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Abstract. Given an n-step extension α : xn, · · · , x1, (α0, · · · , αk)∧ of a recursively generated weight
sequence (0 < α0 < · · · < αk), and if Wα denotes the associated unilateral weighted shift, we prove that

Wα is subnormal ⇐⇒
8
<
:

Wα is ([ k+1
2

] + 1)-hyponormal (n = 1)

Wα is ([ k+1
2

] + 2)-hyponormal (n > 1).

In particular, the subnormality of an extension of a recursively generated weighted shift is independent
of its length if the length is bigger than 1. As a consequence we see that if α(x) is a canonical rank-
one perturbation of the recursive weight sequence α, then subnormality and k-hyponormality for Wα(x)

eventually coincide. We then examine a converse - an “extremality” problem: Let α(x) be a canonical
rank-one perturbation of a weight sequence α and assume that (k+1)-hyponormality and k-hyponormality
for Wα(x) coincide. We then show that α(x) is recursively generated, i.e., Wα(x) is recursive subnormal.

Introduction

Let H be a separable infinite dimensional complex Hilbert space and let L(H) be the algebra of
bounded linear operators on H. An operator T ∈ L(H) is said to be normal if T ∗T = TT ∗ and
hyponormal if T ∗T ≥ TT ∗. Given a bounded sequence of positive numbers α : α0, α1, · · · (called
weights), the (unilateral) weighted shift Wα associated with α is the operator on `2(Z+) defined by
Wαen := αnen+1 for all n ≥ 0, where {en}∞n=0 is the canonical orthonormal basis for `2(Z+). It is
straightforward to check that Wα can never be normal, and that Wα is hyponormal if and only if
αn ≤ αn+1 for all n ≥ 0. The Bram-Halmos criterion for subnormality states that an operator T is
subnormal if and only if ∑

i,j

(T ixj , T
jxi) ≥ 0

for all finite collections x0, x1, · · · , xk ∈ H ([Br],[Con, III.1.9]). Using Choleski’s algorithm for
operator matrices, it is easy to see that this is equivalent to the following positivity test:

(0.1)




I T ∗ . . . T ∗k

T T ∗T . . . T ∗kT
...

...
. . .

...
T k T ∗T k . . . T ∗kT k


 ≥ 0 (all k ≥ 1).
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Condition (0.1) provides a measure of the gap between hyponormality and subnormality, and k-
hyponormality has been introduced and studied in an attempt to bridge the gap between subnor-
mality and hyponormality ([At],[Cu1],[Cu2],[CF1], [CF2],[CF3],[CL1],[CMX], [McCP]). In fact,
the positivity condition (0.1) for k = 1 is equivalent to the hyponormality of T , while subnormality
requires the validity of (0.1) for all k. If we denote by [A,B] := AB − BA the commutator of two
operators A and B, and if we define T to be k-hyponormal whenever the k × k operator matrix

(0.2) Mk(T ) := ([T ∗j , T i])k
i,j=1

is positive, or equivalently, the (k + 1)× (k + 1) operator matrix in (0.1) is positive, then the Bram-
Halmos criterion can be rephrased as saying that T is subnormal if and only if T is k-hyponormal
for every k ≥ 1 ([CMX]).

If Wα is the weighted shift with weight sequence α = {αn}∞n=0, then the moments of Wα are
usually defined by β0 := 1, βn+1 := αnβn (n ≥ 0) [Shi]; however, we reserve this term for the
sequence γn := β2

n (n ≥ 0). A criterion for k-hyponormality can be given in terms of moments
([Cu1, Theorem 4]): if we build a (k + 1)× (k + 1) Hankel matrix A(n; k) by

(0.3) A(n; k) :=




γn γn+1 . . . γn+k

γn+1 γn+2 . . . γn+k+1

...
...

...
γn+k γn+k+1 . . . γn+2k


 (n ≥ 0),

then

(0.4) Wα is k-hyponormal ⇐⇒ A(n; k) ≥ 0 (n ≥ 0).

In [Sta], J. Stampfli showed that given α :
√

a,
√

b,
√

c with 0 < a < b < c, there always exists
a subnormal completion of α, but that for α :

√
a,
√

b,
√

c,
√

d (a < b < c < d) such a subnormal
completion may not exist.

