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Abstract

The sub-Bergman spaces are de Branges–Rovnyak subspaces of Bergman space A2 defined
by the contraction Tb or T ∗

b for an analytic symbol b. The fact that both Tb and T ∗
b are

2-hypercontractions on A2 leads to the introduction of a new type of sub-Bergman spaces,
which will be called higher-order sub-Bergman spaces. We show these new spaces are different
and yet connected in a nice way with the sub-Bergman spaces. The close relationship of
these new spaces to the original de Branges–Rovnyak subspaces of the Hardy spaces are also
explored. A similar study is conducted on weighted Bergman spaces A2

α where both Tb and
T ∗
b are [α+ 2]-hypercontractions.
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1 Introduction

Let H2 be the Hardy space on the unit disk D. By the Beurling theorem, an invariant subspace
of the multiplication by z (the shift operator S) is of the form θH2, where θ is an inner function.
The model space Kθ := H2 ⊖ θH2 is an invariant subspace of S∗ that plays an important role in
Sz.-Nagy and Foiaş model theory of Hilbert space contractions. The de Branges–Rovnyak model
spaces are submanifolds (not necessarily closed) of H2 which are invariant under S∗. Thus they are
also called sub-Hardy spaces [39]. A beautiful extension of Beurling invariant subspace theorem
due to de Branges and Rovnyak characterizes Hilbert spaces contained contractively inside H2

which are invariant under S. The de Branges–Rovnyak model spaces and their analogue inside
vector-valued Hardy spaces are indeed fundamental in model theory of Hilbert space contractions
[7]. See also a recent paper [34] where de Branges–Rovnyak model spaces are also useful in modeling
expansive operators and m-isometries. Since the introduction of de Branges–Rovnyak spaces more
than a half century ago, they have been useful in operator theory, function theory, and applications
in engineering, [8], [11], [16], [22], [23], [31], [33], [42], in particular, see the recent two volumes
[24] devoted to these spaces. Even these two volumes covered primarily the de Branges–Rovnyak
spaces inside the scalar-valued Hardy space. See a recent paper [4], where de Branges–Rovnyak
type spaces of vector-valued analytic functions are discussed.

The pioneering work of Zhu [43], [44] studied the analogues of de Branges–Rovnyak spaces
inside the Bergman space A2 called sub-Bergman spaces. Several fundamental results for sub-
Bergman spaces are given and interesting, but their structures are much less understood. One
fundamental reason is that the invariant subspaces of S (hence the invariant subspaces of S∗) are
much more complicated on A2 [5]. Since the work of Zhu [43], [44], there have been several papers
answering Zhu’s questions and extending his results [1], [12], [13], [41]. In particular, Chu [12] gives
an affirmative answer to the question of whether polynomials are dense in the sub-Bergman space.
It turns out that unlike sub-Hardy spaces, sub-Bergman spaces cannot be finite dimensional. As is
well-known, Kθ on H

2 is finite dimensional if and only if θ is a finite Blaschke product. These finite
dimensional model spaces Kθ are important in approximation theory and in understanding more
general sub-Hardy spaces. They are often building blocks in various mathematical constructions
[24]. Furthermore, the truncated Toeplitz operators [40] acting on them are closely related to
Toeplitz and Hankel type structured matrices that have wide applications in physical science and
engineering [32], [35], [37].

Our motivation is to find “sub-Bergman” spaces which are finite dimensional. This leads us to
introduce in Section 2 the higher-order de Branges–Rovnyak spaceGk(H,A) for a k-hypercontraction
A∗ on a complex Hilbert space H. The class of k-hypercontractions was introduced by Agler [2],
where a functional model of k-hypercontractions on subspaces of weighted Bergman spaces is es-
tablished. Since then, k-hypercontractions have been studied intensively, see for example [19], [20],
[36], and see also [28], where an analogue of Agler’s model for k-hypercontractions on Banach
spaces is obtained. The main result of Section 2 is Theorem 2.14, which shows that Gk(H,A) can
be viewed as an iterated de Branges–Rovnyak space.

In Section 3, we study the higher-order de Branges–Rovnyak spaces Gk(H,A), where H is
the weighted Bergman space A2

α (α > −1) of the unit disk D and A is the Toeplitz operator Tb
on A2

α with b in the unit ball of H∞. We denote such Gk(A
2
α, Tb) by Gk,α(b) and call them the

higher-order sub-Bergman spaces. We recall some basic results of reproducing kernel Hilbert spaces
(RKHS) [3], [6], [17]. Using the powerful techniques of RKHS, we show that Gk,α(b) is defined
for 1 ≤ k ≤ [α + 2] and Gk,α(b) := Gk(A

2
α, T

∗
b ) is well-defined for all k ≥ 1. We then identify

reproducing kernels of Gk,α(b) and Gk,α(b) in Theorem 3.15 and Proposition 3.20, respectively,
and establish the invariance property of Gk,α(b) and Gk,α(b) in Proposition 3.13 and Proposition
3.18, respectively.

In Section 4, we study Gk,α(b), where b is a finite Blaschke product. The sub-Bergman space



2 HYPERCONTRACTIONS AND HIGHER-ORDER DE BRANGES–ROVNYAK SPACES 3

H(A2
α, Tb) in this case is identified in [44] for A2 and in [41] for A2

α, see also [1], [13] for different
proofs and refinements. Our abstract operator theoretic approach not only extends previous results
but also gives more transparent proofs than function theoretic and computational proofs. We
identify Gk,α(b) as norm equivalent to certain weighted Bergman spaces in Theorem 4.10. In
particular, when α is a nonnegative integer, Gα+2,α(b) is shown to be finite dimensional, which
answers our motivating question of when “sub-Bergman” spaces are finite dimensional. We then
find the dimension of Gα+2,α(b) and write down an orthonormal basis of Gα+2,α(b) in some generic
cases.

In Section 5, we identify Gk,α(b), where b is a finite Blaschke product. It turns out they are
norm equivalent to weighted Bergman spaces and Dirichlet type spaces [9]. Again our proofs
benefit from the abstract Theorem 4.7.

In Section 6, by modifying the method of Chu [12], we prove that polynomials are dense in
Gk,α(b) for all k ≥ 1. Furthermore, we demonstrate that polynomials are dense in G1,α(b). These
theorems extend the result of Chu [12] that polynomials are dense in both Gk,α(b) and Gk,α(b) for
k = 1 and α = 0. In view of these results, we conjecture that polynomials are dense in Gk,α(b) for
1 ≤ k < [α+ 2].

In summary, we introduce the novel concept of higher-order de Branges–Rovnyak spaces by
combining the studies of de Branges–Rovnyak spaces and hypercontractions, both topics have
been studied intensively in the last several decades. We develop some basic properties of these
higher-order de Branges–Rovnyak spaces. In particular, we show they can be viewed as iterated
de Branges–Rovnyak spaces. We apply an abstract operator theoretic approach to the study
of higher-order sub-Bergman spaces. We compute the reproducing kernels of higher-order sub-
Bergman spaces and use them effectively to answer a number of questions. We identify these
higher-order sub-Bergman spaces when the associated symbols are finite Blaschke products. We
demonstrate that some natural function spaces are contained in higher-order sub-Bergman spaces
for general associated symbols. We find finite dimensional higher-order sub-Bergman spaces and
produce explicit orthonormal bases for these spaces. Our approach also leads to transparent and
unified proofs for several fundamental results on sub-Bergman spaces where the original proofs were
function theoretic and highly technical. In comparison with the extensive theory of de Branges–
Rovnyak spaces and sub-Hardy spaces, it is clear that there are many questions about higher-order
de Branges–Rovnyak spaces and sub-Bergman spaces for further exploration.

2 Hypercontractions and higher-order de Branges–Rovnyak spaces

2.1 Hypercontractions

The origin of de Branges–Rovnyak spaces is in the geometric definition of complementary subspaces
[17]. Later D. Sarason [39] formulated de Branges–Rovnyak spaces as operator or defect range
spaces of a contraction in a complex Hilbert space, in particular de Branges–Rovnyak spaces
associated with analytic Toeplitz operator Tb and conjugate analytic Toeplitz operator T ∗

b on the
Hardy space (called sub-Hardy spaces) were analyzed in depth.

Let H and K be complex Hilbert spaces and B(K,H) be the set of bounded linear operators
from K into H. We abbreviate B(H,H) to B(H). Let A ∈ B(H) be a contraction. We define
M(H,A) (briefly,M(A)) as the operator range of A with the Hilbert space structure that makes
A a coisometry, i.e., the inner product is defined by

⟨Ah1, Ah2⟩M(A) = ⟨h1, h2⟩H ,

where h1 ∈ (kerA)⊥ and h2 ∈ H. Let DA∗ = (I − AA∗)1/2. Then the de Branges–Rovnyak
space (or the complementary space) H(H,A) (briefly, H(A)) is the operator range of DA∗ with the
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following inner product:

H(A) =M(DA∗), ⟨(I −AA∗)h1, h2⟩H(A) = ⟨h1, h2⟩H , (1)

where h1 ∈ H and h2 ∈ H(A). Similarly, we haveM(A∗) and H(A∗). From (1), we can see

∥(I −AA∗)h1∥2H(A) = ∥h1∥
2
H − ∥A∗h1∥2H (h1 ∈ H). (2)

Definition 2.1. A Hilbert space K ⊆ H is said to be contractively contained in H if the inclusion
map ι : K → H is a contraction from K into H, which is denoted by K ↪→ H. More generally, if
A ∈ B(K,H), then AK ↪→ H means A is a contraction from K into H.

Observe that when A is a contraction on H,

M(A),M(A∗), H(A), H(A∗) ↪→ H.

We note that if A ∈ B(H) is hyponormal, i.e., AA∗ ≤ A∗A, and in turn, I −A∗A ≤ I −AA∗, then
by the Douglas range inclusion lemma [18], we can see that

M(A) ⊆M(A∗) and H(A∗) ⊆ H(A). (3)

It is also easy to see that if ι : K ↪→ H is the inclusion map then K =M(ιι∗).
For A ∈ B(H) and m ≥ 0, let

βm(A) :=

m∑
i=0

(−1)i
(
m

i

)
A∗iAi.

Then for h ∈ H,

⟨βm(A)h, h⟩ =
m∑
i=0

(−1)i
(
m

i

)∥∥Aih∥∥2 . (4)

The following recursive formula is useful:

βm(A) = βm−1(A)−A∗βm−1(A)A. (5)

Definition 2.2. An operator A ∈ B(H) is called an m-hypercontraction if

βk(A) ≥ 0 for all 1 ≤ k ≤ m.

For example, an operator A ∈ B(H) is a 2-hypercontraction if

I −A∗A ≥ 0 and I − 2A∗A+A∗2A2 ≥ 0,

equivalently if for h ∈ H,

∥Ah∥2 ≤ ∥h∥2 and ∥Ah∥2 −
∥∥A2h

∥∥2 ≤ ∥h∥2 − ∥Ah∥2 .
The notion of m-hypercontractions was introduced in [2] and has been studied in literature [10],
[19], [20], [36], etc. See also a recent extension of this notion to Banach space operators [26], [27],
[28].

If A ∈ B(H) is an m-hypercontraction, set

∆k(A) := βk(A)
1/2, 1 ≤ k ≤ m.
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Note that ∆1(A) = DA. Then (5) and (4) become

∆2
k(A) = ∆2

k−1(A)−A∗∆2
k−1(A)A, (6)

∥∆k(A)h∥2 = ∥∆k−1(A)h∥2 − ∥∆k−1(A)Ah∥2 =

k∑
i=0

(−1)i
(
k

i

)∥∥Aih∥∥2 . (7)

While it is obvious that A is a contraction if and only if A∗ is a contraction, this does not hold
for an m-hypercontraction. To see this we recall that for f ∈ L∞, the Toeplitz operator Tf on H2

with symbol f is defined by
Tfh = P (fh), h ∈ H2,

where P denotes the orthogonal projection from L2 onto H2.

Example 2.3. Let A = cTz on H2, where |c| ≤ 1. Then A is a 2-hypercontraction, but A∗ is a
2-hypercontraction if and only if |c| ≤ 1/

√
2.

Proof. Since T ∗
z Tz = I and TzT

∗
z = I − 1⊗ 1,

β2(A) = I − 2|c|2T ∗
z Tz + |c|4T ∗2

z T 2
z = (1− |c|2)2I ≥ 0

and

β2(A
∗) = I − 2|c|2TzT ∗

z + |c|4T 2
z T

∗2
z

= (1− |c|2)2I + (2|c|2 − |c|4)1⊗ 1− |c|4z ⊗ z.

Therefore β2(A
∗) ≥ 0 if and only if (1− |c|2)2 ≥ |c|4. The result follows from this inequality.

Recall that for h1 ∈ H and h2 ∈M(C),

⟨CC∗h1, h2⟩M(C) = ⟨h1, h2⟩H . (8)

The following lemma is useful in the sequel. We here note that by the closed graph theorem and
standard arguments inM(A) spaces, the inclusion BM(C) ⊂M(D) implies that B is a bounded
operator fromM(C) intoM(D).

Lemma 2.4. Let C ∈ B(H1,H2), B ∈ B(H2,H3), and D ∈ B(H4,H3). Assume B maps M(C)
intoM(D). Let BM = B|M(C) ∈ B(M(C),M(D)). Then

B∗
MDD∗ = CC∗B∗.

