left(H^{2}\right)\right)$ for all $1 \leq p \leq \infty$. However we have that $f \notin H^{p}\left(\mathbb{T}, \mathcal{B}\left(H^{2}\right)\right)$. To see this we use the same argument as Example 2.2. Let $z_{1} \neq z_{2}$ in \mathbb{T}. Write $z_{k}=e^{i \theta_{k}}\left(0 \leq \theta_{k}<2 \pi\right)$. Then there exists $n_{0} \in \mathbb{N}$ such that $\frac{\pi}{2}<n_{0}\left|\theta_{2}-\theta_{1}\right| \leq \pi(\bmod 2 \pi)$. We thus have

$$
\begin{aligned}
\left\|\left(f\left(z_{1}\right)-f\left(z_{2}\right)\right) s^{n_{0}}\right\|_{H^{2}}^{2} & =\int_{\mathbb{T}}\left|\left(z_{1} s\right)^{n_{0}}-\left(z_{2} s\right)^{n_{0}}\right|^{2} d m(s) \\
& =\int_{\mathbb{T}}\left|1-\left(z_{2} \overline{z_{1}}\right)^{n_{0}}\right|^{2} d m(s)>2
\end{aligned}
$$

which implies that f is not essentially separably valued. Thus, by the Pettis Measurability Theorem, f is not strongly measurable, so that, $f \notin H^{p}\left(\mathbb{T}, \mathcal{B}\left(H^{2}\right)\right)$.

Definition 3.7. For $f \in H_{\text {sot }}^{1}(\mathbb{T}, \mathcal{B}(X, Y))$ and $x \in X$, let $P_{s}[f](\cdot) x: \mathbb{D} \rightarrow Y$ be defined by

$$
P_{s}[f](\zeta) x:=P[f(\cdot) x](\zeta) \quad(\zeta \in \mathbb{D})
$$

where $P[\cdot]$ denotes the Poisson integral. In this case, $P_{s}[f]$ is called the strong Poisson integral of f.

Lemma 3.8. For $1 \leq p \leq \infty$, the mapping $f \mapsto P_{s}[f]$ is a contraction from $H_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ to $H^{p}(\mathbb{D}, \mathcal{B}(X, Y))$.

Proof. Let $f \in H_{s o t}^{p}(\mathbb{T}, \mathcal{B}(X, Y))(1 \leq p \leq \infty)$ and $\zeta=r e^{i \theta} \in \mathbb{D}$. Clearly, $P_{s}[f](\zeta)$ is linear on X. For each $x \in X$,

$$
\begin{aligned}
\left\|P_{s}[f](\zeta) x\right\| & =\left\|\int_{\mathbb{T}} P_{\zeta}(z) f(z) x d m(z)\right\| \\
& \leq \frac{1+r}{1-r} \cdot\|f\|_{L_{s o t}^{1}(\mathbb{T}, \mathcal{B}(X, Y))}\|x\|
\end{aligned}
$$

which implies that $P_{s}[f](\zeta) \in \mathcal{B}(X, Y)$. Since $P_{s}[f](\cdot) x \in H^{1}(\mathbb{D}, Y)$ for every $x \in X$, it follows $P_{s}[f] \in \operatorname{Hol}(\mathbb{D}, \mathcal{B}(X, Y))$. We now claim that

$$
P_{s}[f] \in H^{p}(\mathbb{D}, \mathcal{B}(X, Y)) \text { and }\left\|P_{s}[f]\right\|_{H^{p}(\mathbb{D}, \mathcal{B}(X, Y))} \leq\|f\|_{L_{s o t}^{p}(\mathbb{T}, \mathcal{B}(X, Y))}
$$

For each $\zeta \in \mathbb{D}$ and a unit vector $x \in X$,

$$
\left\|P_{s}[f](\zeta) x\right\| \leq \int_{\mathbb{T}} P_{\zeta}(z)\|f(z)\| d m(z)=P[N(f)](\zeta)
$$

Thus $\left\|P_{s}[f](\zeta)\right\| \leq P[N(f)](\zeta)$ for all $\zeta \in \mathbb{D}$ and hence, by Lemma 2.1(a), we have

$$
\left\|\left(P_{S}[f]\right)_{r}\right\|_{L^{p}(\mathbb{T}, \mathcal{B}(X, Y))} \leq\left\|(P[N(f)])_{r}\right\|_{L^{p}(\mathbb{T})} \leq\|f\|_{L_{s o t}^{p}(\mathbb{T}, \mathcal{B}(X, Y))}
$$

which implies that $P_{s}[f] \in H^{p}(\mathbb{D}, \mathcal{B}(X, Y))$ and

$$
\left\|P_{s}[f]\right\|_{H^{p}(\mathbb{D}, \mathcal{B}(X, Y))} \leq\|f\|_{L_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))}
$$

This completes the proof.

We are ready to prove our main theorem. Before doing it, we would like to underline a reason why our proof is little intricate. Let $h \in H^{1}(\mathbb{D}, \mathcal{B}(X, Y))$ and assume that Y has the ARNP. Since $h(\cdot) x \in H^{1}(\mathbb{D}, Y)$ for each $x \in X$, there exists the following radial strong limit $b h$ a.e. on \mathbb{T} : i.e., for each $x \in X$,

$$
b h(z) x:=\lim _{r \rightarrow 1} h_{r}(z) x \quad(z \in \mathbb{T})
$$

Write

$$
E_{x}:=\{z \in \mathbb{T}: b h(z) x \text { does not exist }\} \quad \text { and } \quad E:=\bigcup_{x \in X} E_{x}
$$

Then $m\left(E_{x}\right)=0$ for each $x \in X$, but we don't guarantee $m(E)=0$. Thus the function $b h$ may not be defined almost everywhere on \mathbb{T}. Therefore $b h$ is not appropriate for a boundary function of h. The crucial point of our proof is how to construct a "boundary function" defined almost everywhere on \mathbb{T} for a function in $H^{p}(\mathbb{D}, \mathcal{B}(X, Y))$.

We will now prove Theorem 1.1, which we restate for the reader's convenience:
Theorem 1.1. Let X be a separable Banach space and Y be a Banach space satisfying the analytic Radon-Nikodým property. Then, for $1 \leq p \leq \infty$, the mapping $f \mapsto P_{s}[f]$ is an isometric isomorphism from $H_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ onto $H^{p}(\mathbb{D}, \mathcal{B}(X, Y))$.

