EXTENSIONS AND EXTREMALITY OF RECURSIVELY GENERATED WEIGHTED SHIFTS

RAÚL E. CURTO, IL BONG JUNG AND WOO YOUNG LEE AUGUST 18, 2000

ABSTRACT. Given an *n*-step extension $\alpha : x_n, \dots, x_1, (\alpha_0, \dots, \alpha_k)^{\wedge}$ of a recursively generated weight sequence $(0 < \alpha_0 < \dots < \alpha_k)$, and if W_{α} denotes the associated unilateral weighted shift, we prove that

$$W_{\alpha} \text{ is subnormal} \iff \begin{cases} W_{\alpha} \text{ is } ([\frac{k+1}{2}]+1)\text{-hyponormal} & (n=1) \\ W_{\alpha} \text{ is } ([\frac{k+1}{2}]+2)\text{-hyponormal} & (n>1). \end{cases}$$

In particular, the subnormality of an extension of a recursively generated weighted shift is independent of its length if the length is bigger than 1. As a consequence we see that if $\alpha(x)$ is a canonical rankone perturbation of the recursive weight sequence α , then subnormality and k-hyponormality for $W_{\alpha(x)}$ eventually coincide. We then examine a converse - an "extremality" problem: Let $\alpha(x)$ be a canonical rank-one perturbation of a weight sequence α and assume that (k+1)-hyponormality and k-hyponormality for $W_{\alpha(x)}$ coincide. We then show that $\alpha(x)$ is recursively generated, i.e., $W_{\alpha(x)}$ is recursive subnormal.

INTRODUCTION

Let \mathcal{H} be a separable infinite dimensional complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ be the algebra of bounded linear operators on \mathcal{H} . An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be *normal* if $T^*T = TT^*$ and *hyponormal* if $T^*T \geq TT^*$. Given a bounded sequence of positive numbers $\alpha : \alpha_0, \alpha_1, \cdots$ (called *weights*), the (*unilateral*) weighted shift W_{α} associated with α is the operator on $\ell^2(\mathbb{Z}_+)$ defined by $W_{\alpha}e_n := \alpha_n e_{n+1}$ for all $n \geq 0$, where $\{e_n\}_{n=0}^{\infty}$ is the canonical orthonormal basis for $\ell^2(\mathbb{Z}_+)$. It is straightforward to check that W_{α} can never be *normal*, and that W_{α} is *hyponormal* if and only if $\alpha_n \leq \alpha_{n+1}$ for all $n \geq 0$. The Bram-Halmos criterion for subnormality states that an operator T is *subnormal* if and only if

$$\sum_{i,j} (T^i x_j, T^j x_i) \ge 0$$

for all finite collections $x_0, x_1, \dots, x_k \in \mathcal{H}$ ([**Br**],[**Con**, III.1.9]). Using Choleski's algorithm for operator matrices, it is easy to see that this is equivalent to the following positivity test:

(0.1)
$$\begin{pmatrix} I & T^* & \dots & T^{*k} \\ T & T^*T & \dots & T^{*k}T \\ \vdots & \vdots & \ddots & \vdots \\ T^k & T^*T^k & \dots & T^{*k}T^k \end{pmatrix} \ge 0 \qquad (\text{all } k \ge 1).$$

Key words and phrases. Extensions of weighted shifts, recursively generated shifts, k-hyponormality.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47B20, 47B37; Secondary 47-04, 47A57, 15A57.

The work of the first-named author was partially supported by NSF research grants DMS-9401455 and DMS-9800931.

The work of the second-named author was partially supported by KOSEF.

The work of the third-named author was partially supported by the Brain Korea 21 Project.

Condition (0.1) provides a measure of the gap between hyponormality and subnormality, and k-hyponormality has been introduced and studied in an attempt to bridge the gap between subnormality and hyponormality ([At],[Cu1],[Cu2],[CF1], [CF2],[CF3],[CL1],[CMX], [McCP]). In fact, the positivity condition (0.1) for k = 1 is equivalent to the hyponormality of T, while subnormality requires the validity of (0.1) for all k. If we denote by [A, B] := AB - BA the commutator of two operators A and B, and if we define T to be k-hyponormal whenever the $k \times k$ operator matrix

(0.2)
$$M_k(T) := ([T^{*j}, T^i])_{i,j=1}^k$$

is positive, or equivalently, the $(k+1) \times (k+1)$ operator matrix in (0.1) is positive, then the Bram-Halmos criterion can be rephrased as saying that T is subnormal if and only if T is k-hyponormal for every $k \ge 1$ ([**CMX**]).

If W_{α} is the weighted shift with weight sequence $\alpha = \{\alpha_n\}_{n=0}^{\infty}$, then the moments of W_{α} are usually defined by $\beta_0 := 1$, $\beta_{n+1} := \alpha_n \beta_n$ $(n \ge 0)$ [Shi]; however, we reserve this term for the sequence $\gamma_n := \beta_n^2$ $(n \ge 0)$. A criterion for k-hyponormality can be given in terms of moments ([Cu1, Theorem 4]): if we build a $(k+1) \times (k+1)$ Hankel matrix A(n; k) by

(0.3)
$$A(n;k) := \begin{pmatrix} \gamma_n & \gamma_{n+1} & \cdots & \gamma_{n+k} \\ \gamma_{n+1} & \gamma_{n+2} & \cdots & \gamma_{n+k+1} \\ \vdots & \vdots & & \vdots \\ \gamma_{n+k} & \gamma_{n+k+1} & \cdots & \gamma_{n+2k} \end{pmatrix} \quad (n \ge 0),$$

then

(0.4)
$$W_{\alpha}$$
 is k-hyponormal $\iff A(n;k) \ge 0 \quad (n \ge 0)$

In [Sta], J. Stampfli showed that given $\alpha : \sqrt{a}, \sqrt{b}, \sqrt{c}$ with 0 < a < b < c, there always exists a subnormal completion of α , but that for $\alpha : \sqrt{a}, \sqrt{b}, \sqrt{c}, \sqrt{d}$ (a < b < c < d) such a subnormal completion may not exist.

