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Abstract. Let LN be the collection of N ×N lower triangular Toeplitz matrices and let TN be
the collection of N ×N lower triangular Toeplitz contractions. We show that TN is compact and
strictly convex, in the spectral norm, with respect to LN ; that is, TN is compact, convex and

∂LNTN ⊆ extTN ,

where ∂LN (·) and ext(·) denote the topological boundary with respect to LN and the set of extreme
points, respectively. As an application, we show that the reduced Cowen set for an analytic poly-
nomial is strictly convex; more precisely, if f is an analytic polynomial and if G′f := {g ∈ H∞(T) :
g(0) = 0 and the Toeplitz operator Tf+ḡ is hyponormal}, then G′f is strictly convex. This answers
a question of C. Cowen for the case of analytic polynomials.

1. Introduction

Let Mn(C) denote the set of n×n complex matrices. If A ∈Mn(C) then the singular values of
A are defined by the nonnegative square roots of the eigenvalues of A∗A. The spectral norm of A,
||A||, is defined as the largest singular value of A, i.e., ||A|| = max {

√
λ : λ ∈ σ(A∗A)}. It is well

known that the spectral norm coincides with the operator norm, that is, ||A|| = sup||x||=1 ||Ax||.
Thus, ||A|| ≤ 1⇐⇒ σ(A∗A) ⊆ [0, 1], and ||A|| = 1⇐⇒ 1 ∈ σ(A∗A). Let LN be the collection of
N×N lower triangular Toeplitz matrices and let TN be the collection of N×N lower triangular
contractive Toeplitz matrices (or simply Toeplitz contractions). An element A of TN is of the
form

A =



c0 0 0 . . . 0

c1 c0
. . .

...
...

. . . . . . . . .
...

cN−2
. . . . . . 0

cN−1 cN−2 . . . c1 c0

 ,

with ||A|| ≤ 1. In this article we establish that TN is strictly convex with respect to LN ; that
is, the topological boundary of TN with respect to LN , ∂LNTN , consists entirely of extreme
points (Theorem 1). Our proof relies on the Carathéodory-Schur interpolation problem. As a
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consequence, we show that the reduced Cowen set of an analytic polynomial is strictly convex
(Theorem 9). This is related to the contractive completion problem for partially given triangular
Toeplitz matrices, which has been considered by C.R. Johnson and L. Rodman [JR] and G.
Nævdal [Næ].

2. Lower Triangular Toeplitz Contractions

Consider first the following interpolation problem, called the Carathéodory–Schur interpola-
tion problem (CSIP). Given c0, c1, · · · , cN−1 in C, find an analytic function k on the open unit
disc D such that

(i) k̂(j) = cj , j = 0, · · · , N − 1 (k̂(j) denotes the j-th Fourier coefficient of k)

and

(ii) supz∈D |k(z)| ≤ 1.

CSIP can be analyzed by a matricial argument (cf. [Sch]): CSIP is solvable if and only if the
Toeplitz matrix

C :=



c0 0 0 . . . 0

c1 c0
. . .

...
...

. . . . . . . . .
...

cN−2
. . . . . . 0

cN−1 cN−2 . . . c1 c0


is a contraction, that is, ||C|| ≤ 1, or equivalently, I − CC∗ ≥ 0. Today this result is also
called the Carathéodory–Fejér Theorem. A proof of this result can be obtained by means of
the Commutant Lifting Theorem (cf. [GGK, Proposition XXVII.7.2]). In particular, by Pick’s
Theorem (cf. [Ga, Corollary 2.3]) CSIP has a unique solution k if and only if det (I−CC∗) = 0.
Moreover, in the cases where det (I−CC∗) = 0, the unique solution is a finite Blaschke product
k of the form

k(z) = eiθ
n∏
j=1

z − ζj
1− ζjz

(|ζj | < 1 for j = 1, · · · , n; θ ∈ [0, 2π)),

such that deg (k) = rank (I − CC∗), where deg (k) denotes the degree of k, that is, the number
of zeros of k in the open unit disc D (see also [Ta, Theorem]).

