SUBNORMALITY AND 2-HYPONORMALITY
FOR TOEPLITZ OPERATORS
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In this article we provide an example of a Toeplitz operator which is 2-hyponormal but not
subnormal, and we consider 2-hyponormal Toeplitz operators with finite rank self-commutators.

The present article concerns the gap between subnormality and 2-hyponormality for
Toeplitz operators. We begin with a brief survey of research related to P.R. Halmos’s
Problem 5 (cf. [Hal],[Ha2]):

(Prob 5) Is every subnormal Toeplitz operator either normal or analytic ?

As we know, (Prob 5) was answered in the negative by C. Cowen and J. Long [CoLl.
Directly connected with it is the following problem:

(0.1) Which Toeplitz operators are subnormal ?

Let H and KC be complex Hilbert spaces, let L(H, ) be the set of bounded linear operators
from H to K and write L(H) := L(H,H). An operator T' € L(H) is said to be normal if
T*T = TT*, hyponormal if T*T > TT*, and subnormal if 7' = N|y, where N is normal
on some Hilbert space X O H. If T is subnormal then T is also hyponormal. Recall
that the Hilbert space L?(T) has a canonical orthonormal basis given by the trigonometric
functions e, (z) = 2", for all n € Z, and that the Hardy space H?(T) is the closed linear
span of {e, : n =0,1,---}. An element f € L?(T) is said to be analytic if f € H?(T),
and co-analytic if f € L?(T) & H?(T). If P denotes the orthogonal projection from L?(T)
to H?(T), then for every ¢ € L°(T) the operators T, and H, on H*(T) defined by

T,g:= P(pg) and Hy(g):=(—P)(eg) (g€ H*(T))
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are called the Toeplitz operator and the Hankel operator, respectively, with symbol .

(Prob 5) has been answered in the affirmative for trigonometric Toeplitz operators
[ItW], and for quasinormal Toeplitz operators [AIW]. In 1976, M. B. Abrahamse [Abr]
gave a general sufficient condition for the answer to (Prob 5) to be affirmative.

Theorem 1 ([Abr]). If

(i) T, is hyponormal;
(ii) ¢ or @ is of bounded type (i.e., ¢ or ¢ is a quotient of two analytic functions);
(iii) ker[T,T,] is invariant for T,

then Ty, is normal or analytic.

Since ker [T, T'] is invariant for every subnormal operator 7', Theorem 1 answers (Prob
5) affirmatively when ¢ or ¢ is of bounded type. Also, in [Abr|, Abrahamse proposed the
following question, as a strategy to answer (Prob 5):

(Abr) Is the Bergman shift unitarily equivalent to a Toeplitz operator ?

To study this question, recall that given a bounded sequence of positive numbers « :
ag,aq,- -+ (called weights), the (unilateral) weighted shift W, associated with « is the
operator on (?(Z,) defined by Wye, := ape,y1 for all n > 0, where {e,}5°, is the
canonical orthonormal basis for ¢2. It is straightforward to check that W, can never be

normal, and that W, is hyponormal if and only if a,, < a1 for all n > 0. The Bergman

shift is a weighted shift W, with weights a := {1 /nLH} ; it is well known that the
=1

Bergman shift is subnormal. In 1983, S. Sun [Sun] showed that if a Toeplitz operator T,

is unitarily equivalent to a hyponormal weighted shift W, with weight sequence «, then «

must be of the form

(1.1) a={1-g T}

for some 3 (0 < < 1), thus answering (Abr) in the negative. Cowen and Long [CoL]
showed that a unilateral weighted shift with weight sequence of the form (1.1) must be
subnormal (see also [Fa]). Consequently, we have:

Theorem 2 ([Sun], [Cow2]). Every hyponormal Toeplitz operator which is unitarily equiv-
alent to a weighted shift must be subnormal.

Finally, in 1984 Cowen and Long [CoL] constructed a symbol ¢ for which T, is uni-
tarily equivalent to a weighted shift with weight sequence (1.1). This helped answer (Prob
5) in the negative.