Proof. For h ∈ H3, h2 ∈M(C),

⟨B∗
MDD∗h, h2⟩M(C) = ⟨DD∗h,BMh2⟩M(D)

= ⟨DD∗h,Bh2⟩M(D) = ⟨h,Bh2⟩H3

= ⟨B∗h, h2⟩H2 = ⟨CC∗B∗h, h2⟩M(C),

where the first equality follows from the definition of B∗
M, and the third and the last equalities

follow from (8). Therefore, B∗
MDD∗h = CC∗B∗h for all h ∈ H3.

The above simple lemma is useful for characterizing certain operators between two de Branges–
Rovnyak spaces as seen in Lemma 2.5 and Corollary 2.6 below.

Next by using Lemma 2.4, we characterize when the adjoint of an operator on a de Branges–
Rovnyak space is a k-hypercontraction.
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Lemma 2.5. Let B,C ∈ B(H). Assume B maps M(C) into M(C). Let BM = B|M(C) ∈
B(M(C)). Then B∗

M is a k-hypercontraction if and only if

βm(B∗, C) :=
m∑
i=0

(−1)i
(
m

i

)
BiCC∗B∗i ≥ 0 on H for all 1 ≤ m ≤ k.

Proof. By definition, B∗
M is a k-hypercontraction if and only if for 1 ≤ m ≤ k, ⟨βm(B∗

M)h1, h1⟩M(C) ≥
0 for all h1 ∈M(C). Since CC∗H is dense inM(C), this happens if and only if for all h ∈ H,

⟨βm(B∗
M)CC∗h,CC∗h⟩M(C) ≥ 0 :

indeed,

⟨βm(B∗
M)CC∗h,CC∗h⟩M(C) =

m∑
i=0

(−1)i
(
m

i

)⟨
B∗i

MCC∗h,B∗i
MCC∗h

⟩
M(C)

=
m∑
i=0

(−1)i
(
m

i

)⟨
CC∗B∗ih,CC∗B∗ih

⟩
M(C)

=
m∑
i=0

(−1)i
(
m

i

)⟨
CC∗B∗ih,B∗ih

⟩
H

= ⟨βm(B∗, C)h, h⟩H ≥ 0,

where the second equality follows from Lemma 2.4 and the third equality follows from (8).

It is curious to ask when BM is a k-hypercontraction. Similarly, we can give characterizations
of when B∗

M belongs to other classes of operators such as B∗
M being a k-isometry, i.e., βk(B

∗
M) = 0.

The case of when B∗
M is an isometry is useful for us. Furthermore, this result can be stated for an

operator between different spaces, and it can also be viewed as a refinement of Corollary 16.11 in
[24].

Corollary 2.6. Let C ∈ B(H1,H2), B ∈ B(H2,H3) and D ∈ B(H4, H3). Then DD∗ = BCC∗B∗

on H3 if and only if B∗
M is an isometry, where BM = B|M(C) ∈ B(M(C),M(D)). Furthermore,

BM is a unitary (or B∗
M is an onto isometry) if and only if ker(B) ∩M(C) = {0}.

Proof. Assume DD∗ = BCC∗B∗. Then by Corollary 16.10(ii) in [24], B maps M(C) into
M(D) and BM = B|M(C) ∈ B(M(C),M(D)). Note that B∗

M is an isometry if and only if
⟨B∗

Mh1, B
∗
Mh1⟩M(C) = ⟨h1, h1⟩M(D) for all h1 ∈ M(D). Since DD∗H3 is dense in M(D), this

happens if and only if for all h ∈ H3,

0 = ⟨B∗
MDD∗h,B∗

MDD∗h⟩M(C) − ⟨DD∗h,DD∗h⟩M(D)

= ⟨CC∗B∗h,CC∗B∗h⟩M(C) − ⟨DD∗h,DD∗h⟩M(D)

= ⟨CC∗B∗h,B∗h⟩H2 − ⟨DD∗h, h⟩H3 = ⟨(BCC∗B∗ −DD∗)h, h⟩H3 ,

where the second equality follows from Lemma 2.4 and the third equality follows from (8). Since
B∗

M is an isometry, it is clear that BM is a unitary if and only if ker(B) ∩M(C) = {0}.

2.2 Higher-order de Branges–Rovnyak spaces

We now introduce the new spaces to be studied in this paper.

Definition 2.7. If A∗ ∈ B(H) is an m-hypercontraction, we define

Gk(A) ≡ Gk(H,A) :=M(H,∆k(A
∗)), 1 ≤ k ≤ m.

Recall that ∆k(A
∗) = βk(A

∗)1/2. Thus we have that for h1 ∈ H and h2 ∈ Gk(A),

⟨βk(A∗)h1, h2⟩Gk(A) = ⟨h1, h2⟩H . (9)
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Note that G1(A) = H(A) is the de Branges–Rovnyak space. For notational convenience, set
G0(A) := H.

The following lemma describes a dense set of Gk(A) and how one can compute the norms of
the vectors in this dense set.

Lemma 2.8. If A∗ ∈ B(H) is a k-hypercontraction, then βk(A
∗)H is dense in Gk(A). Further-

more, for h ∈ H,

∥βk(A∗)h∥2Gk(A) = ∥∆k(A
∗)h∥2H =

k∑
i=0

(−1)i
(
k

i

)∥∥A∗ih
∥∥2
H
. (10)

Proof. The first assertion follows from Lemma 16.15 in [24]. For h ∈ H, by (9),

∥βk(A∗)h∥2Gk(A) = ⟨βk(A
∗)h, βk(A

∗)h⟩Gk(A) = ⟨h, βk(A∗)h⟩H = ∥∆k(A
∗)h∥2H .

The result follows from (7).

Lemma 2.9. Let A∗ ∈ B(H) be an m-hypercontraction. Then

Gm(A) ↪→ Gm−1(A) ↪→ · · · ↪→ G2(A) ↪→ H(A) = G1(A) ↪→ H = G0(A).

Proof. For 1 ≤ k ≤ m, by definition, Gk(A) = M(∆k(A
∗)) and Gk−1(A) = M(∆k−1(A

∗)). By
(6),

∆2
k(A

∗) = ∆2
k−1(A

∗)−A∆2
k−1(A

∗)A∗ ≤ ∆2
k−1(A

∗),

which proves Gk(A) ↪→ Gk−1(A).

Problem 2.10. When Gk(A) is closed in Gk−1(A)? In particular, when G2(A) is closed in H(A)?

The following observation shows that the notion of m-hypercontractions has a natural connec-
tion with the contraction on de Branges–Rovnyak spaces.

Lemma 2.11. Let A∗ ∈ B(H) be a k-hypercontraction. Then A is a contraction on Gk(A) if
and only if A∗ is a (k + 1)-hypercontraction on H. As a consequence, if A∗ ∈ B(H) is a k-
hypercontraction, then AGk−1(A) ↪→ Gk−1(A).

Proof. By Corollary 16.10(ii) in [24] withM(∆k(A
∗)) = Gk(A), the operator A : Gk(A)→ Gk(A)

is a contraction if and only if

A∆k(A
∗)∆k(A

∗)A∗ ≤ ∆k(A
∗)∆k(A

∗),

equivalently if and only if
Aβk(A

∗)A∗ ≤ βk(A∗).

By definition and (5), this is the same as A∗ being a (k + 1)-hypercontraction.

On Lemma 2.11, we say something more:

Corollary 2.12. Let A∗ ∈ B(H) be a k-hypercontraction. Then A maps Gk(A) into Gk(A) and
A∗
Gk

is an m-hypercontraction, where AGk
= A|Gk(A) ∈ B(Gk(A)), if and only if A∗ is a (k+m)-

hypercontraction on H. As a consequence, if A∗ ∈ B(H) is an n-hypercontraction for some n ≥ 2,
then A∗

Gl
is an (n− l)-hypercontraction, where AGl

= A|Gl(A) ∈ B(Gl(A)) for all 1 ≤ l < n.
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Proof. Since Gk(A) =M(βk(A
∗)1/2), by Lemma 2.5 with C = βk(A

∗)1/2 and B = A, A∗
Gk

is an
m-hypercontraction on Gk(A) if and only if for all 1 ≤ j ≤ m,

βj(A
∗, βk(A

∗)1/2) =

j∑
i=0

(−1)i
(
j

i

)
Aiβk(A

∗)1/2βk(A
∗)1/2A∗i

=

j∑
i=0

(−1)i
(
j

i

)
Aiβk(A

∗)A∗i = βk+j(A
∗) ≥ 0,

where the third equality can be proved by induction using (5). By definition, this happens if
and only if A∗ is a (k +m)-hypercontraction on H, where the backward implication uses Lemma
2.11.

When m = 1, A∗
Gk

is an m-hypercontraction if and only if AGk
is a contraction, so the above

corollary generalizes Lemma 2.11 from m = 1 to m ≥ 1.

If A∗ is a 2-hypercontraction on H, then AH(A) ↪→ H(A). Thus we can define a new de
Branges–Rovnyak space by using the contraction A viewed as an operator on H(A). In the defini-
tion of this new space, we need to use the adjoint (A|H(A))∗ which is different from A∗ since A∗

even does not necessarily map H(A) into H(A). We add explicitly the Hilbert space where A acts
for the de Branges–Rovnyak space H(A) to elucidate the situation. Namely, let

H(H,A) =M(DA∗) which as a set is (I −AA∗)1/2H,

where A is viewed as a contraction on H. We first need a simple observation about (A|H(A))∗. In
fact we study the general case (B|Gk(A))∗.

Corollary 2.13. Let A∗ ∈ B(H) be a k-hypercontraction and B ∈ B(H) be a contraction. Assume
BGk(A) ↪→ Gk(A). Let B1 = B|Gk(A). Then B∗

1Gk(A) ↪→ Gk(A) and

B∗
1βk(A

∗) = βk(A
∗)B∗.

Proof. This follows at once from Lemma 2.4 by applying with C = D = ∆k(A
∗).

With the above notation we have the following interpretation of Gk(A).

Theorem 2.14. Let A∗ be a k-hypercontraction on H. Then

Gk(A) = H(Gk−1(A), A). (11)

Proof. Let A1 = A|Gk−1(A). By Lemma 2.11, A1 is a contraction on Gk−1(A). We first note that
as a set,

H(Gk−1(A), A) = (I −A1A
∗
1)

1/2Gk−1(A) = (I −A1A
∗
1)

1/2∆k−1(A
∗)H.

By Corollary 2.13, for h ∈ H,

(I −A1A
∗
1)βk−1(A

∗)h = βk−1(A
∗)h−A1A

∗
1βk−1(A

∗)h (12)

= βk−1(A
∗)h−Aβk−1(A

∗)A∗h = βk(A
∗)h,

where the last equality follows from (5). Thus,

(I −A1A
∗
1)βk−1(A

∗)H = βk(A
∗)H. (13)
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Furthermore,

∥(I −A1A
∗
1)βk−1(A

∗)h∥2H(Gk−1(A),A)

= ∥βk−1(A
∗)h∥2Gk−1(A) − ∥A

∗
1βk−1(A

∗)h∥2Gk−1(A)

= ∥βk−1(A
∗)h∥2Gk−1(A) − ∥βk−1(A

∗)A∗h∥2Gk−1(A) (14)

= ∥∆k−1(A
∗)h∥2H − ∥∆k−1(A

∗)A∗h∥2H
= ∥∆k(A

∗)h∥2H = ∥βk(A∗)h∥2Gk(A) ,

where the first equality follows from (2), the second equality follows from Corollary 2.13, and the
third equality follows from (10) with k being k − 1. The fourth equality follows from (7). The
last equality follows from again (10). By Lemma 2.8, βk−1(A

∗)H is dense in Gk−1(A) and (I −
A1A

∗
1)Gk−1(A) is dense inH(Gk−1(A), A). Thus (I−A1A

∗
1)βk−1(A

∗)H is dense inH(Gk−1(A), A).
By (13), βk(A

∗)H is dense in H(Gk−1(A), A). By Lemma 2.8 again, βk(A
∗)H is dense in Gk(A).

Therefore H(Gk−1(A), A) and Gk(A) contain a common dense set βk(A
∗)H, where the two norms

are equal. So Gk(A) = H(Gk−1(A), A).

Corollary 2.15. Let A∗ be a 3-hypercontraction on H. Then

G3(A) = H(G2(A), A) = H(H(H(H,A), A), A).

In the above sense, we call Gk(A) an order-k (or iterated) de Branges–Rovnyak space.

On the other hand, for 1 ≤ l < k, in order for Gk−l(Gl(H,A), A) to be defined, A as an operator
in B(Gl(H,A)) has to be such that (A|Gl(A))∗ is a (k − l)-hypercontraction which indeed is the
case by Corollary 2.12. Then we have the following corollary of Theorem 2.14.

Corollary 2.16. Let A∗ ∈ B(H) be a k-hypercontraction. Then

Gk(H,A) = Gk−l(Gl(H,A), A), 1 ≤ l < k.

We now give an answer to Problem 2.10. By Theorem 16.21 in [24] and Theorem 2.14, G2(A)
is a closed subspace of H(A) if and only if A|H(A) is a partial isometry. However it is not clear
what this actually means for A viewed as an operator on H. The following result gives some
orthogonality condition.

