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Abstract. This paper gives a complete answer to the following problem: Find the circle
companion of the Hardy space of the unit disk with values in the space of all bounded
linear operators between two separable Hilbert spaces. Classically, the problem asks
whether for each function h on the unit disk, there exists a “boundary function” bh on
the unit circle such that the mapping bh 7→ h is an isometric isomorphism between Hardy
spaces of the unit circle and the unit disk with values in some Banach space. For the case
of bounded linear operator-valued functions, we construct a Hardy space of the unit circle
such that its elements are SOT measurable, and their norms are integrable: indeed, this
new space is isometrically isomorphic to the Hardy space of the unit disk via a “strong
Poisson integral.”

1. Introduction

We solve an old and outstanding problem in the theory of Hardy spaces. For 1 ≤ p ≤ ∞
and X a Banach space, consider the Hardy space Hp(D, X) of X–valued functions defined
on the unit disk D. For each h ∈ Hp(D, X), we try to associate a function bh, which
captures the boundary values of h. Our goal is to identify a Banach space C of X–valued
functions defined on the unit circle T which represent, in a natural and canonical way, the
boundary values of functions in Hp(D, X). When the mapping h 7→ bh is an isometric
isomorphism from Hp(D, X) onto C, we say that C is the “circle companion” of Hp(D, X).

In this paper, we find the circle companion of the Hardy space of the unit disk with
values in B(D,E), the space of all bounded linear operators between two separable Hilbert
spaces D and E. That is, we focus on the cases where the above-mentioned Banach space
X is B(D,E).

A study on the boundary values of functions in Banach-space-valued Hardy spaces
Hp(D, X) of the unit disk was initiated in 1976 by A.V. Bukhvalov [Bu]. Since then,
many researchers have studied the spaces of boundary values of functions in Hp(D, X)
(see the bibliographical references at the end of this paper). In particular, in 1982 A.V.
Bukhvalov and A.A. Danilevich [BD] showed that if a Banach space X has the analytic
Radon-Nikodým property (ARNP) (or equivalently, every function in H1(D, X) has radial
limits a.e. on T; cf. [Bl], [BD], [DE], [Do], [Ed]), then the space of boundary values of
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functions in Hp(D, X) is Hp(T, X); more precisely, the mapping h 7→ bh is an isometric
isomorphism from Hp(D, X) onto Hp(T, X) and moreover, P [bh] = h, where P [·] denotes
the Poisson integral, or equivalently, the mapping f 7→ P [f ] is an isometric isomorphism
from Hp(T, X) onto Hp(D, X). However, this is no longer true for spaces of operator-
valued functions. Indeed, if X = B(D,E), then X need not satisfy the ARNP in general,
so that we cannot guarantee that the mapping f 7→ P [f ] is an isometric isomorphism
from Hp(T, X) onto Hp(D, X). In fact, for each 1 ≤ p ≤ ∞, there exists a function
h ∈ Hp(D,B(ℓ2)) such that h ̸= P [f ] for any f ∈ Hp(T,B(ℓ2)) (see Example 2.2). Thus,
the following problem remained unsolved until now:

(1) Find the circle companion of Hp(D,B(D,E)) for 1 ≤ p ≤ ∞.

Although not necessarily explicitly stated as an open problem, the problem (1) appears in
Nikolski’s book [Ni, p. 62, lines 14-15], where it is mentioned implicitly. In this paper, we
solve problem (1). Our solution aims to shed additional insights into the study of boundary
values, and how the Poisson transform serves as a bridge between those boundary values
and the initial Hardy space function. Towards our solution, we introduce a new space
Lp
sot(T,B(X,Y )) (1 ≤ p ≤ ∞) defined by the space of all (equivalence classes of) SOT

measurable functions f : T → B(X,Y ) such that N(f) ∈ Lp(T) (where N(f)(z) :=
||f(z)||B(X,Y )); we identify f and g when f(z) = g(z) for almost all z ∈ T. In this case,
let

||f ||Lp
sot(T,B(X,Y )) := ||N(f)||Lp(T).

Also for 1 ≤ p ≤ ∞, let Hp
sot(T,B(X,Y )) be defined by the space of functions in

Lp
sot(T,B(X,Y )) such that f(·)x ∈ Hp(T, Y ) for every x ∈ X. On the other hand,

we define the “strong Poisson integral” Ps[f ] of f in Hp
sot(T,B(X,Y )) by

Ps[f ](ζ)x := P [f(·)x](ζ) (x ∈ X, ζ ∈ D).

The aim of this paper is to prove that for 1 ≤ p ≤ ∞, the mapping f 7→ Ps[f ] is an iso-
metric isomorphism from Hp

sot(T,B(D,E)) onto Hp(D,B(D,E)). In [Ni, p. 53, Theorem
3.11.10] it is shown that the mapping f 7→ Ps[f ] provides an isometric isomorphism from
H∞

WOT (T,B(D,E)) onto H∞(D,B(D,E)) when D and E are separable Hilbert spaces -
in fact, we can show that H∞

WOT (T,B(D,E)) = H∞
sot(T,B(D,E)) in our language. This

provides a sound rationale for denoting this new space as Hp
sot(T,B(D,E)), in a manner

fully consistent with the well-known result. In fact, we can get a more general version of
the Banach space setting. The following is the main result of this paper.

Theorem 1.1. Let X be a separable Banach space and Y be a Banach space satisfying
the analytic Radon-Nikodým property. Then, for 1 ≤ p ≤ ∞, the mapping f 7→ Ps[f ] is
an isometric isomorphism from Hp

sot(T,B(X,Y )) onto Hp(D,B(X,Y )).

The following corollary is immediate from Theorem 1.1.

Corollary 1.2. Let D and E be separable Hilbert spaces. Then, for 1 ≤ p ≤ ∞, the map-
ping f 7→ Ps[f ] is an isometric isomorphism from Hp

sot(T,B(D,E)) onto Hp(D,B(D,E)).
As a result, Hp

sot(T,B(D,E)) is the circle companion of Hp(D,B(D,E)).
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In Section 2, we give a few essential facts that will be needed to prove Theorem 1.1.
Section 3 is devoted to a proof of Theorem 1.1. In the Appendix, we consider relevant
results for strong Hp-spaces.

2. Preliminaries

We review here the preliminary background needed to prove the main theorem, using
[HNVW] and [Ni] as general references. Let m be the normalized Lebesgue measure on T.
For a Banach space X, a function f : T → X is said to be essentially separably valued if
there exists a Lebesgue measurable set T′ ⊆ T such that the range f(T′) is separable and
m(T \ T′) = 0.

We begin with:

Pettis Measurability Theorem ([HNVW]). Let X be a Banach space and X∗ denote
the dual space of X. For a function f : T → X, the following are equivalent:

(a) f is strongly measurable (i.e., there exists a sequence of simple functions fn such
that f(z) = limn→∞ fn(z) for almost all z ∈ T);

(b) f is essentially separably valued and weakly measurable (i.e., the mapping z 7→
⟨f(z), x∗⟩ is Lebesgue measurable for every x∗ ∈ X∗).