Theorem 3 ([CoL],[Cow2]). Let0 < o < 1 and let ¢ be a conformal map of the unit disk
onto the interior of the ellipse with vertices +£(1+«)i and passing through +(1—«). If p =
(1—a?)"Y( + a), then T, is a weighted shift with weight sequence cv, = (1 — a?nt2)=3
Therefore, T, is subnormal but neither normal nor analytic. In particular, ¢ is not of
bounded type.



On the other hand, the Bram—-Halmos criterion for subnormality states that an oper-
ator T' is subnormal if and only if

> (T'z;, Ti2;) >0

2]
for all finite collections xg,x1,-- ,xx € H ([Bral,[Con, I1.1.9]). It is easy to see that this
is equivalent to the following positivity test:
ror ... T
T T ... T*T
(3.1) . T 20 @k,
Tk T*TF ... T*kTk

Condition (3.1) provides a measure of the gap between hyponormality and subnormality. In
fact, the positivity condition (3.1) for £ = 1 is equivalent to the hyponormality of 7', while
subnormality requires the validity of (3.1) for all k. If we denote by [A, B] := AB— BA the
commutator of two operators A and B, and if we define T' to be k—hyponormal whenever
the k x k operator matrix

(3.2) M(T) = (T, T, _,
is positive, or equivalently, the (k + 1) x (k + 1) operator matrix in (3.1) is positive (via
the operator version of Choleski’s Algorithm), then the Bram—Halmos criterion can be
rephrased as saying that T is subnormal if and only if T" is k~hyponormal for every k > 1
([CMX]). It is then natural to try to understand the gap between k—hyponormality and

subnormality for Toeplitz operators. In [CuLl] and [CuL3], as a first inquiry in this line
of thought the following question was raised.

Question A. Is every 2-hyponormal Toeplitz operator subnormal ¢
In [Culil], the following was shown: FEwvery trigonometric Toeplitz operator whose

square 1 hyponormal must be normal or analytic. Hence, in particular, every 2-hyponormal
trigonometric Toeplitz operator is subnormal. We can extend this result.

Theorem 4 ([CuL3, Corollary 6]). If T, is 2-hyponormal and if ¢ or ¢ is of bounded
type then T, is normal or analytic, so that in particular T, is subnormal.

Proof. 1t is known (cf. [Cul2]) that if T € L£(H) is 2-hyponormal then

(4.1) T (ker [T*,T]) C ker [T*,T].

Thus the result follows at once from Theorem 1. 0
We now answer Question A in the negative: there is a gap between 2-hyponormality

and subnormality for Toeplitz operators. We first establish a theorem which provides an
example of a non-weighted shift which is 2-hyponormal but not subnormal.



Theorem 5. For 0 < o < 1, let T' = Wy be the weighted shift with weight sequence
B ={Bninto with

2

n
571 = Z 052J
§=0

If Sy =T+ \XT* (A€ C), then

(i) S\ is hyponormal if and only if |A| < 1.
(ii) Sy is subnormal if and only if X = 0 or |\| = ¥ for some k =0,1,2,---
(iii) Sx is 2-hyponormal if and only if |A\| =1 or || < a.

Proof. The statements (i) and (ii) are known from [Cowl, Theorem 2.3]. Thus it suffices
to focus on the assertion (iii). Since T + AT* is unitarily equivalent to e’z (T + |\ T*)
with |A| = Ae™% (cf. [Cowl, Lemma 2.1]), it follows that T + A T* is 2-hyponormal if and
only if T+ |\| T* is 2-hyponormal. Thus we may assume A > 0. If A = 0,1, then evidently
S is 2-hyponormal because T is subnormal (cf. [CoL]). Thus, in view of (i), we assume
0 < A < 1. A straightforward calculation shows that

_ (155,8,] [832,8,]
My(Sy) = <[5§,S§] [522,5%)

(5.1) =:(1-\?) (1’34* g)

A =[T*T]
(5.2) B =[T*2T]+ \[T*T?
C =QQ+N)T2 T+ A([T3,T) + [T*, T3 + T[T, T)T* + T[T*,T|T) .

