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“Weyl’s theorem holds” for an operator when the complement in the spectrum of the “Weyl”
spectrum” coincides with the isolated points of the spectrum which are eigenvalues of finite
multiplicity. By comparison “Browder’s theorem holds” for an operator when the complement
in the spectrum of the Weyl spectrum coincides with Riesz points. Weyl’s theorem and
Browder’s theorem are liable to fail for 2× 2 operator matrices. In this paper we explore how
Weyl’s theorem and Browder’s theorem survive for 2 × 2 operator matrices on the Hilbert
space.

Introduction

Weyl’s theorem for an operator says that the complement in the spectrum of the
Weyl spectrum coincides with the isolated points of the spectrum which are eigenvalues
of finite multiplicity. H. Weyl ([22]) discovered that this property holds for hermitian
operators and it has been extended from hermitian operators to hyponormal operators
and to Toeplitz operators by L. Coburn ([5]), and to several classes of operators including
seminormal operators by S. Berberian ([1],[2]). Recently Weyl’s theorem under the “small”
perturbations has been considered in [14] and [15]. But Weyl’s theorem is liable to fail for
2× 2 (even diagonal) operator matrices even though Weyl’s theorem holds for the entries
in the operator matrices. In this paper we consider Weyl’s theorem and the less restrictive
“Browder’s theorem” for 2× 2 operator matrices.

Let H and K be Hilbert spaces, let L(H,K) denote the set of bounded linear operators
from H to K, and abbreviate L(H,H) to L(H). If A ∈ L(H) is a Fredholm operator, that
is, if A has finite dimensional null space and its range of finite co-dimension, then the index
of A, denoted ind A, is given by

indA = dim A−1(0)− dim A(H)⊥.

An operator A ∈ L(H) is called Weyl if it is Fredholm of index zero and is called Browder
if it is Fredholm “of finite ascent and descent”: equivalently ([12, Theorem 7.9.3]) if A
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is Fredholm and A − λI is invertible for sufficiently small λ 6= 0 in C. The essential
spectrum σe(A), the Weyl spectrum ω(A) and the Browder’s spectrum σb(A) of A ∈ L(H)
are defined by

σe(A) = {λ ∈ C : A− λI is not Fredholm};
ω(A) = {λ ∈ C : A− λI is not Weyl};
σb(A) = {λ ∈ C : A− λI is not Browder} :

evidently
σe(A) ⊆ ω(A) ⊆ σb(A) = σe(A) ∪ acc σ(A),

where we write accK for the accumulation points of K ∈ C and σ(A) for the ordinary
spectrum of A. If we write isoK = K \ accK and

(0.1) π00(A) := {λ ∈ isoσ(A) : 0 < dim (A− λI)−1(0) < ∞}
for the isolated eigenvalues of finite multiplicity, and ([12, (9.8.3.4)])

(0.2) p00(A) := σ(A) \ σb(A)

for the Riesz points of A, then

(0.3) iso σ(A) \ σe(A) = iso σ(A) \ ω(A) = p00(A) ⊆ π00(A).

The authors of [14] and [15] use the notation of (0.1) for the concept of (0.2). We say that
Weyl’s theorem holds for A ∈ L(H) if

σ(A) \ ω(A) = π00(A),

and ([14, Definition 1]) that Browder’s theorem holds for A if

σ(A) \ ω(A) = p00(A).

Evidently “Weyl’s theorem” implies “Browder’s theorem”. Recall ([2],[19]) that an oper-
ator A ∈ L(H) is called isoloid if every isolated point of σ(A) is an eigenvalue of A.

1. Weyl’s theorem for 2× 2 skew-diagonal operator matrices

Weyl’s theorem may or may not hold for a direct sum of operators for which Weyl’s
theorem holds. For example, if U is the unilateral shift on `2 then Weyl’s theorem holds
for both U and U∗, while it does not hold for U ⊕ U∗. But it was known ([4],[16]) that if
A and B are isoloid and if Weyl’s theorem holds for A and B then

(1.0.1) Weyl’s theorem holds for
(

A 0

0 B

)
⇐⇒ ω

(
A 0

0 B

)
= ω(A) ∪ ω(B).