There are instances where k-hyponormality implies subnormality for weighted shifts. For example, in **[CF3]**, it was shown that if $\alpha(x) : \sqrt{x}, (\sqrt{a}, \sqrt{b}, \sqrt{c})^{\wedge}$ (a < b < c) then $W_{\alpha(x)}$ is 2-hyponormal if and only if it is subnormal: more concretely, $W_{\alpha(x)}$ is 2-hyponormal if and only if

$$\sqrt{x} \le H_2(\sqrt{a}, \sqrt{b}, \sqrt{c}) := \sqrt{\frac{ab(c-b)}{(b-a)^2 + b(c-b)}},$$

in which case $W_{\alpha(x)}$ is subnormal. In this paper we extend the above result to weight sequences of the form $\alpha : x_n, \dots, x_1, (\alpha_0, \dots, \alpha_k)^{\wedge}$ with $0 < \alpha_0 < \dots < \alpha_k$. Our main results are as follows.

Extensions of Recursively Generated Weighted Shifts. If $\alpha : x_n, \dots, x_1, (\alpha_0, \dots, \alpha_k)^{\wedge}$ then

$$W_{\alpha} \text{ is subnormal} \iff \begin{cases} W_{\alpha} \text{ is } ([\frac{k+1}{2}]+1)\text{-}hyponormal & (n=1) \\ W_{\alpha} \text{ is } ([\frac{k+1}{2}]+2)\text{-}hyponormal & (n>1). \end{cases}$$

In particular, the above theorem shows that the subnormality of an extension of the recursive shift is independent of its length if the length is bigger than 1.

Canonical Rank–One Perturbations. Let $\alpha \equiv \{\alpha_n\}_{n=0}^{\infty} = (\alpha_0, \dots, \alpha_k)^{\wedge}$. If $W_{\alpha'}$ is a perturbation of W_{α} at the *j*-th weight then

$$W_{\alpha'} \text{ is subnormal} \iff \begin{cases} W_{\alpha'} \text{ is } ([\frac{k+1}{2}]+1)\text{-hyponormal} & (j=0) \\ W_{\alpha'} \text{ is } ([\frac{k+1}{2}]+2)\text{-hyponormal} & (j \ge 1). \end{cases}$$

Extremality Criterion. Let $\alpha(x)$ be a canonical rank-one perturbation of a weight sequence α . If (k+1)-hyponormality and k-hyponormality for $W_{\alpha(x)}$ coincide, then $\alpha(x)$ is recursively generated, i.e., $W_{\alpha(x)}$ is recursive subnormal.

1. EXTENSIONS OF RECURSIVELY GENERATED SHIFTS

C. Berger's characterization of subnormality for unilateral weighted shifts (cf. **[Hal**], **[Con**, III.8.16]) states that W_{α} is subnormal if and only if there exists a Borel probability measure μ supports in $[0, ||W_{\alpha}||^2]$, with $||W_{\alpha}||^2 \in \text{supp } \mu$, such that

$$\gamma_n = \int t^n d\mu(t) \quad \text{for all } n \ge 0.$$

Given an initial segment of weights $\alpha : \alpha_0, \dots \alpha_r$, the sequence $\hat{\alpha} \in \ell^{\infty}(\mathbb{Z}_+)$ such that $\hat{\alpha}_i = \alpha_i$ $(i = 0, \dots, r)$ is said to be *recursively generated* by α if there exist $r \geq 1$ and $\varphi_0, \dots, \varphi_{r-1} \in \mathbb{R}$ such that

$$\gamma_{n+r} = \varphi_0 \gamma_n + \dots + \varphi_{r-1} \gamma_{n+r-1}$$
 for all $n \ge 0$,

where $\gamma_0 := 1$, $\gamma_n := \alpha_0^2 \cdots \alpha_{n-1}^2$ $(n \ge 1)$. In this case the weighted shift $W_{\hat{\alpha}}$ with a weight sequence $\hat{\alpha}$ is said to be *recursively generated* (or simply *recursive*). If

$$g(t) := t^r - \left(\varphi_{r-1}t^{r-1} + \dots + \varphi_0\right)$$

then g has r distinct real roots $0 \leq s_0 < \cdots < s_{r-1}$ ([CF2, Theorem 3.9]). Let

$$V := \begin{pmatrix} 1 & 1 & \dots & 1 \\ s_0 & s_1 & \dots & s_{r-1} \\ \vdots & \vdots & & \vdots \\ s_0^{r-1} & s_1^{r-1} & \dots & s_{r-1}^{r-1} \end{pmatrix}$$

and let

$$\begin{pmatrix} \rho_0 \\ \vdots \\ \rho_{r-1} \end{pmatrix} := V^{-1} \begin{pmatrix} \gamma_0 \\ \vdots \\ \gamma_{r-1} \end{pmatrix}.$$