By (3.2), Sy is 2-hyponormal if and only if M5(Sy) > 0. Recall now Smul’jan’s Theorem
([Smu], [CuF, Proposition 2.2]), which states that if

Hy

Hy )’

(5.3) M := <;34* 2) : (Z;) —

if A>0,andif B= A2V for some V : Hy — H; & N(A), then M > 0 if and only if
C > V*V. Now apply this result to (5.1). We first argue that in (5.2),

(5.4) B := [T T]+ \[T*T% = (1+ a*) [T*,T) (%T +T%).

To see this, observe that [T, T?] and [T*,T]T are both unilateral weighted shifts, so it
suffices to check the (n + 1, n)—entries:

([T*,T2]6n, €n+1) — 5n( T2L+1 _ 2_1) _ 5n(a2n+2 +a2n)



and
([T*7T]T€n7 6n+1) = Bn( ,,21_;[_1 - ﬁi) = ﬁna2n+27

which implies that

A", T?en, ent1) = A Bn (0?2 + a2")

1 2n-+2
= ABn(1+ E)a +

1
= (A1 + ?)[T*,T]Ten, €nt1),

giving A[T*,T?% = (1 4+ o) % [T*,T|T, and similarly [T*2,T] = (1 + o?)[T*, T|T*, which
proves (5.4). Since, in (5.1), A > 0 and N(A) = {0}, it follows from (5.4) that we may
take

)
V= (1+a)[T* T2 (ET +T).

Then a straightforward calculation shows that

C—V*V=0+N)T2T2 + (T3, T + [T, T% + T*[T*, T\T* + T[T*,T|T)

(e (T D) [T T) (T 4 T)
= (1+A))[T*2, 77 — (A +a?)? (NT*[T*, T|T + *T[T*, T|T*) + A (Q + Q)
b a4 Y Y )

where

Q:=[T"T% - (o> +1+ é) T[T* T|T.

Observe that both [T*, T3] and T[T*,T|T are unilateral weighted shifts of multiplicity 2.
Thus to determine @, it suffices to check the (n + 2, n)—entries. Now

1
(Qena 671—1—2) = ([T*,T?’]Gn, en—|—2) - (OCZ + 1+ ?)(T[T*; T]T6n7 €n+2)

1 2

= 5nﬁn+1(ﬁ121+2 - 72L—1) - (CL/2 +1+ )ﬁnﬁn—l—l( n+1 ﬁTQL)

2

o

= BpfBng1 [ @®TH+ a2 T2 L0 — (02 + 1+ 1 o2nt2
+ e

=0,

which implies () = 0. Therefore,

1 2
C—V*V=»1+\)[T21T? - (1 + —2) (NT*[T*, T)T + *T[T*, T|T") .
(0%



Observe that [T*2,T?], T*[T*, T|T, and T[T*,T]T* are all diagonal. Thus to determine
C — V*V, it suffices to check the (n,n)-entries. Now

((C’ —V*V)en, en)

= (1 4+ X)([T*,T?en, en) — (1 + é) (N(T*[T*, T Ten, en) + o (T[T*, T|T en, €,))

2
= (14+X*)(B2,.62 — ,21157%2)—<1 + %) (NBa(Baa — Ba) + 821 (Ba_y — B s))

n—1 n
_ (1 + )\2) (QZn—2 + a2n) Z a2j + (a2n + a2n+2) ZQZj
j=1 §=0

1 2 n n—1
_ (1 + _2> )\2062n+2 § :a2j + OV/Z,L062n—2 Z OéZ]
@ 7=0 7=0

= (14 a*)(a? = A\t 2
= L= 2 g2y
- L )oz;l =) ([T, Ten, en)27

which implies
(1+0a2)(a® = 2?)

C—-V*V = " [T*, T)?.
Therefore C' > V*V if and only if 0 < A < «a, and hence S) is 2-hyponormal if and only if
0 < A < a. This completes the proof. O

In the following theorem, the proofs of the statements (i) and (ii) are given in [Cowl,
Theorem 2.4].

Theorem 6. Let 0 < a < 1 and let ¢ be the conformal map of the unit disk onto the
interior of the ellipse with vertices (14 )i and passing through +(1—«). Let o = v+ )
and let T, be the corresponding Toeplitz operator on H?. Then

(i) Ty, is hyponormal if and only if X is in the closed unit disk |\| < 1.