There are instances where k-hyponormality implies subnormality for weighted shifts. For example,
in [CF3], it was shown that if α(x) :

√
x, (

√
a,
√

b,
√

c)∧ (a < b < c) then Wα(x) is 2-hyponormal if
and only if it is subnormal: more concretely, Wα(x) is 2-hyponormal if and only if

√
x ≤ H2(

√
a,
√

b,
√

c) :=

√
ab(c− b)

(b− a)2 + b(c− b)
,

in which case Wα(x) is subnormal. In this paper we extend the above result to weight sequences of
the form α : xn, · · · , x1, (α0, · · · , αk)∧ with 0 < α0 < · · · < αk. Our main results are as follows.

Extensions of Recursively Generated Weighted Shifts. If α : xn, · · · , x1, (α0, · · · , αk)∧ then

Wα is subnormal ⇐⇒
{

Wα is ([k+1
2 ] + 1)-hyponormal (n = 1)

Wα is ([k+1
2 ] + 2)-hyponormal (n > 1).

In particular, the above theorem shows that the subnormality of an extension of the recursive
shift is independent of its length if the length is bigger than 1.

Canonical Rank–One Perturbations. Let α ≡ {αn}∞n=0 = (α0, · · · , αk)∧. If Wα′ is a perturba-
tion of Wα at the j-th weight then

Wα′ is subnormal ⇐⇒
{

Wα′ is ([k+1
2 ] + 1)-hyponormal (j = 0)

Wα′ is ([k+1
2 ] + 2)-hyponormal (j ≥ 1).

Extremality Criterion. Let α(x) be a canonical rank-one perturbation of a weight sequence α. If
(k + 1)-hyponormality and k-hyponormality for Wα(x) coincide, then α(x) is recursively generated,
i.e., Wα(x) is recursive subnormal.
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1. Extensions of Recursively Generated Shifts

C. Berger’s characterization of subnormality for unilateral weighted shifts (cf. [Hal], [Con,
III.8.16]) states that Wα is subnormal if and only if there exists a Borel probability measure µ
supports in [0, ||Wα||2], with ||Wα||2 ∈ suppµ, such that

γn =
∫

tndµ(t) for all n ≥ 0.

Given an initial segment of weights α : α0, · · ·αr, the sequence α̂ ∈ `∞(Z+) such that α̂i = αi (i =
0, · · · , r) is said to be recursively generated by α if there exist r ≥ 1 and ϕ0, · · · , ϕr−1 ∈ R such that

γn+r = ϕ0γn + · · ·+ ϕr−1γn+r−1 for all n ≥ 0,

where γ0 := 1, γn := α2
0 · · ·α2

n−1 (n ≥ 1). In this case the weighted shift Wα̂ with a weight sequence
α̂ is said to be recursively generated (or simply recursive). If

g(t) := tr − (
ϕr−1t

r−1 + · · ·+ ϕ0

)
,

then g has r distinct real roots 0 ≤ s0 < · · · < sr−1 ([CF2, Theorem 3.9]). Let

V :=




1 1 . . . 1
s0 s1 . . . sr−1

...
...

...
sr−1
0 sr−1

1 . . . sr−1
r−1




and let 


ρ0
...

ρr−1


 := V −1




γ0
...

γr−1


 .

If Wα̂ is a recursively generated subnormal shift then the Berger measure of Wα̂ is of the form

µ := ρ0δs0 + · · ·+ ρr−1δr−1.

Given an initial segment of weights

α : α0, · · · , α2k (k ≥ 0),

suppose α̂ ≡ (α0, · · · , α2k)∧, i.e., α̂ is recursively generated by α. Write

vn :=




γn
...

γn+k


 (0 ≤ n ≤ k + 1).

Then {v0, · · · ,vk+1} is linearly dependent in Rk+1. Now the rank of α is defined by the smallest
integer i (1 ≤ i ≤ k + 1) such that vi is a linear combination of v0, · · · ,vi−1. Since {v0, · · · ,vi−1}
is linearly independent, there exists a unique i-tuple ϕ ≡ (ϕ0, · · · , ϕi−1) ∈ Ri such that vi =
ϕ0v0 + · · ·+ ϕi−1vi−1, or equivalently,

γj = ϕi−1γj−1 + · · ·+ ϕ0γj−i (i ≤ j ≤ k + i),

which says that (α0, · · · , αk+i) is recursively generated by (α0, · · · , αi). In this case, Wα is said to
be i-recursive (cf. [CF3, Definition 5.14]).