Proposition 2.17. Let A∗ be a k-hypercontraction on H. Then Gk(A) is a closed subspace of
Gk−1(A) if and only if

⟨βk(A∗)h1, Aβk−1(A
∗)h2⟩Gk−1(A) = 0

for all h1, h2 ∈ H. In particular, G2(A) is a closed subspace of H(A) if and only if for all
h1, h2 ∈ H, ⟨

(I − 2AA∗ +A2A∗2)h1, A(I −AA∗)h2
⟩
H(A)

= 0.

Proof. Recall that an operator B on a complex Hilbert space is a partial isometry if and only if
B = BB∗B if and only if B∗(I −BB∗) = 0. Let A1 = A|Gk−1(A). By Theorem 16.21 in [24] and
Theorem 2.14, Gk(A) is a closed subspace of Gk−1(A) if and only if for k1, k2 ∈ βk−1(A

∗)H (by
Lemma 2.8, βk−1(A

∗)H is dense in Gk−1(A)),

⟨(I −A1A
∗
1)k1, Ak2⟩Gk−1(A) = ⟨A

∗
1(I −A1A

∗
1)k1, k2⟩Gk−1(A) = 0.
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Write ki = βk−1(A
∗)hi, where hi ∈ H. Then

⟨βk(A∗)h1, Aβk−1(A
∗)h2⟩Gk−1(A)

= ⟨(I −A1A
∗
1)βk−1(A

∗)h1, Aβk−1(A
∗)h2⟩Gk−1(A) = 0,

where the first equality follows from (12). This completes the proof.

If f ∈ L∞ with ∥f∥∞ ≤ 1, write M(f) for M(Tf ) and H(f) for H(Tf ). In the sequel, let
(H∞)1 denote the unit ball of H∞.

Proposition 2.18. Let b ∈ (H∞)1. Then Tb on H2 is an m-hypercontraction for any m ≥ 1.

Proof. This follows at once from the observation:

βm(Tb) =
m∑
i=0

(−1)i
(
m

i

)
T ∗i
b T

i
b =

m∑
i=0

(−1)i
(
m

i

)
T
bibi

= T(1−|b|2)m ≥ 0.

By Proposition 2.18, if b ∈ (H∞)1, then Tb on H2 is an m-hypercontraction for all m ≥ 1, so
that we may define

Gk(b) := Gk(H
2, Tb) =M(∆k(Tb)) for each k ≥ 1.

In particular, G1(b) = H(b).
On the other hand, the nested sequence (Gk(A))

m
k=0 in Lemma 2.9 often results in a sequence

of dense subsets of H2.

Theorem 2.19. If b ∈ (H∞)1 is nonextreme, i.e., log(1− |b|2) is integrable on the unit circle ∂D,
then Gk(b) is dense in H2 for all k ≥ 1.

Proof. If b is nonextreme then we may choose an outer function a such that |a|2 = 1− |b|2 on the
unit circle where a(0) > 0 (cf. [39, (IV-1)]). Then for all k ≥ 1,

βk(Tb) = T(1−|b|2)k = T|a|2k = T ∗
akTak .

It is easy to see that ker(T ∗
akTak) = ker(Tak) = {0}. Thus, βk(Tb)H2 is dense in H2. By definition,

Gk(b) ⊇ βk(Tb)H2. So Gk(b) is dense in H2.

3 Higher-order sub-Bergman spaces

3.1 Preliminaries on reproducing kernel Hilbert spaces

Let K(z, w) be a reproducing kernel of holomorphic Hilbert space H(K) on the unit disk D. Let c
be a multiplier of H(K), i.e., H(K) is invariant underMc, whereMc is the multiplication operator
on H(K) with symbol c. Then we can prove that for each w ∈ D,

M∗
cK(z, w) = c(w)K(z, w). (15)
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Definition 3.1. For two complex Hilbert spaces H1 and H2 with norms ∥·∥1 and ∥·∥2 respectively,
we write H1 ≈ H2 if H1 = H2 as sets and there exist two positive constants γ and δ such that

γ∥h∥1 ≤ ∥h∥2 ≤ δ∥h∥1.

We use K1(z, w) ≽ 0 to indicate K1(z, w) is a positive semi-definite kernel, equivalently K1(z, w)
is a reproducing kernel.

The following lemma contains some basic properties of reproducing kernels which hold in more
general context [3], [6], [38]. We shall use this lemma sometimes without explicitly mentioning it.

Lemma 3.2. Let Ki(z, w) be three reproducing kernel functions on D × D, that is, Ki(z, w) ≽ 0
for i = 1, 2, 3. The following statements hold.

(i) For c1 ≥ 0 and c2 ≥ 0, c1K1(z, w) + c2K2(z, w) ≽ 0.

(ii) K1(z, w)K2(z, w) ≽ 0. Thus if K1(z, w) ≽ K2(z, w), then

K1(z, w)K3(z, w) ≽ K2(z, w)K3(z, w).

(iii) H(K1) ⊆ H(K2) if and only if there exists a positive constant γ such that

γK1(z, w) ≼ K2(z, w).

Thus H(K1) ≈ H(K2) if and only if there exist two positive constants γ and δ such that

γK1(z, w) ≼ K2(z, w) ≼ δK1(z, w).

In this case, we write K1(z, w) ≈ K2(z, w).

(iv) Let K(z, w) be a reproducing kernel of holomorphic Hilbert space H(K) on the unit disk D.
Then

K(z, w) =
∑
i∈I

ei(z)ei(w) (z, w ∈ D),

where {ei(z)}i∈I is any orthonormal basis of H(K). In particular, f ∈ H(K) with ∥f∥H(K) ≤
1 if and only if

f(z)f(w) ≼ K(z, w).

The following result can be viewed as a converse of Lemma 3.2(iv).

Lemma 3.3. Let K(z, w) be a reproducing kernel of holomorphic Hilbert space H(K) on the unit
disk D. Assume that

K(z, w) =
∑
j∈J

fj(z)fj(w) (z, w ∈ D),

where {fj : j ∈ J} are finitely linearly independent vectors of H(K), in the sense that for any finite
set F ⊆ J , {fj : j ∈ F} are linearly independent. Then {fj : j ∈ J} forms an orthonormal basis
for H(K).

Proof. Define H0 by

H0 =

∑
j∈F

ajfj : F ⊆ J , a finite index set
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with inner product ⟨∑
j∈F

ajfj ,
∑
j∈F

bjfj

⟩
H0

=
∑
j∈F

ajbj (aj , bj ∈ C).

Then H0 is an inner product space. This inner product is well-defined by the finitely linear
independence assumption of {fj : j ∈ J}. Let H1 be the completion of H0. Then H1 is a Hilbert
space and {fj : j ∈ J} is an orthonormal set in H1. If f ⊥ fj for all j ∈ J , then f ⊥ H0. Hence
f = 0. It follows that {fj : j ∈ J} is an orthonormal basis for H1. Thus, formally,

H1 =

f(z) =∑
j∈J

cjfj(z) : ∥f(z)∥2H1
=
∑
i∈J
|cj |2 <∞

 .

We note that f(z) as above is a well-defined function since for z ∈ D,∑
j∈J

|cjfi(z)|

2

≤

(∑
i∈J

|cj |2
)∑

j∈J

|fj(z)|2
 =

(∑
i∈J

|cj |2
)
K(z, z) <∞.

On the other hand, if w ∈ D, then∑
j∈J

∣∣∣fj(w)∣∣∣2 = K(w,w) <∞,

which implies that K(z, w) ∈ H1. Let f ∈ H1. Then f(z) =
∑
j∈J ⟨f, fj⟩H1

fj(z), so that

⟨f(z),K(z, w)⟩H1
=

⟨
f(z),

∑
j∈J

fj(z)fj(w)

⟩
H1

=
∑
j∈J
⟨f, fj⟩H1

fj(w) = f(w).

Therefore H1 is a reproducing kernel Hilbert space on D with kernel K. By the one-to-one cor-
respondence between a reproducing kernel and its associated Hilbert space, we conclude that
H(K) = H1 as Hilbert spaces. In particular, {fj : j ∈ J} is an orthonormal basis for H(K).

Next we give a connection between the hypercontractive multipliers and the reproducing kernels.
Similar versions of the following result appear in literature frequently [3], where their proofs are
also pretty standard.

Lemma 3.4. Let A be an operator on H(K) such that

A =
N∑

i,j=1

aijMbiM
∗
cj ,

where aij ∈ C and bi(z), cj(z) are multipliers of H(K). Then A ≥ 0 if and only if N∑
i,j=1

aijbi(z)cj(w)

K(z, w) ≽ 0.

That is, the function on the left side of the above equation is a positive semi-definite kernel.
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Proof. Let h(z) =
∑l
p=1 δpK(z, wp), where δp ∈ C and {w1, · · ·wl} ⊆ D is a set of l distinct points.

Then

⟨Ah, h⟩H(K) =

⟨
A

l∑
p=1

δpK(z, wp),

l∑
q=1

δqK(z, wq)

⟩

=
l∑

p,q=1

δpδq

N∑
i,j=1

⟨
aijMbiM

∗
cjK(z, wp),K(z, wq)

⟩

=

l∑
p,q=1

δpδq

N∑
i,j=1

⟨
aijM

∗
cjK(z, wp),M

∗
biK(z, wq)

⟩

=
l∑

p,q=1

δpδq

N∑
i,j=1

⟨
aijcj(wp)K(z, wp), bi(wq)K(z, wq)

⟩
(by (15))

=

l∑
p,q=1

δpδq

N∑
i,j=1

aijcj(wp)bi(wq)K(wq, wp).

The result follows from the density of kernel functions in H(K) and the definitions.

Corollary 3.5. The analytic function c is a multiplier of H(K) such that ∥Mc∥ ≤ γ if and only if

c(z)c(w)K(z, w) ≼ γ2K(z, w)

Furthermore, if 1/c is also a multiplier such that ∥M1/c∥ ≤ δ, then

c(z)c(w)K(z, w) ≽ K(z, w)/δ2. (16)

Proof. The assumption ∥Mc∥ ≤ γ is the same as γ2 −McM
∗
c ≥ 0. By Lemma 3.3, this happens if

and only if (
γ2 − c(z)c(w)

)
K(z, w) ≽ 0.

The assumption ∥M1/c∥ ≤ δ implies that

1

c(z)

1

c(w)
K(z, w) ≼ δ2K(z, w).

Multiplying both sides of the above inequality by the reproducing kernel c(z)c(w), we see that (16)
holds.

Corollary 3.6. Let b(z) be a multiplier of H(K). Then M∗
b on H(K) is a k-hypercontraction if

and only if
(1− b(z)b(w))mK(z, w) ≽ 0 for 1 ≤ m ≤ k.

Proof. Note that,

βm(M∗
b ) =

m∑
i=0

(−1)i
(
m

i

)
M i
bM

∗i
b =

m∑
i=0

(−1)i
(
m

i

)
MbiM

∗
bi .

By Lemma 3.4, βm(M∗
b ) ≥ 0 if and only if(

m∑
i=0

(−1)i
(
m

i

)
b(z)ib(w)i

)
K(z, w) = (1− b(z)b(w))mK(z, w) ≽ 0.
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For α > −2, let A2
α be the Hilbert space with reproducing kernel

Kα(z, w) =
1

(1− zw)α+2
=
∑
i≥0

ci,αz
iwi,

where

ci,α =

(
i+ α+ 1

i

)
=

Γ(i+ α+ 2)

i! Γ(α+ 2)
. (17)

Thus,
{√

ci,αz
i : i ≥ 0

}
is an orthonormal basis of A2

α.

When α > −1, let
dAα(z) := (α+ 1)(1− |z|2)α dA(z),

where dA(z) is the normalized area measure on D. Let L2(D, dAα(z)) be the L2 space on D
with measure dAα(z). Equivalently, the weighted Bergman space A2

α is the closed subspace of
L2(D, dAα(z)) consisting of holomorphic functions in D. The Bergman projection Pα : L2(D, dAα(z))
→ A2

α is given by

Pα[g](z) =

∫
D

g(u)

(1− zu)α+2
dAα(u), g ∈ L2(D, dAα(z)). (18)

The Bergman space with α = 0 is denoted by A2, and when α = −1, we get the Hardy space H2.
For f ∈ L∞ ≡ L∞(D), the Toeplitz operator Tf on A2

α with symbol f is defined by

Tfh = Pα(fh), h ∈ A2
α.

The space of multipliers of A2
α with α ≥ −1 is H∞. The space of multipliers of A2

α with −2 < α <
−1 is a proper subset of H∞ containing functions holomorphic in a neighborhood of the closed
unit disk D.

3.2 Reproducing kernels of higher-order sub-Bergman spaces

For b ∈ (H∞)1, define
Gk,α(b) := Gk(Tb) =M(∆k(T

∗
b )),

where Tb is defined on A2
α and 1 ≤ k ≤ [α+ 2] (this is justified in Corollary 3.8 below), where

[α+ 2] denotes the integer part of α+2. The Gk,α(b) will be called an order-k sub-Bergman space.
In particular, for α > −1, let

Aα(b) := H(A2
α, Tb) = G1,α(b) and A(b) ≡ A0(b).