We now have:

Theorem 1. Recall that LN is the collection of N ×N lower triangular Toeplitz matrices and
TN is the collection of N ×N lower triangular Toeplitz contractions. Then TN is compact and
strictly convex, in the spectral norm, with respect to LN ; that is, TN is compact, convex and

∂LNTN ⊆ ext TN .

Proof. It is easy to see that TN is compact and convex. Moreover,

∂LNTN = {C ∈ TN : ||C|| = 1}.
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Towards strict convexity recall that K is a strictly convex subset of a vector space X if

x1, x2 ∈ X and
1
2

(x1 + x2) ∈ ∂X K =⇒ x1 /∈ ∂X K, or x2 /∈ ∂X K, or x1 = x2.

Equivalently, K is strictly convex if and only if ∂X K ⊆ extK. Suppose now that C,D, 1
2 (C +

D) ∈ ∂LNTN . It will suffice to show that C = D. Write

C :=



c0 0 0 . . . 0

c1 c0
. . .

...
...

. . . . . . . . .
...

cN−2
. . . . . . 0

cN−1 cN−2 . . . c1 c0

 and D :=



d0 0 0 . . . 0

d1 d0
. . .

...
...

. . . . . . . . .
...

dN−2
. . . . . . 0

dN−1 dN−2 . . . d1 d0


Then by CSIP and the fact that ||C|| = ||D|| = 1, there exist analytic functions Bi (i = 1, 2, 3)
on D such that

(1)
{
B̂1(j) = cj , B̂2(j) = dj , B̂3(j) = 1

2 (cj + dj) (j = 0, · · · , N − 1)
supz∈D |Bi(z)| ≤ 1 (i = 1, 2, 3).

Now recall that if A ∈ Mn with ||A|| = 1 then det (I − AA∗) = 0: indeed if ||A|| = 1 then
||AA∗|| = 1, so 1 ∈ σ(AA∗), forcing det (I − AA∗) = 0. Thus by the preceding considerations
and the assumption ||C|| = ||D|| = ||12 (C+D)|| = 1, we can see that each Bi is a finite Blaschke
product, that is, each is the unique solution of the associated interpolation problem (1). But

since supz∈D | 12 (B1 +B2)(z)| ≤ 1 and ̂1
2 (B1 +B2)(j) = 1

2 (cj + dj) (j = 0, · · · , N − 1), it follows
from uniqueness that 1

2 (B1 + B2) = B3, which implies that 1
2 (B1 + B2) is a finite Blaschke

product. Recall now that Blaschke products are extreme points of the unit ball of H∞(T). In
fact, by an argument of K. deLeeuw and W. Rudin [dLR], if f ∈ H∞ and ||f || = 1, then f is an
extreme point of the unit ball of H∞(T) if and only if

∫
log (1− |f(eiθ)|) dθ = −∞, a condition

Blaschke products satisfy. We thus conclude that B1 = B2. So cj = dj for j = 0, · · · , N − 1,
which implies C = D. This completes the proof. �

Although our proof of Theorem 1 relies on the the Carathéodory–Fejér Theorem, we expect
that a (finite) matricial argument can be found.

Corollary 2. For S ∈Mn(C), let dS := dist (S,TN ). Then

(2) mS := {B ∈ TN : ||S −B|| = dS}
is compact, convex and nonempty.

Proof. Since m0 = {0}, we can assume S 6= 0. It is clear that mS is closed and nonempty
(by Theorem 1), so we shall focus on convexity. Let B,C ∈ mS , and let 0 < t < 1. Since
tB + (1− t)C ∈ TN , we have

dS ≤ ||tB + (1− t)C − S|| = ||t(B − S) + (1− t)(C − S)||
≤ t ||B − S||+ (1− t) ||C − S|| = dS .