We begin with:
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Lemma 1.1 ([CF2, Propositions 2.3, 2.6, and 2.7]). Let A,B ∈ Mn(C), Ã, B̃ ∈ Mn+1(C)
(n ≥ 1) be such that

Ã =
(

A ∗
∗ ∗

)
and B̃ =

( ∗ ∗
∗ B

)
.

Then we have:

(i) If A ≥ 0 and if Ã is a flat extension of A (i.e., rank(Ã) = rank(A)) then Ã ≥ 0;
(ii) If A ≥ 0 and Ã ≥ 0 then det(A) = 0 implies det(Ã) = 0;
(iii) If B ≥ 0 and B̃ ≥ 0 then det(B) = 0 implies det(B̃) = 0.

Lemma 1.2. If α ≡ (α0, · · · , αk)∧ then

(1.2.1) Wα is subnormal ⇐⇒ Wα is ([
k

2
] + 1)-hyponormal.

In the cases where Wα is subnormal and i := rank(α), we have α = (α0, · · · , α2i−2)∧.

Proof. We only need to establish the sufficiency condition in (1.2.1). Let i := rank(α). Since Wα

is i-recursive, [CF3, Proposition 5.15] implies that the subnormality of Wα follows after we verify
that A(0, i− 1) ≥ 0 and A(1, i− 1) ≥ 0. Now observe that i− 1 ≤ [k

2 ] + 1 and

A(j, [
k

2
] + 1) =

(
A(j, i− 1) ∗

∗ ∗
)

(j = 0, 1),

so the positivity of A(0, i − 1) and A(1, i − 1) is a consequence of the positivity of the ([k
2 ] + 1)-

hyponormality of Wα. For the second assertion, observe that det A(n, i) = 0 for all n ≥ 0. By
assumption A(n, i + 1) ≥ 0, so by Lemma 1.1 (ii) we have det A(n, i + 1) = 0, which says that
(α0, · · · , α2i−1) ⊂ (α0, · · · , α2i−2)∧. By iteration we obtain (α0, · · · , αk) ⊂ (α0, · · · , α2i−2)∧, and
therefore (α0, · · · , αk)∧ = (α0, · · · , α2i−2)∧. This proves the lemma. ¤

In what follows, and for notational convenience, we shall set x−j := αj (0 ≤ j ≤ k).

Theorem 1.3 (Subnormality Criterion). If α : xn, · · · , x1, (α0, · · · , αk)∧ then

(1.3.1) Wα is subnormal ⇐⇒
{

Wα is ([k+1
2 ] + 1)-hyponormal (n = 1)

Wα is ([k+1
2 ] + 2)-hyponormal (n > 1).

Furthermore, in the cases where the above equivalence holds, if rank(α0, · · · , αk) = i then

(1.3.2) Wα is subnormal ⇐⇒
{

Wα is i-hyponormal (n = 1)
Wα is (i + 1)-hyponormal (n > 1).

In fact, 



x1 = Hi(x0, · · · , x2−2i)
x2 = Hi(x1, · · · , x3−2i)

· · · · · · · · ·
xn−1 = Hi(xn−2, · · · , xn−2i)
xn ≤ Hi(xn−1, · · · , xn−2i+1),

where Hi is the modulus of i-hyponormality (cf.[CF3, Proposition 3.4 and (3.4)]), i.e.,

Hi(α) := sup{x > 0 : Wxα is i-hyponormal}.
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Therefore, Wα = Wxn(xn−1,··· ,xn−2i+1)∧ .

Proof. Consider the (k + 1)× (l + 1) “Hankel” matrix A(n; k, l) by (cf. [CL1])

A(n; k, l) :=




γn γn+1 . . . γn+l

γn+1 γn+2 . . . γn+1+l

...
...

...
γn+k γn+k+1 . . . γn+k+l


 (n ≥ 0).