Observation. By the Pettis Measurability Theorem, the almost everywhere limit of a
sequence of strongly measurable functions is also strongly measurable.

Given a function f : T → X, let

N(f)(z) := ∥f(z)∥X .

For 1 ≤ p ≤ ∞, let Lp(T, X) be the space of all (equivalence classes of) strongly measurable
functions f : T → X such that N(f) ∈ Lp(T). Endowed with the norm

||f ||Lp(T, X) := ||N(f)||Lp(T),

the space Lp(T, X) is a Banach space. For f ∈ L1(T, X), the n-th Fourier coefficient of

f , denoted by f̂(n), is defined by

f̂(n) :=

∫
T
znf(z) dm(z) for each n ∈ Z,

where the integral is understood in the sense of the Bochner integral. Also, Hp(T, X) is

defined as the space of functions f ∈ Lp(T, X) with f̂(n) = 0 for n < 0.

Hereafter, let X and Y be Banach spaces and B(X,Y ) denote the space of all bounded
linear operators from X to Y , and abbreviate B(X,X) as B(X). We write Hol(D, X) for
the set of all X-valued functions holomorphic in D.

Equivalent conditions of holomorphic functions ([Ni]). If h : D → B(X,Y ), then
the following are equivalent.

(a) h ∈ Hol(D,B(X,Y ));
(b) h(·)x ∈ Hol(D, Y ) for all x ∈ X;
(c) ⟨h(·)x, y∗⟩ ∈ Hol(D,C) for all x ∈ X and y∗ ∈ Y ∗.
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Let us associate to any function h : D → X, a family of functions hr on T, defined by

hr(z) := h(rz) (z ∈ T, 0 ≤ r < 1).

For 1 ≤ p ≤ ∞, let Hp(D, X) be the space of all functions h ∈ Hol(D, X) satisfying

||h||Hp(D, X) := sup
{
||N(hr)||Lp(T) : r < 1

}
< ∞.

Then Hp(D, X) is a Banach space (cf. [Do]). If h ∈ Hol (D, X), then we may write

h(ζ) =

∞∑
n=0

xnζ
n (ζ ∈ D, xn ∈ X).

Hence for each 0 ≤ r < 1,

hr(z) =

∞∑
n=0

xnr
nzn (z ∈ T),

which implies that hr is essentially separably valued. For each x∗ ∈ X∗,

⟨hr(z), x∗⟩ =
∞∑
n=0

⟨
xnr

n, x∗
⟩
zn (z ∈ T),

which implies that hr is weakly measurable. Thus, by the Pettis Measurability Theorem,
hr is strongly measurable. Therefore we have that

||h||Hp(D, X) = sup
0≤r<1

||hr||Lp(T, X).

For f ∈ L1(T, X), let P [f ] denote the Poisson integral of f defined by

(2) P [f ](ζ) :=

∫
T
Pζ(z)f(z)dm(z) (ζ ∈ D),

where Pζ(z) is the Poisson kernel.

The following are basic properties of Poisson integrals.

Lemma 2.1. [Ni, Lemma 3.11.6.] If f ∈ Lp(T, X) (1 ≤ p ≤ ∞), then

(a) ||(P [f ])r||Lp(T, X) ≤ ||f ||Lp(T, X) for all 0 ≤ r < 1;
(b) If p < ∞, then limr→1 ||(P [f ])r − f ||Lp(T, X) = 0;
(c) limr→1 ||(P [f ])r(z)− f(z)||X = 0 for almost all z ∈ T.

On the other hand, the function P : Hp(T, X) → Hp(D, X) given by (2), is an isometry
for all 1 ≤ p ≤ ∞ (cf. [Bl]). As we noticed in the introduction, if X has the ARNP
and 1 ≤ p ≤ ∞, then the function P : Hp(T, X) → Hp(D, X) given by (2) is an isometric
isomorphism (cf. [BD]). However, the function P : Hp(T,B(D,E)) → Hp(D,B(D,E))
given by (2) is not onto in general, as we see in the following example.
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Example 2.2. Let h : D → B(ℓ2) be defined by (h(ζ)x)(n) := ζnx(n) for each x ∈ ℓ2.
Then h ∈ Hol(D,B(ℓ2)) and ||h||H∞(D,B(ℓ2)) = 1, so that h ∈ Hp(D,B(ℓ2)) for all 1 ≤ p ≤
∞. Suppose that there exists p ∈ [1,∞] such that P : Hp(T,B(ℓ2)) → Hp(D,B(ℓ2)) is
onto. Then there exists a function f ∈ Hp(T,B(ℓ2)) such that P [f ] = h. For each z ∈ T,
define a “strong boundary function” bh : T → B(ℓ2) by

(3) (bh)(z)x := lim
r→1

hr(z)x = (znx(n)) (x ≡ (x(n)) ∈ ℓ2).

Then it follows from Lemma 2.1(c) that for all x ∈ ℓ2,

(bh)(z)x = lim
r→1

(P [f ])r(z)x = f(z)x

for almost all z ∈ T, which implies f = bh. Let z1 ̸= z2 in T. For k = 1, 2, write zk = eiθk

(0 ≤ θk < 2π). Then there exists n0 ∈ N such that π
2 < n0|θ2 − θ1| ≤ π (mod 2π). Let

{en : n = 1, 2, · · · } be the canonical orthonormal basis for ℓ2. Then it follows from (3)
that ∥∥(f(z1)− f(z2)

)
en0

∥∥
ℓ2

= |zn0
1 − zn0

2 | = |1− (z2z1)
n0 | >

√
2,

which implies that f is not essentially separably valued. Thus, by the Pettis Measurability
Theorem, f is not strongly measurable, a contradiction. Therefore, P : Hp(T,B(ℓ2)) →
Hp(D,B(ℓ2)) is not onto for any p ∈ [1,∞]. �

3. Proof of the main result

A function f : T → B(X,Y ) is called SOT measurable if the mapping z 7→ f(z)x is
strongly measurable for every x ∈ X.

We introduce a new normed space.

Definition 3.1. For 1 ≤ p ≤ ∞, define Lp
sot(T,B(X,Y )) by the space of all (equivalence

classes of) SOT measurable functions f : T → B(X,Y ) such that N(f) ∈ Lp(T); we
identify f and g when f(z) = g(z) for almost all z ∈ T. In this case, define

||f ||Lp
sot(T,B(X,Y )) := ||N(f)||Lp(T).

We can easily check that Lp
sot(T,B(X,Y )) is a normed space and

Lq
sot(T,B(X,Y )) ⊆ Lp

sot(T,B(X,Y )) if 1 ≤ p ≤ q ≤ ∞. Further, the space Lp
sot(T,B(X,Y ))

is a Banach space.