It follows that tB + (1− t)C ∈ mS , so mS is convex. �

By a partial Toeplitz matrix we mean a Toeplitz matrix some of whose entries are specified
complex numbers, and whose remaining entries are unspecified. As a matter of fact, what one
specifies or leaves unspecified are entire diagonals.
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Corollary 3. Let A be a partial Toeplitz matrix whose strict upper triangular part is known
and let tcA denote the set of Toeplitz completions Ã of A such that (i) Ã − A is a Toeplitz
contraction, and (ii) ||Ã|| has the smallest norm amongst Toeplitz completions. Then tcA is
either a singleton or an infinite set.

Proof. Apply Corollary 2 with A in place of S. �

Write N for the collection of N × N upper triangular matrices. Note that N forms a nest
algebra with the nest {0} ⊆ {e0} ⊆ · · · ⊆ {e0. · · · , eN−1}. Arveson’s Distance Formula (cf. [Da,
Theorem 9.5]) says that if A = (ci−j) ∈ TN then

dist (A,N) = sup
0≤l≤N−2

||P⊥l APl|| = max
1≤l≤N−1

||(cl+i−j)1≤i≤N−l, 1≤j≤l|| =: αc,

where Pl is the projection onto {e0, · · · , el}. But if N is replaced by T′N , the collection of N×N
upper triangular Toeplitz contractions, then dist (A,T′N ) ≥ αc. Thus we need not expect that
dist (A,T′N ) = αc if N > 2. However, if A ∈ TN satisfies dist (A,T′N ) = αc then by Corollary
3, the solution S ∈ T′N of the equation dist (A,T′N ) = ||A−S|| is either unique or has infinitely
many values. Thus we have:

Corollary 4. Let A be a partial Toeplitz contraction whose strict upper triangular part is
known, and assume that one of its rectangular submatrices has norm 1 (called the extremal
case). Let Ã be a Toeplitz contraction of A such that Ã−A is a contraction itself. Then tcA is
either a singleton or an infinite set.

Example 5. Let T =
(
b a

x b

)
∈ M2(C). By the preceding considerations there exists x ∈ C

such that min ||T || = ||
( a
b

)
|| =

√
|a|2 + |b|2. Corollary 4 shows that x is unique or there are

infinitely many solutions x. Indeed, if b 6= 0 then x = − b2

|b|2 ā is the only solution that minimizes
||T ||, and if b = 0 then all values x in the disk |x| ≤ |a| minimize ||T ||.

Remark 6. (i) We need not expect that the collection GN of N ×N Toeplitz contractions is
strictly convex with respect to the collection of N × N Toeplitz matrices: for example, take
C :=

(
1 0
0 1

)
and D :=

(
0 1
1 0

)
, and observe that C,D ∈ ∂GN and also 1

2 (C + D) ∈ ∂GN

because || 12 (C + D)|| = ||
( 1

2
1
2

1
2

1
2

)
|| = 1. Also the collection CN of N × N contractions is not

strictly convex. In fact it is well known that ext CN is the set of unitaries. More generally, it is
known (cf. [Ha, Solution 136]) that the extreme points of the unit ball in the space of bounded
linear operators on a Hilbert space are the maximal partial isometries, that is, the isometries
and coisometries.

(ii) By (i) above,
ext TN

⋂
ext CN = {eiθIN : θ ∈ [0, 2π)},

which also follows at once from the observation that unitary triangular Toeplitz matrices are
rotations of the identity.

(iii) The Frobenius norm || · ||2 is defined on Mn by

||A||2 :=

 n∑
i,j=1

|aij |2
 1

2

.
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Then [A,B] := tr (AB∗) defines an inner product on Mn(C), and the Frobenius norm is induced
from [·, ·]. Thus, the Frobenius norm satisfies the parallelogram identity

1
2
(
||C +D||22 + ||C −D||22

)
= ||C||22 + ||D||22 (C,D ∈Mn(C)).