(ii) T, is subnormal if and only if X = o or X is in the circle |\ — 0‘1(_1;20,21) = O{i%;ﬁ?
fork=0,1,2---.
(iii) T, is 2-hyponormal if and only if X is in the unit circle |\| = 1 or in the closed

disk |\ — | <

o
— 1+a?-

Proof. Tt was shown in [CoL] that T, ,,; is unitarily equivalent to (1 — a2)2T, where T is
the weighted shift in Theorem 5. Thus Ty, is unitarily equivalent to (1 — a?)2 (T — oT™),



so T, is unitarily equivalent to

A—«Q

(1= a®)F (1= Xa)(T +

T*) (cf. [Cowl, Theorem 2.4)),

applying Theorem 5 with 1/\—_)\aa in place of A\. Now, for k =0,1,2,---,

A\ —
Cl<af <= A —af < a1 - Aaf?
1-)a
) a(l Oz%) a2_a2k
1 — 2k kl_ 2
o )| _ ok )
1 — o2k+2 1 — 2k+2
If k=0 then | 252 | <1 e= A/ <1 IEk =1 then | 252 A | <

This completes the proof.

A moment’s reflection reveals that the circles in Theorem 6 (ii) form a nested sequence
in the sense of their convex hulls.
Corollary 7. In Theorem 6, if A lies in the open annulus between the two circles

a(l —at)
1—ab

a?(1—a?)
1—ab

a
1+a2

and ‘)\—

o«
 1+4a?
then the corresponding Toeplitz operator T, is 2-hyponormal but not subnormal.

Now we would like to pose the following conjecture.

Conjecture A. In Theorem 6, we have:

(i) Ty, is quadratically hyponormal if and only if T, is 2-hyponormal;

(ii) Ty, is k-hyponormal if and only if X is in the circle |\ — 0‘1(1;20;252) _ o %23052) for
j=0,---,k—2 orin the closed disk |\ — O‘(lzfigkkil))‘ < kll(;2ka

In a recent preprint, C. Gu [Gu] has announced a proof of part (ii) of Conjecture A,
in the context of extending our results to & > 3. His techniques are different from ours,
and seem to exploit a special case of Smul’jan’s Theorem (see (5.3) above). However, we
have been unable to verify his proof; concretely, we do not follow his beginning argument
in the proof of [Gu, Theorem 3.3], using [Gu, Lemma 2.6].

In spite of Theorem 6, it seems to be interesting to consider the following problem:
Which 2-hyponormal Toeplitz operators are subnormal ?

The first inquiry involves the self-commutator. Subnormal operators with finite rank self-
commutators have been studied by many authors ([Ale], [McCY], [Mor|, [OTT], [Xil],



[Xi2]). In 1975, I. Amemiya, T. Ito and T. Wong [AIW] showed that if T}, is a subnormal
Toeplitz operator with rank—one self-commutator then ¢ is a linear function of a Blaschke
product of degree 1. More generally, B. Morrel [Mor| showed that a pure subnormal
operator with rank-one self-commutator is unitarily equivalent to a linear function of the
unilateral shift. Very recently, in [Culi2], it was shown that every pure 2-hyponormal
operator with rank-one self-commutator is a linear function of the unilateral shift. On
the other hand, J. McCarthy and L. Yang [McCY] have classified all rationally cyclic
subnormal operators with finite rank self-commutators. However it is still open which are
the pure subnormal operators with finite rank self-commutator. Related to this, in [CuL3]
we formulated the following:

Question B. If T, is a 2-hyponormal Toeplitz operator with nonzero finite rank self-
commutator, does it follow that T, is analytic ?

In fact, it remains still open even whether subnormal Toeplitz operators with finite
rank self-commutator are normal. As a strategy to answer to Question B we would like
to pose the following conjecture.

Conjecture B. IfT, is a 2-hyponormal Toeplitz operator with finite rank self-commutator
then
dim (cl Hy(ker [T}, TSD]))L < dim (clHy (ker [T}, T@]))L .