Proof. Let X be a separable Banach space and Y be a Banach space satisfying the analytic Radon-Nikodým property. Let $h \in H^{1}(\mathbb{D}, \mathcal{B}(X, Y))$. Our first task is to define a "boundary function" $b_{s} h$ a.e. on \mathbb{T} for h. To do so, let $X_{0}=\left\{x_{n} \in X: n=1,2, \cdots\right\}$ be a countable dense subset of X. Then for each $n=1,2, \cdots$, there exists a measurable set E_{n} with $m\left(E_{n}\right)=0$ such that $b h(z) x_{n}=\lim _{r \rightarrow 1} h_{r}(z) x_{n}$ exists for all $z \in \mathbb{T} \backslash E_{n}$. Then $b h(\cdot) x_{n} \in H^{1}(\mathbb{T}, Y)$ for each $n=1,2, \cdots$. Put $E_{0}:=\cup_{n>1} E_{n}$. Then $m\left(E_{0}\right)=0$. For $z \in \mathbb{T} \backslash E_{0}$, let

$$
\begin{equation*}
q(z):=\sup \left\{\frac{\|b h(z) x\|}{\|x\|}: 0 \neq x \in X_{0}\right\} \tag{5}
\end{equation*}
$$

Observe that for all $z \in \mathbb{T} \backslash E_{0}$ and each $x \in X_{0}$,

$$
\begin{equation*}
\|b h(z) x\|=\lim _{r \rightarrow 1}\left\|h_{r}(z) x\right\| \leq \liminf _{r \rightarrow 1}\left\|h_{r}(z)\right\| \cdot\|x\| . \tag{6}
\end{equation*}
$$

Let $u(z):=\liminf _{r \rightarrow 1} N\left(h_{r}\right)(z)$. Since $h \in H^{1}(\mathbb{D}, \mathcal{B}(X, Y)), N\left(h_{r}\right)$ is in $L^{1}(\mathbb{T})$ for each $0 \leq r<1$, so that u is measurable. Also by (5) and (6), we have

$$
\begin{equation*}
0 \leq q(z) \leq u(z) \text { for all } z \in \mathbb{T} \backslash E_{0} \tag{7}
\end{equation*}
$$

On the other hand, by Fatou's lemma, we have

$$
\int_{\mathbb{T}} u(z) d m(z) \leq \lim \inf _{r \rightarrow 1} \int_{\mathbb{T}} N\left(h_{r}\right)(z) d m(z) \leq\|h\|_{H^{1}(\mathbb{D}, \mathcal{B}(X, Y))}<\infty
$$

which implies that $u \in L^{1}(\mathbb{T})$. Thus there exists a subset E_{u} of \mathbb{T} with $m\left(E_{u}\right)=0$ such that $u(z)<\infty$ for all $z \in \mathbb{T} \backslash E_{u}$. Hence, by $(7), q(z) \leq u(z)<\infty$ for all $z \in \mathbb{T} \backslash\left(E_{0} \cup E_{u}\right)$. Therefore $b h(z)$ can be extended to a bounded linear operator $b_{s} h(z)$ on X for almost all $z \in \mathbb{T}$: for each $z \in \mathbb{T} \backslash\left(E_{0} \cup E_{u}\right)$ and $x \in X$, define

$$
\begin{equation*}
b_{s} h(z) x:=\lim _{n \rightarrow \infty} b h(z) x_{n}, \tag{8}
\end{equation*}
$$

where $\left(x_{n}\right)$ is a sequence in X_{0} such that $x_{n} \rightarrow x$. We note that (8) is independent of the particular choice of the dense subset X_{0} of X and a sequence $\left(x_{n}\right)$ in X_{0} : indeed let Y_{0} is another countable dense subset of X and $\left(y_{n}\right)$ is a sequence in Y_{0} such that $y_{n} \rightarrow x$. By the same argument above, we see that for almost all $z \in \mathbb{T}$,

$$
q^{\prime}(z):=\sup \left\{\frac{\|b h(z) x\|}{\|x\|}: 0 \neq x \in X_{0} \cup Y_{0}\right\}<\infty
$$

Thus

$$
\left\|b h(z) x_{n}-b h(z) y_{n}\right\| \leq q^{\prime}(z)\left\|x_{n}-y_{n}\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

which implies that the function $b_{s} h(z)$ is well-defined on X for almost all $z \in \mathbb{T}$. (We call $b_{s} h$ the strong boundary function of h.)

Now let $1 \leq p \leq \infty$ and suppose $h \in H^{p}(\mathbb{D}, \mathcal{B}(X, Y))$. Then $b_{s} h(z) \in \mathcal{B}(X, Y)$ for almost all $z \in \mathbb{T}$ and it is easy to show that $b_{s} h$ is SOT measurable and hence, by Lemma 3.4, $N\left(b_{s} h\right)$ is measurable because X is separable. We claim that

$$
\begin{equation*}
b_{s} h \in H_{s o t}^{p}(\mathbb{T}, \mathcal{B}(X, Y)) \tag{9}
\end{equation*}
$$

To see this, we first observe that, by $(7), N\left(b_{s} h\right)(z)=q(z) \leq \liminf _{r \rightarrow 1} N\left(h_{r}\right)(z)$ for almost all $z \in \mathbb{T}$. Thus for $1 \leq p<\infty$, it follows from Fatou's lemma that

$$
\begin{align*}
\int_{\mathbb{T}} N\left(b_{s} h\right)(z)^{p} d m(z) & \leq \lim _{\inf _{r \rightarrow 1}} \int_{\mathbb{T}} N\left(h_{r}\right)(z)^{p} d m(z) \tag{10}\\
& \leq\|h\|_{H^{p}(\mathbb{D}, \mathcal{B}(X, Y))}^{p}<\infty
\end{align*}
$$

Let $x \in X$ be arbitrary and $\left(x_{n}\right)$ be a sequence in X_{0} such that $x_{n} \rightarrow x$. Then it follows from (10) that

$$
\begin{aligned}
\left\|b_{s} h(\cdot) x-b h(\cdot) x_{n}\right\|_{L^{p}(\mathbb{T}, Y)} & =\left(\int_{\mathbb{T}}\left\|b_{s} h(z)\left(x-x_{n}\right)\right\|^{p} d m(z)\right)^{\frac{1}{p}} \\
& \leq\|h\|_{H^{p}(\mathbb{D}, \mathcal{B}(X, Y))}\left\|x-x_{n}\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

But since $H^{p}(\mathbb{T}, Y)$ is a closed subspace of $L^{p}(\mathbb{T}, Y)$ and $b h(\cdot) x_{n} \in H^{p}(\mathbb{T}, Y)$, we have $b_{s} h(\cdot) x \in H^{p}(\mathbb{T}, Y)$, which together with (10) implies that $b_{s} h \in H_{s o t}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ and

$$
\left\|b_{s} h\right\|_{H_{s o t}^{p}(\mathbb{T}, \mathcal{B}(X, Y))} \leq\|h\|_{H^{p}(\mathbb{D}, \mathcal{B}(X, Y))}
$$

If instead $p=\infty$, then $h \in H^{1}(\mathbb{D}, \mathcal{B}(X, Y))$, so that $b_{s} h \in H_{\text {sot }}^{1}(\mathbb{T}, \mathcal{B}(X, Y))$. Also, it follows from (6) that

$$
\begin{equation*}
\left\|b_{s} h\right\|_{L_{\text {sot }}^{\infty}(\mathbb{T}, \mathcal{B}(X, Y))} \leq\|h\|_{H^{\infty}(\mathbb{D}, \mathcal{B}(X, Y))} \tag{11}
\end{equation*}
$$

Thus $b_{s} h \in H_{\text {sot }}^{\infty}(\mathbb{T}, \mathcal{B}(X, Y))$. This proves (9).
We next claim that

$$
\begin{equation*}
P_{s}\left[b_{s} h\right]=h . \tag{12}
\end{equation*}
$$

Let $x \in X$ be arbitrary. Then for each $\zeta=r e^{i \theta} \in \mathbb{D}$,

$$
\begin{align*}
\left\|P_{s}\left[b_{s} h\right](\zeta) x\right\| & \leq \frac{1+r}{1-r} \int_{\mathbb{T}}\left\|b_{s} h(z) x\right\| d m(z) \tag{13}\\
& \leq \frac{1+r}{1-r} \cdot\left\|b_{s} h\right\|_{L_{s o t}(\mathbb{T}, \mathcal{B}(X, Y))} \cdot\|x\|
\end{align*}
$$