Case 1 (α : x1, (α0, · · · , αk)∧): Let Â(n; k, l) and A(n; k, l) denote the Hankel matrices corre-
sponding to the weight sequences (α0, · · · , αk)∧ and α, respectively. Suppose Wα is ([k+1

2 ] + 1)-
hyponormal. Then by Lemma 1.2, W(α0,··· ,αk)∧ is subnormal. Observe that

A(n + 1; m,m) = x2
1 Â(n; m,m) for all n ≥ 0 and all m ≥ 0.

Thus it suffices to show that A(0; m, m) ≥ 0 for all m ≥ [k+1
2 ] + 2. Also observe that if B̃ denotes

the (k − 1)× k matrix obtained by eliminating the first row of a k × k matrix B then

Ã(0; m,m) = x2
1 Â(0; m− 1,m) for all m ≥ [

k + 1
2

] + 2.

Therefore, for every m ≥ [k+1
2 ] + 2, A(0; m, m) is a flat extension of A(0; [k+1

2 ] + 1, [k+1
2 ] + 1). This

implies A(0; m,m) ≥ 0 for all m ≥ [k+1
2 ] + 2 and therefore Wα is subnormal.

Case 2 (α : xn, · · · , x1, (α0, · · · , αk)∧)): As in Case 1, let Â(n; k, l) and A(n; k, l) denote the
Hankel matrices corresponding to the weight sequences (α0, · · · , αk)∧ and α, respectively. Observe
that det Â(n; [k+1

2 ]+1, [k+1
2 ]+1) = 0 for all n ≥ 0. Suppose Wα is ([k+1

2 ]+2)-hyponormal. Observe
that

A(n + 1; [
k + 1

2
] + 1, [

k + 1
2

] + 1) = x2
1 · · ·x2

nÂ(1; [
k + 1

2
] + 1, [

k + 1
2

] + 1),

so that

(1.3.3) det A(n + 1; [
k + 1

2
] + 1, [

k + 1
2

] + 1) = 0.

Also observe that

A(n− 1; [
k + 1

2
] + 2, [

k + 1
2

] + 2) =
(

x2
2 · · ·x2

n ∗
∗ A(n + 1; [k+1

2 ] + 1, [k+1
2 ] + 1)

)
.

Since Wα is ([k+1
2 ] + 1)-hyponormal, it follows from Lemma 1.1 (iii) and (1.3.3) that detA(n −

1; [k+1
2 ] + 1, [k+1

2 ] + 1) = 0. Note that

A(n− 1; [
k + 1

2
] + 1, [

k + 1
2

] + 1) = x2
1 · · ·x2

n




1
x2
1

γ̂0 . . . γ̂[ k+1
2 ]+1

γ̂0 γ̂1 . . . γ̂[ k+1
2 ]+2

...
...

...
γ̂[ k+1

2 ]+1 γ̂[ k+1
2 ]+2 . . . γ̂2[ k+1

2 ]+2




,

where γ̂j denotes the moments corresponding to the weight sequence (α0, · · · , αk)∧. Therefore x1

is determined uniquely by {α0, · · · , αk} such that (x1, α0, · · · , αk−1)∧ = x1, (α0, · · · , αk)∧: more
precisely, if i := rank (α) and ϕ0, · · · , ϕi−1 denote the coefficients of recursion in (α0, · · · , αk)∧ then

x1 = Hi[(α0, · · · , αk)∧] =
[

ϕ0

γ̂i−1 − ϕi−1γ̂i−2 − · · · − ϕ1γ̂0

] 1
2
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(cf. [CF3,(3.4)]). Continuing this process we can see that x1, · · · , xn−1 are determined uniquely by
a telescoping method such that

(xn−1, · · · , xn−1−k)∧ = xn−1, · · · , x1, (α0, · · · , αk)∧

and W(xn−1,··· ,xn−1−k)∧ is subnormal. Therefore, after (n− 1) steps, Case 2 reduces to Case 1. This
completes the proof of the first assertion. For the second assertion, note that if rank(α0, · · · , αk) = i
then

det Â(n; i, i) = 0.

Now applying the above argument with i in place of [k+1
2 ]+1 gives that x1, · · · , xn−1 are determined

uniquely by α0, · · · , α2i−2 such that W(xn−1,··· ,xn−2i−1)∧ is subnormal. Thus the second assertion
immediately follows. Finally, observe that the preceding argument also establish the remaining
assertions. ¤

Remark 1.4. (a) From Theorem 1.3 we note that the subnormality of an extension of a recursive
shift is independent of its length if the length is bigger than 1.