If $W_{\hat{\alpha}}$ is a recursively generated subnormal shift then the Berger measure of $W_{\hat{\alpha}}$ is of the form

$$\mu := \rho_0 \delta_{s_0} + \dots + \rho_{r-1} \delta_{r-1}.$$

Given an initial segment of weights

$$\alpha: \ \alpha_0, \cdots, \alpha_{2k} \quad (k \ge 0),$$

suppose $\hat{\alpha} \equiv (\alpha_0, \cdots, \alpha_{2k})^{\wedge}$, i.e., $\hat{\alpha}$ is recursively generated by α . Write

$$\mathbf{v}_n := \begin{pmatrix} \gamma_n \\ \vdots \\ \gamma_{n+k} \end{pmatrix} \qquad (0 \le n \le k+1).$$

Then $\{\mathbf{v}_0, \dots, \mathbf{v}_{k+1}\}$ is linearly dependent in \mathbb{R}^{k+1} . Now the *rank* of α is defined by the smallest integer i $(1 \le i \le k+1)$ such that \mathbf{v}_i is a linear combination of $\mathbf{v}_0, \dots, \mathbf{v}_{i-1}$. Since $\{\mathbf{v}_0, \dots, \mathbf{v}_{i-1}\}$ is linearly independent, there exists a unique *i*-tuple $\varphi \equiv (\varphi_0, \dots, \varphi_{i-1}) \in \mathbb{R}^i$ such that $\mathbf{v}_i = \varphi_0 \mathbf{v}_0 + \dots + \varphi_{i-1} \mathbf{v}_{i-1}$, or equivalently,

$$\gamma_j = \varphi_{i-1}\gamma_{j-1} + \dots + \varphi_0\gamma_{j-i} \quad (i \le j \le k+i),$$

which says that $(\alpha_0, \dots, \alpha_{k+i})$ is recursively generated by $(\alpha_0, \dots, \alpha_i)$. In this case, W_{α} is said to be *i*-recursive (cf. [**CF3**, Definition 5.14]).

We begin with:

Lemma 1.1 ([CF2, Propositions 2.3, 2.6, and 2.7]). Let $A, B \in M_n(\mathbb{C}), \tilde{A}, \tilde{B} \in M_{n+1}(\mathbb{C})$ $(n \ge 1)$ be such that

$$\tilde{A} = \begin{pmatrix} A & * \\ * & * \end{pmatrix}$$
 and $\tilde{B} = \begin{pmatrix} * & * \\ * & B \end{pmatrix}$.

Then we have:

- (i) If $A \ge 0$ and if \hat{A} is a flat extension of A (i.e., rank $(\hat{A}) = \operatorname{rank}(A)$) then $\hat{A} \ge 0$;
- (ii) If $A \ge 0$ and $\tilde{A} \ge 0$ then $\det(A) = 0$ implies $\det(\tilde{A}) = 0$;
- (iii) If $B \ge 0$ and $B \ge 0$ then $\det(B) = 0$ implies $\det(B) = 0$.

Lemma 1.2. If $\alpha \equiv (\alpha_0, \cdots, \alpha_k)^{\wedge}$ then

(1.2.1)
$$W_{\alpha} \text{ is subnormal } \iff W_{\alpha} \text{ is } ([\frac{k}{2}]+1)\text{-hyponormal.}$$

In the cases where W_{α} is subnormal and $i := \operatorname{rank}(\alpha)$, we have $\alpha = (\alpha_0, \cdots, \alpha_{2i-2})^{\wedge}$.

Proof. We only need to establish the sufficiency condition in (1.2.1). Let $i := \operatorname{rank}(\alpha)$. Since W_{α} is *i*-recursive, [**CF3**, Proposition 5.15] implies that the subnormality of W_{α} follows after we verify that $A(0, i - 1) \ge 0$ and $A(1, i - 1) \ge 0$. Now observe that $i - 1 \le \lfloor \frac{k}{2} \rfloor + 1$ and

$$A(j, [\frac{k}{2}] + 1) = \begin{pmatrix} A(j, i - 1) & * \\ * & * \end{pmatrix} \quad (j = 0, 1),$$

so the positivity of A(0, i - 1) and A(1, i - 1) is a consequence of the positivity of the $([\frac{k}{2}] + 1)$ hyponormality of W_{α} . For the second assertion, observe that det A(n, i) = 0 for all $n \ge 0$. By assumption $A(n, i + 1) \ge 0$, so by Lemma 1.1 (ii) we have det A(n, i + 1) = 0, which says that $(\alpha_0, \dots, \alpha_{2i-1}) \subset (\alpha_0, \dots, \alpha_{2i-2})^{\wedge}$. By iteration we obtain $(\alpha_0, \dots, \alpha_k) \subset (\alpha_0, \dots, \alpha_{2i-2})^{\wedge}$, and therefore $(\alpha_0, \dots, \alpha_k)^{\wedge} = (\alpha_0, \dots, \alpha_{2i-2})^{\wedge}$. This proves the lemma.

In what follows, and for notational convenience, we shall set $x_{-j} := \alpha_j \ (0 \le j \le k)$.