Also the equivalence (1.0.1) holds for Browder’s theorem without the isoloid assumption
(cf.[14]). In this section we consider Weyl’s theorem for the 2× 2 skew-diagonal operator
matrix of the form

(
0 A

B 0

)
. Weyl’s theorem for the skew-diagonal matrices is more delicate

in comparison with the diagonal matrices. We begin with:



Lemma 1.1. If A ∈ L(H,K) and B ∈ L(K,H), then the non-zero elements of $(AB)
and $(BA) are the same for each $ ∈ {σ, σe, ω}.
Proof. Remember (cf. [9, p.38]) that if λ 6= 0 then

(1.1.1)
(

AB − λI 0
0 I

)
= F (λ)

(
BA− λI 0

0 I

)
E(λ),

where E(λ) and F (λ) are both invertible for each λ 6= 0. It thus follows from (1.1.1) that
if λ 6= 0,

(AB − λI)−1(0) ∼= (BA− λI)−1(0) and
(
(AB − λI)(K)

)⊥ ∼=
(
(BA− λI)(H)

)⊥
,

which gives the result. ¤
Although σ(AB) = σ(BA), we need not expect that ω(AB) = ω(BA). To see this,

let dimX < ∞ and Y = `2, let S, T : Y → Y be defined by

(1.1.2) S(x1, x2, · · · ) = (0, x1, 0, x2, 0, x3, · · · ) and T (x1, x2, · · · ) = (x2, x4, x6, · · · ),
and put A = 0X ⊕ S and B = 0X ⊕ T , then σ(AB) = σ(BA) = {0, 1}, while ω(AB) =
{0, 1} 6= ω(BA) = {1}. However one might be tempted to guess that if σ(AB) = σ(BA)
and if in addition σ(AB) is connected, then ω(AB) = ω(BA). But this guess is also wrong.
For an example, if on `2 ⊗ `2

A =




0 I

0 U∗

0 U∗

0 U∗

. . . . . .


 and B =




0

U 0

I 0

U 0

U 0

. . . . . .


 ,

where U is the unilateral shift on `2, then a straightforward calculation shows that σ(AB) =
σ(BA) = D, while ω(AB) = T 6= ω(BA) = T∪ {0}, where D and T denote the closed unit
disk and the unit circle, respectively.

Lemma 1.2. If A ∈ L(K,H) and B ∈ L(H,K), then there is equality

(1.2.1) ω
(

AB 0

0 BA

)
= ω(AB) ∪ ω(BA).

Hence, in particular, if AB and BA are isoloid and if Weyl’s theorem holds for AB and

BA then Weyl’s theorem holds for
(

AB 0

0 BA

)
.

Proof. The inclusion “⊆” in (1.2.1) follows from the fact that the index of a direct sum
is the sum of the indices. For the inclusion “⊇”, suppose that

(
AB−λI 0

0 BA−λI

)
is Weyl.

Then AB − λI and BA− λI are both Fredholm, and ind (AB − λI) + ind (BA− λI) = 0.
But if λ 6= 0 then by Lemma 1.1, ind (AB − λI) = ind (BA − λI), so that we must have
that AB − λI and BA − λI are both Weyl. If instead λ = 0 then since AB and BA are
both Fredholm it follows from the continuity of the index that for sufficiently small |µ|
(µ 6= 0),

ind (AB) = ind (AB − µI) = ind (BA− µI) = ind (BA),

which also forces that AB and BA are both Weyl. This proves (1.2.1). The second
assertion follows at once from (1.0.1). ¤



Example 1.3. (a) If H = K in Lemma 1.2, one might expect to replace the condition
“Weyl’s theorem holds for AB and BA” by the condition “Weyl’s theorem holds for A and
B”. But this is not the case: for example, Weyl’s theorem may fail for T 2 when it holds
for the operator T (see [19, Example 1]).