(b) In Theorem 1.3, “[k+1
2 ]” can not be relaxed to “[k

2 ]”. For example consider the following
weight sequences:

(i) α :
√

1
2 , (

√
3
2 ,
√

3,
√

10
3 ,

√
17
5 )∧ with ϕ0 = 0;

(ii) α′ :
√

1
2 ,

√
3
2 , (
√

3,
√

10
3 ,

√
17
5 )∧.

Observe that α equals α′. Then a straightforward calculation shows that Wα (and hence Wα′) is
2-hyponormal but not 3-hyponormal (and hence, not subnormal). Note that k = 3 and n = 1 in (i)
and k = 2 and n = 2 in (ii).

(c) Note that the second assertion of Theorem 1.3 does not imply that if rank(α0, · · · , αk) = i then
(1.3.2) holds in general. Theorem 1.3 says only that when Wα is ([k+1

2 ] + 1)-hyponormal (n = 1),
i-hyponormality and subnormality coincide, and that when Wα is ([k+1

2 ] + 2)-hyponormal (n > 1),
(i + 1)-hyponormality and subnormality coincide. For example consider the weight sequence

α̂ ≡ (
√

2,
√

3,

√
10
3

,

√
17
5

, 2)∧ with ϕ0 = 0 (here ϕ1 = 0 also).

Since (
√

2,
√

3,
√

10
3 ,

√
17
5 ) ⊂ (

√
2,
√

3,
√

10
3 )∧, we can see that rank(α) = 2. Put

β ≡ 1, (
√

2,
√

3,

√
10
3

,

√
17
5

, 2)∧.

If (1.3.2) held true without assuming (1.3.1), then 2-hyponormality would imply subnormality for
Wβ . However, a straightforward calculation shows that Wβ is 2-hyponormal but not 3-hyponormal
(and hence not subnormal): in fact, detA(n, 2) = 0 for all n ≥ 0 except for n = 2 and det A(2, 2) =
160 > 0, while since

ϕ3 = −α2
3α

2
4(α

2
5 − α2

4)
α2

4 − α2
3

= −102 and ϕ4 =
α2

4(α
2
5 − α2

3)
α2

4 − α2
3

= 34

(so that α6 =
√

ϕ4 − ϕ3
α2

5
=

√
17
2 ), we have that

det A(1, 3) = det




1 2 6 20
2 6 20 68
6 20 68 272
20 68 272 2312


 = −3200 < 0.
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(d) On the other hand, Theorem 1.3 does show that if α ≡ (α0, · · · , αk) is such that rank(α) = i
and Wα̂ is subnormal with associated Berger measure µ, then Wα̂ has an n-step (i + 1)-hyponormal
extension Wxn,··· ,x1,α̂ (n ≥ 2) if and only if 1

tn ∈ L1(µ),

xj+1 =

[
ϕ0

γ
(j)
i−1 − ϕi−1γ

(j)
i−2 − · · · − ϕ1γ

(j)
0

] 1
2

(0 ≤ j ≤ n− 2),

and

xn ≤
[

ϕ0

γ
(n−1)
i−1 − ϕi−1γ

(n−1)
i−2 − · · · − ϕ1γ

(n−1)
0

] 1
2

,

where ϕ0, · · · , ϕi−1 denote the coefficients of recursion in (α0, · · · , α2i−2)∧ and γ
(j)
m (0 ≤ m ≤ i− 1)

are the moments corresponding to the weight sequence (xj , · · · , x1, α0, · · · , αk−j)∧ with γ
(0)
m = γm.

We now observe that the determination of k-hyponormality and subnormality for canonical rank-
one perturbations of recursive shifts falls within the scope of the theory of extensions.

Corollary 1.5. Let α ≡ {αn}∞n=0 = (α0, · · · , αk)∧. If Wα′ is a perturbation of Wα at the j-th
weight then

Wα′ is subnormal ⇐⇒
{

Wα′ is ([k+1
2 ] + 1)-hyponormal (j = 0)

Wα′ is ([k+1
2 ] + 2)-hyponormal (j ≥ 1).