Theorem 1.3 (Subnormality Criterion). If $\alpha : x_n, \dots, x_1, (\alpha_0, \dots, \alpha_k)^{\wedge}$ then

(1.3.1)
$$W_{\alpha} \text{ is subnormal} \iff \begin{cases} W_{\alpha} \text{ is } ([\frac{k+1}{2}]+1)\text{-hyponormal} & (n=1) \\ W_{\alpha} \text{ is } ([\frac{k+1}{2}]+2)\text{-hyponormal} & (n>1). \end{cases}$$

Furthermore, in the cases where the above equivalence holds, if $\operatorname{rank}(\alpha_0, \cdots, \alpha_k) = i$ then

(1.3.2)
$$W_{\alpha} \text{ is subnormal} \iff \begin{cases} W_{\alpha} \text{ is } i\text{-hyponormal} & (n=1) \\ W_{\alpha} \text{ is } (i+1)\text{-hyponormal} & (n>1). \end{cases}$$

In fact,

$$\begin{cases} x_1 = H_i(x_0, \cdots, x_{2-2i}) \\ x_2 = H_i(x_1, \cdots, x_{3-2i}) \\ \cdots \\ x_{n-1} = H_i(x_{n-2}, \cdots, x_{n-2i}) \\ x_n \le H_i(x_{n-1}, \cdots, x_{n-2i+1}), \end{cases}$$

where H_i is the modulus of *i*-hyponormality (cf.[CF3, Proposition 3.4 and (3.4)]), *i.e.*,

$$H_i(\alpha) := \sup\{x > 0 : W_{x\alpha} \text{ is } i\text{-hyponormal}\}.$$

Therefore, $W_{\alpha} = W_{x_n(x_{n-1}, \cdots, x_{n-2i+1})^{\wedge}}$.

Proof. Consider the $(k + 1) \times (l + 1)$ "Hankel" matrix A(n; k, l) by (cf. [CL1])

$$A(n;k,l) := \begin{pmatrix} \gamma_n & \gamma_{n+1} & \dots & \gamma_{n+l} \\ \gamma_{n+1} & \gamma_{n+2} & \dots & \gamma_{n+1+l} \\ \vdots & \vdots & & \vdots \\ \gamma_{n+k} & \gamma_{n+k+1} & \dots & \gamma_{n+k+l} \end{pmatrix} \quad (n \ge 0)$$

Case 1 $(\alpha : x_1, (\alpha_0, \dots, \alpha_k)^{\wedge})$: Let $\hat{A}(n; k, l)$ and A(n; k, l) denote the Hankel matrices corresponding to the weight sequences $(\alpha_0, \dots, \alpha_k)^{\wedge}$ and α , respectively. Suppose W_{α} is $([\frac{k+1}{2}] + 1)$ -hyponormal. Then by Lemma 1.2, $W_{(\alpha_0, \dots, \alpha_k)^{\wedge}}$ is subnormal. Observe that

$$A(n+1;m,m) = x_1^2 \hat{A}(n;m,m) \quad \text{for all } n \ge 0 \text{ and all } m \ge 0.$$

Thus it suffices to show that $A(0; m, m) \ge 0$ for all $m \ge \lfloor \frac{k+1}{2} \rfloor + 2$. Also observe that if \tilde{B} denotes the $(k-1) \times k$ matrix obtained by eliminating the first row of a $k \times k$ matrix B then

$$\tilde{A}(0;m,m) = x_1^2 \hat{A}(0;m-1,m) \text{ for all } m \ge [\frac{k+1}{2}] + 2.$$

Therefore, for every $m \ge \lfloor \frac{k+1}{2} \rfloor + 2$, A(0; m, m) is a flat extension of $A(0; \lfloor \frac{k+1}{2} \rfloor + 1, \lfloor \frac{k+1}{2} \rfloor + 1)$. This implies $A(0; m, m) \ge 0$ for all $m \ge \lfloor \frac{k+1}{2} \rfloor + 2$ and therefore W_{α} is subnormal.

Case 2 (α : $x_n, \dots, x_1, (\alpha_0, \dots, \alpha_k)^{\wedge}$)): As in Case 1, let $\hat{A}(n; k, l)$ and A(n; k, l) denote the Hankel matrices corresponding to the weight sequences $(\alpha_0, \dots, \alpha_k)^{\wedge}$ and α , respectively. Observe that det $\hat{A}(n; [\frac{k+1}{2}]+1, [\frac{k+1}{2}]+1) = 0$ for all $n \ge 0$. Suppose W_{α} is $([\frac{k+1}{2}]+2)$ -hyponormal. Observe that

$$A(n+1; [\frac{k+1}{2}]+1, [\frac{k+1}{2}]+1) = x_1^2 \cdots x_n^2 \hat{A}(1; [\frac{k+1}{2}]+1, [\frac{k+1}{2}]+1),$$

so that

(1.3.3)
$$\det A(n+1; [\frac{k+1}{2}]+1, [\frac{k+1}{2}]+1) = 0.$$

Also observe that

$$A(n-1; [\frac{k+1}{2}] + 2, [\frac{k+1}{2}] + 2) = \begin{pmatrix} x_2^2 \cdots x_n^2 & * \\ * & A(n+1; [\frac{k+1}{2}] + 1, [\frac{k+1}{2}] + 1 \end{pmatrix}$$

Since W_{α} is $\left(\left[\frac{k+1}{2}\right]+1\right)$ -hyponormal, it follows from Lemma 1.1 (iii) and (1.3.3) that det $A(n-1;\left[\frac{k+1}{2}\right]+1,\left[\frac{k+1}{2}\right]+1\right)=0$. Note that

$$A(n-1; [\frac{k+1}{2}]+1, [\frac{k+1}{2}]+1) = x_1^2 \cdots x_n^2 \begin{pmatrix} \frac{1}{x_1^2} & \hat{\gamma}_0 & \cdots & \hat{\gamma}_{[\frac{k+1}{2}]+1} \\ \hat{\gamma}_0 & \hat{\gamma}_1 & \cdots & \hat{\gamma}_{[\frac{k+1}{2}]+2} \\ \vdots & \vdots & & \vdots \\ \hat{\gamma}_{[\frac{k+1}{2}]+1} & \hat{\gamma}_{[\frac{k+1}{2}]+2} & \cdots & \hat{\gamma}_{2[\frac{k+1}{2}]+2} \end{pmatrix},$$