Theorem 3.7. Let H(K) be a holomorphic Hilbert space with reproducing kernel K(z, w) and
assume c(z) = z is a multiplier of H(K). If M∗

c on H(K) is a k-hypercontraction, then for any
b ∈ (H∞)1, M

∗
b on H(K) is a k-hypercontraction.

Proof. By Corollary 3.6, if M∗
c on H(K) is a k-hypercontraction, then

(1− zw)mK(z, w) ≽ 0 for 1 ≤ m ≤ k.

For b ∈ (H∞)1, M
∗
b on H(K) is a k-hypercontraction if and only if

(1− b(z)b(w))mK(z, w) =

(
1− b(z)b(w)

1− zw

)m
(1− zw)mK(z, w) ≽ 0 (19)
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for 1 ≤ m ≤ k. By the result on H2 [39], we know

1− b(z)b(w)
1− zw

≽ 0.

Therefore, (19) holds for 1 ≤ m ≤ k.

Corollary 3.8. Let b ∈ (H∞)1. Then T ∗
b on A2

α is an [α+ 2]-hypercontraction.

Proof. Note that T ∗
z is an [α+ 2]-hypercontraction on A2

α since

(1− zw)mKα(z, w) =
1

(1− zw)α+2−m ≽ 0

for 1 ≤ m ≤ [α+ 2]. The result follows from Theorem 3.7.

The proof of the above theorem is relatively straightforward using reproducing kernels. How-
ever, to determine if an operator is a 2-hypercontraction is difficult in general. For example, we
cannot completely resolve the following question.

Problem 3.9. For which a, b ∈ C, the Toeplitz operator Taz+bz on H2 is a 2-hypercontraction?

The following result from [21] is useful. In fact, Theorem 1.2 in [21] states that if A is k-
hyponormal, then A is 2k-contractive.

Lemma 3.10. [21] Let A ∈ B(H) be a contraction. If A is hyponormal, then A is a 2-hypercontraction.

Proof. We include a short proof. Since A is hyponormal,

A∗ (A∗A−AA∗)A ≥ 0 or A∗2A2 ≥ A∗AA∗A.

Hence

β2(A) = I − 2A∗A+A∗2A2 ≥ I − 2A∗A+A∗AA∗A

= (I −A∗A)2 ≥ 0.

The proof is complete.

The study of hyponormal Toeplitz operators on H2 and other spaces are extensive [14], [15],
[29]. We need to introduce Hankel operators on A2

α (α > −1). If f ∈ L∞, then the Hankel operator
Hf : A2

α → L2(D, dAα(z))⊖A2
α with symbol f is defined by

Hfh = [I − Pα] (fh), h ∈ A2
α,

and the dual Toeplitz operator Sf on L2(D, dAα(z))⊖A2
α is defined by

Sfu = [I − Pα] (fu), u ∈ L2(D, dAα(z))⊖A2
α.

Then the following well-known relations between Toeplitz, Hankel and dual Toeplitz operators
hold: for f, g ∈ L∞,

Tfg − TfTg = H∗
f
Hg;

Hfg = HfTg + SfHg.

In particular, if f ∈ H∞, then Hfg = SfHg for g ∈ L∞. Then we have the following sufficient
condition for Tf to be a 2-hypercontraction.
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Corollary 3.11. Let f ∈ L∞ be such that ∥f∥∞ ≤ 1. If there exists k ∈ (H∞)1 such that
f − kf ∈ H∞, then Tf on A2

α (α > −1) is a 2-hypercontraction.

Proof. Let k ∈ (H∞)1 and g ∈ H∞ be such that

f = kf + g.

By Lemma 3.10, we just need to show that Tf is hyponormal. Note that

T ∗
f Tf − TfT ∗

f = TfTf − TfTf = Tff −H
∗
fHf − Tff +H∗

f
Hf

= H∗
f
Hf −H

∗
fHf = H∗

f
Hf −H

∗
kf
Hkf

= H∗
f
(I − S∗

kSk)Hf ≥ 0 (since ∥Sk∥ = ∥k∥∞ ≤ 1),

which implies that Tf is hyponormal and hence Tf is a 2-hypercontraction.

By Corollary 3.11, we get a partial answer to Problem 3.9: if |a| + |b| ≤ 1 and |b| ≤ |a|, then
Taz+bz is a 2-hypercontraction. But the converse is not true in general. C. Cowen [14] showed
that Tf on H2 is hyponormal if and only if there exists k ∈ (H∞)1 such that f − kf ∈ H∞,
but this result does not extend to Tf on A2

α [30]. Some Toeplitz operators in Example 2.3 are
2-hypercontractions, but they are not hyponormal. The Toeplitz operator Tf with an analytic
symbol f admits a simple answer.

Proposition 3.12. Let b ∈ (H∞)1. Then Tb on A2
α (α ≥ −1) is an m-hypercontraction for any

m ≥ 1.

Proof. Same as the proof of Proposition 2.18.

For b ∈ (H∞)1, the above observation allows us to define for any k ≥ 1,

Gk,α(b) := Gk(Tb) =M(∆k(Tb)),

where Tb is defined on A2
α. In particular, for α ≥ −1, let

Aα(b) := H(A2
α, Tb) = G1,α(b) and A(b) ≡ A0(b).

Proposition 3.13. Let φ ∈ H∞ and b ∈ (H∞)1. Then for all m ≥ 1, Gm,α(b) is invariant under
Tφ and the norm of the operator Tφ : Gm,α(b)→ Gm,α(b) does not exceed ∥φ∥∞.

Proof. Assume φ ∈ (H∞)1. We need to show TφGm,α(b) ↪→ Gm,α(b). This happens if and only if

βm(Tb)− Tφβm(Tb)Tφ = T(1−|b|2)m − TφT(1−|b|2)mTφ

= T(1−|b|2)m(1−|φ|2) ≥ 0,

where the second equality uses the fact that TψTφ = Tψφ if either ψ or φ is in H∞ and the last

inequality holds since (1− |b|2)m(1− |φ|2) is a positive function on D.

Problem 3.14. Let f ∈ L∞ be such that ∥f∥∞ ≤ 1. When is Tf on the Bergman space A2 a
2-hypercontraction?

We have not found f ∈ L∞ with ∥f∥∞ ≤ 1 such that Tf on A2 is not a 2-hypercontraction.
Next we note that as an order-k de Branges–Rovnyak space, Gk,α(b) is a reproducing kernel

space on D with the following kernel.
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Theorem 3.15. Let b ∈ (H∞)1. For 1 ≤ k ≤ [α+ 2], the reproducing kernel of Gk,α(b), denoted
by F bk,α(z, w), is

F bk,α(z, w) =
(1− b(z)b(w))k

(1− zw)α+2
.

Proof. By the idea in (I-3) in [39] or Theorem 16.13 in [24] and (9), the reproducing kernel of
Gk,α(b) is

F bk,α(z, w) = βk(T
∗
b )Kα(z, w) =

k∑
i=0

(−1)i
(
k

i

)
TbiT

∗
biKα(z, w)

=
k∑
i=0

(−1)i
(
k

i

)
b(z)ib(w)

i
Kα(z, w) =

(1− b(z)b(w))k

(1− zw)α+2
.

The proof is complete.

It is a relatively simple fact for two contractions A1, A2 on H that H(A1A2)←↩ H(A1), see [24,
(16.23)] for a precise relation between H(A1) and H(A1A2). But it is not true that G2(A1A2)←↩
G2(A1) for two 2-hypercontractions A∗

1, A
∗
2 on H. Even G2(A1A2) could be undefined since the

product of two 2-hypercontractions is not necessarily a 2-hypercontraction. However, for higher
order sub-Bergman spaces, we do have the following result.

Corollary 3.16. Let b1, b2 ∈ (H∞)1. Then on A2
α,

(a) Gk,α(b1) ↪→ Gk,α(b1b2) for 1 ≤ k ≤ [α+ 2];

(b) Gm,α(b1) ↪→ Gm,α(b1b2) for all m ≥ 1.

Proof. (a) By Theorem 3.15 and Lemma 3.2, for 1 ≤ k ≤ [α+ 2], the relation Gk,α(b1) ↪→
Gk,α(b1b2) follows from

(1− b1(z)b2(z)b1(w)b2(w))k

(1− zw)α+2
− (1− b1(z)b1(w))k

(1− zw)α+2

=
b1(z)

(
1− b2(z)b2(w)

)
b1(w)

{∑k−1
i=0 s(z, w)

it(z, w)k−1−i
}

(1− zw)α+2
≽ 0,

where s(z, w) = (1− b1(z)b2(z)b1(w)b2(w)), t(z, w) = (1− b1(z)b1(w)), and

b1(z)
(
1− b2(z)b2(w)

)
b1(w)s(z, w)

it(z, w)k−1−i

(1− zw)α+2

=
b1(z)

(
1− b2(z)b2(w)

)
b1(w)

(1− zw)
s(z, w)i

(1− zw)i
t(z, w)k−1−i

(1− zw)k−1−i
1

(1− zw)α+2−k ≽ 0,

since each factor is a positive kernel by the result on H2.
(b) The relation Gm,α(b1) ↪→ Gm,α(b1b2) simply follows from

βm(Tb1) = T(1−|b1|2)m ≤ T(1−|b1b2|2)m = βm(Tb1b2).

This completes the proof.

If b(z) = b1(z)b2(z), where b1, b2 ∈ (H∞)1, the following simple result illustrates a relation
among Gk,α(b1b2), Gk,α(b1), and Gk,α(b2).
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Corollary 3.17. Let b(z) = b1(z)b2(z), where b1, b2 ∈ (H∞)1. Then on A2
α (with α ≥ 0),

G2,α(b1b2) ⊇ G2,α(b1) + b21G2,α(b2).

Proof. Note that

(1− b(z)b(w))2

(1− zw)α+2
=

(
1− b1(z)b1(w) + b1(z)

(
1− b2(z)b2(w)

)
b1(w)

)2
(1− zw)α+2

=
(1− b1(z)b1(w))2

(1− zw)α+2
+
b1(z)

2
(
1− b2(z)b2(w)

)2
b1(w)

2

(1− zw)α+2

+ 2b1(z)b1(w)
1− b1(z)b1(w)

1− zw
1− b2(z)b2(w)
(1− zw)α+1

(20)

≽ (1− b1(z)b1(w))2

(1− zw)α+2
+
b1(z)

2
(
1− b2(z)b2(w)

)2
b1(w)

2

(1− zw)α+2
,

where the kernel in (20) is positive semi-definite by the assumption α ≥ 0. By Lemma 3.2(iii),
G2,α(b1b2) ⊇ G2,α(b1) + b21G2,α(b2).

Let Hol(D) denote the set of all functions that are analytic on a domain containing the closed
unit disk D.

Proposition 3.18. Let φ ∈ H∞ and b ∈ (H∞)1. Then for 1 ≤ k < [α+ 2], Gk,α(b) is invariant
under Tφ and the norm of the operator Tφ : Gk,α(b)→ Gk,α(b) does not exceed ∥φ∥∞. Furthermore,
if b is nonextreme, then for φ ∈ Hol(D) and k = [α+ 2], Gk,α(b) is invariant under Tφ.

Proof. Let φ ∈ H∞, b ∈ (H∞)1, and 1 ≤ k < [α+ 2]. Without loss of generality we may assume
∥φ∥∞ = 1. We need to show TφGk,α(b) ↪→ Gk,α(b). By Corollary 3.5 and Theorem 3.15, it suffices
to show that

φ(z)φ(w)
(1− b(z)b(w))k

(1− zw)α+2
≼ (1− b(z)b(w))k

(1− zw)α+2
.

The above holds since by Lemma 3.2(ii),

(1− φ(z)φ(w)) (1− b(z)b(w))
k

(1− zw)α+2
=

1− φ(z)φ(w)
1− zw

(1− b(z)b(w))k

(1− zw)α+1
≽ 0,

where for 1 ≤ k < [α+ 2],

1− φ(z)φ(w)
1− zw

≽ 0 and
(1− b(z)b(w))k

(1− zw)α+1
≽ 0.

If b is nonextreme and φ ∈ Hol(D), then φ is a multiplier of de Branges–Rovnyak space H(b) by
Theorem 24.6 of [24]. Hence by Corollary 3.5,

φ(z)φ(w)
1− b(z)b(w)

1− zw
≼ γ 1− b(z)b(w)

1− zw

for some positive constant γ. Therefore, multiplying the above relation by an appropriate kernel,
we have

φ(z)φ(w)
(1− b(z)b(w))[α+2]

(1− zw)α+2
≼ γ (1− b(z)b(w))

[α+2]

(1− zw)α+2
.
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That is, G[α+2],α(b) is invariant under Tφ.

We remark the above result is sharp in the sense that Tφ does not necessarily map Gk,α(b)
into Gk,α(b) for k = [α+ 2]. For example, when α is a nonnegative integer, Gα+2,α(b) is finite
dimensional in the case b is a finite Blaschke product (see Theorem 4.18), so that it is clear that
Tz does not map Gα+2,α(b) into Gα+2,α(b).

When α is an integer, the reproducing kernel F bα+2,α(z, w) is simply the power of the reproducing
kernel of H(b) of H2.

Corollary 3.19. When α = m ≥ 0 is an integer, then

F bm+2,m(z, w) =

(
1− b(z)b(w)

1− zw

)m+2

.