(b) Since (
0 A

B 0

)2

=
(

AB 0

0 BA

)
,

one might also expect that “Weyl’s theorem for
(

0 A

B 0

)
” is inherited from “Weyl’s theorem

for
(

AB 0

0 BA

)
”. But in general Weyl’s theorem need not be transmitted from the square

of the operator T to T . For example, if U is the unilateral shift on `2 and K : `2 → `2 is
defined by

(1.3.1) K(x1, x2, · · · ) = (
1
2
x2,

1
3
x3, · · · ),

put on `2 ⊕ `2

T =
(

U+1 0

0 K−1

)
:

then σ(T ) = ω(T ) = {z : |z − 1| ≤ 1} ∪ {−1} and π00(T ) = {−1}, while

σ(T 2) = ω(T 2) = {reiθ : r ≤ 2(1 + cos θ)} and π00(T 2) = ∅,
which says that Weyl’s theorem holds for T 2, but fails for T .

(c) In general “Weyl’s theorem holds for AB” does not imply “Weyl’s theorem holds
for BA”. For example if the operators K, S and T on `2 are defined as in (1.3.1) and
(1.1.2), put on `2 ⊕ `2

A = K ⊕ S and B = 1⊕ T :

then σ(AB) = ω(AB) = σ(BA) = ω(BA) = {0, 1}, while π00(AB) = ∅ 6= π00(BA) = {0}.
In spite of Example 1.3 (b), we have:

Theorem 1.4. Let A ∈ L(K,H) and B ∈ L(H,K) be such that AB and BA are isoloid.

If Weyl’s theorem holds for AB and BA then it holds for
(

0 A

B 0

)
.

Proof. By an argument of [15, (3.10);(4.3)], we have that with no restriction on either A
or B,

(1.4.1) $
(

0 A

B 0

)
=

√
$(AB) ∪$(BA) for each $ ∈ {σ, σe, ω},

where
√

K denotes the set of square roots of complex numbers in K ⊆ C. Thus if Weyl’s
theorem holds for AB and BA then by Lemma 1.2, there is equality

σ
(

0 A

B 0

)
\ ω

(
0 A

B 0

)
=

√
σ(AB) ∪ σ(BA) \

√
ω(AB) ∪ ω(BA)

=
√(

σ(AB) ∪ σ(BA)
) \ (

ω(AB) ∪ ω(BA)
)

=
√

σ
(

AB 0

0 BA

)
\ ω

(
AB 0

0 BA

)

=
√

π00

(
AB 0

0 BA

)
.



Now it will be shown that

(1.4.2)
√

π00

(
AB 0

0 BA

)
= π00

(
0 A

B 0

)
.

But since, in view of (1.4.1), σ
(

0 A

B 0

)
is symmetric with respect to the origin, it follows

from the spectral mapping theorem that

√
iso σ

(
AB 0

0 BA

)
=

√
iso

(
σ

(
0 A

B 0

))2

= iso σ
(

0 A

B 0

)
.

Thus for (1.4.2) it suffices to show that, for any µ ∈ C,

(1.4.3) 0 < dim
(

AB−µI 0

0 BA−µI

)−1 (
0

0

)
< ∞⇐⇒ 0 < dim

(−√µI A

B −√µI

)−1 (
0

0

)
< ∞.

If µ = 0, then (1.4.3) follows from the observation

(1.4.4) 0 < dim
(

A−1(0)⊕B−1(0)
)

< ∞ ⇐⇒ 0 < dim
(

(AB)−1(0)⊕(BA)−1(0)
)

< ∞.

If instead µ 6= 0, then (1.4.3) follows from the observation

∨
{(x,

1√
µ

Bx) : x ∈ (AB − µI)−1(0)}
⋃ ∨

{( 1√
µ

Ay, y) : y ∈ (BA− µI)−1(0)}

⊆
(−√µI A

B −√µI

)−1 (
0

0

)
⊆ (AB − µI)−1(0)⊕ (BA− µI)−1(0),(1.4.5)

where
∨

G denotes the closed linear span of G. This proves (1.4.2) and completes the
proof. ¤

Corollary 1.5. Lemma 1.2 and Theorem 1.4 remain true with Browder’s theorem in place
of Weyl’s theorem.

Proof. The same argument as Lemma 1.2 and Theorem 1.4 gives the result. ¤

Note that A2 may not be hyponormal when A is hyponormal ([10, Problem 209]). In
spite of it, if A is hyponormal then Weyl’s theorem holds for f(A), where f ∈ H(σ(A)) :=
the set of analytic functions on an open neighborhood of σ(A) (cf. [17, Theorem 2];[21,
Theorem 3.6]). Thus we have:

Corollary 1.6. If A is hyponormal then Weyl’s theorem holds for
(

0 f(A)

g(A) 0

)
for every

f, g ∈ H(σ(A)).