Lemma 3.2. For 1 ≤ p ≤ ∞, Lp
sot(T, B(X,Y )) is a Banach space.

Proof. The proof follows from a slight variation of the standard proof (cf. [Ru]) for the
completeness of scalar-valued Lp-spaces, except for SOT-measurability. To be completely
rigorous, we sketch a proof of the validity of SOT-measurability.

Suppose (fn) is a Cauchy sequence in Lp
sot(T, B(X,Y )). Then we can choose a subse-

quence (fni) such that

||fni+1 − fni ||Lp
sot(T,B(X,Y )) < 2−i for all i = 1, 2, 3, · · · .
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If we put g :=
∑∞

i=1(fni+1 − fni), then it is easy to show that g(z) ∈ B(X,Y ) for almost
all z ∈ T and in turn,

f(z) := fn1(z) + g(z)

converges for almost all z ∈ T. Therefore for each x ∈ X, f(z)x = limi→∞ fni(z)x for
almost all z ∈ T. Since fni is SOT measurable, the mapping z 7→ fni(z)x is strongly
measurable, so that the mapping z 7→ f(z)x is also strongly measurable. Therefore f is
SOT measurable. �

Remark 3.3. In the definition of Lp
sot(T,B(X,Y )), we implicitly supposeN(f) is (Lebesgue)

measurable. In fact, we don’t guarantee that if f is SOT measurable then N(f) is mea-
surable in general. To see this, let ℓ2(T) be the set of all functions x : T → C such that
x(z) = 0 for all but a countable number of z’s and

∑
z∈T |x(z)|2 < ∞. For x and y in

ℓ2(T) define
⟨x, y⟩ :=

∑
z∈T

x(z)y(z).

Then ℓ2(T) is a (non-separable) Hilbert space. Let F be a nonmeasurable set in T. For
z ∈ T, let f : T → B(ℓ2(T)) be defined by

(f(z)x)(s) :=

{
x(z), if s = z ∈ F

0, if z /∈ F or s ̸= z.

Then for each x ∈ ℓ2(T), we have that f(z)x = 0 for almost all z ∈ T, and hence f is SOT
measurable.

We now claim that

(4) N(f) = 1F (1F denotes the indicator function of the set F ),

which implies that N(f) is not measurable because F is a nonmeasurable set. To see this,
for each z ∈ T, let

xz(s) :=

{
1, if s = z

0, if s ̸= z.

Then, xz ∈ ℓ2(T) and ||xz|| = 1. If z ∈ F , then (f(z)xz)(s) = xz(s), so that ||f(z)xz||ℓ2(T) =
1. But since f(z) is a contraction, it follows that N(f)(z) = 1 for all z ∈ F . If instead
z /∈ F , then f(z) = 0, so that N(f)(z) = 0. This proves (4). �

We note that in the above remark, ℓ2(T) is not separable. However, we can show that
the SOT-measurability of f implies the measurability of N(f) if X is a separable Banach
space.

Lemma 3.4. Let X be a separable Banach space. If f : T → B(X,Y ) is SOT measurable
then N(f) is measurable.

Proof. Suppose that f : T → B(X,Y ) is SOT measurable. Then for all x ∈ X, the
mapping z 7→ f(z)x is strongly measurable, and hence the mapping z 7→ ||f(z)x|| is
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measurable. Thus the mapping z 7→ ||f(z)x||
||x|| is measurable for all nonzero x ∈ X. Choose

a countable dense subset X0 of X. Then we can easily see that

N(f)(z) = sup

{
||f(z)x||
||x||

: 0 ̸= x ∈ X0

}
.

Thus the mapping z 7→ N(f)(z) is measurable. �

We now introduce a space which fits our purpose:

Definition 3.5. For 1 ≤ p ≤ ∞, let Hp
sot(T,B(X,Y )) be the space of all (equivalence

classes of) functions f ∈ Lp
sot(T,B(X,Y )) such that f(·)x ∈ Hp(T, Y ) for every x ∈ X.

Observe that for 1 ≤ p ≤ ∞, Hp
sot(T, B(X,Y )) is a closed subspace of Lp

sot(T, B(X,Y )),
so that by Lemma 3.2, Hp

sot(T, B(X,Y )) is a Banach space.

Example 3.6. In general, Hp(T,B(X,Y )) ̸= Hp
sot(T,B(X,Y )) for all 1 ≤ p ≤ ∞. To see

this, let H2 ≡ H2(T) and define the function f : T → B(H2) by

f(z)x(s) := x(zs).

Since the set of all polynomials on T is dense in H2, it follows that the mapping z 7→ f(z)x
is (uniformly) continuous for each x ∈ H2. Thus, by the Pettis Measurability Theorem,
f is SOT measurable. Since N(f)(z) = 1 for all z ∈ T, it follows that f ∈ L∞

sot(T,B(H2))
with ||f ||L∞

sot(T,B(H2)) = 1. Moreover for each x ∈ H2 and n ∈ Z,(
f̂(n)x

)
(s) =

∫
T
znf(z)x(s)dm(z) =

⟨
x(zs), zn

⟩
H2 = x̂(n)sn,

which implies that f ∈ H∞
sot(T,B(H2)) ⊆ Hp

sot(T,B(H2)) for all 1 ≤ p ≤ ∞. However
we have that f /∈ Hp(T,B(H2)). To see this we use the same argument as Example 2.2.
Let z1 ̸= z2 in T. Write zk = eiθk (0 ≤ θk < 2π). Then there exists n0 ∈ N such that
π
2 < n0|θ2 − θ1| ≤ π (mod 2π). We thus have

||(f(z1)− f(z2))s
n0 ||2H2 =

∫
T
|(z1s)n0 − (z2s)

n0 |2dm(s)

=

∫
T
|1− (z2z1)

n0 |2dm(s) > 2,

which implies that f is not essentially separably valued. Thus, by the Pettis Measurability
Theorem, f is not strongly measurable, so that, f /∈ Hp(T,B(H2)). �

Definition 3.7. For f ∈ H1
sot(T,B(X,Y )) and x ∈ X, let Ps[f ](·)x : D → Y be defined

by
Ps[f ](ζ)x := P [f(·)x](ζ) (ζ ∈ D),

where P [·] denotes the Poisson integral. In this case, Ps[f ] is called the strong Poisson
integral of f .