For two reproducing kernel Hilbert spaces, if one kernel is the power of the other kernel, then
it may seem these two spaces will be similar. But the classical examples of Hardy space H2 and
Bergman space A2 tell a different story in that the functions theory of these two spaces and related
operators on them such as Toeplitz and Hankel operators are significantly different. Therefore it
is significant to consider the higher-order sub-Bergman spaces Gk,α(b), in particular when b is an
inner function. For example, in view of the rich function theory of H(b) [24] [39], it is interesting
to study the function theory of Gk,α(b).

The Gk,α(b) is also a reproducing kernel space on D with the following kernel.

Proposition 3.20. Let b ∈ (H∞)1. For all k ≥ 1, the reproducing kernel of Gk,α(b), denoted by

F bk,α(z, w), is

F bk,α(z, w) =

∫
D

(1− |b(u)|2)k

(1− zu)α+2(1− uw)α+2
dAα(u).

Proof. The proof is similar to Proposition 3.3 in [43]. By the idea in (I-3) of [39] or Theorem 16.13
in [24] and (9), the reproducing kernel of Gk,α(b) is

F bk,α(z, w) = βk(Tb)Kα(z, w)

= T(1−|b|2)kKα(z, w) = Pα
(
(1− |b(z)|2)kKα(z, w)

)
.

Now the result follows from (18).

In the study of de Branges–Rovnyak spaces on H2 [24], [39], the connection between H(b)
and H(b) plays an important role. Similarly, on the Bergman space A2 [12], [41], [43], [44], the
connection between A(b) and A(b) also plays a crucial role.

It was shown by Zhu [43] that on the Bergman space

A(b) = G1,0(b) ⊇ A(b) = G1,0(b) ⊇ H∞. (21)

Based on Zhu’s characterization of multipliers on A(b) and A(b), Chu [12] observed that

A(b) ≈ A(b).

That is, A(b) and A(b) are equal as a set and have equivalent norms. Recently, the relation (21)
is strengthened by Chu [13] to

A(b) ≈ A(b) ⊇ H2.

The similar relation between Gk,α(b) and Gk,α(b) does not hold for k ≥ 2. In fact we will see
that Gk,α(b) could be finite dimensional when b is a finite Blaschke product (Theorem 4.18) and
Gk,α(b) is always infinite dimensional if b is not a constant (Theorem 5.7).
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3.3 Mixed higher-order de Branges–Rovnyak spaces

Let A∗ ∈ B(H) be a 2-hypercontraction. By Lemma 2.11, A maps G1(A) into G1(A) and A as an
operator in B(G1(A)) is a contraction. This gives rise to the second order de Branges–Rovnyak
space G2(A). Surprisingly, A also maps G1(A

∗) into G1(A
∗) and A as an operator in B(G1(A

∗))
is a contraction. This will give rise to the space H(H(H,A∗), A). We may call this space a mixed
second order de Branges–Rovnyak space.

Theorem 3.21. Let A ∈ B(H) be a contraction. If B ∈ B(H) is a contraction such that
BG1(A) ↪→ G1(A) and BA = AB, then BG1(A

∗) ↪→ G1(A
∗).

Proof. Let h ∈ G1(A
∗) = H(A∗). Then by Theorem 16.18 in [24], Ah ∈ G1(A). By assumption

BG1(A) ↪→ G1(A), so that BAh ∈ G1(A). Now A(Bh) = BAh ∈ G1(A) and Theorem 16.18 in
[24] again imply Bh ∈ G1(A

∗). To see that BG1(A
∗) ↪→ G1(A

∗), by Theorem 16.18 in [24], for
h ∈ G1(A

∗),

∥Bh∥2G1(A∗) = ∥Bh∥
2
H + ∥BAh∥2G1(A) ≤ ∥h∥

2
H + ∥Ah∥2G1(A) = ∥h∥

2
G1(A∗) ,

where the inequality follows from the fact that B is a contraction on H and B is a contraction as
an operator on G1(A).

Applying Theorem 3.21 with B = A yields what we remarked just before Theorem 3.21.

Corollary 3.22. Let A∗ ∈ B(H) be a 2-hypercontraction. Then AG1(A
∗) ↪→ G1(A

∗).

Remark 3.23. The above corollary can be stated in terms of operator inequalities as follow: for
A ∈ B(H),

(I −AA∗) ≥ 0 and
(
I − 2AA∗ +A2A∗2) ≥ 0 =⇒ A (I −A∗A)A∗ ≤ (I −A∗A) .

The following result generalizes Theorem 1.1 in [12] where this result is proved in the context
of sub-Bergman space inside A2.

Proposition 3.24. If A∗ ∈ B(H) is a 2-hypercontraction and A is hyponormal, then G1(A) =
G1(A

∗) as a set and for h ∈ G1(A
∗),

∥h∥G1(A) ≤ ∥h∥G1(A∗) ≤
√
2 ∥h∥G1(A) .

Proof. The first inequality follows from G1(A
∗) ↪→ G1(A) by (3) since A is hyponormal. Now

∥h∥2G1(A∗) = ∥h∥
2
H + ∥Ah∥2G1(A) ≤ ∥h∥

2
G1(A) + ∥h∥

2
G1(A) = 2 ∥h∥2G1(A) ,

where the first equality follows from 16.18 in [24] and the second result follows from G1(A) ↪→ H
and AG1(A) ↪→ G1(A).

If A ∈ B(H) is such that both A and A∗ are 2-hypercontraction, then there are four second
order de Branges–Rovnyak spaces,

G2(A), G2(A
∗), H(H(H,A), A∗), H(H(H,A∗), A).

For example, since by Corollary 3.8 and Proposition 3.12, for b ∈ (H∞)1, both Tb and T ∗
b are

2-hypercontractions on the Bergman space A2, there are four second order sub-Bergman spaces,

H(H(A2, Tb), Tb), H(H(A2, T ∗
b ), T

∗
b ), H(H(A2, T ∗

b ), Tb), H(H(A2, Tb), T
∗
b ).

It is natural to ask if A ∈ B(H) is such that both A and A∗ are k-hypercontractions, which of the
following 2k order-k de Branges–Rovnyak spaces are defined,

H(H(· · ·H(H(H,S1), S2), · · · ), Sk)

where H is repeated k-times and Si is either A or A∗.
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4 Higher-order sub-Bergman spaces associated to a finite Blaschke
product

4.1 Identifying Gk,α(b) when b is a finite Blaschke product

When b is a finite Blaschke product, H(b) is the finite dimensional model space inside H2 and
H(b) = {0}. On the Bergman space, Zhu [44] proved that

A(b) ≈ A(b) ≈ H2, (22)

when b is a finite Blaschke product. The above result was extended to weighted Bergman spaces
A2
α for any α > −1 in [41]:

Aα(b) ≈ Aα(b) ≈ A2
α−1 (α > −1)

(see also a different proof of the result on A2
α in [1]).

In this section, we prove and extend the results in [41] and [44] to Gk,α(b). In fact we obtain a
surprisingly general result for a k-hypercontraction T which reduces the identification of Gk(b(T ))
to Gk(T ). We first recall a formula which is essentially contained in [26]. Let a ∈ D and let φa(z)
be the automorphism of the disk,

φa(z) =
a− z
1− az

, z ∈ D. (23)

Let ai ∈ D for 1 ≤ i ≤ n. We do not require ai’s to be distinct. The proof of the following lemma
is obtained by a direct computation and is similar to the proof of Lemma 2.2 in [26]. The proof
also sets up notation for future use.

Lemma 4.1. Let b(z) =
n∏
i=1

φai(z). Then the following holds for m ≥ 1:

(
1− b(z)b(w)

1− zw

)m
=

∑
m1+···+mn=m

g(m1,··· ,mn)(z)g(m1,··· ,mn)(w), (24)

where

g(m1,··· ,mn)(z) :=
√
c(m1, · · · ,mn)γ(m1, · · · ,mn)

(
n∏
i=1

bmi
i (z)(1− aiz)−mi

)
, (25)

where c(m1, · · · ,mn) and γ(m1, · · · ,mn) are constants defined by

c(m1, · · · ,mn) :=

(
m

m1, · · · ,mn

)
and γ(m1, · · · ,mn) :=

n∏
i=1

(
1− |ai|2

)mi

(26)

and bi(z) is defined by

bi(z) =


1 (i = 1),

i−1∏
j=1

φaj (z) (i = 2, · · · , n). (27)

Proof. Note that

1− φa(z)φa(w) =
(
1− |a|2

)
(1− zw)(1− az)−1(1− aw)−1.
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Raising the above identity to the power m, we have(
1− φa(z)φa(w)

1− zw

)m
=
(
1− |a|2

)m
(1− az)−m (1− aw)−m. (28)

Now for a finite Blaschke product b(z) =
n∏
i=1

φai(z),

1− b(z)b(w) = 1−
n∏
i=1

φai(z)φai(w)

=
n∑
i=1

i−1∏
j=1

φaj (z)

(1− φai(z)φai(w))
i−1∏
j=1

φaj (w)


=

n∑
i=1

bi(z)
(
1− φai(z)φai(w)

)
bi(w),

where bi is given by (27). By the multinomial formula,(
1− b(z)b(w)

1− zw

)m

=
∑

m1+···+mn=m

c(m1, · · · ,mn)

n∏
i=1

bmi
i (z)

(
1− φai(z)φai(w)

1− zw

)mi

bmi
i (w). (29)

By (28), we also have
n∏
i=1

(
1− φai(z)φai(w)

1− zw

)mi

= γ d(z)d(w),

where γ := γ(m1, · · · ,mn) and d(z) := d(m1,··· ,mn)(z) =
n∏
i=1

(1− aiz)−mi . The lemma now follows

from (29).

Let T ∈ B(H) be a contraction. Lemma 2.2 in Gu [26] expresses βm(b(T )) in terms of βm(T ).
Below if g(z) is an analytic function in the neighborhood of σ(T ) (the spectrum of T ), then g(T )
is the Riesz–Dunford functional calculus of T .

Lemma 4.2. [26] Let T ∈ B(H) be a contraction and b(z) =
n∏
i=1

φai(z). Then

βm(b(T )) =
∑

m1+···+mn=m

g(m1,··· ,mn)(T )
∗βm(T )g(m1,··· ,mn)(T );

βm(b(T )∗) =
∑

m1+···+mn=m

g(m1,··· ,mn)(T )βm(T ∗)g(m1,··· ,mn)(T
∗).

Corollary 4.3. [26] If T ∈ B(H) is a k-hypercontraction, then for any finite Blaschke product b,
b(T ) ∈ B(H) is a k-hypercontraction.

We conjecture that if T ∈ B(H) is a k-hypercontraction, then for any b ∈ (H∞)1 such that
b(T ) ∈ B(H), b(T ) is a k-hypercontraction. See Theorem 3.7 above and also Theorem 4.6 of [26].

The above lemma also immediately implies the following result on A2
α. Note that if T = Tz on

A2
α, then b(T ) = b(Tz) = Tb(z).
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Corollary 4.4. Let b(z) =
n∏
i=1

φai(z). Then on A2
α,

βm(Tb) =
∑

m1+···+mn=m

T ∗
g(m1,··· ,mn)(z)

βm(Tz)Tg(m1,··· ,mn)(z);

βm(T ∗
b ) =

∑
m1+···+mn=m

Tg(m1,··· ,mn)(z)βm(T ∗
z )T

∗
g(m1,··· ,mn)(z)

.

Next we are going to find the relationship between Gm(b(T )) and Gm(T ). We first prove a
lemma on the sum of operator range spaces which is similar to Theorem 16.22 in [24].

Lemma 4.5. Let Ai ∈ B(H) for 1 ≤ i ≤ n. Set

C := (A1A
∗
1 + · · ·+AnA

∗
n)

1/2.

ThenM (C) =M(D), where D : H ⊕ · · · ⊕H → H is the row operator defined by

D

 h1
...
hn

 =
[
A1 · · · An

]  h1
...
hn

 = A1h1 + · · ·+Anhn (hi ∈ H).

In particular,M (C) =
∨n
i=1M (Ai) as a set.

Proof. Note that D∗ : H → H ⊕ · · · ⊕H is the column operator defined by

D∗h =

 A
∗
1
...
A∗
n

h =

 A
∗
1h
...

A∗
nh

 .
Then

CC∗ = A1A
∗
1 + · · ·+AnA

∗
n = DD∗.

By Corollary 16.8 of [24],M(C) =M(D).

Lemma 4.6. If T ∈ B(H) is a k-hypercontraction and b(z) =
n∏
i=1

φai(z), then for 1 ≤ m ≤ k,

(1− a1T )−mGm(T ) ⊆ Gm(b(T )) =
∨

m1+···+mn=m

g(m1,··· ,mn)(T )Gm(T );

(1− a1T ∗)−mGm(T ∗) ⊆ Gm(b(T )∗) =
∨

m1+···+mn=m

g(m1,··· ,mn)(T )
∗Gm(T ∗).

Proof. By Lemma 4.2,

∆m(b(T )∗) =

( ∑
m1+···+mn=m

g(m1,··· ,mn)(T )βm(T ∗)g(m1,··· ,mn)(T
∗)

)1/2

.

It thus follows from Lemma 4.5 that

Gm(b(T )) = ∆m(b(T )∗)H =
∨

m1+···+mn=m

g(m1,··· ,mn)(T )∆m(T ∗)H.