where $\hat{\gamma}_j$ denotes the moments corresponding to the weight sequence $(\alpha_0, \dots, \alpha_k)^{\wedge}$. Therefore x_1 is determined uniquely by $\{\alpha_0, \dots, \alpha_k\}$ such that $(x_1, \alpha_0, \dots, \alpha_{k-1})^{\wedge} = x_1, (\alpha_0, \dots, \alpha_k)^{\wedge}$: more precisely, if $i := \operatorname{rank}(\alpha)$ and $\varphi_0, \dots, \varphi_{i-1}$ denote the coefficients of recursion in $(\alpha_0, \dots, \alpha_k)^{\wedge}$ then

$$x_1 = H_i[(\alpha_0, \cdots, \alpha_k)^{\wedge}] = \left[\frac{\varphi_0}{\hat{\gamma}_{i-1} - \varphi_{i-1}\hat{\gamma}_{i-2} - \cdots - \varphi_1\hat{\gamma}_0}\right]^{\frac{1}{2}}$$

$$(x_{n-1},\cdots,x_{n-1-k})^{\wedge} = x_{n-1},\cdots,x_1,(\alpha_0,\cdots,\alpha_k)^{\wedge}$$

and $W_{(x_{n-1},\dots,x_{n-1-k})^{\wedge}}$ is subnormal. Therefore, after (n-1) steps, Case 2 reduces to Case 1. This completes the proof of the first assertion. For the second assertion, note that if $\operatorname{rank}(\alpha_0,\dots,\alpha_k) = i$ then

$$\det \hat{A}(n; i, i) = 0.$$

Now applying the above argument with i in place of $\left[\frac{k+1}{2}\right] + 1$ gives that x_1, \dots, x_{n-1} are determined uniquely by $\alpha_0, \dots, \alpha_{2i-2}$ such that $W_{(x_{n-1},\dots,x_{n-2i-1})^{\wedge}}$ is subnormal. Thus the second assertion immediately follows. Finally, observe that the preceding argument also establish the remaining assertions.

Remark 1.4. (a) From Theorem 1.3 we note that the subnormality of an extension of a recursive shift is independent of its length if the length is bigger than 1.

(b) In Theorem 1.3, " $[\frac{k+1}{2}]$ " can not be relaxed to " $[\frac{k}{2}]$ ". For example consider the following weight sequences:

(i)
$$\alpha : \sqrt{\frac{1}{2}}, (\sqrt{\frac{3}{2}}, \sqrt{3}, \sqrt{\frac{10}{3}}, \sqrt{\frac{17}{5}})^{\wedge}$$
 with $\varphi_0 = 0;$
(ii) $\alpha' : \sqrt{\frac{1}{2}}, \sqrt{\frac{3}{2}}, (\sqrt{3}, \sqrt{\frac{10}{3}}, \sqrt{\frac{17}{5}})^{\wedge}.$

Observe that α equals α' . Then a straightforward calculation shows that W_{α} (and hence $W_{\alpha'}$) is 2-hyponormal but not 3-hyponormal (and hence, not subnormal). Note that k = 3 and n = 1 in (i) and k = 2 and n = 2 in (ii).

(c) Note that the second assertion of Theorem 1.3 does *not* imply that if $\operatorname{rank}(\alpha_0, \dots, \alpha_k) = i$ then (1.3.2) holds in general. Theorem 1.3 says only that when W_{α} is $\left(\left\lfloor\frac{k+1}{2}\right\rfloor + 1\right)$ -hyponormal (n = 1), *i*-hyponormality and subnormality coincide, and that when W_{α} is $\left(\left\lfloor\frac{k+1}{2}\right\rfloor + 2\right)$ -hyponormal (n > 1), (i + 1)-hyponormality and subnormality coincide. For example consider the weight sequence

$$\hat{\alpha} \equiv (\sqrt{2}, \sqrt{3}, \sqrt{\frac{10}{3}}, \sqrt{\frac{17}{5}}, 2)^{\wedge}$$
 with $\varphi_0 = 0$ (here $\varphi_1 = 0$ also)

Since $(\sqrt{2}, \sqrt{3}, \sqrt{\frac{10}{3}}, \sqrt{\frac{17}{5}}) \subset (\sqrt{2}, \sqrt{3}, \sqrt{\frac{10}{3}})^{\wedge}$, we can see that $\operatorname{rank}(\alpha) = 2$. Put

$$\beta \equiv 1, (\sqrt{2}, \sqrt{3}, \sqrt{\frac{10}{3}}, \sqrt{\frac{17}{5}}, 2)^{\wedge}$$

If (1.3.2) held true without assuming (1.3.1), then 2-hyponormality would imply subnormality for W_{β} . However, a straightforward calculation shows that W_{β} is 2-hyponormal but not 3-hyponormal (and hence not subnormal): in fact, det A(n, 2) = 0 for all $n \ge 0$ except for n = 2 and det A(2, 2) = 160 > 0, while since

$$\varphi_3 = -\frac{\alpha_3^2 \alpha_4^2 (\alpha_5^2 - \alpha_4^2)}{\alpha_4^2 - \alpha_3^2} = -102 \text{ and } \varphi_4 = \frac{\alpha_4^2 (\alpha_5^2 - \alpha_3^2)}{\alpha_4^2 - \alpha_3^2} = 34$$