Choose a sequence $\left(x_{n}\right)$ in X_{0} such that $x_{n} \rightarrow x$. Then for each $\zeta \in \mathbb{D}$,

$$
h(\zeta) x=\lim _{n \rightarrow \infty} h(\zeta) x_{n}=\lim _{n \rightarrow \infty} P_{s}\left[b_{s} h\right](\zeta) x_{n}=P_{s}\left[b_{s} h\right](\zeta) x
$$

where the last equality follows from (13). This proves (12). Thus the mapping $f \mapsto$ $P_{s}[f]$ is a surjection from $H_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ to $H^{p}(\mathbb{D}, \mathcal{B}(X, Y))$. Therefore, by Lemma 3.8 , (10) and (11), the mapping $f \mapsto P_{s}[f]$ is an isometry from $H_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ onto $H^{p}(\mathbb{D}, \mathcal{B}(X, Y))$. This completes the proof.

Theorem 1.1 may fail if the separability condition on X is dropped. For $z \in \mathbb{T}$ and $x \in \ell^{2}(\mathbb{T})$, let $f: \mathbb{T} \rightarrow \mathcal{B}\left(\ell^{2}(\mathbb{T})\right)$ be defined by

$$
(f(z) x)(s):= \begin{cases}x(z), & \text { if } s=z \\ 0, & \text { if } s \neq z\end{cases}
$$

Then by the argument in Remark 3.3, we have $N(f)=1$, and hence $f \in H_{s o t}^{p}\left(\mathbb{T}, \mathcal{B}\left(\ell^{2}(\mathbb{T})\right)\right)$ with $\|f\|_{H_{s o t}^{p}\left(\mathbb{T}, \mathcal{B}\left(\ell^{2}(\mathbb{T})\right)\right)}=1$ for all $1 \leq p \leq \infty$. Since $(f(z) x)(s)$ is zero for all $z \neq s$, it follows that for each $x \in \ell^{2}(\mathbb{T}), \zeta \in \mathbb{D}$ and $s \in \mathbb{T}$,

$$
\left(P_{s}[f](\zeta) x\right)(s)=\int_{\mathbb{T}} P_{\zeta}(z)(f(z) x)(s) d m(z)=0
$$

which implies that $P_{s}[f]=0$ in $H^{p}\left(\mathbb{D}, \mathcal{B}\left(\ell^{2}(\mathbb{T})\right)\right)$. Therefore, the mapping $f \mapsto P_{s}[f]$ is not an isometry.

We conclude with consideration on adjoints of functions in $H_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$.
For a function $f: \mathbb{T} \rightarrow \mathcal{B}(X, Y)$, define the "adjoint" $f^{*}: \mathbb{T} \rightarrow \mathcal{B}\left(Y^{*}, X^{*}\right)$ of f by

$$
f^{*}(z):=f(z)^{*} \quad(z \in \mathbb{T}) .
$$

We may ask the following question: for $1 \leq p \leq \infty$, does it follow that

$$
f \in H_{s o t}^{p}(\mathbb{T}, \mathcal{B}(X, Y)) \Longrightarrow f^{*} \in H_{s o t}^{p}\left(\mathbb{T}, \mathcal{B}\left(Y^{*}, X^{*}\right)\right) ?
$$

In the sequel, we give an affirmative answer to this question if X is reflexive. To begin with we review some definitions.

A function $f: \mathbb{T} \rightarrow X$ is called weakly integrable if $\left\langle f, x^{*}\right\rangle \in L^{1}(\mathbb{T})$ for every $x^{*} \in X^{*}$. If f is weakly integrable then the function $T_{f}: X^{*} \rightarrow L^{1}(\mathbb{T})$, defined by $T_{f} x^{*}:=\left\langle f, x^{*}\right\rangle$, is a bounded linear operator. A weakly integrable function $f: \mathbb{T} \rightarrow X$ is called Pettis integrable if the adjoint T_{f}^{*} of the operator T_{f} maps $L^{\infty}(\mathbb{T})$ into X. It is well known that
f is Bochner integrable $\Longrightarrow f$ is Pettis integrable $\Longrightarrow f$ is weakly integrable.
Also it is known (cf. [HNVW, Proposition 1.2.36.]) that for a weakly integrable function $f: \mathbb{T} \rightarrow X$, the following are equivalent:
(a) f is Pettis integrable;
(b) for each measurable set B in \mathbb{T}, there exists an element $x_{B} \in X$ such that for every $x^{*} \in X^{*}$ we have $\left\langle x_{B}, x^{*}\right\rangle=\int_{B}\left\langle f(z), x^{*}\right\rangle d m(z)$.
In this case, we shall write

$$
x_{B}=:(p)-\int_{B} f(z) d m(z),
$$

and call it the Pettis integral of f over B.
We then have:
Lemma 3.9. Let X be a reflexive Banach space, and let $f \in L_{\text {sot }}^{1}(\mathbb{T}, \mathcal{B}(X, Y))$. Then for each $y^{*} \in Y^{*}$ and $\zeta \in \mathbb{D}$, we have

$$
P_{s}[f]^{*}(\zeta) y^{*}=(p)-\int_{\mathbb{T}} P_{\zeta}(z) f^{*}(z) y^{*} d m(z),
$$

where $P_{s}[f]^{*}(\zeta):=P_{s}[f](\zeta)^{*}$.
Proof. Let X be reflexive and $f \in L_{\text {sot }}^{1}(\mathbb{T}, \mathcal{B}(X, Y))$. Then for all $x \in X$ and $y^{*} \in Y^{*}$, the mapping $z \mapsto\left\langle x, f^{*}(z) y^{*}\right\rangle=\left\langle f(z) x, y^{*}\right\rangle$ is measurable. But since X is reflexive, the
mapping $z \mapsto f^{*}(z) y^{*}$ is weakly measurable. Thus the mapping $z \mapsto P_{\zeta}(z) f^{*}(z) y^{*}$ is weakly measurable for each $\zeta=r e^{i \theta} \in \mathbb{D}$. For each $x \in X$,

$$
\begin{aligned}
\int_{\mathbb{T}}\left|\left\langle x, P_{\zeta}(z) f^{*}(z) y^{*}\right\rangle\right| d m(z) & =\int_{\mathbb{T}} P_{\zeta}(z)\left|\left\langle f(z) x, y^{*}\right\rangle\right| d m(z) \\
& \leq \frac{1+r}{1-r} \cdot\left\|y^{*}\right\| \cdot\|x\| \cdot\|f\|_{L_{s o t}^{1}(\mathbb{T}, \mathcal{B}(X, Y))} \\
& <\infty
\end{aligned}
$$

which implies that $P_{\zeta}(\cdot) f^{*}(\cdot) y^{*}$ is weakly integrable and hence Pettis integrable. Thus for all $x \in X$ and $\zeta \in \mathbb{D}$,

$$
\begin{aligned}
\left\langle P_{s}[f](\zeta) x, y^{*}\right\rangle & =\int_{\mathbb{T}}\left\langle x, P_{\zeta}(z) f^{*}(z) y^{*}\right\rangle d m(z) \\
& =\left\langle x,(p)-\int_{\mathbb{T}} P_{\zeta}(z) f^{*}(z) y^{*} d m(z)\right\rangle
\end{aligned}
$$

which gives the result.
We now have:
Theorem 3.10. Let X be a reflexive Banach space and $1 \leq p \leq \infty$. If $f \in H_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$, then $f^{*} \in H_{\text {sot }}^{p}\left(\mathbb{T}, \mathcal{B}\left(Y^{*}, X^{*}\right)\right)$. Moreover, $P_{s}\left[f^{*}\right]=P_{s}[f]^{*}$.