This proves the equality in the lemma. For the inclusion, note that

g(m,0,··· ,0)(T )∆m(T ∗)H = g(m,0,··· ,0)(T )Gm(T ),

where g(m,0,··· ,0)(T ) = µ(1− a1T )−m for some positive constant µ and g(m,0,··· ,0)(T ) ∈ B(H) is an
invertible operator.
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Theorem 4.7. Let b(z) =
n∏
i=1

φai(z) be a finite Blaschke product. If T ∗ ∈ B(H) is a k-hypercontraction

(k ≥ 1), then
Gm(b(T )) = Gm(T ) for 1 ≤ m ≤ k − 1.

If TGk(T ) ⊆ Gk(T ) and (I−aiT )−1Gk(T ) ⊆ Gk(T ) for 1 ≤ i ≤ n, we also have Gk(b(T )) = Gk(T ).
Similarly, if T ∈ B(H) is a k-hypercontraction, then

Gm(b(T )∗) = Gm(T ∗) for 1 ≤ m ≤ k − 1.

If T ∗Gk(T
∗) ⊆ Gk(T ∗) and (I − aiT ∗)−1Gk(T ) ⊆ Gk(T ) for 1 ≤ i ≤ n, we also have Gk(b(T )

∗) =
Gk(T

∗).

Proof. By Lemma 2.11, for 1 ≤ m ≤ k − 1, TGm(T ) ↪→ Gm(T ). Hence each g(m1,··· ,mn)(T ) is a
bounded operator on Gm(T ) and

g(m1,··· ,mn)(T )Gm(T ) ⊆ Gm(T ) and Gm(b(T )) ⊆ Gm(T ),

Since g(m,0,··· ,0)(T )Gm(T ) ⊆ Gm(T ) and g(m,0,··· ,0)(T ) is invertible, g(m,0,··· ,0)(T )Gm(T ) = Gm(T )
and Gm(b(T )) ⊇ Gm(T ).

If TGk(T ) ⊆ Gk(T ) and (I − aiT )
−1Gk(T ) ⊆ Gk(T ) for 1 ≤ i ≤ n, then again each

g(m1,··· ,mn)(T ) is a bounded operator on Gk(T ). Similarly, we also have Gk(b(T )) = Gk(T ).

If the condition TGk(T ) ⊆ Gk(T ) in the above theorem is not satisfied, then Gk(b(T )) could
be different from Gk(T ) as we will see below (cf. Theorem 4.16 and Proposition 4.17).

Corollary 4.8. Let b(z) be a finite Blaschke product. If T ∈ B(H) is a 2-hypercontraction, then

H(b(T )) ≈ H(T ).

Corollary 4.9. Let φ ∈ (H∞)1 be nonextreme and let b(z) be a finite Blaschke product. Then

H(b ◦ φ) ≈ H(φ).

Proof. Let T = Tφ on H2. If φ ∈ (H∞)1 is nonextreme, then TφH(φ) ⊆ H(φ) [24], [39]. The
result follows from the previous theorem.

We remark that the relation H(b ◦ φ) ≈ H(φ) holds for any φ ∈ (H∞)1 since TφH(φ) ⊆ H(φ)
always holds.

Theorem 4.10. Let b(z) =
n∏
i=1

φai(z). Then on A2
α (α > −1),

(i) For 1 ≤ k ≤ [α+ 2]− 1,
Gk,α(b) ≈ A2

α−k.

(ii) If α is not an integer, then for k = [α+ 2],

Gk,α(b) ≈ A2
α−k.

(iii) If α is an integer, then for k = α+ 2, Gk,α(b) is a finite dimensional Hilbert space.
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Proof. By Corollary 3.8, T ∗
b is an [α+ 2]-hypercontraction. Thus it follows from Theorem 4.7 that

Gk,α(b) ≈ Gk,α(z) for 1 ≤ k ≤ [α+ 2] − 1. For (i), by Theorem 3.15, the reproducing kernel of
Gk,α(z) is 1/(1− zw)α+2−k. Hence Gk,α(b) ≈ A2

α−k for 1 ≤ k ≤ [α+ 2]− 1.
We now prove (ii). In this case, 0 < α + 2 − k < 1, so the set of multipliers of A2

α−k is a
proper subset of H∞. However since g(m1,··· ,mn)(z) is a rational function, it is easy to see that
g(m1,··· ,mn)(z) is still a multiplier of A2

α−k. It is also easy to see that 1/g(z) is a multiplier of A2
α−k.

Hence the proof of (ii) is the same as the proof of (i) with the modification about multipliers.
In the case (iii), α + 2− k = 0. The reproducing kernel of Gk,α(b) is (24), which is an integer

power of the reproducing kernel of H(b), which is finite dimensional. Thus (iii) follows at once
from Lemma 3.3.

Similarly, Theorem 4.7 gives that Gk,α(b) ≈ Gk,α(z) which we shall compute in Theorem 5.7
below.

The above theorem can be strengthened, as this was done on A2 for A(b) [44] and on A2
α for

Aα(b) [13] by using the key result of Lemma 1 in [44].

Theorem 4.11. Let b ∈ (H∞)1. Then on A2
α (α > −1), any one of the following three statements

holds if and only if b is a finite Blaschke product:

(i) For 1 ≤ k ≤ [α+ 2]− 1, Gk,α(b) ≈ A2
α−k;

(ii) If α is not an integer, then for k = [α+ 2], Gk,α(b) ≈ A2
α−k;

(iii) If α is an integer, then for k = α+ 2, Gk,α(b) is a finite dimensional Hilbert space.

Proof. We will prove (ii) since the proof of (i) is similar. Assume α is not an integer, and for
k = [α+ 2], Gk,α(b) ≈ A2

α−k. By Lemma 3.2(iii) and Theorem 3.15,

(1− b(z)b(w))[α+2]

(1− zw)α+2
≼ γ 1

(1− zw)α+2−[α+2]

for some positive constant γ. Now

(1− |b(z)|2)[α+2]

(1− |z|2)α+2
≤ γ 1

(1− |z|2)α+2−[α+2]
.

Equivalently,
1− |b(z)|2

1− |z|2
≤ γ1/[α+2] for z ∈ D.

By Lemma 1 in [44], this implies that b is a finite Blaschke product.
Next we prove (iii). By Corollary 3.19, the reproducing kernel of Gα+2,α(b) is simply an integer

(= α+2) power of the reproducing kernel of de Branges–Rovnyak space H(b). Since H(b) is finite
dimensional if and only if b is a finite Blaschke product, it is easy to see that Gα+2,α(b) is finite
dimensional if and only if b is a finite Blaschke product.

The above result says that Gk,α(b) is finite dimensional if and only if α is an integer, k = α+2,
and b is a finite Blaschke product. We remark that the proof of above result and Theorem 4.12
also demonstrate a different way of obtaining Theorem 4.10.

Next we extend the relation Aα(b) = G1,α(b) ⊇ A2
α−1 for α ≥ 0 which is Theorem 3.1 in Chu

[13]. This also gives a completely different proof of the result of Chu.

Theorem 4.12. Let b ∈ (H∞)1 be not a constant. Then for 1 ≤ k < [α+ 2], Gk,α(b) ⊇ A2
α−k. In

particular, for 1 ≤ k < [α+ 2], Gk,α(b) ⊇ H2.
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Proof. Note that T ∗
b is a [α+ 2]-hypercontraction by Corollary 3.8. Thus by Theorem 4.7, for

1 ≤ k < [α+ 2], Gk,α(b) ≈ Gk,α (φ(b)) for any finite Blaschke product φ(z). In particular, if

φ = (z − b(0))/(1− b(0)z), then φ(b(z)) = zb1(z) for some b1 ∈ (H∞)1. By Corollary 3.16,

Gk,α(b) ≈ Gk,α (φ(b)) = Gk,α (zb1) ⊇ Gk,α (z) .

Now the result follows since the reproducing kernel of Gk,α (z) is the same as the reproducing
kernel of A2

α−k by Theorem 3.15.

See Theorem 5.8 for an analogue of Theorem 4.12 for Gk,α(b) which is valid for all k ≥ 1. The
short proof of Theorem 5.8 is similar to the proof of Theorem 4.12 which demonstrates the power
of the abstract Theorem 4.7.

4.2 Finite dimensional higher-order sub-Bergman spaces

The case (iii) of Theorem 4.11 and (24) naturally leads to the following question.

Problem 4.13. For m ≥ 0 an integer, is

G :=
{
g(m1,··· ,mn)(z) : m1 + · · ·+mn = m+ 2

}
an orthonormal basis of Gm+2,m(b)?

By the multinomial formula, the cardinality of the set G is
(
m+n+1
m+2

)
. We first note that the

space Gm+2,m(b) is spanned by the above set G.

Proposition 4.14. Let b(z) =
n∏
i=1

φai(z). The following holds:

Gm+2,m(b) = Span
{
g(m1,··· ,mn)(z) : m1 + · · ·+mn = m+ 2

}
.

Proof. Recall the reproducing kernel of Gm+2,m(b) is given by (24). Thus Gm+2,m(b) is contained
in the right-hand side of the above equation. On the other hand, it is clear that(

1− b(z)b(w)
1− zw

)m
≽ g(m1,··· ,mn)(z)g(m1,··· ,mn)(w).

By Lemma 3.2(iv), g(m1,··· ,mn)(z) ∈ Gm+2,m(b). The proof is complete. This result can also be
derived from Lemma 5.5 below.

But it seems difficult to figure out an orthonormal basis of Gm+2,m(b) or even the dimension
of Gm+2,m(b). So even though the reproducing kernel of Gm+2,m(b) is just the power of the
reproducing kernel of H(b), it is more difficult to study Gm+2,m(b).

By Proposition 4.14, the set{
g(m1,··· ,mn)(z) : m1 + · · ·+mn = m+ 2

}
(30)

is a candidate for an orthonormal basis of Gm+2,m(b). By Lemma 3.3, we only need to check
whether the functions in this set are linearly independent. But it seems difficult to directly work
with the above set, and instead we try to find a more convenient linearly independent basis of
Gm+2,m(b). The following observation is useful.
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Lemma 4.15. Let H(K) be a finite dimensional reproducing kernel Hilbert space of dimension n.
Let {fi(z) : 1 ≤ i ≤ n} be any algebraic (i.e., vector space) basis of H(K). Then there exist two
positive constants γ and δ such that

γK(z, w) ≼
n∑
i=1

fi(z)fi(w) ≼ δK(z, w). (31)

Hence, moreover, for any natural number m,

γmK(z, w)m ≼

(
n∑
i=1

fi(z)fi(w)

)m
≼ δmK(z, w)m. (32)

Proof. Let

K1(z, w) =

n∑
i=1

fi(z)fi(w).

Then K1(z, w) is a reproducing kernel and hence, by Lemma 3.3, the dimension of H(K1) is n.
Since two complex Hilbert spaces of dimension n are norm equivalent, the formula (31) follows from
Lemma 3.2(iii). The formula (32) follows by repeated applying Lemma 3.2(ii). We demonstrate
the proof for m = 2.

δK(z, w) · δK(z, w) ≽

(
n∑
i=1

fi(z)fi(w)

)
· δK(z, w)

≽

(
n∑
i=1

fi(z)fi(w)

)
·

(
n∑
i=1

fi(z)fi(w)

)
.

The proof is complete.

Let b(z) =
n∏
i=1

φliai(z), where all the ai’s are distinct and nonzero. Then it is known [24] that

the following set is an algebraic basis of H(b):{
1

(1− aiz)ji
: 1 ≤ i ≤ n, 1 ≤ ji ≤ li

}
.

We can prove more:

Theorem 4.16. Let b(z) =
n∏
i=1

φai(z), where all the ai’s are distinct and nonzero. Then, the set

Q(a1, · · · , an) is an algebraic basis of Gm+2,m(b), where

Q(a1, · · · , an) =

{
n∏
i=1

1

(1− aiz)mi
: m1 + · · ·+mn = m+ 2

}
. (33)

Hence the set (30) is an orthonormal basis of Gm+2,m(b). The dimension of Gm+2,m(b) is
(
m+n+1
m+2

)
.

Proof. Note that the numbers of functions in (33) and (30) are the same. So once we prove that
Q(a1, · · · , an) is an algebraic basis of Gm+2,m(b), by Lemma 3.3, the set (30) is an orthonormal
basis of Gm+2,m(b).
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Suppose that all the ai’s are distinct and nonzero. It follows from Lemma 3.2(iv), Corollary
3.19 and Lemma 4.15 that

γ

(
1− b(z)b(w)

1− zw

)m
≼

(
n∑
i=1

1

(1− aiz)
1

(1− aiw)

)m
≼ δ

(
1− b(z)b(w)

1− zw

)m
for some positive constants γ and δ. By Lemma 3.2(iii), as a vector space,

SpanQ(a1, · · · , an) ⊆ Gm+2,m(b).