Lemma 3.8. For 1 ≤ p ≤ ∞, the mapping f 7→ Ps[f ] is a contraction fromHp
sot(T,B(X,Y ))

to Hp(D,B(X,Y )).
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Proof. Let f ∈ Hp
sot(T,B(X,Y )) (1 ≤ p ≤ ∞) and ζ = reiθ ∈ D. Clearly, Ps[f ](ζ) is

linear on X. For each x ∈ X,

||Ps[f ](ζ)x|| =
∣∣∣∣∣∣∫

T
Pζ(z)f(z)xdm(z)

∣∣∣∣∣∣
≤ 1 + r

1− r
· ||f ||L1

sot(T,B(X,Y ))||x||,

which implies that Ps[f ](ζ) ∈ B(X,Y ). Since Ps[f ](·)x ∈ H1(D, Y ) for every x ∈ X, it
follows Ps[f ] ∈ Hol (D,B(X,Y )). We now claim that

Ps[f ] ∈ Hp(D, B(X,Y )) and ||Ps[f ]||Hp(D,B(X,Y )) ≤ ||f ||Lp
sot(T,B(X,Y )).

For each ζ ∈ D and a unit vector x ∈ X,

||Ps[f ](ζ)x|| ≤
∫
T
Pζ(z)||f(z)||dm(z) = P [N(f)](ζ).

Thus ||Ps[f ](ζ)|| ≤ P [N(f)](ζ) for all ζ ∈ D and hence, by Lemma 2.1(a), we have

||(Ps[f ])r||Lp(T,B(X,Y )) ≤
∣∣∣∣(P [N(f)])r

∣∣∣∣
Lp(T) ≤ ||f ||Lp

sot(T,B(X,Y )),

which implies that Ps[f ] ∈ Hp(D,B(X,Y )) and

||Ps[f ]||Hp(D,B(X,Y )) ≤ ||f ||Lp
sot(T,B(X,Y )).

This completes the proof. �

We are ready to prove our main theorem. Before doing it, we would like to underline
a reason why our proof is little intricate. Let h ∈ H1(D,B(X,Y )) and assume that Y
has the ARNP. Since h(·)x ∈ H1(D, Y ) for each x ∈ X, there exists the following radial
strong limit bh a.e. on T: i.e., for each x ∈ X,

bh(z)x := lim
r→1

hr(z)x (z ∈ T).

Write

Ex := {z ∈ T : bh(z)x does not exist} and E :=
∪
x∈X

Ex.

Then m(Ex) = 0 for each x ∈ X, but we don’t guarantee m(E) = 0. Thus the function
bh may not be defined almost everywhere on T. Therefore bh is not appropriate for a
boundary function of h. The crucial point of our proof is how to construct a “boundary
function” defined almost everywhere on T for a function in Hp(D,B(X,Y )).

We will now prove Theorem 1.1, which we restate for the reader’s convenience:

Theorem 1.1. Let X be a separable Banach space and Y be a Banach space satisfying
the analytic Radon-Nikodým property. Then, for 1 ≤ p ≤ ∞, the mapping f 7→ Ps[f ] is
an isometric isomorphism from Hp

sot(T,B(X,Y )) onto Hp(D,B(X,Y )).
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Proof. Let X be a separable Banach space and Y be a Banach space satisfying the ana-
lytic Radon-Nikodým property. Let h ∈ H1(D,B(X,Y )). Our first task is to define a
“boundary function” bsh a.e. on T for h. To do so, let X0 = {xn ∈ X : n = 1, 2, · · · } be
a countable dense subset of X. Then for each n = 1, 2, · · · , there exists a measurable set
En with m(En) = 0 such that bh(z)xn = limr→1 hr(z)xn exists for all z ∈ T \ En. Then
bh(·)xn ∈ H1(T, Y ) for each n = 1, 2, · · · . Put E0 := ∪n≥1En. Then m(E0) = 0. For
z ∈ T \ E0, let

(5) q(z) := sup

{
||bh(z)x||

||x||
: 0 ̸= x ∈ X0

}
.

Observe that for all z ∈ T \ E0 and each x ∈ X0,

(6) ||bh(z)x|| = lim
r→1

||hr(z)x|| ≤ lim inf
r→1

||hr(z)|| · ||x||.

Let u(z) := lim infr→1N(hr)(z). Since h ∈ H1(D,B(X,Y )), N(hr) is in L1(T) for each
0 ≤ r < 1, so that u is measurable. Also by (5) and (6), we have

(7) 0 ≤ q(z) ≤ u(z) for all z ∈ T \ E0.

On the other hand, by Fatou’s lemma, we have∫
T
u(z)dm(z) ≤ lim infr→1

∫
T
N(hr)(z)dm(z) ≤ ||h||H1(D,B(X,Y )) < ∞,

which implies that u ∈ L1(T). Thus there exists a subset Eu of T with m(Eu) = 0 such
that u(z) < ∞ for all z ∈ T\Eu. Hence, by (7), q(z) ≤ u(z) < ∞ for all z ∈ T\(E0∪Eu).
Therefore bh(z) can be extended to a bounded linear operator bsh(z) on X for almost all
z ∈ T: for each z ∈ T \ (E0 ∪ Eu) and x ∈ X, define

(8) bsh(z)x := lim
n→∞

bh(z)xn,

where (xn) is a sequence in X0 such that xn → x. We note that (8) is independent of the
particular choice of the dense subset X0 of X and a sequence (xn) in X0 : indeed let Y0 is
another countable dense subset of X and (yn) is a sequence in Y0 such that yn → x. By
the same argument above, we see that for almost all z ∈ T,

q′(z) := sup

{
||bh(z)x||

||x||
: 0 ̸= x ∈ X0 ∪ Y0

}
< ∞.

Thus

||bh(z)xn − bh(z)yn|| ≤ q′(z)||xn − yn|| → 0 as n → ∞,

which implies that the function bsh(z) is well-defined on X for almost all z ∈ T. (We call
bsh the strong boundary function of h.)

Now let 1 ≤ p ≤ ∞ and suppose h ∈ Hp(D,B(X,Y )). Then bsh(z) ∈ B(X,Y ) for
almost all z ∈ T and it is easy to show that bsh is SOT measurable and hence, by Lemma
3.4, N(bsh) is measurable because X is separable. We claim that

(9) bsh ∈ Hp
sot(T,B(X,Y )).
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To see this, we first observe that, by (7), N(bsh)(z) = q(z) ≤ lim infr→1N(hr)(z) for
almost all z ∈ T. Thus for 1 ≤ p < ∞, it follows from Fatou’s lemma that

(10)

∫
T
N(bsh)(z)

pdm(z) ≤ lim infr→1

∫
T
N(hr)(z)

pdm(z)

≤ ||h||pHp(D,B(X,Y )) < ∞.

Let x ∈ X be arbitrary and (xn) be a sequence in X0 such that xn → x. Then it follows
from (10) that

||bsh(·)x− bh(·)xn||Lp(T,Y ) =

(∫
T
||bsh(z)(x− xn)||pdm(z)

) 1
p

≤ ||h||Hp(D,B(X,Y ))||x− xn|| → 0 as n → ∞.