Proof. Let X be reflexive, $1 \leq p \leq \infty$, and $f \in H_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$. Since $\left\langle x, P_{s}[f]^{*}(\zeta) y^{*}\right\rangle=$ $\left\langle P_{s}[f](\zeta) x, y^{*}\right\rangle$ for all $x \in X$ and $y^{*} \in Y^{*}$, it follows from Lemma 3.8 that $P_{s}[f]^{*} \in$ $\operatorname{Hol}\left(\mathbb{D}, \mathcal{B}\left(Y^{*}, X^{*}\right)\right)$. For all $y^{*} \in Y^{*}$ and $\zeta \in \mathbb{D}$,

$$
\begin{aligned}
\left\|P_{s}[f]^{*}(\zeta) y^{*}\right\| & =\sup _{\|x\|=1}\left|\left\langle x, P_{s}[f]^{*}(\zeta) y^{*}\right\rangle\right| \\
& \leq \int_{\mathbb{T}} P_{\zeta}(z)\|f(z)\| d m(z) \cdot\left\|y^{*}\right\| \\
& =P[N(f)](\zeta) \cdot\left\|y^{*}\right\|
\end{aligned}
$$

which implies that $\left\|P_{s}[f]^{*}(\zeta)\right\| \leq P[N(f)](\zeta)$. It thus follows from Lemma 2.1(a) that

$$
\int_{\mathbb{T}}\left\|\left(P_{s}[f]^{*}\right)_{r}(z)\right\| d m(z) \leq \int_{\mathbb{T}}(P[N(f)])_{r}(z) d m(z) \leq\|f\|_{L_{s o t}^{1}(\mathbb{T}, \mathcal{B}(X, Y))}
$$

This proves that $P_{s}[f]^{*} \in H^{1}\left(\mathbb{D}, \mathcal{B}\left(Y^{*}, X^{*}\right)\right)$. On the other hand, for all $x \in X$ and $y^{*} \in Y^{*}$, we have that for almost all $z \in \mathbb{T}$,

$$
\begin{align*}
\lim _{r \rightarrow 1}\left\langle x, P_{s}[f]^{*}(r z) y^{*}\right\rangle & =\lim _{r \rightarrow 1}\left\langle P_{s}[f](r z) x, y^{*}\right\rangle \\
& =\lim _{r \rightarrow 1}\left(P\left[\left\langle f(\cdot) x, y^{*}\right\rangle\right]\right)_{r}(z) \tag{14}\\
& =\left\langle x, f^{*}(z) y^{*}\right\rangle
\end{align*}
$$

where the last equality follows from the fact that $\left\langle f(\cdot) x, y^{*}\right\rangle \in L^{p}(\mathbb{T})$. Since X^{*} has the ARNP and $P_{s}[f]^{*}(\cdot) y^{*} \in H^{1}\left(\mathbb{D}, X^{*}\right)$, it follows that

$$
b P_{s}[f]^{*}(z) y^{*}:=\lim _{r \rightarrow 1} P_{s}[f]^{*}(r z) y^{*}
$$

exists for almost all $z \in \mathbb{T}$. Since X is reflexive, by the Hahn-Banach Theorem and (14), $f^{*}(\cdot) y^{*}=b P_{s}[f]^{*}(\cdot) y^{*} \in H^{1}\left(\mathbb{T}, X^{*}\right)$. In particular, f^{*} is SOT measurable, and hence $f^{*} \in H_{\text {sot }}^{p}\left(\mathbb{T}, \mathcal{B}\left(Y^{*}, X^{*}\right)\right)$. On the other hand, since $f \in H_{\text {sot }}^{1}(\mathbb{T}, \mathcal{B}(X, Y))$, it follows from Lemma 3.9 that for each $y^{*} \in Y^{*}$ and $\zeta \in \mathbb{D}$,

$$
P_{s}[f]^{*}(\zeta) y^{*}=(p)-\int_{\mathbb{T}} P_{\zeta}(z) f^{*}(z) y^{*} d m(z)=P_{s}\left[f^{*}\right](\zeta) y^{*},
$$

which implies $P_{s}\left[f^{*}\right]=P_{s}[f]^{*}$. This completes the proof.
Theorem 3.10 may fail if the reflexive condition on X is dropped. To see this, let $f: \mathbb{T} \rightarrow \mathcal{B}\left(\ell^{1}\right)$ be defined by

$$
(f(z) x)(n):=z^{n} x(n) \quad\left(x \equiv(x(n)) \in \ell^{1}\right) .
$$

Then it is not difficult to show that $f \in H_{\text {sot }}^{\infty}\left(\mathbb{T}, \mathcal{B}\left(\ell^{1}\right)\right)$ and f^{*} is not SOT measurable (cf. Example 2.2), so that $f^{*} \notin H_{\text {sot }}^{\infty}\left(\mathbb{T}, \mathcal{B}\left(\ell^{\infty}\right)\right)$. Note that ℓ^{1} is not reflexive.

4. Appendix: Strong H^{p}-spaces

We devote this section to a general discussion of the circle companions of strong $H^{p_{-}}$ spaces.

For $1 \leq p \leq \infty$, let $H_{s}^{p}(\mathbb{D}, \mathcal{B}(X, Y))$ be the space of all functions h in $\operatorname{Hol}(\mathbb{D}, \mathcal{B}(X, Y))$ such that $h(\cdot) x \in H^{p}(\mathbb{D}, Y)$ for every $x \in X: H_{s}^{p}(\mathbb{D}, \mathcal{B}(X, Y))$ is called a strong H^{p}-space (cf. [Ni]). If $h \in H_{s}^{p}(\mathbb{D}, \mathcal{B}(X, Y))$, then we can easily show that the mapping $x \mapsto h(\cdot) x$ is a closed linear transformation from X into $H^{p}(\mathbb{D}, Y)$, so that by the Closed Graph Theorem, it is bounded. Let

$$
\|h\|_{H_{s}^{p}(\mathbb{D}, \mathcal{B}(X, Y))}:=\sup \left\{\|h(\cdot) x\|_{H^{p}(\mathbb{D}, Y)}: x \in X \text { with }\|x\| \leq 1\right\}
$$

Then $H_{s}^{p}(\mathbb{D}, \mathcal{B}(X, Y))$ is a normed space and

$$
\begin{equation*}
H^{p}(\mathbb{D}, \mathcal{B}(X, Y)) \subseteq H_{s}^{p}(\mathbb{D}, \mathcal{B}(X, Y)) \quad(1 \leq p \leq \infty) \tag{15}
\end{equation*}
$$

Also we can easily check that $H_{s}^{\infty}(\mathbb{D}, \mathcal{B}(X, Y))=H^{\infty}(\mathbb{D}, \mathcal{B}(X, Y))$. However, if $1 \leq p<\infty$ then the inclusion in (15) may be proper.