Therefore if ||C||2 = ||D||2 = ||12 (C + D)||2 = 1 then it follows that C = D. This shows that
TN is also strictly convex in the Frobenius norm.

3. Cowen Sets

In this section we will show how Theorem 1 can be applied to the study of Cowen’s sets
for analytic polynomials. We first need some definitions and preliminary results. A bounded
linear operator A on a Hilbert space H with inner product (·, ·) is said to be hyponormal if
its selfcommutator [A∗, A] = A∗A − AA∗ induces a positive semidefinite quadratic form on H

via ξ 7→ ([A∗, A]ξ, ξ), for ξ ∈ H. When the Hilbert space under consideration is the Hardy
space H2(T) of the unit circle T = ∂D in the complex plane, a natural collection of operators
to study is the class of Toeplitz operators. Given ϕ ∈ L∞(T), the Toeplitz operator Tϕ with
symbol ϕ is defined by Tϕf := P (ϕ · f), where f ∈ H2(T) and P denotes the orthogonal
projection that maps L2(T) onto H2(T). An elegant theorem of C. Cowen [Cow2] characterizes
the hyponormality of a Toeplitz operator Tϕ on H2(T) in terms of properties of the symbol
ϕ ∈ L∞(T). We shall use a variant of Cowen’s Theorem [Cow2], first proposed by Nakazi and
Takahashi [NT].

Cowen’s Theorem. For ϕ ∈ L∞(T), write

E(ϕ) := {k ∈ H∞(T) : ||k||∞ ≤ 1 and ϕ− kϕ ∈ H∞(T)} .

Then Tϕ is hyponormal if and only if E(ϕ) is nonempty.

Cowen’s method is to recast the operator-theoretic problem of hyponormality for Toeplitz
operators into the problem of finding a solution of a certain functional equation involving its
symbol. Suppose ϕ is a trigonometric polynomial of the form ϕ(z) =

∑N
n=−N anz

n, where
aN 6= 0. If k(z) =

∑∞
j=0 cjz

j is a function in H∞(T) then ϕ − kϕ ∈ H∞(T) if and only if the
coefficients c0, · · · , cN−1 are given by

(3)


c0
c1
...

cN−1

 =


a1 a2 . . . aN−1 aN
a2 a3 . . . aN 0
...

...
. . .

...
...

aN 0 . . . 0 0


−1

a−1
a−2

...
a−N

 (cf. [Zhu]).

By Cowen’s Theorem, if c0, · · · , cN−1 are given by (3) then the hyponormality of Tϕ is equivalent
to the existence of a function k ∈ H∞(T) such that

(4)
{
k̂(j) = cj , j = 0, · · · , N − 1
||k||∞ ≤ 1,

which is precisely the formulation of CSIP.
From the preceding considerations the following result follows at once.
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Lemma 7. Suppose that ϕ(z) =
∑N
n=−N anz

n, where aN 6= 0 and let c0, · · · , cN−1 be given by
(3). Then Tϕ is hyponormal if and only if the Toeplitz matrix

(5) C :=



c0 0 0 . . . 0

c1 c0
. . .

...
...

. . . . . . . . .
...

cN−2
. . . . . . 0

cN−1 cN−2 . . . c1 c0


is a contraction. Moreover, if ||C|| = 1 then E(ϕ) has precisely one element k which is a finite
Blaschke product of degree at most N .

We now introduce the notion of Cowen set.

Definition 8. (cf. [Cow1], [Cow2]) Let H = {h ∈ H∞ : h(0) = 0 and ||h||2 ≤ 1}. For f ∈ H2,
let Gf denote the set of g in H2 such that for every h in H2,

sup
h0∈H

| < hh0, f > | ≥ sup
h0∈H

| < hh0, g > |.

We shall say that Gf is the Cowen set for f .