Proof. It is easy to show that if A is isoloid then h(A) is also isoloid for every h ∈ H(σ(A)).
Thus the result follows at once from Theorem 1.4. ¤



The assumption of Theorem 1.4 can easily be satisfied by “Toeplitz operators”: recall
([6]) that if P denotes the orthogonal projection from L2(T) onto the Hardy space H2(T)
then for every ϕ ∈ L∞(T), the operator Tϕ on H2(T) defined by

Tϕg = P (ϕg) for each g ∈ H2(T)

is called the Toeplitz operator with symbol ϕ. It is familiar that the spectrum of a Toeplitz
operator is always connected ([23]), and that the spectrum and the Weyl spectrum coincide,
and hence Weyl’s theorem holds for every Toeplitz operator ([5]). Evidently, every Toeplitz
operator is isoloid. If either ϕ is analytic (i.e., ϕ ∈ H∞(T) := L∞ ∩ H2(T)) or ψ is
coanalytic (i.e., ψ ∈ H∞(T)) then TψTϕ = Tψϕ (cf. [6, Proposition 7.5]). Also if we
write C(T) for the set of all continuous functions on T then, for every ϕ ∈ C(T), (cf. [6,
Proposition 7.22])

(1.6.1) TϕTψ − Tϕψ and TψTϕ − Tψϕ are compact operators for every ψ ∈ L∞(T).

We then have:

Example 1.7. If ϕ is either analytic or coanalytic and if ψ ∈ C(T) then Weyl’s theorem

holds for
(

0 Tϕ

Tψ 0

)
.

Proof. Suppose that ϕ ∈ H∞(T). Then TψTϕ = Tψϕ, and hence TψTϕ is isoloid and
Weyl’s theorem holds for TψTϕ. Therefore, in view of Theorem 1.4, it suffices to prove
that TϕTψ is isoloid and Weyl’s theorem holds for TϕTψ. Suppose that ψ ∈ C(T). If
σ(TϕTψ) = σ(TψTϕ) then by (1.6.1),

(1.7.1) ω(TϕTψ) = ω(Tϕψ) = σ(Tψϕ) = σ(TψTϕ) = σ(TϕTψ),

because the Weyl spectrum is invariant under the compact perturbations. Since σ(TϕTψ) =
σ(TψTϕ) and hence σ(TϕTψ) is connected, (1.7.1) implies that TϕTψ is isoloid and Weyl’s
theorem holds for TϕTψ. If instead σ(TϕTψ) 6= σ(TψTϕ) then since σ(TψTϕ) is connected,
it follows from Lemma 1.1 that

0 /∈ σ(TψTϕ) and 0 ∈ iso σ(TϕTψ).

But then TψTϕ is invertible and hence, by (1.6.1), TϕTψ is Weyl but not invertible, which
implies that 0 ∈ π00(TϕTψ) and hence TϕTψ is isoloid. Therefore there is equality

σ(TϕTψ) \ ω(TϕTψ) =
(
σ(TψTϕ) \ ω(TψTϕ)

) ∪ {0}
= π00(TψTϕ) ∪ {0}
= π00(TϕTψ),

which says that Weyl’s theorem holds for TϕTψ. The argument for the case of the coanalytic
symbol ϕ is the same. ¤



Example 1.8. (a) If ϕ and ψ are in C(T), then Weyl’s theorem need not hold for
(

0 Tϕ

Tψ 0

)
.

For example if ϕ is defined by

ϕ(eiθ) =
{ −e2iθ + 1 (0 ≤ θ ≤ π)

e−2iθ − 1 (π ≤ θ ≤ 2π)

then a straightforward calculation shows (cf. [8, Example 3.3])

σ
(

0 Tϕ

Tϕ 0

)
=

√
σ(T 2

ϕ) =
√

σ(Tϕ)2 =
√
{reiθ : r ≤ 2(1 + cos θ)}

and
ω

(
0 Tϕ

Tϕ 0

)
=

√
ω(T 2

ϕ) =
√

ω(Tϕ2) =
√
{reiθ : r = 2(1 + cos θ)},

which implies that Weyl’s theorem (even Browder’s theorem) does not hold for
(

0 Tϕ

Tϕ 0

)
.