Thus, by Lemma 3.3, it suffices to show that Q(a1, · · · , an) are linearly independent. Let

f(z) =

m+1∑
i=1

hi(z)
1

(1− anz)i
+

cm+2

(1− anz)m+2 + h(z) ∈ Gm+2,m(b)

for some h(z), hi(z) ∈ SpanQ(a1, · · · , an). We need to show that

f(z) = 0

implies that hi(z) = cm+2 = h(z) = 0. Suppose that cm+2 ̸= 0. Then the function

m+1∑
i=1

hi(z)
1

(1− anz)i
+ h(z)

has a pole of order m + 2 at z = 1
an

, a contradiction. Similarly, we can show that hm+1(z) = 0,
. . . , h1(z) = 0 and h(z) = 0. This completes the proof.

In the case when all the ai’s are distinct and an = 0, similarly, we have

Gm+2,m(b) = Span

{
n∏
i=1

zmn

(1− aiz)mi
: m1 + · · ·+mn = m+ 2

}
.

Thus the set (30) is still an orthonormal basis of Gm+2,m(b).

One may ask if the above theorem holds without the assumption on the ai’s. The next simple
result shows that the above theorem does not extend, that is, the set (30) in general is not an
orthonormal basis of Gm+2,m(b).

Proposition 4.17. Let b(z) = zn. On the A2
m, there exist positive numbers ci’s such that{√

ciz
i : 0 ≤ i ≤ (m+ 2)(n− 1)

}
is an orthonormal basis of Gm+2,m(zn). The dimension of Gm+2,m(zn) is (m+ 2)(n− 1) + 1.

Proof. Note that(
1− znwn

1− zw

)m+2

=
(
1 + zw + · · ·+ zn−1wn−1

)m+2
=

(m+2)(n−1)∑
i=0

ci (zw)
i

for some positive ci. The result now follows from Lemma 3.3.
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Here is a closed formula for ci. Write(
1− znwn

1− zw

)m+2

= (1− znwn)m+2 1

(1− zw)m+2

=
m+2∑
j=0

(−1)j
(
m+ 2

j

)
(zw)

nj
∞∑
q=0

(
q +m+ 1

m+ 1

)
(zw)

q
.

Then for 0 ≤ i ≤ (m+ 2)(n− 1),

ci =

[i/n]∑
j=0

(−1)j
(
m+ 2

j

)(
i− nj +m+ 1

m+ 1

)
.

Next we show that a slightly different way of expanding the reproducing kernel of Gm+2,m(b)
indeed leads to an orthonormal basis of Gm+2,m(b). For simplicity, we only demonstrate the idea
on the Bergman space.

Theorem 4.18. Let b(z) =
n∏
i=1

φliai(z) where all the ai’s are distinct. Then the dimension of

G2,0(b) is
n∑
i=1

(2li − 1) +
∑

1≤i<j≤n

li lj . (34)

Proof. Let b1(z) = 1 and

bi(z) =
i−1∏
j=1

φljaj (z), i = 2, · · · , n.

Write

1− b(z)b(w) = 1−
n∏
i=1

φliai(z)φ
li
ai(w)

=
n∑
i=1

i−1∏
j=1

φljaj (z)
(
1− φliai(z)φ

li
ai(w)

) i−1∏
j=1

φ
lj
aj (w)

=

n∑
i=1

bi(z)
(
1− φliai(z)φ

li
ai(w)

)
bi(w).

Then,(
1− b(z)b(w)

1− zw

)2

=
n∑
i=1

b2i (z)

(
1− φliai(z)φ

li
ai(w)

1− zw

)2

b2i (w)

+ 2
∑

1≤i<j≤n

bi(z)bj(z)

(
1− φliai(z)φ

li
ai(w)

1− zw

)1− φljaj (z)φ
lj
aj (w)

1− zw

 bi(w)bj(w). (35)
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Note that(
1− φliai(z)φ

li
ai(w)

1− zw

)2

=
(
1 + · · ·+ φli−1

ai (z)φli−1
ai (w)

)2(1− φai(z)φai(w)
1− zw

)2

=
(
1 + c1φai(z)φai(w) + · · ·+ c2(li−1)φ

2(li−1)
ai (z)φ

2(li−1)
ai (w)

)(1− φai(z)φai(w)
1− zw

)2

for some positive constants ci’s. Thus the first summation in (35) contains
∑n
i=1(2li − 1) terms,

and the second summation contains ∑
1≤i<j≤n

li lj

terms. Thus the dimension of G2,0(b) is less than or equal to the value in (34).
By using the idea as in the proof of Theorem 4.16, (assume all ai’s are not zero), we study the

kernel (
n∑
i=1

li∑
k=1

1

(1− aiz)k
1

(1− aiw)k

)2

=
n∑
i=1

 li∑
j=1

1

(1− aiz)j
1

(1− aiw)j

2

+ 2
∑

1≤i<j≤n

(
li∑
k=1

1

(1− aiz)k
1

(1− aiw)k

) lj∑
k=1

1

(1− ajz)k
1

(1− ajw)k


and find the following algebraic basis of G2,0(b){

1

(1− aiz)j
: 1 ≤ i ≤ n, 2 ≤ j ≤ 2li

}

∪

{
1

(1− aiz)j (1− ajz)k
: 1 ≤ i < j ≤ n, 1 ≤ j ≤ li, 1 ≤ k ≤ lj

}
.

We omit the proof of the above set of functions (using partial fraction expansion) being linearly
independent. It is clear that the cardinality of the above set is (34). Therefore, the expansion
method of (35) will produce an orthonormal basis of G2,0(b).

We give an explicit example.

Example 4.19. Let b(z) = φ2
a(z)φ

3
b(z), where a and b in D are distinct and nonzero. Then, by

Theorem 4.18, the dimension of G2,0(b) is 14. In this case, the cardinality of (30) is (5+1)(5)/2 =
15. Note that the following set{

φia(z)

(1− az)2
: i = 0, 1, 2

}
∪

{
φ2
a(z)φ

i
b(z)(

1− bz
)2 : i = 0, 1, 2, 3, 4

}

∪

{
φ2
a(z)φ

i
a(z)φ

j
b(z)

(1− az)
(
1− bz

) : i = 0, 1 and j = 0, 1, 2

}
is an orthogonal basis (we omit some constants) of G2,0(b).
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Corollary 4.20. Let b(z) =
n∏
i=1

φliai(z) where all the ai’s are distinct. The set (30) with m = 0 is

an orthonormal basis of G2,0(b) if and only if 1 ≤ li ≤ 2 for 1 ≤ i ≤ n.

Proof. The cardinality of the set (30) with m = 0 is

1

2

(
n∑
i=1

li + 1

)(
n∑
i=1

li

)
=

1

2

n∑
i=1

l2i +
∑

1≤i<j≤n

li lj +
1

2

n∑
i=1

li.

We need to know when the above number is the same as (34). Equivalently

1

2

n∑
i=1

l2i +
1

2

n∑
i=1

li =
n∑
i=1

(2li − 1).

The above equality holds if and only if 1 ≤ li ≤ 2 for 1 ≤ i ≤ n.

In the general case of Gm+2,m(b), we change the powers in (35) and subsequent formulas from
2 to m+ 2. We state the following result but omit the combinatorial proof.

Theorem 4.21. Let b(z) =
n∏
i=1

φliai(z), where all the ai’s are distinct. Then the dimension of

Gm+2,m(b) is ∑
m1+···+mn=m+2
1≤m1≤···≤mn

(
n∏
i=1

[mi(li − 1) + 1]

)
.

The above idea of obtaining an orthonormal basis of Gm+2,m(b) from an orthonormal basis of
H(b) by using Lemma 3.3 also applies for the more general b. We demonstrate this idea for G2,0(b),
where b is an infinite Blaschke product with simple zeros.

Proposition 4.22. Let b(z) =
∞∏
i=1

φai(z) where all ai’s are distinct and nonzero. Then the fol-

lowing set K is an orthonormal basis of G2,0(b):

K :=
{
b2i e

2
λi

: i ≥ 1
}
∪
{√

2bibjeλieλj : j > i ≥ 1
}
, (36)

where b1(z) = 1, bi(z) =
i−1∏
j=1

φaj (z) (i ≥ 2), eλ(z) =

√
1− |λ|2

1− zλ
.

Proof. By [24, Theorem 14.7], {bieλi : i ≥ 1} is an orthonormal basis of H(b) (called a Takenaka–
Malmquist–Walsh basis in [25]). That is,

1− b(z)b(w)
1− zw

=

∞∑
i=1

bi(z)eλi(z)bi(w)eλi(w).

Square both sides of the above equation and apply Theorem 4.16 and Lemma 3.3 to see that K is
an orthonormal basis of G2,0(b).
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5 Identifying Gk,α(b) when b is a finite Blaschke product

In previous sections, we study the operator range spaces for the operators βm(T ∗
b )

1/2 and βm(Tb)
1/2,

where b is a finite Blaschke product. These operators are not easy to compute, see for example,
the computation of βm(Tb)

1/2 in the special case where m = 1 and b is a single Blaschke factor
[41]. By Lemma 4.2, we can express βm(b(T )) in terms of βm(T ). Hence in principle we can
compute βm(T ∗

b ) and βm(Tb) in terms of βm(T ∗
z ) and βm(Tz) which are diagonal Hilbert–Schmidt

operators. In this section, we take a digression to compute some examples of βm(T ∗
b ) and βm(Tb)

which maybe of independent interest and then, by Theorem 4.7, we will identify Gk,α(b).
For convenience, we first recall the following corollary.

Corollary 5.1. Let b(z) =
n∏
i=1

φai(z). Then on A2
α,

βm(T ∗
b ) =

∑
m1+···+mn=m

Tg(m1,··· ,mn)(z)βm(T ∗
z )T

∗
g(m1,··· ,mn)(z)

,

βm(Tb) =
∑

m1+···+mn=m

T ∗
g(m1,··· ,mn)(z)

βm(Tz)Tg(m1,··· ,mn)(z).

Since Tz on A2
α is a weighted shift, it is easy to see that βm(T ∗

z ) and βm(Tz) are diagonal
operators. These diagonal operators can be displayed in a straightforward fashion and the diagonals
are computed in terms of ci,α as in (18). In this sense, the above lemma gives an explicit formula
for βm(T ∗

b ) and βm(Tb). Below we just compute β1(T
∗
b ) and β1(Tb) to illustrate the general case

and we think these results are of independent interest.

Lemma 5.2. The following formulas hold on A2
α:

β1(T
∗
z ) = I − TzT ∗

z = e0 ⊗ e0 +
∞∑
i=0

α+ 1

i+ α+ 2
ei+1 ⊗ ei+1,

β1(Tz) = I − T ∗
z Tz =

∞∑
i=0

α+ 1

i+ α+ 2
ei ⊗ ei, (37)

where ei(z) =
√
ci,αz

i and {ei : i ≥ 0} is an orthonormal basis of A2
α as noted in (17).

Proof. By (17), {ei : i ≥ 0} is an orthonormal basis of A2
α. Note that

Tzei =
√
ci,αz

i+1 =

√
ci,α

√
ci+1,α

√
ci+1,αz

i+1 =

√
ci,α

√
ci+1,α

ei+1,

T ∗
z e0 = 0, T ∗

z ei+1 =

√
ci,α

√
ci+1,α

ei, i ≥ 0.

Hence

I − TzT ∗
z = e0 ⊗ e0 +

∞∑
i=0

(
1− ci,α

ci+1,α

)
ei+1 ⊗ ei+1

= e0 ⊗ e0 +
∞∑
i=0

α+ 1

i+ α+ 2
ei+1 ⊗ ei+1,

where the second equality follows from

1− ci,α
ci+1,α

= 1− i+ 1

i+ α+ 2
=

α+ 1

i+ α+ 2
.
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Similarly,

I − T ∗
z Tz =

∞∑
i=0

(
1− ci,α

ci+1,α

)
ei ⊗ ei =

∞∑
i=0

α+ 1

i+ α+ 2
ei ⊗ ei.

The proof is complete.

Proposition 5.3. Let b(z) =
n∏
i=1

φai(z). Then on A2
α,

β1(T
∗
b ) =

n∑
j=1

gj(z)e0 ⊗ gj(z)e0 +
n∑
j=1

∞∑
i=0

α+ 1

i+ α+ 2
gj(z)ei+1 ⊗ gj(z)ei+1,

β1(Tb) =

n∑
j=1

∞∑
i=0

α+ 1

i+ α+ 2
T ∗
gjei+1 ⊗ T ∗

gjei+1,

where gj(z) :=
√
1− |aj |2 bj(z)(1− ajz)−1 with bj defined in (27).

Proof. Specializing Corollary 5.1 to m = 1, we have

gj(z) = g(m1,··· ,mn)(z) :=
√
1− |aj |2 bj(z)(1− ajz)−1,

where (m1, · · · ,mn) = (0, · · · , 0, 1, 0, · · · , 0) and the 1 is in the j-th position. Now the result
follows from Corollary 5.1 and Lemma 5.2.

Corollary 5.4. Let b(z) = φa(z) for a ∈ D. Then on A2
α,

β1(T
∗
b ) = g(z)e0 ⊗ g(z)e0 +

∞∑
i=0

α+ 1

i+ α+ 2
g(z)ei+1 ⊗ g(z)ei+1,

β1(Tb) = T1−|φa(z)|2 =
∞∑
i=0

α+ 1

i+ α+ 2
T ∗
gjei+1 ⊗ T ∗

gjei+1, (38)

where g(z) =
√
1− |a|2 (1− az)−1.

Proof. It follows at once from Proposition 5.3.