Proof. Observe that if j = 0 then α′ = x, (α1, · · · , αk+1)∧ and if instead j ≥ 1 then α′ =
α0, · · · , αj−1, x, (αj+1, · · · , αj+k+1)∧. Thus the result immediately follows from Theorem 1.3. ¤

2. Extremality of Recursively Generated Shifts

In Corollary 1.5, we showed that if α(x) is a canonical rank-one perturbation of a recursive weight
sequence then subnormality and k-hyponormality for the corresponding shift eventually coincide. In
this section we consider a converse.

Problem 2.1 (Extremality Problem). Let α(x) be a canonical rank-one perturbation of a weight
sequence α. If there exists k ≥ 1 such that (k + 1)-hyponormality and k-hyponormality for the
corresponding shift Wα(x) coincide, does it follow that α(x) is recursively generated ?

In [CF3], the following extremality criterion was established.

Lemma 2.2 (Extremality Criterion)[CF3; Theorem 5.12, Proposition 5.13]. Let α be a
weight sequence and let k ≥ 1.

(i) If Wα is k-extremal (i.e., det A(j, k) = 0 for all j ≥ 0) then Wα is recursive subnormal.
(ii) If Wα is k-hyponormal and if det A(i0, j0) = 0 for some i0 ≥ 0 and some j0 < k then Wα is

recursive subnormal.

In particular, Lemma 2.2 (ii) shows that if Wα is subnormal and if detA(i0, j0) = 0 for some i ≥ 0
and some j ≥ 0 then Wα is recursive subnormal.

We now answer Problem 2.1 affirmatively.
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Theorem 2.3. Let α ≡ {αn}∞n=0 be a weight sequence and let αj(x) be a canonical perturbation of
α in the j-th weight. Write

Hk := {x ∈ R+ : Wαj(x) is k-hyponormal}.
If Hk = Hk+1 for some k ≥ 1, and if x ∈ Hk, then αj(x) is recursively generated, i.e., Wαj(x) is
recursive subnormal.

Proof. Suppose Hk = Hk+1 and let Hk := supx Hk. To avoid triviality we assume αj−1 < x < αj+1.
Case 1 (j = 0): In this case, clearly H2

k is the nonzero root of the equation detA(0, k) = 0
and for x ∈ (0,Hk], Wα0(x) is k-hyponormal. By assumption Hk = Hk+1, so Wα0(Hk+1) is (k + 1)-
hyponormal. The result now follows from Lemma 2.2 (ii).

Case 2 (j ≥ 1): Let Ax(n, k) denote the Hankel matrix corresponding to αj(x). Since Wαj(x) is
(k + 1)-hyponormal for x ∈ Hk, we have that Ax(n, k + 1) ≥ 0 for all n ≥ 0 and all x ∈ Hk. Observe
that if n ≥ j + 1 then

Ax(n, k) = α2
0 · · ·α2

j−1 x2




γ̃n−j−1 . . . γ̃n−j−1+k

...
...

γ̃n−j−1+k . . . γ̃n−j−1+2k


 ,

where γ̃∗ denotes the moments corresponding to the subsequence αj+1, αj+2, · · · . Therefore for
n ≥ j + 1, the positivity of Ax(n, k) is independent of the values of x > 0. This gives

Wαj(x) is k-hyponormal ⇐⇒ Ax(n, k) ≥ 0 for all n ≤ j.

Write

H
(i)
k :=

{
x : detAx(i, k) ≥ 0 and αj−1 < x < αj+1

}
(0 ≤ i ≤ j)

and
H

(i)
k = sup

x
H

(i)
k (0 ≤ i ≤ j).

Since det Ax(i, k) is a polynomial in x we have detA
H

(i)
k

(i, k) = 0. Observe that

j⋂

i=0

H
(i)
k = Hk and max

0≤i≤j
H

(i)
k = Hk.

Since Hk is a closed interval, by [CL2, Theorem 2.11], it follows that Hk ∈ Hk, say Hk = H
(p)
k for

some 0 ≤ p ≤ j. Then detA
H

(p)
k

(p, k) = 0 and W
α(H

(p)
k )

is (k + 1)-hyponormal. Therefore it follows
from Lemma 2.2 (ii) that Wα is recursive subnormal. This completes the proof. ¤

We conclude this section with two corollaries of independent interest.