(b) As we noticed, if U is the unilateral shift on `2 then Weyl’s theorem fails for(
U 0

0 U∗

)
. But Example 1.7 guarantees that Weyl’s theorem holds for

(
0 U

U∗ 0

)
.

2. Weyl’s theorem for 2× 2 upper triangular operator matrices

Weyl’s theorem and Browder’s theorem are transmitted from T ∈ L(H) to T + K for
commuting nilpotents K ∈ L(H) (cf. [14],[19]). But this may fail if K is not assumed
to commute with T even if K is both compact and nilpotent: for example, consider
T =

(
U 1−UU∗

0 U∗

)
and K =

(
0 1−UU∗

0 0

)
(cf. [14, Example 12]). In this section we consider

the following question: if Weyl’s theorem holds for
(

A 0

0 B

)
, when does it hold for

(
A C

0 B

)

? To state the main result we need the concept of the “spectral picture” ([3],[20]) of the
operator A ∈ L(H), denoted SP(A), which consists of the set σe(A), the collection of holes
and pseudoholes in σe(A), and the indices associated with these holes and pseudoholes.

When A ∈ L(H) and B ∈ L(K) are given we denote by MC an operator acting on
H⊕K of the form

MC =
(

A C

0 B

)
,

where C ∈ L(K,H). It was shown in [16] that

(2.0.1) ω(MC) ⊆ ω
(

A 0

0 B

)
⊆ ω(A) ∪ ω(B).

In [7] and [16], the structures of spectra and Weyl spectra of MC were considered in detail.

Lemma 2.1 ([7],[16]). For a given pair (A,B) of operators there is equality, for every
C ∈ L(K,H),

$(A) ∪$(B) = $(MC) ∪S with $ ∈ {σ, ω},
where S is the union of certain of the holes in $(MC) which happen to be subsets of
$(A) ∩$(B).



Lemma 2.2. If either SP(A) or SP(B) has no pseudoholes then, for every C ∈ L(K,H),
we have:

(a) ω
(

A 0

0 B

)
= ω(MC).

(b) σ(A) ∪ σ(B) = σ(MC) ∪S, where S is the union of certain of the holes in σ(MC)
which happen to be subsets of

(
σ(A) ∩ σ(B)

) \ ω
(

A 0

0 B

)
.

Proof. The proof of the statement (a) is known from [16, Corollary 3] and the statement
(b) follows at once from Lemma 2.1 and the statement (a). ¤

Although the passage from σ(MC) to σ
(

A 0

0 B

)
is the filling in certain of the holes

in σ(MC), we cannot expect that iso σ
(

A 0

0 B

)
= iso σ(MC) even when both SP(A) and

SP(B) have no pseudoholes. For example if on `2 ⊕ `2

A = U ⊕ 0, B = U∗ ⊕ 0, and C = (1− UU∗)⊕ 0,

where U is the unilateral shift on `2, then σ
(

A 0

0 B

)
= D and σ

(
A C

0 B

)
= T ∪ {0}, while

ω
(

A 0

0 B

)
= T ∪ {0} = ω

(
A C

0 B

)
.

Theorem 2.3. If either SP(A) or SP(B) has no pseudoholes then for every C ∈ L(K,H),

Browder’s theorem holds for
(

A 0

0 B

)
=⇒ Browder’s theorem holds for

(
A C

0 B

)
.

Proof. By assumption we have that σ
(

A 0

0 B

)
\ ω

(
A 0

0 B

)
= p00

(
A 0

0 B

)
. But since σ(MC)

shrinks from σ
(

A 0

0 B

)
, Lemma 2.2 gives

(2.3.1) σ(MC) \ ω(MC) ⊆ p00

(
A 0

0 B

)
.