Example 4.1. Let $1 \leq p<\infty$. For $\zeta \in \mathbb{D}$, define $h(\zeta): H^{p}(\mathbb{T}) \rightarrow \mathbb{C}$ by

$$
h(\zeta) f:=P[f](\zeta) \quad\left(f \in H^{p}(\mathbb{T})\right) .
$$

Then for each $\zeta=r e^{i \theta} \in \mathbb{D}$,

$$
\begin{aligned}
\|h(\zeta)\|_{\mathcal{B}\left(H^{p}(\mathbb{T}), \mathbb{C}\right)} & =\sup \left\{\left\|P[f]\left(r e^{i \theta}\right)\right\|:\|f\|_{H^{p}(\mathbb{T})}=1\right\} \\
& \leq \frac{1+r}{1-r} \cdot \sup \left\{\|f\|_{H^{1}(\mathbb{T})}:\|f\|_{H^{p}(\mathbb{T})}=1\right\} \\
& \leq \frac{1+r}{1-r},
\end{aligned}
$$

which implies that $h(\zeta)$ is a bounded linear operator. Thus it is easy to show that $h \in H_{s}^{p}\left(\mathbb{D}, \mathcal{B}\left(H^{p}(\mathbb{T}), \mathbb{C}\right)\right)$ and $\|h\|_{H_{s}^{p}\left(\mathbb{D}, \mathcal{B}\left(H^{p}(\mathbb{T}), \mathbb{C}\right)\right)}=1$. However, $h \notin H^{p}\left(\mathbb{D}, \mathcal{B}\left(H^{p}(\mathbb{T}), \mathbb{C}\right)\right)$: indeed, for each $z \in \mathbb{T}$, let

$$
f_{z}(s):=e^{\frac{s+z}{s-z}} \quad(s \in \mathbb{T}) .
$$

Then f_{z} is inner, so that $\left\|f_{z}\right\|_{H^{p}(\mathbb{T})}=1$. Thus

$$
\left\|h_{r}(z)\right\| \geq\left|h_{r}(z) f_{z}\right|=e^{\frac{r+1}{r-1}}
$$

so that

$$
\sup _{0 \leq r<1}\left(\int_{\mathbb{T}}\left\|h_{r}(z)\right\|^{p} d m(z)\right)^{\frac{1}{p}} \geq \sup _{0 \leq r<1} e^{\frac{r+1}{r-1}}=\infty,
$$

which implies that $h \notin H^{p}\left(\mathbb{D}, \mathcal{B}\left(H^{p}(\mathbb{T}), \mathbb{C}\right)\right)$.
Let $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ be the set of all linear transformations between normed spaces \mathcal{X} and \mathcal{Y}. For a subset F of a Banach space X, let $\operatorname{sp}(F)$ denote the linear span of F. For $1 \leq p \leq \infty$, let $L_{s}^{p}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))$ be the space of all (equivalence classes of) functions $f: \mathbb{T} \rightarrow \mathcal{L}(\operatorname{sp}(F), Y)$ satisfying
(i) $f(\cdot) x \in L^{p}(\mathbb{T}, Y)$ for all $x \in \operatorname{sp}(F)$; as usual, we identify f and g when $f(\cdot) x=g(\cdot) x$ in $L^{p}(\mathbb{T}, Y)$ for all $x \in \operatorname{sp}(F)$;
(ii) $\|f\|_{L_{s}^{p}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))}:=\sup \left\{\|f(\cdot) x\|_{L^{p}(\mathbb{T}, Y)}: x \in \operatorname{sp}(F)\right.$ with $\left.\|x\| \leq 1\right\}<\infty$.

Then $L_{s}^{p}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))$ is a normed space and

$$
L_{s}^{q}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y)) \subseteq L_{s}^{p}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y)) \quad \text { if } 1 \leq p \leq q \leq \infty
$$

We now define $H_{s}^{p}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))$ as the space of all (equivalence classes of) functions $f \in$ $L_{s}^{p}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))$ such that $f(\cdot) x \in H^{p}(\mathbb{T}, Y)$ for all $x \in \operatorname{sp}(F)$. We note that Definition 3.7 is still well-defined for functions in $H_{s}^{1}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))$; i.e., for $f \in H_{s}^{1}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))$ and $x \in \operatorname{sp}(F)$,

$$
P_{s}[f](\zeta) x:=P[f(\cdot) x](\zeta) \quad(\zeta \in \mathbb{D}) .
$$

We then have:
Lemma 4.2. Let X, Y be Banach spaces and $F \subseteq X$. Suppose $f \in H_{s}^{1}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))$. If $\left(x_{n}\right)$ is a Cauchy sequence in $\operatorname{sp}(F)$, then the sequence $\left(P_{s}[f](\cdot) x_{n}\right)$ converges uniformly on every compact subset of \mathbb{D}.

Proof. Suppose $f \in H_{s}^{1}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))$ and K is a compact subset of \mathbb{D}. Then $r \equiv$ $\max \{|\zeta|: \zeta \in K\}<1$. Let $\left(x_{n}\right)$ be a Cauchy sequence in $\operatorname{sp}(F)$ and $\epsilon>0$ be arbitrary. For all $\zeta=r e^{i \theta} \in K$, there exists $N>0$ such that if $m>n>N$, then

$$
\begin{align*}
\left\|P_{s}[f](\zeta) x_{n}-P_{s}[f](\zeta) x_{m}\right\| & =\left\|\int_{\mathbb{T}} P_{\zeta}(z) f(z)\left(x_{n}-x_{m}\right) d m(z)\right\| \\
& \leq \frac{1+r}{1-r} \cdot \int_{\mathbb{T}}\left\|f(z)\left(x_{n}-x_{m}\right)\right\| d m(z) \tag{16}\\
& \leq \frac{1+r}{1-r} \cdot\|f\|_{L_{s}^{1}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))}\left\|x_{n}-x_{m}\right\|<\frac{\epsilon}{2}
\end{align*}
$$

Thus $\left(P_{s}[f](\cdot) x_{n}\right)$ converges pointwise to a function $h: \mathbb{D} \rightarrow Y$. Fixing $n>N$ and letting $m \rightarrow \infty,(16)$ leads to

$$
\left\|P_{s}[f](\zeta) x_{n}-h(\zeta)\right\|=\lim _{m \rightarrow \infty}\left\|P_{s}[f](\zeta) x_{n}-P_{s}[f](\zeta) x_{m}\right\|<\epsilon \quad \text { for all } \zeta \in K
$$

which implies $\left(P_{s}[f](\cdot) x_{n}\right)$ converges uniformly on K.