The formula (38) is similar to the results of Proposition 2.2 and Proposition 2.3 in [41]. We
also note the following result about finite rank βm(T ∗

b ).

Lemma 5.5. Let b(z) =
n∏
i=1

φai(z). When α = m ≥ 0 is an integer, βm+2(T
∗
b ) on A2

α is of finite

rank. In fact,

βm+2(T
∗
b ) =

∑
m1+···+mn=m+2

g(m1,··· ,mn)(z)⊗ g(m1,··· ,mn)(z).

Proof. By a more general result [28], see the proof on pages 488–489 in [28], βm+2(T
∗
z ) = e0⊗e0 on

A2
α. The result now follows from Corollary 5.1. This lemma also follows (implicitly) from Corollary

3.19 and Lemma 4.1.

The rank of β2(T
∗
b ) on the Bergman space A2 is given by Theorem 4.18. The rank of βm+2(T

∗
b )

on the Bergman space A2
α for α = m is given by Theorem 4.21.
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Proposition 5.6. On A2
α, for k ≥ 1,

βk(Tz) = T(1−|z|2)k =
∞∑
i=0

k−1∏
j=0

α+ 1 + j

i+ α+ 2 + j

 ei ⊗ ei. (39)

Hence βk(Tz) is a diagonal operator with diagonals (asymptotically)
{
(i+ 1)−k : i ≥ 0

}
.

Proof. We prove the result by using induction on k. For k = 1, (39) is just (37). Assume (39)
holds for k. Note that

T ∗
z βk(Tz)Tzei = T ∗

z βk(Tz)

√
ci,α

√
ci+1,α

ei+1 =

√
ci,α

√
ci+1,α

k−1∏
j=0

α+ 1 + j

i+ 1 + α+ 2 + j
T ∗
z ei+1

=
ci,α
ci+1,α

k−1∏
j=0

α+ 1 + j

i+ 1 + α+ 2 + j
ei =

i+ 1

i+ α+ 2

k−1∏
j=0

α+ 1 + j

i+ 1 + α+ 2 + j
ei

=
i+ 1

i+ α+ 2 + k

k−1∏
j=0

α+ 1 + j

i+ α+ 2 + j
ei,

where the second equality follows from the induction hypothesis. By (5),

βk+1(Tz)ei = βk(Tz)ei − T ∗
z βk(Tz)Tzei

=
k−1∏
j=0

α+ 1 + j

i+ α+ 2 + j
ei −

i+ 1

i+ α+ 2 + k

k−1∏
j=0

α+ 1 + j

i+ α+ 2 + j
ei

=

k−1∏
j=0

α+ 1 + j

i+ α+ 2 + j

(1− i+ 1

i+ α+ 2 + k

)
ei =

k∏
j=0

α+ 1 + j

i+ α+ 2 + j
ei.

The proof is complete.

In order to identify Gk,α(b), we recall the following scale of Dirichlet type spaces Dγ [9]. Let

Dγ :=

{
f ∈ Hol(D) : f =

∞∑
i=0

fiz
i, ∥f∥2γ =

∞∑
i=0

(1 + i)γ |fi|2 <∞

}
,

where Hol(D) is the set of all holomorphic functions on D. Hence
{
(1 + i)−γ/2zi : i ≥ 0

}
is an

orthonormal basis of Dγ . If γ = 1, then Dγ is the Dirichlet space. When γ > 0, these Dγ ’s
are called Dirichlet type spaces. For γ ≥ 0, Dγ has the complete Pick property [3]. For γ < 0,
Dγ ≈ A2

α with α = −γ − 1 > −1. The Hardy space H2 is either D0 or A2
−1. We will use notation

Dγ for γ ≥ 0 and A2
α for α > −1.

Theorem 5.7. Let b(z) be a finite Blaschke product. The following statements hold on A2
α with

α > −1.

(i) For 1 ≤ k ≤ [α+ 2]− 1,
Gk,α(b) ≈ A2

α−k.

(ii) If α is an integer, then for k = α+ 2,

Gk,α(b) ≈ D1.
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(iii) For k ≥ [α+ 2],
Gk,α(b) ≈ Dk−α−1.

Proof. By Proposition 3.12 and Theorem 4.7, we can assume b(z) = z. We prove our result by
comparing orthonormal bases of norm equivalent spaces involved. By (17),{

(i+ 1)(α+1)/2zi : i ≥ 0
}

is an orthogonal basis of A2
α. Since by Proposition 5.6, βk(Tz) is a diagonal operator with diagonals

(asymptotically)
{
(1 + i)−k : i ≥ 0

}
, Gk,α(b) is the space with orthogonal basis{
(1 + i)(α+1−k)/2zi : i ≥ 0

}
.

Thus, Gk,α(b) ≈ A2
α−k for 1 ≤ k ≤ [α+ 2] − 1 and Gk,α(b) ≈ Dk−α−1 for k ≥ [α+ 2]. If α is an

integer and k = α+ 2, then k − α− 1 = 1. Hence Gα+2,α(b) ≈ D1. This completes the proof.

If b is any nonconstant function in (H∞)1, then we have:

Theorem 5.8. Let b ∈ (H∞)1 and b be not a constant. The following statements hold on A2
α with

α > −1.

(i) For 1 ≤ k ≤ [α+ 2]− 1,
Gk,α(b) ⊇ A2

α−k.

(ii) If α is an integer, then for k = α+ 2,

Gk,α(b) ⊇ D1.

(iii) For k ≥ [α+ 2],
Gk,α(b) ⊇ Dk−α−1.

Proof. By Proposition 3.12, Tb on A
2
α is a k-hypercontraction for all k ≥ 1. Thus by Theorem 4.7,

Gk,α(b) ≈ Gk,α

(
φ(b)

)
for any finite Blaschke product φ(z). In particular, if φ = (z − b(0))/(1−

b(0)z), then φ(b(z)) = zb1(z) for some b1 ∈ (H∞)1. By Corollary 3.16,

Gk,α(b) ≈ Gk,α
(
φ(b)

)
= Gk,α

(
zb1
)
⊇ Gk,α (z) .

Now the result follows from Theorem 5.7, where Gk,α (z) is identified.

We would like to ask if there is an analogue of Theorem 4.11 for Gk,α(b) in the sense that for
example, for 1 ≤ k ≤ [α+ 2]− 1, Gk,α(b) ≈ A2

α−k only if b is a finite Blaschke product.

We get a connection between Gk,α(b) and Gk,α(b).

Corollary 5.9. Let b(z) be a finite Blaschke product. Then we have:

(i) If 1 ≤ k ≤ [α+ 2]− 1, then
Gk,α(b) ≈ Gk,α(b) ≈ A2

α−k.

(ii) If α is an integer and k = α+ 2, then Gk,α(b) is finite dimensional and

Gk,α(b) ≈ D1.
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(iii) For k > [α+ 2], Gk,α(b) is undefined and Gk,α(b) ≈ Dk−α−1.

Proof. It follows at once from combining Theorem 4.10 and Theorem 5.7.

We would like to remark that the case (i) of Corollary 5.9 gives that

Gm+1,m(b) ≈ Gm+1,m(b) ≈ H2 for all m > −1

and in particular, we can recapture the Zhu’s theorem (22):

A(b) = G1,0(b) ≈ H2 ≈ G1,0(b) ≈ A(b).

6 Density of polynomials in Gk,α(b)

Chu [12] proved that polynomials are dense in A(b), and showed that A(b) ≈ A(b). Thus poly-
nomials are also dense in A(b) which answers a question of Zhu [43]. In this section, by a slight
modification of Chu’s method, we prove that polynomials are dense in Gk,α(b). We first observe
that G1,α(b) = Aα(b) ≈ Aα(b) = G1,α(b). Thus polynomials are also dense in Aα(b).

Corollary 6.1. Let b ∈ (H∞)1. Then on A2
α for α ≥ 0, Aα(b) ≈ Aα(b).

Proof. This is just the special case of Proposition 3.24 with H = A2
α and A = Tb since Tb and T

∗
b

are [α+ 2]-hypercontractions and Tb is subnormal.

The following theorem represents Gk,α(b) as an analytic weighted L2 space. This result on A2

is Theorem 2.1 in Chu [12] which was inspired by a similar result for de Branges–Rovnyak space
H(b), where b is nonextreme, and it is also implicitly contained in the proof of Proposition 3.5 in
Zhu [43]. By slight modifications of proofs from [12], [43], we have a generalization. Let L2

b,k,α

denote the weighted L2 space L2(D, dAb,k,α(z)), where

dAb,k,α(z) = (1− |b(z)|2)kdAα(z), dAα(z) = (α+ 1)(1− |z|2)αdA(z).

We then have:

Theorem 6.2. Let b ∈ (H∞)1. Let A
2
b,k,α be the closure of polynomials in L2

b,k,α. Define Sb,k,αg =

Pα((1− |b|2)kg) for g ∈ A2
b,k,α. Then Sb,k,α is an isometry from A2

b,k,α onto Gk,α(b).

Proof. Set T := Sb,k,α. For g ∈ A2
b,k,α and h ∈ A2

α,

⟨Tg, h⟩A2
α
=
⟨
Pα((1− |b|2)kg), h

⟩
A2

α

=
⟨
(1− |b|2)kg, h

⟩
A2

α

(40)

=
∫
D(1− |b|

2
)kgh dAα(z) = ⟨g, h⟩L2

b,k,α
.

That is, T ∗ is the inclusion map from A2
α into A2

b,k,α. Therefore, for h1, h2 ∈ A2
α,

⟨TT ∗h1, h2⟩A2
α
= ⟨T ∗h1, T

∗h2⟩L2
b,k,α

= ⟨h1, h2⟩L2
b,k,α

=
∫
D(1− |b|

2
)kh1h2 dAα(z) =

⟨
T(1−|b|2)kh1, h2

⟩
A2

α

= ⟨βk(Tb)h1, h2⟩A2
α
.
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Thus TT ∗ = βk(Tb). By Corollary 2.6 with C = I on A2
b,k,α, D = βk(Tb)

1/2 and B = T , we see

that T̃ is a co-isometry, where T̃ stands for T viewed as an operator from A2
b,k,α into Gk,α(b).

Furthermore, if Tg = 0, then (40) implies that g ∈ L2
b,k,α ⊖ A2

b,k,α. So ker(T̃ ) = 0 and hence, T̃ is

unitary. Hence Sb,k,α is an isometry from A2
b,k,α onto Gk,α(b).

Lemma 6.3. Let b ∈ (H∞)1. Let Mn denote the closure of the span of {zm}∞m=n in A2
b,k,α. Set

P =
∪
n≥0M

⊥
n . Then P is dense in A2

b,k,α.

Proof. This is Lemma 2.1 in [12] when k = 1, α = 0. The proof here is a slight modification of
the proof in [12]. For clarity, we include the slightly condensed proof. Assume b is not a constant.
Let f ∈ A2

b,k,α be such that f ⊥ P. That is, f ∈ Mn for all n ≥ 0. We need to show f = 0.

Assume f ̸= 0. Then f(z) =
∑∞
j=majz

j with am ̸= 0. Since f ∈ Mm, there exists a sequence

of polynomials {ps} such that ps → f in A2
b,k,α. Hence ps − amzm → f − amzm ∈ Mm+1. Now

f ∈Mm+1 implies that zm ∈Mm+1.

Let g(z) =
∑m+N
j=m+1ajz

j ∈ Mm+1, where N ≥ 1. Fix r ∈ (0, 1). Then there exists δ such that

(1− |b(z)|2) ≥ δ for all |z| ≤ r. Now

∥zm − g∥2A2
b,k,α

=
∫
D |z

m − g|2 dAb,k,α(z) ≥
∫
rD |z

m − g|2 (1− |b(z)|2)kdAα(z)

≥ δk
∫
rD |z

m − g|2 dAα(z) = δk
(∫

rD |z
m|2 dAα(z) +

∫
rD |g|

2
dAα(z)

)
≥ δk

∫
rD |z

m|2 dAα(z) > 0.

Therefore, zm /∈Mm+1. This is a contradiction, so f = 0.

We conclude with:

Theorem 6.4. Let b ∈ (H∞)1. Polynomials are dense in Gk,α(b) for all k ≥ 1. Furthermore,
polynomials are dense in Aα(b).

Proof. Let f ∈ Gk,α(b) and ε > 0. By Theorem 6.2, there exists g ∈ A2
b,k,α such that f = Sb,k,αg.

By Lemma 6.3, there exists h ∈ P such that ∥g − h∥ < ε in A2
b,k,α. By Theorem 6.2,

∥f − Sb,k,αh∥Gk,α(b) = ∥Sb,k,α(g − h)∥Gk,α(b) = ∥(g − h)∥A2
b,k,α

< ε.

Now h ∈ P implies that h ∈M⊥
n for some n ≥ 0. That is, ⟨h, zm⟩L2

b,k,α
= 0 for all m ≥ n. By (40),

⟨Sb,k,αh, zm⟩A2
α
= ⟨h, zm⟩L2

b,k,α
= 0 for all m ≥ n. Hence, Sb,k,αh is a polynomial and the proof is

complete.

In view of the above result, we conjecture that polynomials are dense in Gk,α(b) for 1 ≤ k <
[α+ 2]. This conjecture is true when b is a finite Blaschke product or k = 1 as seen before.
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