Thus noting that isoσ
(

A 0

0 B

)
⊆ iso σ(MC) passing to Lemma 2.1, it follows from (0.3)

that σ(MC) \ ω(MC) ⊆ p00(MC). The reverse is evident. ¤

The condition “either SP(A) or SP(B) has no pseudoholes” is essential in Theorem
2.3. For example if A and B are operators on `2 ⊗ `2 defined by

A = U ⊗ 1 and B = U∗ ⊗ 1,

where U is the unilateral shift on `2, then σ
(

A 0

0 B

)
= ω

(
A 0

0 B

)
and p00

(
A 0

0 B

)
= ∅, so

that Browder’s theorem holds for
(

A 0

0 B

)
. But if the operator C on `2 ⊗ `2 is defined by

C =




0

1−UU∗

1−UU∗

. . .


 ,



then a straightforward calculation shows

σ
(

A C

0 B

)
= D, ω

(
A C

0 B

)
= T and p00

(
A C

0 B

)
= ∅,

which implies that Browder’s theorem does not hold for
(

A C

0 B

)
.

On the other hand, Theorem 2.3 may fail for “Weyl’s theorem” even with the addi-
tional assumption that Weyl’s theorem holds for A and B. To see this let the operators
A,B and C on `2 be defined by

A(x1, x2, · · · ) = (0, x1, 0,
1
2
x2, 0,

1
3
x3, 0,

1
4
x4, · · · );(2.3.2)

B(x1, x2, · · · ) = (0, x2, 0, x4, 0, x6, 0, x8, · · · );(2.3.3)

C(x1, x2, · · · ) = (0, 0, x2, 0, x3, 0, x4, 0, · · · ) :(2.3.4)

then

(2.3.5) σ(A) = ω(A) = {0}, σ(B) = ω(B) = {0, 1}, and π00(A) = π00(B) = ∅,

which says that Weyl’s theorem holds for A and B. Also a straightforward calculation
shows that

σ
(

A 0

0 B

)
= σ

(
A C

0 B

)
= {0, 1},

ω
(

A 0

0 B

)
= ω

(
A C

0 B

)
= {0, 1},

π00

(
A 0

0 B

)
= p00

(
A 0

0 B

)
= ∅,

while
π00

(
A C

0 B

)
= {0} 6= p00

(
A C

0 B

)
= ∅,

which implies that Weyl’s theorem holds for
(

A 0

0 B

)
, but fails for

(
A C

0 B

)
. Note that

Browder’s theorem holds for
(

A C

0 B

)
.

We now have:

Theorem 2.4. If either SP(A) or SP(B) has no pseudoholes and if A is an isoloid
operator for which Weyl’s theorem holds then for every C ∈ L(K,H),

Weyl’s theorem holds for
(

A 0

0 B

)
=⇒ Weyl’s theorem holds for

(
A C

0 B

)
.

Proof. The same argument as the proof of Theorem 2.3 gives

(2.4.1) σ(MC) \ ω(MC) ⊆ π00(MC).



For the reverse inclusion of (2.4.1) suppose that λ ∈ π00(MC). But if λ ∈ isoσ(MC) \
isoσ

(
A 0

0 B

)
then, in view of Lemma 2.2, λ should lie in

(
σ(A) ∩ σ(B)

) \ ω
(

A 0

0 B

)
, and

hence λ /∈ ω(MC). Therefore it suffices to show that, for each λ ∈ π00(MC)∩ isoσ
(

A 0

0 B

)
,

(2.4.2) 0 < dim (MC−λI)−1(0) < ∞ =⇒ 0 < dim
(
(A−λI)−1(0)⊕(B−λI)−1(0)

)
< ∞ :

because (2.4.2) implies that if λ is in π00(MC) ∩ isoσ
(

A 0

0 B

)
then λ is in π00

(
A 0

0 B

)
, so

that λ /∈ ω
(

A 0

0 B

)
= ω(MC) since Weyl’s theorem holds for

(
A 0

0 B

)
. For (2.4.2) suppose

that 0 < dim (MC − λI)−1(0) < ∞. First of all observe that there is inclusion, in general,

(2.4.3) (MC − λI)−1(0) ⊆ (A− λI)−1
(
C ((B − λI)−1(0))

)⊕ (B − λI)−1(0),

which forces that (A−λI)−1(0)⊕(B−λI)−1(0) is non-trivial because if it were not so then
(MC−λI)−1(0) would be trivial, a contradiction. Now we must show that (A−λI)−1(0)⊕
(B−λI)−1(0) is finite dimensional. To the contrary we assume that (A−λI)−1(0)⊕ (B−
λI)−1(0) is infinite dimensional. But since

(2.4.4) (A− λI)−1(0)⊕ {0} ⊆ (MC − λI)−1(0),

it follows that dim (A−λI)−1(0) < ∞, so that (B−λI)−1(0) must be infinite dimensional.
Now there are two cases to consider.