Now if X is separable Banach space, we may define $P_{s}[f](\zeta)$ on X for all $\zeta \in \mathbb{D}$ by virtue of Lemma 4.2. This is a reason why we introduce $\operatorname{sp}(F)$. Indeed, let X, Y be Banach spaces and assume that X is separable and F is a dense subset of X. Then by Lemma 4.2, given a function $f \in H_{s}^{1}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))$, we may define an extension $\bar{P}_{s}[f](\zeta)$ of $P_{s}[f](\zeta)$ to X for each $\zeta \in \mathbb{D}$: in other words, if $x \in X$, then there exists a sequence $\left(x_{n}\right)$ in $\operatorname{sp}(F)$ such that $x_{n} \rightarrow x$, so that by Lemma $4.2,\left(P_{s}[f](\zeta) x_{n}\right)$ is a convergent sequence for each $\zeta \in \mathbb{D}$ and hence, we can define, for each $x \in X$,

$$
\begin{equation*}
\bar{P}_{s}[f](\zeta) x:=\lim _{n \rightarrow \infty} P_{s}[f](\zeta) x_{n} \quad(\zeta \in \mathbb{D}) \tag{17}
\end{equation*}
$$

We note that the limit in (17) is independent of the particular choice of $\left(x_{n}\right)$ because if $\left(y_{n}\right)$ is another sequence in $\operatorname{sp}(F)$ such that $y_{n} \rightarrow x$, then by the same argument as in (16) we have, for all $\zeta \in \mathbb{D}$,

$$
\left\|P_{s}[f](\zeta) x_{n}-P_{s}[f](\zeta) y_{n}\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

which implies that the function $\bar{P}_{s}[f](\zeta)$ is well-defined on X. For simplicity, and since doing so will not lead to confusion, we will keep denoting by $P_{s}[f]$ the extension $\bar{P}_{s}[f]$ defined by (17).

We then have:
Theorem 4.3. Let X, Y be Banach spaces and F be a dense subset of X. Then the mapping $f \mapsto P_{s}[f]$ is an isometry from $H_{s}^{p}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))$ to $H_{s}^{p}(\mathbb{D}, \mathcal{B}(X, Y))$ for each $1 \leq p \leq \infty$.

Proof. Let $f \in H_{s}^{p}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))(1 \leq p \leq \infty)$ and $\zeta=r e^{i \theta} \in \mathbb{D}$. Clearly, $P_{s}[f](\zeta)$ is linear on X. If $x \in X$, then there exists a sequence $\left(x_{n}\right)$ in $\operatorname{sp}(F)$ such that $x_{n} \rightarrow x$. Thus we have

$$
\begin{aligned}
\left\|P_{s}[f](\zeta) x\right\| & =\lim _{n \rightarrow \infty}\left\|\int_{\mathbb{T}} P_{\zeta}(z) f(z) x_{n} d m(z)\right\| \\
& \leq \frac{1+r}{1-r} \cdot\|f\|_{L_{s}^{1}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))}\|x\|
\end{aligned}
$$

which implies that $P_{s}[f](\zeta) \in \mathcal{B}(X, Y)$. For each $y^{*} \in Y^{*}$, it follows from Lemma 4.2 that $\left\langle P_{s}[f](\zeta) x_{n}, y^{*}\right\rangle$ converges uniformly to $\left\langle P_{s}[f](\zeta) x, y^{*}\right\rangle$ on every compact subset of \mathbb{D}. Thus $P_{s}[f] \in \operatorname{Hol}(\mathbb{D}, \mathcal{B}(X, Y))$. Now we claim that

$$
\begin{equation*}
P_{s}[f] \in H_{s}^{p}(\mathbb{D}, \mathcal{B}(X, Y)) \text { and }\left\|P_{s}[f]\right\|_{H_{s}^{p}(\mathbb{D}, \mathcal{B}(X, Y))} \leq\|f\|_{L_{s}^{p}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))} \tag{18}
\end{equation*}
$$

We split the proof into two cases.

Case $1(1 \leq p<\infty)$: Let x be an arbitrary unit vector in X and $\left(x_{n}\right)$ be a sequence in $\operatorname{sp}(F)$ such that $x_{n} \rightarrow x$. Since $P\left[f(\cdot) x_{n}\right] \in H^{p}(\mathbb{D}, Y)$, the mapping $z \mapsto\left\|\left(P_{s}[f]\right)_{r}(z) x_{n}\right\|^{p}$ is measurable for all $n \in \mathbb{N}$. Thus it follows from Fatou's lemma and Lemma 2.1(a) that

$$
\begin{aligned}
\left\|\left(P_{s}[f]\right)_{r}(\cdot) x\right\|_{L^{p}(\mathbb{T}, Y)} & =\left(\int_{\mathbb{T}} \lim _{n \rightarrow \infty}\left\|\left(P_{s}[f]\right)_{r}(z) x_{n}\right\|^{p} d m(z)\right)^{\frac{1}{p}} \\
& \leq \lim _{\inf _{n \rightarrow \infty}}\left\|\left(P_{s}[f]\right)_{r}(\cdot) x_{n}\right\|_{L^{p}(\mathbb{T}, Y)} \\
& \leq \lim \inf _{n \rightarrow \infty}\left\|f(\cdot) x_{n}\right\|_{L^{p}(\mathbb{T}, Y)} \\
& \leq\|f\|_{L_{s}^{p}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))},
\end{aligned}
$$

which proves (18).
Case $2(p=\infty)$: Assume to the contrary that

$$
\left\|P_{s}[f]\right\|_{H_{s}^{\infty}(\mathbb{D}, \mathcal{B}(X, Y))}>\|f\|_{L_{s}^{\infty}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))} .
$$

Then there exists a unit vector x_{0} in X and $\zeta_{0} \in \mathbb{D}$ such that $\left\|P_{s}[f]\left(\zeta_{0}\right) x_{0}\right\|$ $>\|f\|_{L_{s}^{\infty}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))}$. Choose a sequence $\left(x_{n}\right)$ in $\operatorname{sp}(F)$ such that $x_{n} \rightarrow x_{0}$. Then for sufficiently large N,

$$
\left\|P_{s}[f]\left(\zeta_{0}\right) x_{N}\right\|>\|f\|_{L_{s}^{\infty}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))} \geq\left\|f(\cdot) x_{N}\right\|_{L^{\infty}(\mathbb{T}, Y)},
$$

which is a contradiction by Lemma 2.1(a). This proves (18) with $p=\infty$.
Now for all $x \in \operatorname{sp}(F)$, it follows that $\|f(\cdot) x\|_{L^{p}(\mathbb{T}, Y)}=\left\|P_{s}[f](\cdot) x\right\|_{H^{p}(\mathbb{D}, Y)}$ and hence $\|f\|_{L_{s}^{p}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))} \leq\left\|P_{s}[f]\right\|_{H_{s}^{p}(\mathbb{D}, \mathcal{B}(X, Y))}$. Therefore, by (18), the mapping $f \mapsto P_{s}[f]$ is an isometry from $H_{s}^{p}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))$ to $H_{s}^{p}(\mathbb{D}, \mathcal{B}(X, Y))$. This completes the proof.
Corollary 4.4. Let X, Y be Banach spaces, and assume that X is separable and Y has the ARNP. For a countable dense subset F of X and $1 \leq p \leq \infty$, the mapping $f \mapsto P_{s}[f]$ is an isometric isomorphism from $H_{s}^{p}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))$ onto $H_{s}^{p}(\mathbb{D}, \mathcal{B}(X, Y))$.
Proof. A similar argument to (12) shows that the mapping $f \mapsto P_{s}[f]$ is a surjection from $H_{s}^{p}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))$ into $H_{s}^{p}(\mathbb{D}, \mathcal{B}(X, Y))$. Thus the result follows at once from Theorem 4.3.