But since Hp(T, Y ) is a closed subspace of Lp(T, Y ) and bh(·)xn ∈ Hp(T, Y ), we have
bsh(·)x ∈ Hp(T, Y ), which together with (10) implies that bsh ∈ Hp

sot(T,B(X,Y )) and

||bsh||Hp
sot(T,B(X,Y )) ≤ ||h||Hp(D,B(X,Y )).

If instead p = ∞, then h ∈ H1(D,B(X,Y )), so that bsh ∈ H1
sot(T,B(X,Y )). Also, it

follows from (6) that

(11) ||bsh||L∞
sot(T,B(X,Y )) ≤ ||h||H∞(D,B(X,Y )).

Thus bsh ∈ H∞
sot(T,B(X,Y )). This proves (9).

We next claim that

(12) Ps[bsh] = h.

Let x ∈ X be arbitrary. Then for each ζ = reiθ ∈ D,

(13)

||Ps[bsh](ζ)x|| ≤
1 + r

1− r

∫
T
||bsh(z)x||dm(z)

≤ 1 + r

1− r
· ||bsh||L1

sot(T, B(X,Y )) · ||x||.

Choose a sequence (xn) in X0 such that xn → x. Then for each ζ ∈ D,

h(ζ)x = lim
n→∞

h(ζ)xn = lim
n→∞

Ps[bsh](ζ)xn = Ps[bsh](ζ)x,

where the last equality follows from (13). This proves (12). Thus the mapping f 7→
Ps[f ] is a surjection from Hp

sot(T,B(X,Y )) to Hp(D,B(X,Y )). Therefore, by Lemma
3.8, (10) and (11), the mapping f 7→ Ps[f ] is an isometry from Hp

sot(T,B(X,Y )) onto
Hp(D,B(X,Y )). This completes the proof. �

Theorem 1.1 may fail if the separability condition on X is dropped. For z ∈ T and
x ∈ ℓ2(T), let f : T → B(ℓ2(T)) be defined by

(f(z)x)(s) :=

{
x(z), if s = z

0, if s ̸= z.



CIRCLE COMPANIONS OF HARDY SPACES OF THE UNIT DISK 11

Then by the argument in Remark 3.3, we have N(f) = 1, and hence f ∈ Hp
sot(T,B(ℓ2(T)))

with ||f ||Hp
sot(T,B(ℓ2(T))) = 1 for all 1 ≤ p ≤ ∞. Since (f(z)x)(s) is zero for all z ̸= s, it

follows that for each x ∈ ℓ2(T), ζ ∈ D and s ∈ T,(
Ps[f ](ζ)x

)
(s) =

∫
T
Pζ(z)(f(z)x)(s)dm(z) = 0,

which implies that Ps[f ] = 0 in Hp(D,B(ℓ2(T))). Therefore, the mapping f 7→ Ps[f ] is
not an isometry.

We conclude with consideration on adjoints of functions in Hp
sot(T,B(X,Y )).

For a function f : T → B(X,Y ), define the “adjoint” f∗ : T → B(Y ∗, X∗) of f by

f∗(z) := f(z)∗ (z ∈ T).

We may ask the following question: for 1 ≤ p ≤ ∞, does it follow that

f ∈ Hp
sot(T,B(X,Y )) =⇒ f∗ ∈ Hp

sot(T,B(Y ∗, X∗)) ?

In the sequel, we give an affirmative answer to this question if X is reflexive. To begin
with we review some definitions.

A function f : T → X is called weakly integrable if ⟨f, x∗⟩ ∈ L1(T) for every x∗ ∈ X∗.
If f is weakly integrable then the function Tf : X∗ → L1(T), defined by Tfx

∗ := ⟨f, x∗⟩,
is a bounded linear operator. A weakly integrable function f : T → X is called Pettis
integrable if the adjoint T ∗

f of the operator Tf maps L∞(T) into X. It is well known that

f is Bochner integrable =⇒ f is Pettis integrable =⇒ f is weakly integrable.

Also it is known (cf. [HNVW, Proposition 1.2.36.]) that for a weakly integrable function
f : T → X, the following are equivalent:

(a) f is Pettis integrable;
(b) for each measurable set B in T, there exists an element xB ∈ X such that for every

x∗ ∈ X∗ we have ⟨xB, x∗⟩ =
∫
B⟨f(z), x

∗⟩dm(z).

In this case, we shall write

xB =: (p)−
∫
B
f(z)dm(z),

and call it the Pettis integral of f over B.
We then have:

Lemma 3.9. Let X be a reflexive Banach space, and let f ∈ L1
sot(T,B(X,Y )). Then for

each y∗ ∈ Y ∗ and ζ ∈ D, we have

Ps[f ]
∗(ζ)y∗ = (p)−

∫
T
Pζ(z)f

∗(z)y∗dm(z),

where Ps[f ]
∗(ζ) := Ps[f ](ζ)

∗.

Proof. Let X be reflexive and f ∈ L1
sot(T,B(X,Y )). Then for all x ∈ X and y∗ ∈ Y ∗,

the mapping z 7→
⟨
x, f∗(z)y∗

⟩
=

⟨
f(z)x, y∗

⟩
is measurable. But since X is reflexive, the
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mapping z 7→ f∗(z)y∗ is weakly measurable. Thus the mapping z 7→ Pζ(z)f
∗(z)y∗ is

weakly measurable for each ζ = reiθ ∈ D. For each x ∈ X,∫
T

∣∣⟨x, Pζ(z)f
∗(z)y∗⟩

∣∣dm(z) =

∫
T
Pζ(z)

∣∣⟨f(z)x, y∗⟩∣∣dm(z)

≤ 1 + r

1− r
· ||y∗|| · ||x|| · ||f ||L1

sot(T,B(X,Y ))

< ∞,

which implies that Pζ(·)f∗(·)y∗ is weakly integrable and hence Pettis integrable. Thus
for all x ∈ X and ζ ∈ D,⟨

Ps[f ](ζ)x, y
∗⟩ =

∫
T

⟨
x, Pζ(z)f

∗(z)y∗
⟩
dm(z)

=
⟨
x, (p)−

∫
T
Pζ(z)f

∗(z)y∗dm(z)
⟩
,

which gives the result. �

We now have:

Theorem 3.10. LetX be a reflexive Banach space and 1 ≤ p ≤ ∞. If f ∈ Hp
sot(T,B(X,Y )),

then f∗ ∈ Hp
sot(T,B(Y ∗, X∗)). Moreover, Ps[f

∗] = Ps[f ]
∗.