Case 1. Suppose that C
(
(B − λI)−1(0)

)
is finite dimensional. Then C−1(0) must

contain an orthonormal sequence {zj} in (B − λI)−1(0). But then
(

A−λI C

0 B−λI

)(
0

zj

)
=

(
0

0

)
for each j = 1, 2, · · · ,

which implies that (MC − λI)−1(0) is infinite dimensional, a contradiction.
Case 2. Suppose that C

(
(B − λI)−1(0)

)
is infinite dimensional. Since

(i) λ ∈ iso σ
(

A 0

0 B

)
and hence λ ∈ ρ(A) ∪ iso σ(A);

(ii) dim (A− λI)−1(0) < ∞;
(iii) A is isoloid,

it follows that λ ∈ ρ(A)∪π00(A). But since Weyl’s theorem holds for A, we have that A−λI
is Weyl, and hence (A − λI)(H)⊥ is finite dimensional. Therefore C

(
(B − λI)−1(0)

) ∩
(A − λI)(H) is infinite dimensional. Thus we can find an orthonormal sequence {yj} in
(B − λI)−1(0) for which there exists a sequence {xj} in H such that

(A− λI)xj = Cyj for each j = 1, 2, · · · .

But then (
A−λI C

0 B−λI

)(
xj

−yj

)
=

(
0

0

)
for each j = 1, 2, · · · ,

which implies that (MC−λI)−1(0) is infinite dimensional, a contradiction. This completes
the proof. ¤



The “isoloid” condition is essential in Theorem 2.4. For an example, consider the
matrix

(
A C

0 B

)
, where A,B and C are given by (2.3.2), (2.3.3) and (2.3.4), respectively: in

fact, the operator A in (3.2.2) is not isoloid. Also the condition “Weyl’s theorem holds for
A” cannot be dropped in Theorem 2.4. For example if on `2

A(x1, x2, · · · ) = (0, 0, 0,
1
2
x2, 0,

1
3
x3, 0,

1
4
x4, · · · );

B(x1, x2, · · · ) = (0, x2, 0, x4, 0, x6, 0, x8, · · · );
C(x1, x2, · · · ) = (x1, 0, x2, 0, x3, 0, x4, 0, · · · ) :

then the all the spectra are the same as (2.3.5) except

π00(A) = {0}.

Therefore Weyl’s theorem holds for
(

A 0

0 B

)
, but fails for

(
A C

0 B

)
. Here note that Weyl’s

theorem does not hold for A, while A is isoloid.

Corollary 2.5. If A ∈ L(H) is essentially normal isoloid operator for which Weyl’s theo-
rem holds then for every C ∈ L(K,H),

Weyl’s theorem holds for
(

A 0

0 B

)
=⇒ Weyl’s theorem holds for

(
A C

0 B

)
.

Hence, in particular, if A ∈ L(H) is normal then Weyl’s theorem is transmitted from(
A 0

0 B

)
to

(
A C

0 B

)
for every C ∈ L(K,H).

Proof. The first assertion follows from Theorem 2.4 together with the fact ([20, Proposition
2.16]) that the spectral picture of every essentially normal operator has no pseudoholes.
The second assertion follows at once from the first. ¤

For an application of Corollary 2.5 we review a few facts concerning Toeplitz operators
with continuous symbols (cf. [6]): if ϕ ∈ C(T) then

Tϕ is Fredholm if and only if ϕ is invertible;(2.5.1)

ind (Tϕ) = −wn(ϕ) and σe(Tϕ) = ϕ(T) ,(2.5.2)

where wn(ϕ) denotes the winding number of ϕ with respect to the origin.

Example 2.6. Suppose that Tϕ and Tψ are Toeplitz operators with continuous symbols
ϕ,ψ ∈ C(T) satisfying

(2.6.1) wn (ϕ− λ) wn (ψ − λ) ≥ 0 for each λ ∈ C \ (
ϕ(T) ∪ ψ(T)

)
.