Corollary 2.4. With the notations in Theorem 2.3, if j ≥ 1 and Hk = Hk+1 for some k, then Hk

is a singleton set.

Proof. By [CL2, Theorem 2.2],

H∞ := {x ∈ R+ : Wαj(x) is subnormal}
is a singleton set. By Theorem 2.3, we have that Hk = H∞. ¤

Corollary 2.5. If Wα is a nonrecursive shift with weight sequence α = {αn}∞n=0 and if α(x) is
a canonical rank-one perturbation of α, then for every k ≥ 1 there always exists a gap between
k-hyponormality and (k + 1)-hyponormality for Wα(x). More concretely, if we let

Hk := {x : Wα(x) is k-hyponormal},
then {Hk}∞k=1 is a strictly decreasing nested sequence of closed intervals in (0,∞) except when the
perturbation occurs in the first weight. In that case, the intervals are of the form (0,Hk].

Proof. Straightforward from Theorem 2.3. ¤
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3. Some Revealing Examples

We now illustrate our results with two examples. Consider α(y, x) :
√

y,
√

x, (
√

a,
√

b,
√

c)∧, where
a < b < c. Without loss of generality, we assume a = 1. Observe that

H2(1,
√

b,
√

c) =

√
bc− b2

1 + bc− 2b
and

(
H2(

√
x, 1,

√
b)

)2

=
x(b− 1)

(x− 1)2 + (b− 1)
:= f(x).

Thus Wα(y,x) is 2-hyponormal if and only if 0 < x ≤ bc−b2

1+bc−2b and 0 < y ≤ f(x). To completely
describe the region R := {(x, y) : Wα(y,x) is 2-hyponormal}, we study the graph of f . Observe that

f ′(x) =
(b− 1)(b− x2)
(b− 2x + x2)2

> 0 and f ′′(x) =
2(b− 1)(2b− 3bx + x3)

(b− 2x + x2)3
.

Note that b − 2x + x2 = (b − 1) + (1 − x)2 > 0 and f ′(
√

b) = 0. To consider the sign of f ′′, we let
g(x) := 2b− 3bx + x3. Then g′(

√
b) = 0, g(0) = 2b > 0, g(1) = −b + 1 < 0, and g′′(x) > 0 (x > 0).

Hence there exists x0 ∈ (0, 1) such that f ′′(x0) = 0, f ′′(x) > 0 on 0 < x < x0, and f ′′(x) < 0 on
x0 < x ≤ 1. We investigate which of the two values x0 or H̃ := H2(1,

√
b,
√

c)2 is bigger. By a
simple calculation, we have

g(H̃) =
(−1 + b)b · g1(b, c)

(1− 2b + bc)3
,

where
g1(b, c) = −(2− 10b + 17b2 − 11b3 + b4 + 3bc− 9b2c + 9b3c− 3b3c2 + b2c3).

For notational convenience we let b := 1 + h, c := 1 + h + k. Then

g1(b, c) = 2h5 + (3h3 + 3h4)k + (−1− 2h− h2)k3.

If h is sufficiently small (i.e., b is sufficiently close to 1), then g1 < 0, i.e., H̃ > x0. If k is sufficiently
small (i.e., b is sufficiently close to c), then g1 > 0, i.e., H̃ < x0. Thus, if H̃ ≤ x0, then f is
concave up on x ≤ H̃. If H̃ > x0, then (x0, f(x0)) is an inflection point. Thus, f is concave up
on 0 < x < x0 and concave down on x0 < x ≤ H̃. Moreover, Wα(y,x) is 2-hyponormal if and only
if (x, y) ∈ {(x, y)|0 ≤ y ≤ f(x), 0 < x ≤ H̃}, and Wα(y,x) is k-hyponormal (k ≥ 3) if and only if
x = H̃ and 0 ≤ y ≤ f(H̃).

Example 3.1 (b = 2, c = 3).
f(x) =

x

1 + (1− x)2
.

The graph of R is given in Figure 1; notice that f is concave up in this case.

Figure 1



10

Example 3.2 (b = 11
10 , c = 10).

f(x) =
x

11− 20x + 10x2
.

The graph of R is given in Figure 2; in this case, f has an inflection point at x0 ≈ 0.85821.

Figure 2
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