Proof. Let X be reflexive, 1 ≤ p ≤ ∞, and f ∈ Hp
sot(T,B(X,Y )). Since

⟨
x, Ps[f ]

∗(ζ)y∗
⟩
=⟨

Ps[f ](ζ)x, y
∗⟩ for all x ∈ X and y∗ ∈ Y ∗, it follows from Lemma 3.8 that Ps[f ]

∗ ∈
Hol (D,B(Y ∗, X∗)). For all y∗ ∈ Y ∗ and ζ ∈ D,

||Ps[f ]
∗(ζ)y∗|| = sup

||x||=1

∣∣⟨x, Ps[f ]
∗(ζ)y∗

⟩∣∣
≤

∫
T
Pζ(z)||f(z)||dm(z) · ||y∗||

= P [N(f)](ζ) · ||y∗||,

which implies that ||Ps[f ]
∗(ζ)|| ≤ P [N(f)](ζ). It thus follows from Lemma 2.1(a) that∫

T
||
(
Ps[f ]

∗)
r
(z)||dm(z) ≤

∫
T
(P [N(f)])r(z)dm(z) ≤ ||f ||L1

sot(T,B(X,Y )).

This proves that Ps[f ]
∗ ∈ H1(D,B(Y ∗, X∗)). On the other hand, for all x ∈ X and

y∗ ∈ Y ∗, we have that for almost all z ∈ T,

(14)

lim
r→1

⟨
x, Ps[f ]

∗(rz)y∗
⟩
= lim

r→1
⟨Ps[f ](rz)x, y

∗⟩

= lim
r→1

(
P [⟨f(·)x, y∗⟩]

)
r
(z)

= ⟨x, f∗(z)y∗⟩,

where the last equality follows from the fact that ⟨f(·)x, y∗⟩ ∈ Lp(T). Since X∗ has the
ARNP and Ps[f ]

∗(·)y∗ ∈ H1(D, X∗), it follows that

bPs[f ]
∗(z)y∗ := lim

r→1
Ps[f ]

∗(rz)y∗
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exists for almost all z ∈ T. Since X is reflexive, by the Hahn-Banach Theorem and (14),
f∗(·)y∗ = bPs[f ]

∗(·)y∗ ∈ H1(T, X∗). In particular, f∗ is SOT measurable, and hence
f∗ ∈ Hp

sot(T,B(Y ∗, X∗)). On the other hand, since f ∈ H1
sot(T,B(X,Y )), it follows from

Lemma 3.9 that for each y∗ ∈ Y ∗ and ζ ∈ D,

Ps[f ]
∗(ζ)y∗ = (p)−

∫
T
Pζ(z)f

∗(z)y∗dm(z) = Ps[f
∗](ζ)y∗,

which implies Ps[f
∗] = Ps[f ]

∗. This completes the proof. �

Theorem 3.10 may fail if the reflexive condition on X is dropped. To see this, let
f : T → B(ℓ1) be defined by

(f(z)x)(n) := znx(n) (x ≡ (x(n)) ∈ ℓ1).

Then it is not difficult to show that f ∈ H∞
sot(T,B(ℓ1)) and f∗ is not SOT measurable (cf.

Example 2.2), so that f∗ /∈ H∞
sot(T,B(ℓ∞)). Note that ℓ1 is not reflexive.

4. Appendix: Strong Hp-spaces

We devote this section to a general discussion of the circle companions of strong Hp-
spaces.

For 1 ≤ p ≤ ∞, let Hp
s (D,B(X,Y )) be the space of all functions h in Hol(D,B(X,Y ))

such that h(·)x ∈ Hp(D, Y ) for every x ∈ X: Hp
s (D,B(X,Y )) is called a strong Hp-space

(cf. [Ni]). If h ∈ Hp
s (D,B(X,Y )), then we can easily show that the mapping x 7→ h(·)x

is a closed linear transformation from X into Hp(D, Y ), so that by the Closed Graph
Theorem, it is bounded. Let

||h||Hp
s (D,B(X,Y )) := sup

{
||h(·)x||Hp(D,Y ) : x ∈ X with ||x|| ≤ 1

}
.

Then Hp
s (D,B(X,Y )) is a normed space and

(15) Hp(D,B(X,Y )) ⊆ Hp
s (D,B(X,Y )) (1 ≤ p ≤ ∞).

Also we can easily check thatH∞
s (D,B(X,Y )) = H∞(D,B(X,Y )). However, if 1 ≤ p < ∞

then the inclusion in (15) may be proper.

Example 4.1. Let 1 ≤ p < ∞. For ζ ∈ D, define h(ζ) : Hp(T) → C by

h(ζ)f := P [f ](ζ) (f ∈ Hp(T)).

Then for each ζ = reiθ ∈ D,

||h(ζ)||B(Hp(T),C) = sup
{
||P [f ](reiθ)|| : ||f ||Hp(T) = 1

}
≤ 1 + r

1− r
· sup

{
||f ||H1(T) : ||f ||Hp(T) = 1

}
≤ 1 + r

1− r
,
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which implies that h(ζ) is a bounded linear operator. Thus it is easy to show that
h ∈ Hp

s (D,B(Hp(T),C)) and ||h||Hp
s (D,B(Hp(T),C)) = 1. However, h /∈ Hp(D,B(Hp(T),C)):

indeed, for each z ∈ T, let
fz(s) := e

s+z
s−z (s ∈ T).

Then fz is inner, so that ||fz||Hp(T) = 1. Thus

||hr(z)|| ≥ |hr(z)fz| = e
r+1
r−1 ,

so that

sup
0≤r<1

(∫
T
||hr(z)||pdm(z)

) 1
p

≥ sup
0≤r<1

e
r+1
r−1 = ∞,

which implies that h /∈ Hp(D,B(Hp(T),C)). �

Let L(X ,Y) be the set of all linear transformations between normed spaces X and
Y. For a subset F of a Banach space X, let sp(F ) denote the linear span of F . For
1 ≤ p ≤ ∞, let Lp

s(T,L(sp(F ), Y )) be the space of all (equivalence classes of) functions
f : T → L(sp(F ), Y ) satisfying

(i) f(·)x ∈ Lp(T, Y ) for all x ∈ sp(F ); as usual, we identify f and g when f(·)x = g(·)x
in Lp(T, Y ) for all x ∈ sp(F );

(ii) ||f ||Lp
s(T,L(sp(F ),Y )) := sup

{
||f(·)x||Lp(T,Y ) : x ∈ sp(F ) with ||x|| ≤ 1

}
< ∞.

Then Lp
s(T,L(sp(F ), Y )) is a normed space and

Lq
s(T,L(sp(F ), Y )) ⊆ Lp

s(T,L(sp(F ), Y )) if 1 ≤ p ≤ q ≤ ∞.

We now define Hp
s (T,L(sp(F ), Y )) as the space of all (equivalence classes of) functions f ∈

Lp
s(T,L(sp(F ), Y )) such that f(·)x ∈ Hp(T, Y ) for all x ∈ sp(F ). We note that Definition

3.7 is still well-defined for functions inH1
s (T,L(sp(F ), Y )); i.e., for f ∈ H1

s (T,L(sp(F ), Y ))
and x ∈ sp(F ),

Ps[f ](ζ)x := P [f(·)x](ζ) (ζ ∈ D).
We then have:

Lemma 4.2. Let X,Y be Banach spaces and F ⊆ X. Suppose f ∈ H1
s (T,L(sp(F ), Y )).