(so that $\alpha_6 = \sqrt{\varphi_4 - \frac{\varphi_3}{\alpha_5^2}} = \sqrt{\frac{17}{2}}$), we have that

$$\det A(1,3) = \det \begin{pmatrix} 1 & 2 & 6 & 20\\ 2 & 6 & 20 & 68\\ 6 & 20 & 68 & 272\\ 20 & 68 & 272 & 2312 \end{pmatrix} = -3200 < 0.$$

(d) On the other hand, Theorem 1.3 does show that if $\alpha \equiv (\alpha_0, \dots, \alpha_k)$ is such that $\operatorname{rank}(\alpha) = i$ and $W_{\hat{\alpha}}$ is subnormal with associated Berger measure μ , then $W_{\hat{\alpha}}$ has an *n*-step (i+1)-hyponormal extension $W_{x_n,\dots,x_1,\hat{\alpha}}$ $(n \geq 2)$ if and only if $\frac{1}{t^n} \in L^1(\mu)$,

$$x_{j+1} = \left[\frac{\varphi_0}{\gamma_{i-1}^{(j)} - \varphi_{i-1}\gamma_{i-2}^{(j)} - \dots - \varphi_1\gamma_0^{(j)}}\right]^{\frac{1}{2}} \quad (0 \le j \le n-2),$$

and

$$x_n \le \left[\frac{\varphi_0}{\gamma_{i-1}^{(n-1)} - \varphi_{i-1}\gamma_{i-2}^{(n-1)} - \dots - \varphi_1\gamma_0^{(n-1)}}\right]^{\frac{1}{2}},$$

where $\varphi_0, \dots, \varphi_{i-1}$ denote the coefficients of recursion in $(\alpha_0, \dots, \alpha_{2i-2})^{\wedge}$ and $\gamma_m^{(j)}$ $(0 \le m \le i-1)$ are the moments corresponding to the weight sequence $(x_j, \dots, x_1, \alpha_0, \dots, \alpha_{k-j})^{\wedge}$ with $\gamma_m^{(0)} = \gamma_m$.

We now observe that the determination of k-hyponormality and subnormality for canonical rankone perturbations of recursive shifts falls within the scope of the theory of extensions.

Corollary 1.5. Let $\alpha \equiv \{\alpha_n\}_{n=0}^{\infty} = (\alpha_0, \cdots, \alpha_k)^{\wedge}$. If $W_{\alpha'}$ is a perturbation of W_{α} at the *j*-th weight then

$$W_{\alpha'} \text{ is subnormal} \iff \begin{cases} W_{\alpha'} \text{ is } ([\frac{k+1}{2}]+1)\text{-}hyponormal & (j=0) \\ W_{\alpha'} \text{ is } ([\frac{k+1}{2}]+2)\text{-}hyponormal & (j \ge 1). \end{cases}$$

Proof. Observe that if j = 0 then $\alpha' = x, (\alpha_1, \dots, \alpha_{k+1})^{\wedge}$ and if instead $j \ge 1$ then $\alpha' = \alpha_0, \dots, \alpha_{j-1}, x, (\alpha_{j+1}, \dots, \alpha_{j+k+1})^{\wedge}$. Thus the result immediately follows from Theorem 1.3. \Box

2. Extremality of Recursively Generated Shifts

In Corollary 1.5, we showed that if $\alpha(x)$ is a canonical rank-one perturbation of a recursive weight sequence then subnormality and k-hyponormality for the corresponding shift eventually coincide. In this section we consider a converse.

Problem 2.1 (Extremality Problem). Let $\alpha(x)$ be a canonical rank-one perturbation of a weight sequence α . If there exists $k \geq 1$ such that (k + 1)-hyponormality and k-hyponormality for the corresponding shift $W_{\alpha(x)}$ coincide, does it follow that $\alpha(x)$ is recursively generated?

In [CF3], the following extremality criterion was established.

Lemma 2.2 (Extremality Criterion) [CF3; Theorem 5.12, Proposition 5.13]. Let α be a weight sequence and let $k \geq 1$.

- (i) If W_{α} is k-extremal (i.e., det A(j,k) = 0 for all $j \ge 0$) then W_{α} is recursive subnormal.
- (ii) If W_{α} is k-hyponormal and if det $A(i_0, j_0) = 0$ for some $i_0 \ge 0$ and some $j_0 < k$ then W_{α} is recursive subnormal.

In particular, Lemma 2.2 (ii) shows that if W_{α} is subnormal and if det $A(i_0, j_0) = 0$ for some $i \ge 0$ and some $j \ge 0$ then W_{α} is recursive subnormal.

We now answer Problem 2.1 affirmatively.

Theorem 2.3. Let $\alpha \equiv {\alpha_n}_{n=0}^{\infty}$ be a weight sequence and let $\alpha_j(x)$ be a canonical perturbation of α in the *j*-th weight. Write

$$\mathfrak{H}_k := \{ x \in \mathbb{R}^+ : W_{\alpha_i(x)} \text{ is } k \text{-hyponormal} \}.$$

If $\mathfrak{H}_k = \mathfrak{H}_{k+1}$ for some $k \ge 1$, and if $x \in \mathfrak{H}_k$, then $\alpha_j(x)$ is recursively generated, i.e., $W_{\alpha_j(x)}$ is recursive subnormal.

Proof. Suppose $\mathfrak{H}_k = \mathfrak{H}_{k+1}$ and let $H_k := \sup_x \mathfrak{H}_k$. To avoid triviality we assume $\alpha_{j-1} < x < \alpha_{j+1}$.

Case 1 (j = 0): In this case, clearly H_k^2 is the nonzero root of the equation detA(0, k) = 0and for $x \in (0, H_k]$, $W_{\alpha_0(x)}$ is k-hyponormal. By assumption $H_k = H_{k+1}$, so $W_{\alpha_0(H_{k+1})}$ is (k + 1)hyponormal. The result now follows from Lemma 2.2 (ii).