If ker [T, T,] = q H 2 for some inner function ¢, then Conjecture B is true: indeed, if
k is a function in £(p) then

Hy(ker [T, T,)) = Hrp(¢H?) = HgTy(¢H?) C Hy(gH?) = Hy(ker [T}, T,)),
and hence (cl Hg(ker [T, TQD]))l C (cl Hy(ker [T;,Tw]))L, which implies that Conjecture
A is true.
We now have:

Theorem 8. Suppose that Conjecture B is true. If T, is a 2-hyponormal Toeplitz operator
with finite rank self-commutator then T, is normal or analytic.

Proof. If ¢ or p is of bounded type then the result follows at once from Theorem 4 with
no restriction on the self-commutator. Thus we suppose that ¢ and ® both are not of
bounded type. Suppose ¢ is not analytic and T, is a hyponormal operator with finite rank
self-commutator. It suffices to show that T}, is normal. By an argument of [Abr, Lemmas
3 and 4] we have that ker H, = ker Hz = {0}, and ran H, and ran Hg are both dense in
H?. Observe (cf. [Abr, Lemma 1]) that for h € H?,

(8.1) (h, [T, Tplh) = || Hgh|[* — || H,h||*.
Since T, is hyponormal it follows that

(8.2) HRI| < [[Hghl| (b€ H?).



Define an operator S on ran Hg by
S(Hzh) = Hyh.

Then S is well defined and ||S|| < 1 by (8.2), so S has an extension to H? since ran Hy is
dense in H2. In [Cow3, Proof of Theorem 1] it was shown that

(i

(i 1% S is a co-analytic Toephtz operator, say S := T}, with k € H*,

(iil) T; = Hy; o

(iv) k € 5( ), where k = k(Z2).

Since [T}, T,] is of finite rank, we have that ker [T}, T,] has finite co-dimension. Also by
(8.1) we have that

S is a contraction on H?;

[|[Hgh|| = [[Hyh||  for all h € ker [T, T,].

Thus the restriction of Ty to cl Hg(ker [T, T,]) is an isometry. Now put
M := cl Hy(ker [T}, T,]) and N :=clHy(ker [T, T,]).

Since both Hz and H, are one-one and have dense ranges it follows that M + and N+t are
finite-dimensional. If Conjecture B is true then we have

dm M+t <dimN* .

Since TF% | is an isometry, we can see that T, T; = I+ K, where K is a finite rank operator.
Then by Douglas’s Theorem, which states that if T, Ty, — T, is compact then ¢1¢2 = @3,
we have that |k|? = 1, so that T} is an isometry because T} is analytic. Write T}, as the
following 2 x 2 operator matrix:

w4 ) ()~ (%)

where A is an isometry. Since T}, is a contraction, it follows that C' = 0. Also since T}, is
an isometry, we have

rp o (A BY(A" 0 _ (AA*+BB* BD*\ _ (1 0
k=\o D)\ B* D*)— DB* DD* ) —\o 1)’

SO
AA*+ BB* =1
BD* =0
DD* =1.

Since D* : N+ — M+ is an isometry, it follows that dim M+ = dim N+, so that D* is
unitary. Thus we must have that B = 0 and in turn, AA* = 1. This forces A to be unitary,
so that T}, is unitary. Therefore k is a constant of modulus 1, and hence so is k. But since
k € £(y), it follows that ¢ is of the form ¢ = f + €' f for some f € H*® and 6 € [0,2n),
which implies that T}, is normal. This completes the proof. 0



The core of the proof of Theorem 8 is that if ¢ is not of bounded type for which
T, is a 2-hyponormal Toeplitz operator with nonzero finite rank self-commutator then
T, is analytic. One might expect that this is true with “hyponormal” in place of “ 2-
hyponormal,” but this is not the case. To see this let ¥ be the conformal map in Theorem
3. Then ¢ = 9 + z1) is not of bounded type because, in Theorem 3, 1) + a) is not of
bounded type, so that {0} # ker H, ,,, = ker Hj; = ker H,, and hence ¢ is not of bounded
type by [Abr, Lemma 3]. Observe that ¢ — zp € H* which, by Cowen’s Theorem, says
that T, is hyponormal. But since

[T, T, = (Ty + T2Tp) (T + ToTy) — (T + ToTy)(Ty + T:T)
= TyTy — Ty T 1Ty = Ty(1 — T.T:)T,

it follows that rank [T}, T,] = 1.
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