If (xn) is a Cauchy sequence in sp(F ), then the sequence (Ps[f ](·)xn) converges uniformly
on every compact subset of D.

Proof. Suppose f ∈ H1
s (T,L(sp(F ), Y )) and K is a compact subset of D. Then r ≡

max
{
|ζ| : ζ ∈ K

}
< 1. Let (xn) be a Cauchy sequence in sp(F ) and ϵ > 0 be arbitrary.

For all ζ = reiθ ∈ K, there exists N > 0 such that if m > n > N , then

(16)

||Ps[f ](ζ)xn − Ps[f ](ζ)xm|| =
∣∣∣∣∣∣∣∣∫

T
Pζ(z)f(z)(xn − xm)dm(z)

∣∣∣∣∣∣∣∣
≤ 1 + r

1− r
·
∫
T
||f(z)(xn − xm)||dm(z)

≤ 1 + r

1− r
· ||f ||L1

s(T,L(sp(F ),Y ))||xn − xm|| < ϵ

2
.
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Thus (Ps[f ](·)xn) converges pointwise to a function h : D → Y . Fixing n > N and letting
m → ∞, (16) leads to

||Ps[f ](ζ)xn − h(ζ)|| = lim
m→∞

||Ps[f ](ζ)xn − Ps[f ](ζ)xm|| < ϵ for all ζ ∈ K,

which implies (Ps[f ](·)xn) converges uniformly on K. �

Now if X is separable Banach space, we may define Ps[f ](ζ) on X for all ζ ∈ D by virtue
of Lemma 4.2. This is a reason why we introduce sp(F ). Indeed, let X,Y be Banach
spaces and assume that X is separable and F is a dense subset of X. Then by Lemma 4.2,
given a function f ∈ H1

s (T,L(sp(F ), Y )), we may define an extension P s[f ](ζ) of Ps[f ](ζ)
to X for each ζ ∈ D: in other words, if x ∈ X, then there exists a sequence (xn) in sp(F )
such that xn → x, so that by Lemma 4.2, (Ps[f ](ζ)xn) is a convergent sequence for each
ζ ∈ D and hence, we can define, for each x ∈ X,

(17) P s[f ](ζ)x := lim
n→∞

Ps[f ](ζ)xn (ζ ∈ D).

We note that the limit in (17) is independent of the particular choice of (xn) because if
(yn) is another sequence in sp(F ) such that yn → x, then by the same argument as in (16)
we have, for all ζ ∈ D,

||Ps[f ](ζ)xn − Ps[f ](ζ)yn|| → 0 as n → ∞,

which implies that the function P s[f ](ζ) is well-defined on X. For simplicity, and since
doing so will not lead to confusion, we will keep denoting by Ps[f ] the extension P s[f ]
defined by (17).

We then have:

Theorem 4.3. Let X,Y be Banach spaces and F be a dense subset of X. Then the
mapping f 7→ Ps[f ] is an isometry from Hp

s (T,L(sp(F ), Y )) to Hp
s (D,B(X,Y )) for each

1 ≤ p ≤ ∞.

Proof. Let f ∈ Hp
s (T,L(sp(F ), Y )) (1 ≤ p ≤ ∞) and ζ = reiθ ∈ D. Clearly, Ps[f ](ζ) is

linear on X. If x ∈ X, then there exists a sequence (xn) in sp(F ) such that xn → x.
Thus we have

||Ps[f ](ζ)x|| = lim
n→∞

∣∣∣∣∣∣∫
T
Pζ(z)f(z)xndm(z)

∣∣∣∣∣∣
≤ 1 + r

1− r
· ||f ||L1

s(T,L(sp(F ),Y ))||x||,

which implies that Ps[f ](ζ) ∈ B(X,Y ). For each y∗ ∈ Y ∗, it follows from Lemma 4.2 that⟨
Ps[f ](ζ)xn, y∗

⟩
converges uniformly to

⟨
Ps[f ](ζ)x, y∗

⟩
on every compact subset of D.

Thus Ps[f ] ∈ Hol (D,B(X,Y )). Now we claim that

(18) Ps[f ] ∈ Hp
s (D, B(X,Y )) and ||Ps[f ]||Hp

s (D,B(X,Y )) ≤ ||f ||Lp
s(T,L(sp(F ),Y )).

We split the proof into two cases.
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Case 1 (1 ≤ p < ∞): Let x be an arbitrary unit vector in X and (xn) be a sequence in
sp(F ) such that xn → x. Since P [f(·)xn] ∈ Hp(D, Y ), the mapping z 7→ ||(Ps[f ])r(z)xn||p
is measurable for all n ∈ N. Thus it follows from Fatou’s lemma and Lemma 2.1(a) that

||(Ps[f ])r(·)x||Lp(T,Y ) =

(∫
T

lim
n→∞

||(Ps[f ])r(z)xn||pdm(z)

) 1
p

≤ lim infn→∞||(Ps[f ])r(·)xn||Lp(T,Y )

≤ lim infn→∞||f(·)xn||Lp(T,Y )

≤ ||f ||Lp
s(T,L(sp(F ),Y )),

which proves (18).
Case 2 (p = ∞): Assume to the contrary that

||Ps[f ]||H∞
s (D,B(X,Y )) > ||f ||L∞

s (T,L(sp(F ),Y )).

Then there exists a unit vector x0 in X and ζ0 ∈ D such that ||Ps[f ](ζ0)x0||
> ||f ||L∞

s (T,L(sp(F ),Y )). Choose a sequence (xn) in sp(F ) such that xn → x0. Then
for sufficiently large N ,

||Ps[f ](ζ0)xN || > ||f ||L∞
s (T,L(sp(F ),Y )) ≥ ||f(·)xN ||L∞(T,Y ),

which is a contradiction by Lemma 2.1(a). This proves (18) with p = ∞.
Now for all x ∈ sp(F ), it follows that ||f(·)x||Lp(T,Y ) = ||Ps[f ](·)x||Hp(D,Y ) and hence

||f ||Lp
s(T,L(sp(F ),Y )) ≤ ||Ps[f ]||Hp

s (D,B(X,Y )). Therefore, by (18), the mapping f 7→ Ps[f ] is

an isometry from Hp
s (T,L(sp(F ), Y )) to Hp

s (D,B(X,Y )). This completes the proof. �
Corollary 4.4. Let X,Y be Banach spaces, and assume that X is separable and Y has
the ARNP. For a countable dense subset F of X and 1 ≤ p ≤ ∞, the mapping f 7→ Ps[f ]
is an isometric isomorphism from Hp

s (T,L(sp(F ), Y )) onto Hp
s (D,B(X,Y )).