Case 2 $(j \ge 1)$: Let $A_x(n,k)$ denote the Hankel matrix corresponding to $\alpha_j(x)$. Since $W_{\alpha_j(x)}$ is (k+1)-hyponormal for $x \in \mathfrak{H}_k$, we have that $A_x(n,k+1) \ge 0$ for all $n \ge 0$ and all $x \in \mathfrak{H}_k$. Observe that if $n \ge j+1$ then

$$A_x(n,k) = \alpha_0^2 \cdots \alpha_{j-1}^2 x^2 \begin{pmatrix} \tilde{\gamma}_{n-j-1} & \cdots & \tilde{\gamma}_{n-j-1+k} \\ \vdots & & \vdots \\ \tilde{\gamma}_{n-j-1+k} & \cdots & \tilde{\gamma}_{n-j-1+2k} \end{pmatrix}$$

where $\tilde{\gamma}_*$ denotes the moments corresponding to the subsequence $\alpha_{j+1}, \alpha_{j+2}, \cdots$. Therefore for $n \ge j+1$, the positivity of $A_x(n,k)$ is independent of the values of x > 0. This gives

$$W_{\alpha_i(x)}$$
 is k-hyponormal $\iff A_x(n,k) \ge 0$ for all $n \le j$.

Write

$$\mathfrak{H}_k^{(i)} := \left\{ x : \det A_x(i,k) \ge 0 \text{ and } \alpha_{j-1} < x < \alpha_{j+1} \right\} \quad (0 \le i \le j)$$

and

$$H_k^{(i)} = \sup_{x} \mathfrak{H}_k^{(i)} \quad (0 \le i \le j).$$

Since det $A_x(i,k)$ is a polynomial in x we have det $A_{H_i^{(i)}}(i,k) = 0$. Observe that

$$\bigcap_{i=0}^{j} \mathfrak{H}_{k}^{(i)} = \mathfrak{H}_{k} \quad \text{and} \quad \max_{0 \le i \le j} H_{k}^{(i)} = H_{k}$$

Since \mathfrak{H}_k is a closed interval, by [**CL2**, Theorem 2.11], it follows that $H_k \in \mathfrak{H}_k$, say $H_k = H_k^{(p)}$ for some $0 \leq p \leq j$. Then $\det_{H_k^{(p)}}(p,k) = 0$ and $W_{\alpha(H_k^{(p)})}$ is (k+1)-hyponormal. Therefore it follows from Lemma 2.2 (ii) that W_{α} is recursive subnormal. This completes the proof. \Box

We conclude this section with two corollaries of independent interest.

Corollary 2.4. With the notations in Theorem 2.3, if $j \ge 1$ and $\mathfrak{H}_k = \mathfrak{H}_{k+1}$ for some k, then \mathfrak{H}_k is a singleton set.

Proof. By [CL2, Theorem 2.2],

$$\mathfrak{H}_{\infty} := \{ x \in \mathbb{R}^+ : W_{\alpha_i(x)} \text{ is subnormal} \}$$

is a singleton set. By Theorem 2.3, we have that $\mathfrak{H}_k = \mathfrak{H}_{\infty}$.

Corollary 2.5. If W_{α} is a nonrecursive shift with weight sequence $\alpha = \{\alpha_n\}_{n=0}^{\infty}$ and if $\alpha(x)$ is a canonical rank-one perturbation of α , then for every $k \geq 1$ there always exists a gap between k-hyponormality and (k+1)-hyponormality for $W_{\alpha(x)}$. More concretely, if we let

$$\mathfrak{H}_k := \{ x : W_{\alpha(x)} \text{ is } k \text{-hyponormal} \},\$$

then $\{\mathfrak{H}_k\}_{k=1}^{\infty}$ is a strictly decreasing nested sequence of closed intervals in $(0,\infty)$ except when the perturbation occurs in the first weight. In that case, the intervals are of the form $(0, H_k]$.

Proof. Straightforward from Theorem 2.3.

8

3. Some Revealing Examples

We now illustrate our results with two examples. Consider $\alpha(y, x) : \sqrt{y}, \sqrt{x}, (\sqrt{a}, \sqrt{b}, \sqrt{c})^{\wedge}$, where a < b < c. Without loss of generality, we assume a = 1. Observe that

$$H_2(1,\sqrt{b},\sqrt{c}) = \sqrt{\frac{bc-b^2}{1+bc-2b}}$$
 and $\left(H_2(\sqrt{x},1,\sqrt{b})\right)^2 = \frac{x(b-1)}{(x-1)^2+(b-1)} := f(x).$

Thus $W_{\alpha(y,x)}$ is 2-hyponormal if and only if $0 < x \leq \frac{bc-b^2}{1+bc-2b}$ and $0 < y \leq f(x)$. To completely describe the region $\mathcal{R} := \{(x, y) : W_{\alpha(y,x)} \text{ is 2-hyponormal}\}$, we study the graph of f. Observe that

$$f'(x) = \frac{(b-1)(b-x^2)}{(b-2x+x^2)^2} > 0 \quad \text{and} \quad f''(x) = \frac{2(b-1)(2b-3bx+x^3)}{(b-2x+x^2)^3}.$$