Then Weyl’s theorem holds for
(

Tϕ S

0 Tψ

)
with every S ∈ L(H2). Hence, in particular, if ϕ

and ψ are both analytic (or coanalytic) then Weyl’s theorem holds for
(

Tϕ Tς

0 Tψ

)
with every

ς ∈ L∞(T).

Proof. Observe, by (2.5.1), (2.5.2) and (2.6.1), that ω
(

Tϕ 0

0 Tψ

)
= ω(Tϕ)∪ω(Tψ). Therefore

by (1.0.1), Weyl’s theorem holds for
(

Tϕ 0

0 Tψ

)
. Further noting that, by (1.6.1), Tϕ and Tψ



are essentially normal and that every Toeplitz operator is isoloid, it follows from Corollary
2.5 that Weyl’s theorem holds for

(
Tϕ S

0 Tψ

)
with every S ∈ L(H2). For the second assertion

note that if ϕ and ψ are both analytic (or coanalytic) then wn (ϕ− λ)wn (ψ − λ) ≥ 0 for
every λ in each hole. ¤

3. Weyl’s theorem for 2× 2 commutative operator matrices

When the entries in an operator matrix commute then the most of the familiar kinds
of spectrum $ can be calculated by determinants (cf. [9, Theorem XI.7.2],[13, Theorem
2.3]): if

(
A C

D B

)
is a commutative operator matrix on H⊕H then

(3.0.1) $
(

A C

D B

)
= {λ ∈ C : 0 ∈ $

(
(A− λI)(B − λI)− CD

)}.

Indeed (3.0.1) holds for the ordinary spectrum, the essential spectrum and the eigenvalues.
We now have:

Theorem 3.1. Let
(

A C

0 B

)
be a commutative operator matrix acting on H⊕H. Then we

have:

(a) Browder’s theorem holds for
(

A 0

0 B

)
if and only if it holds for

(
A C

0 B

)
.

(b) Weyl’s theorem holds for
(

A 0

0 B

)
if and only if it holds for

(
A C

0 B

)
.

Proof. Observe, by (3.0.1), that there is equality

(3.1.1) $
(

A 0

0 B

)
= $

(
A C

0 B

)
for each $ ∈ {σ, π0, σe, ω},

where π0(·) denotes the set of eigenvalues: the equality for ω follows from the fact that
ind

(
A−λI 0

0 B−λ

)
= ind

(
A−λI C

0 B−λI

)
for every λ ∈ C \ σe

(
A 0

0 B

)
. We now claim that

(3.1.1) also holds with $ = p00 and with $ = π00. In view of (3.1.1) it suffices to show

(3.1.2) dim
(
(A− λI)−1(0)⊕ (B − λI)−1(0)

)
< ∞⇐⇒ dim (MC − λI)−1(0) < ∞.

The forward implication follows from (2.4.3). For the backward implication suppose that
dim (MC − λI)−1(0) < ∞. Then in view of (2.4.4), it suffices to show that dim (B −
λI)−1(0) < ∞. To the contrary we assume that (B − λI)−1(0) contains an orthonormal
sequence {yj}. Then since CA = AC, we have

(
A−λI C

0 B−λI

) (
Cyj

(λI−A)yj

)
=

(
0

0

)
for every j = 1, 2, · · · .

Thus we must have that dim {Cyj : j = 1, 2, · · · } < ∞, and hence we can find an orthonor-
mal sequence {zj} in C−1(0) ∩ (B − λI)−1(0). But then

(
A−λI C

0 B−λI

)(
0

zj

)
=

(
0

0

)
for every j = 1, 2, · · · ,



which implies that (MC − λI)−1(0) is infinite dimensional, a contradiction. This proves
(3.1.2) and completes the proof. ¤

When
(

A C

D B

)
is a commutative operator matrix we need not expect that Browder’s

theorem is transmitted from
(

A C

0 B

)
to

(
A C

D B

)
. For example Browder’s theorem may fail

for
(

0 C

C 0

)
(note that Weyl’s theorem always holds for the nilpotent matrix

(
0 C

0 0

)
): for a

concrete example, take C = Tϕ as in Example 1.8.
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