For $1 \leq p \leq \infty$, let $L_{s}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ be the space of all (equivalence classes of) SOT measurable functions $f: \mathbb{T} \rightarrow \mathcal{B}(X, Y)$ such that $f(\cdot) x \in L^{p}(\mathbb{T}, Y)$ for all $x \in X$; we identify f and g when $f(\cdot) x=g(\cdot) x$ in $L^{p}(\mathbb{T}, Y)$ for all $x \in X$. If $f \in L_{s}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$, then it follows from the Closed Graph Theorem that

$$
\|f\|_{L_{s}^{p}(\mathbb{T}, \mathcal{B}(X, Y))}:=\sup \left\{\|f(\cdot) x\|_{L^{p}(\mathbb{T}, Y)}: x \in X \text { with }\|x\| \leq 1\right\}<\infty .
$$

Then $L_{s}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ is a normed space (cf. [CHL1], [HNVW], [Pe]). In general, the space $L_{s}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ is not complete (cf. [HNVW, p.64]). Also we define $H_{s}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ by the space of all (equivalence classes of) functions $f \in L_{s}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ such that $f(\cdot) x \in$ $H^{p}(\mathbb{T}, Y)$ for every $x \in X$.
Example 4.5. In view of Lemma 3.4, we may ask whether or not $L_{s}^{p}(\mathbb{T}, \mathcal{B}(X, Y))=$ $L_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ if X and Y are separable Banach spaces. The answer, however, is negative. To see this, we use the notation

$$
\left(\mathbf{1}_{F} \otimes x\right)(z):=\mathbf{1}_{F}(z) x \quad \text { for } x \in X, F \subseteq \mathbb{T} .
$$

Write $H^{2} \equiv H^{2}(\mathbb{T})$ and define a function $f: \mathbb{T} \rightarrow \mathcal{B}\left(H^{2}\right)$ by

$$
\begin{equation*}
(f(z) x)(s):=\widehat{x}(0)+\sum_{n=1}^{\infty}\left(\mathbf{1}_{F_{n}} \otimes \sqrt{2 n} \widehat{x}(n)\right)(z) s^{n} \quad\left(x \in H^{2}\right) \tag{19}
\end{equation*}
$$

where $F_{n}:=\left\{e^{i \theta}:\left(2-\frac{1}{n}\right) \pi \leq \theta<2 \pi\right\}$ for $n=1,2, \cdots$. Let

$$
E_{0}:=\left\{e^{i \theta}: 0<\theta<\pi\right\} \quad \text { and } \quad E_{n}:=F_{n} \backslash F_{n+1} \quad \text { for } n=1,2, \cdots
$$

Then for each $1 \neq z \in \mathbb{T}$, there exists $N \geq 0$ such that $z \in E_{N}$. Thus, by (19), we have that for $N \geq 1$,

$$
\begin{equation*}
(f(z) x)(s)=\widehat{x}(0)+\sum_{n=1}^{N} \sqrt{2 n} \widehat{x}(n) s^{n} \quad\left(z \in E_{N}\right) \tag{20}
\end{equation*}
$$

which implies $f(z) \in \mathcal{B}\left(H^{2}\right)$. For $x \in H^{2}$, it follows from (20) that

$$
\begin{aligned}
\|f(\cdot) x\|_{L^{2}\left(\mathbb{T}, H^{2}\right)}^{2} & =\sum_{N=0}^{\infty} \int_{E_{N}}\|f(z) x\|^{2} d m(z) \\
& =\frac{1}{2}|\widehat{x}(0)|^{2}+\sum_{N=1}^{\infty}\left(|\widehat{x}(0)|^{2}+\sum_{n=1}^{N} 2 n|\widehat{x}(n)|^{2}\right) m\left(E_{N}\right) \\
& =|\widehat{x}(0)|^{2}+\sum_{n=1}^{\infty} 2 n|\widehat{x}(n)|^{2} m\left(F_{n}\right) \\
& =\|x\|_{H^{2}}^{2},
\end{aligned}
$$

which proves that $f \in L_{s}^{2}\left(\mathbb{T}, \mathcal{B}\left(H^{2}\right)\right)$. However, we have $f \notin L_{s o t}^{2}\left(\mathbb{T}, \mathcal{B}\left(H^{2}\right)\right)$: indeed if $z \in E_{n}(n \geq 1)$ then it follows from (20) that $\left\|f(z) s^{n}\right\|_{H^{2}}=\sqrt{2 n}$. Thus

$$
\int_{\mathbb{T}}\|f(z)\|^{2} d m(z)=\sum_{n=0}^{\infty} \int_{E_{n}}\|f(z)\|^{2} d m(z) \geq \frac{1}{2}+\sum_{n=1}^{\infty} \frac{1}{n+1}=\infty
$$

which implies that $f \notin L_{\text {sot }}^{2}\left(\mathbb{T}, \mathcal{B}\left(H^{2}\right)\right)$.
The following diagram summarizes the preceding arguments.
Let X be a separable Banach space, Y be a Banach space satisfying the ARNP and F be a countable dense subset of X. Then for all $1 \leq p \leq \infty$,

$$
\begin{array}{cc}
H^{p}(\mathbb{T}, \mathcal{B}(X, Y)) \varsubsetneqq H_{s o t}^{p}(\mathbb{T}, \mathcal{B}(X, Y)) \varsubsetneqq H_{s}^{p}(\mathbb{T}, \mathcal{B}(X, Y)) \varsubsetneqq H_{s}^{p}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y)) \\
\imath \| P_{s} & \imath \| \tag{21}\\
H^{p}(\mathbb{D}, \mathcal{B}(X, Y)) & P_{s} \\
H_{s}^{p}(\mathbb{D}, \mathcal{B}(X, Y)) .
\end{array}
$$

We note that all the inclusions on the first line of (21) are strict. Indeed, in Example 3.6, we saw $H^{p}(\mathbb{T}, \mathcal{B}(X, Y)) \neq H_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$ in general. We give some examples such that the other two inclusions are strict.

Example 4.6. (a) In general, $H_{\text {sot }}^{p}(\mathbb{T}, \mathcal{B}(X, Y)) \neq H_{s}^{p}(\mathbb{T}, \mathcal{B}(X, Y))$. Indeed, for a separable Hilbert space E, there exists a function $g \in H_{s}^{2}(\mathbb{T}, \mathcal{B}(E))$ such that $g \notin H_{\text {sot }}^{2}(\mathbb{T}, \mathcal{B}(E))$. To see this, we introduce some notations. For $f \in L_{s}^{2}(\mathbb{T}, \mathcal{B}(E))$, we denote by f_{-}and f_{+} the functions

$$
\begin{array}{ll}
f_{-}(z) x:=\left(P_{-}(f(\cdot) x)\right)(\bar{z}) & (z \in \mathbb{T}, x \in E) ; \\
f_{+}(z) x:=\left(P_{+}(f(\cdot) x)\right)(z) \quad(z \in \mathbb{T}, x \in E),
\end{array}
$$