Note that $b - 2x + x^2 = (b - 1) + (1 - x)^2 > 0$ and $f'(\sqrt{b}) = 0$. To consider the sign of f'', we let $g(x) := 2b - 3bx + x^3$. Then $g'(\sqrt{b}) = 0$, g(0) = 2b > 0, g(1) = -b + 1 < 0, and g''(x) > 0 (x > 0). Hence there exists $x_0 \in (0, 1)$ such that $f''(x_0) = 0$, f''(x) > 0 on $0 < x < x_0$, and f''(x) < 0 on $x_0 < x \le 1$. We investigate which of the two values x_0 or $\widetilde{H} := H_2(1, \sqrt{b}, \sqrt{c})^2$ is bigger. By a simple calculation, we have

$$g(\tilde{H}) = \frac{(-1+b)b \cdot g_1(b,c)}{(1-2b+bc)^3},$$

where

$$g_1(b,c) = -(2 - 10b + 17b^2 - 11b^3 + b^4 + 3bc - 9b^2c + 9b^3c - 3b^3c^2 + b^2c^3).$$

For notational convenience we let b := 1 + h, c := 1 + h + k. Then

$$g_1(b,c) = 2h^5 + (3h^3 + 3h^4)k + (-1 - 2h - h^2)k^3.$$

If h is sufficiently small (i.e., b is sufficiently close to 1), then $g_1 < 0$, i.e., $\widetilde{H} > x_0$. If k is sufficiently small (i.e., b is sufficiently close to c), then $g_1 > 0$, i.e., $\widetilde{H} < x_0$. Thus, if $\widetilde{H} \le x_0$, then f is concave up on $x \le \widetilde{H}$. If $\widetilde{H} > x_0$, then $(x_0, f(x_0))$ is an inflection point. Thus, f is concave up on $0 < x < x_0$ and concave down on $x_0 < x \le \widetilde{H}$. Moreover, $W_{\alpha(y,x)}$ is 2-hyponormal if and only if $(x, y) \in \{(x, y) | 0 \le y \le f(x), 0 < x \le \widetilde{H}\}$, and $W_{\alpha(y,x)}$ is k-hyponormal $(k \ge 3)$ if and only if $x = \widetilde{H}$ and $0 \le y \le f(\widetilde{H})$.

Example 3.1 (b = 2, c = 3).

$$f(x) = \frac{x}{1 + (1 - x)^2}$$

The graph of \mathcal{R} is given in Figure 1; notice that f is concave up in this case.

Example 3.2 ($b = \frac{11}{10}, c = 10$).

$$f(x) = \frac{x}{11 - 20x + 10x^2}$$

The graph of \mathcal{R} is given in Figure 2; in this case, f has an inflection point at $x_0 \approx 0.85821$.

Figure 2

Acknowledgement. This paper was written while the second- and/or the third-named authors visited the Department of Mathematics at The University of Iowa during the winter breaks of 1998 and 1999, and the summer break of 1999; they wish to thank the faculty members in that unit for their warm hospitality.

References

- [At] A. Athavale, On joint hyponormality of operators, Proc. Amer. Math. Soc. 103 (1988), 417–423.
- [Br] J. Bram, Subnormal operators, Duke Math. J. 22 (1955), 75–94.
- [Con] J.B. Conway, Subnormal Operators, Research Notes in Mathematics, vol. 51, Pitman Publ. Co., London, 1981.

[Cu1] R.E. Curto, Quadratically hyponormal weighted shifts, Int. Eq. Op. Th. 13 (1990), 49–66.

- [Cu2] _____, Joint hyponormality: A bridge between hyponormality and subnormality, Operator Theory: Operator Algebras and Applications (Durham, NH, 1988) (W.B. Arveson and R.G. Douglas, eds.), Proc. Sympos. Pure Math., vol. 51, part II, American Mathematical Society, Providence, (1990), Part 11, 69–91.
- [CF1] R.E. Curto and L.A. Fialkow, Recursiveness, positivity, and truncated moment problems, Houston J. Math. 17 (1991), 603–635.
- [CF2] _____, Recursively generated weighted shifts and the subnormal completion problem, Int. Eq. Op. Th. 17 (1993), 202–246.
- [CF3] _____, Recursively generated weighted shifts and the subnormal completion problem, II, Int. Eq. Op. Th. **18** (1994), 369–426.
- [CL1] R.E. Curto and W.Y. Lee, Joint hyponormality of Toeplitz pairs, Memoirs Amer. Math. Soc. (to appear).
 [CL2] , Flatness, perturbations and completions of weighted shifts (preprint 1999).
- [CMX] R.E. Curto, P.S. Muhly and J. Xia, Hyponormal pairs of commuting operators, Contributions to Operator Theory and Its Applications (Mesa, AZ, 1987) (I. Gohberg, J.W. Helton and L. Rodman, eds.), Operator Theory: Advances and Applications, vol. 35, Birkhäuser, Basel–Boston, (1988), 1–22.
- [Hal] P.R. Halmos, A Hilbert Space Problem Book, 2nd ed., Springer, New York, 1982.
- [McCP] S. McCullough and V. Paulsen, A note on joint hyponormality, Proc. Amer. Math. Soc. 107 (1989), 187–195.
- [Shi] A. Shields, Weighted shift operators and analytic function theory, Math. Surveys 13 (1974), 49–128.
- [Sta] J. Stampfli, Which weighted shifts are subnormal, Pacific J. Math. 17 (1966), 367–379.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOWA, IOWA CITY, IA 52242 E-mail address: curto@math.uiowa.edu

DEPARTMENT OF MATHEMATICS, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 702-701 *E-mail address*: ibjung@bh.kyungpook.ac.kr

DEPARTMENT OF MATHEMATICS, SUNGKYUNKWAN UNIVERSITY, SUWON 440-746, KOREA *E-mail address*: wylee@yurim.skku.ac.kr