We now see how this definition is relevant to hyponormality of Toeplitz operators. First,
we need some notation. For ϕ ∈ L∞(T), the Hankel operator Hϕ : H2 → H2 is defined by
Hϕf := J(I − P )(ϕf), where J : (H2)⊥ → H2 is given by Jz−n = zn−1 for n ≥ 1. Suppose
now that p ∈ H∞ and h ∈ H2. Then we have

sup
h0∈H

| < hh0, p > | = sup
h0∈H

| < p̄h, h̄0 > | = sup
h0∈H

| < (I − P )p̄h, h̄0 > |

= sup
g∈H∞
||g||2≤1

| < (I − P )p̄h, J∗g > |

= sup
g∈H∞
||g||2≤1

| < J(I − P )p̄h, g > | = ||Hp̄h||.

Recall ([Cow1, Proposition 11]) that if f, g ∈ H∞ and ϕ = f + ḡ then the following are
equivalent:

(1) Tϕ is hyponormal;
(2) ||Hf̄h|| ≥ ||Hḡh|| for every h ∈ H2.

From Definition 8 and the above considerations we can see that if f ∈ H∞, then

Gf = {g ∈ H∞ : Tf+ḡ is hyponormal}.

In [Cow2], it was shown that Gf is balanced, convex, and weakly compact. Also, recall ([FL])
that if ϕ(z) =

∑N
n=−m anz

n is such that Tϕ is hyponormal then m ≤ N and |a−m| ≤ |aN |.
Thus, if f is an analytic polynomial of degree N then

Gf = {g : g is an analytic polynomial of degree at most N and Tf+ḡ is hyponormal}.
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Since the hyponormality of Tϕ is independent of the Fourier coefficient ϕ̂(0), we assume, without
loss of generality, that g(0) = 0. Therefore, if f(z) :=

∑N
k=0 anz

N , it is more convenient to
work with the set

G′f = {g(z) := b1z + · · ·+ bNz
N : Tf+ḡ is hyponormal}.

We shall call G′f the reduced Cowen set for f . We easily see that G′f is convex and compact in
the norm topology of H∞.

In 1988, Cowen posed the following:

Problem ([Cow1, Question 3]). What are the extreme points of G′f ? In particular, if
g ∈ G′f but λg /∈ G′f for all |λ| > 1, is g an extreme point of G′f ?

We now answer the above problem for the case of analytic polynomials.

Theorem 9. If f is an analytic polynomial of degree N then G′f is strictly convex and

extG′f = {g(z) = b1z + · · ·+ bNz
N : ||C|| = 1},

where C is the Toeplitz matrix in (5) corresponding to ϕ = ḡ + f .

Proof. Suppose ϕ ≡ f + ḡ with f(z) ≡
∑N
j=0 ajz

j and g(z) ≡
∑N
j=1 bjz

j , and write G′f :=
{g : Tϕ is hyponormal}. By the preceding considerations, G′f is convex and compact. We must
show that ∂ G′f ⊆ extG′f . Suppose that k(z) =

∑∞
j=0 cjz

j is in the closed unit ball of H∞(T),
where c0, · · · , cN−1 are given by (3). Write

hN := {(c0, · · · , cN−1) ∈ CN : Tϕ is hyponormal}.

If F : b1z + · · · + bNz
N 7→ (b1, · · · , bN ) is a canonical map from the set of polynomials g of

degree at most N with g(0) = 0 onto CN and if L is the inverse of the Hankel matrix in
(3), then LF (G′f ) = hN , where hN denotes the set of conjugates of elements in hN . Note
that LF is bijective. By [Con, Proposition V.7.9], every bijective bounded linear operator
between Hilbert spaces preserves compactness, convexity, the topological boundary, and the
set of extreme points, so it suffices to show that ∂ hN ⊆ ext hN . By Lemma 7, we know that
hN = {(c0, · · · , cN−1) ∈ CN : ||C|| ≤ 1}, so that the result follows at once from Theorem 1. �
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presentation.
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