where P_{+}and P_{-}are the orthogonal projections from $L^{2}(\mathbb{T}, E)$ onto $H^{2}(\mathbb{T}, E)$ and $L^{2}(\mathbb{T}, E) \ominus$ $H^{2}(\mathbb{T}, E)$, respectively (cf. [Pe]). Then, $f_{-}, f_{+} \in H_{s}^{2}(\mathbb{T}, \mathcal{B}(E))$ and we may write

$$
f(z)=f_{+}(z)+f_{-}(\bar{z}) \quad(z \in \mathbb{T}) .
$$

Let f be the function given in (19). Assume that $f_{+} \in H_{\text {sot }}^{2}\left(\mathbb{T}, \mathcal{B}\left(H^{2}\right)\right)$ and $f_{-} \in$ $H_{\text {sot }}^{2}\left(\mathbb{T}, \mathcal{B}\left(H^{2}\right)\right)$. Observe that for $z \in \mathbb{T}$,

$$
\|f(z)\|^{2} \leq\left\|f_{-}(\bar{z})\right\|^{2}+\left\|f_{+}(z)\right\|^{2}+2\left\|f_{-}(\bar{z})\right\|\left\|f_{+}(z)\right\| .
$$

It thus follows from Hölder's inequality that

$$
\begin{aligned}
\int_{\mathbb{T}}\|f(z)\|^{2} d m(z) & \leq \int_{\mathbb{T}}\left\|f_{-}(z)\right\|^{2} d m(z)+\int_{\mathbb{T}}\left\|f_{+}(z)\right\|^{2} d m(z) \\
& +2\left(\int_{\mathbb{T}}\left\|f_{-}(z)\right\|^{2} d m(z)\right)^{\frac{1}{2}}\left(\int_{\mathbb{T}}\left\|f_{+}(z)\right\|^{2} d m(z)\right)^{\frac{1}{2}} \\
& <\infty,
\end{aligned}
$$

which is a contradiction. We thus have $f_{+} \notin H_{\text {sot }}^{2}\left(\mathbb{T}, \mathcal{B}\left(H^{2}\right)\right)$ or $f_{-} \notin H_{\text {sot }}^{2}\left(\mathbb{T}, \mathcal{B}\left(H^{2}\right)\right)$. Note that H^{2} is a separable Hilbert space.
(b) In general, $H_{s}^{p}(\mathbb{T}, \mathcal{B}(X, Y)) \neq H_{s}^{p}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), Y))$. To see this, define $f: \mathbb{T} \rightarrow$ $\mathcal{L}\left(\ell^{2}, \mathbb{C}\right)$ by

$$
f(z) x:=\sum_{n=1}^{\infty} x(n) z^{n} \quad\left(x \equiv(x(n)) \in \ell^{2}\right) .
$$

Then $f(z)$ is not bounded for all $z \in \mathbb{T}$ because for any $z_{0} \in \mathbb{T}$, if we let

$$
x_{0}(n):=\frac{\bar{z}_{0}^{n}}{n} \quad(n=1,2, \cdots),
$$

then $f\left(z_{0}\right) x_{0}=\sum_{n=1}^{\infty} \frac{1}{n}=\infty$. Thus, $f \notin H_{s}^{2}\left(\mathbb{T}, \mathcal{B}\left(\ell^{2}, \mathbb{C}\right)\right)$. On the other hand, let

$$
F:=\left\{\sum_{n \in \Omega} \alpha_{n} e_{n}: \alpha_{n} \in \mathbb{Q} \text { and } \Omega \text { is a finite subset of } \mathbb{N}\right\},
$$

where \mathbb{Q} is a countable dense subset of \mathbb{C} and $\left\{e_{n}: n=1,2, \cdots\right\}$ is the canonical orthonormal basis for ℓ^{2}. Then F is a countable dense subset of ℓ^{2} and we can easily see that $f \in H_{s}^{2}(\mathbb{T}, \mathcal{L}(\operatorname{sp}(F), \mathbb{C}))$.

Declarations of interest: none.

Author contributions: All authors have contributed equally to all relevant areas of the manuscript.

Acknowledgments. The authors are deeply indebted to the referee of a previous version for many suggestions on the structure, substance, and style of the paper, which have helped improved the presentation; those suggestions have been incorporated into this version. The work of the second named author was supported by NRF(Korea) grant No. 2022R1A2C1010830. The work of the third named author was supported by NRF (Korea) grant No. 2020R1I1A1A01053085. The work of the fourth named author was supported by NRF(Korea) grant No. 2021R1A2C1005428.

References

[Bl] O. Blasco, Boundary values of functions in vector-valued Hardy spaces and geometry on Banach spaces, J. Funct. Anal. 78 (1988), 346-364.
[Bu] A.V. Bukhvalov, Hardy spaces of vector-valued functions, Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Naul SSSR 65 (1976), 5-16.
[BD] A.V. Bukhvalov and A.A. Danilevich, Boundary properties of analytic and harmonic functions with values in a Banach space, Mat Zametki 31 (1982), 203-214; Math. Notes 31 (1982), 104-110.
[CHL1] R.E. Curto, I.S. Hwang and W.Y. Lee, The Beurling-Lax-Halmos theorem for infinite multiplicity, J. Funct. Anal. 280 (2021), art. 108884, 101 pp.
[CHL2] R.E. Curto, I.S. Hwang and W.Y. Lee, Operator-valued rational functions, J. Funct. Anal. 283 (2022), art. 109640, 23 pp.
[Do] P.N. Dowling, The analytic Radon-Nikodým property in Lebesgue Bochner function spaces, Proc. Amer. Math. Soc. 99 (1987), 119-122.
[DE] P.N. Dowling and G.A. Edgar, Some characterizations of the analytic Radon-Nikodým property in Banach spaces, J. Funct. Anal. 80 (1988), 349-357.
[Ed] G.A. Edgar, Analytic Martingale convergence, J. Funct. Anal. 69 (1986), 268-280.
[HNVW] T. Hytönen, J. van Neerven, M. Veraar, and L. Weis, Analysis in Banach Spaces Volume I: Martingales and Littlewood-Paley Theory, Springer, Cham, 2016.
[Ni] N.K. Nikolski, Operators, Functions, and Systems: An Easy Reading Volume I: Hardy, Hankel, and Toeplitz, Mathematical Surveys and Monographs, vol. 92, Amer. Math. Soc., Providence, 2002.
[Pe] V. Peller, Hankel Operators and Their Applications, Springer, New York, 2003.
[Ru] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1987.

Raúl E. Curto
Department of Mathematics, University of Iowa, Iowa City, IA 52242, U.S.A.
E-mail: raul-curto@uiowa.edu
In Sung Hwang
Department of Mathematics, Sungkyunkwan University, Suwon 16419, Korea
E-mail: ihwang@skku.edu
Sumin Kim
Department of Mathematics, Sungkyunkwan University, Suwon 16419, Korea

E-mail: suminkim1023@gmail.com
Woo Young Lee
School of Mathematics, Korea Institute for Advanced Study (KIAS), Seoul 02245, Korea E-mail: wylee@kias.re.kr

[^0]: Mathematics Subject Classification (2020). Primary 42B30, 30H10, 46E40, 46E30
 Keywords. Operator-valued Hardy spaces, the analytic Radon-Nikodým property, SOT measurable functions, strong Poisson integrals, strong boundary functions, circle companions.