Proof. A similar argument to (12) shows that the mapping f 7→ Ps[f ] is a surjection from
Hp

s (T,L(sp(F ), Y )) into Hp
s (D,B(X,Y )). Thus the result follows at once from Theorem

4.3. �

For 1 ≤ p ≤ ∞, let Lp
s(T,B(X,Y )) be the space of all (equivalence classes of) SOT

measurable functions f : T → B(X,Y ) such that f(·)x ∈ Lp(T, Y ) for all x ∈ X; we
identify f and g when f(·)x = g(·)x in Lp(T, Y ) for all x ∈ X. If f ∈ Lp

s(T,B(X,Y )),
then it follows from the Closed Graph Theorem that

||f ||Lp
s(T,B(X,Y )) := sup

{
||f(·)x||Lp(T,Y ) : x ∈ X with ||x|| ≤ 1

}
< ∞.

Then Lp
s(T,B(X,Y )) is a normed space (cf. [CHL1], [HNVW], [Pe]). In general, the space

Lp
s(T,B(X,Y )) is not complete (cf. [HNVW, p.64]). Also we define Hp

s (T,B(X,Y )) by
the space of all (equivalence classes of) functions f ∈ Lp

s(T,B(X,Y )) such that f(·)x ∈
Hp(T, Y ) for every x ∈ X.

Example 4.5. In view of Lemma 3.4, we may ask whether or not Lp
s(T,B(X,Y )) =

Lp
sot(T,B(X,Y )) if X and Y are separable Banach spaces. The answer, however, is

negative. To see this, we use the notation

(1F ⊗ x)(z) := 1F (z)x for x ∈ X, F ⊆ T.
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Write H2 ≡ H2(T) and define a function f : T → B(H2) by

(19) (f(z)x)(s) := x̂(0) +

∞∑
n=1

(
1Fn ⊗

√
2n x̂(n)

)
(z)sn (x ∈ H2),

where Fn := {eiθ : (2− 1
n)π ≤ θ < 2π} for n = 1, 2, · · · . Let

E0 := {eiθ : 0 < θ < π} and En := Fn \ Fn+1 for n = 1, 2, · · · .
Then for each 1 ̸= z ∈ T, there exists N ≥ 0 such that z ∈ EN . Thus, by (19), we have
that for N ≥ 1,

(20) (f(z)x)(s) = x̂(0) +

N∑
n=1

√
2n x̂(n)sn (z ∈ EN ),

which implies f(z) ∈ B(H2). For x ∈ H2, it follows from (20) that

||f(·)x||2L2(T, H2) =
∞∑

N=0

∫
EN

||f(z)x||2dm(z)

=
1

2

∣∣x̂(0)∣∣2 + ∞∑
N=1

(∣∣x̂(0)∣∣2 + N∑
n=1

2n
∣∣x̂(n)∣∣2)m(EN )

=
∣∣x̂(0)∣∣2 + ∞∑

n=1

2n
∣∣x̂(n)∣∣2m(Fn)

= ||x||2H2 ,

which proves that f ∈ L2
s(T,B(H2)). However, we have f /∈ L2

sot(T,B(H2)): indeed if
z ∈ En (n ≥ 1) then it follows from (20) that ||f(z)sn||H2 =

√
2n. Thus∫

T
||f(z)||2dm(z) =

∞∑
n=0

∫
En

||f(z)||2dm(z) ≥ 1

2
+

∞∑
n=1

1

n+ 1
= ∞,

which implies that f /∈ L2
sot(T,B(H2)). �

The following diagram summarizes the preceding arguments.

Let X be a separable Banach space, Y be a Banach space satisfying the ARNP and F
be a countable dense subset of X. Then for all 1 ≤ p ≤ ∞,

Hp(T,B(X,Y )) $Hp
sot(T,B(X,Y )) $ Hp

s (T,B(X,Y ))$Hp
s (T,L(sp(F ), Y ))

∼ =

y Ps ∼ =

y Ps(21)

Hp(D,B(X,Y )) Hp
s (D,B(X,Y )).

We note that all the inclusions on the first line of (21) are strict. Indeed, in Example
3.6, we saw Hp(T,B(X,Y )) ̸= Hp

sot(T,B(X,Y )) in general. We give some examples such
that the other two inclusions are strict.
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Example 4.6. (a) In general, Hp
sot(T,B(X,Y )) ̸= Hp

s (T,B(X,Y )). Indeed, for a separa-
ble Hilbert space E, there exists a function g ∈ H2

s (T,B(E)) such that g /∈ H2
sot(T,B(E)).

To see this, we introduce some notations. For f ∈ L2
s(T,B(E)), we denote by f− and f+

the functions
f−(z)x :=

(
P−(f(·)x)

)
(z) (z ∈ T, x ∈ E);

f+(z)x :=
(
P+(f(·)x)

)
(z) (z ∈ T, x ∈ E),

where P+ and P− are the orthogonal projections from L2(T, E) ontoH2(T, E) and L2(T, E)⊖
H2(T, E), respectively (cf. [Pe]). Then, f−, f+ ∈ H2

s (T,B(E)) and we may write

f(z) = f+(z) + f−(z) (z ∈ T).

Let f be the function given in (19). Assume that f+ ∈ H2
sot(T,B(H2)) and f− ∈

H2
sot(T,B(H2)). Observe that for z ∈ T,

||f(z)||2 ≤ ||f−(z)||2 + ||f+(z)||2 + 2||f−(z)||||f+(z)||.

It thus follows from Hölder’s inequality that∫
T
||f(z)||2dm(z) ≤

∫
T
||f−(z)||2dm(z) +

∫
T
||f+(z)||2dm(z)

+ 2

(∫
T
||f−(z)||2dm(z)

) 1
2
(∫

T
||f+(z)||2dm(z)

) 1
2

< ∞,

which is a contradiction. We thus have f+ /∈ H2
sot(T,B(H2)) or f− /∈ H2

sot(T,B(H2)).
Note that H2 is a separable Hilbert space.

(b) In general, Hp
s (T,B(X,Y )) ̸= Hp

s (T,L(sp(F ), Y )). To see this, define f : T →
L(ℓ2,C) by

f(z)x :=
∞∑
n=1

x(n)zn (x ≡ (x(n)) ∈ ℓ2).

Then f(z) is not bounded for all z ∈ T because for any z0 ∈ T, if we let

x0(n) :=
zn0
n

(n = 1, 2, · · · ),

then f(z0)x0 =
∑∞

n=1
1
n = ∞. Thus, f /∈ H2

s (T,B(ℓ2,C)). On the other hand, let

F :=
{∑
n∈Ω

αnen : αn ∈ Q and Ω is a finite subset of N
}
,

where Q is a countable dense subset of C and {en : n = 1, 2, · · · } is the canonical orthonor-
mal basis for ℓ2. Then F is a countable dense subset of ℓ2 and we can easily see that
f ∈ H2

s (T,L(sp(F ),C)).
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