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In this article we provide an example of a Toeplitz operator which is 2–hyponormal but not
subnormal, and we consider 2-hyponormal Toeplitz operators with finite rank self-commutators.

The present article concerns the gap between subnormality and 2-hyponormality for
Toeplitz operators. We begin with a brief survey of research related to P.R. Halmos’s
Problem 5 (cf. [Ha1],[Ha2]):

(Prob 5) Is every subnormal Toeplitz operator either normal or analytic ?

As we know, (Prob 5) was answered in the negative by C. Cowen and J. Long [CoL].
Directly connected with it is the following problem:

(0.1) Which Toeplitz operators are subnormal ?

Let H and K be complex Hilbert spaces, let L(H,K) be the set of bounded linear operators
from H to K and write L(H) := L(H,H). An operator T ∈ L(H) is said to be normal if
T ∗T = TT ∗, hyponormal if T ∗T ≥ TT ∗, and subnormal if T = N |H, where N is normal
on some Hilbert space K ⊇ H. If T is subnormal then T is also hyponormal. Recall
that the Hilbert space L2(T) has a canonical orthonormal basis given by the trigonometric
functions en(z) = zn, for all n ∈ Z, and that the Hardy space H2(T) is the closed linear
span of {en : n = 0, 1, · · · }. An element f ∈ L2(T) is said to be analytic if f ∈ H2(T),
and co-analytic if f ∈ L2(T)	H2(T). If P denotes the orthogonal projection from L2(T)
to H2(T), then for every ϕ ∈ L∞(T) the operators Tϕ and Hϕ on H2(T) defined by

Tϕg := P (ϕg) and Hϕ(g) := (I − P )(ϕg) (g ∈ H2(T))
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are called the Toeplitz operator and the Hankel operator, respectively, with symbol ϕ.
(Prob 5) has been answered in the affirmative for trigonometric Toeplitz operators

[ItW], and for quasinormal Toeplitz operators [AIW]. In 1976, M. B. Abrahamse [Abr]
gave a general sufficient condition for the answer to (Prob 5) to be affirmative.

Theorem 1 ([Abr]). If

(i) Tϕ is hyponormal;
(ii) ϕ or ϕ̄ is of bounded type (i.e., ϕ or ϕ̄ is a quotient of two analytic functions);
(iii) ker [T ∗ϕ, Tϕ] is invariant for Tϕ,

then Tϕ is normal or analytic.

Since ker [T ∗, T ] is invariant for every subnormal operator T , Theorem 1 answers (Prob
5) affirmatively when ϕ or ϕ̄ is of bounded type. Also, in [Abr], Abrahamse proposed the
following question, as a strategy to answer (Prob 5):

(Abr) Is the Bergman shift unitarily equivalent to a Toeplitz operator ?

To study this question, recall that given a bounded sequence of positive numbers α :
α0, α1, · · · (called weights), the (unilateral) weighted shift Wα associated with α is the
operator on `2(Z+) defined by Wαen := αnen+1 for all n ≥ 0, where {en}∞n=0 is the
canonical orthonormal basis for `2. It is straightforward to check that Wα can never be
normal, and that Wα is hyponormal if and only if αn ≤ αn+1 for all n ≥ 0. The Bergman

shift is a weighted shift Wα with weights α :=
{√

n
n+1

}∞
n=1

; it is well known that the

Bergman shift is subnormal. In 1983, S. Sun [Sun] showed that if a Toeplitz operator Tϕ
is unitarily equivalent to a hyponormal weighted shift Wα with weight sequence α, then α
must be of the form

(1.1) α =
{

(1− β2n+2)
1
2 ||Tϕ||

}∞
n=0

for some β (0 < β < 1), thus answering (Abr) in the negative. Cowen and Long [CoL]
showed that a unilateral weighted shift with weight sequence of the form (1.1) must be
subnormal (see also [Fa]). Consequently, we have:

Theorem 2 ([Sun], [Cow2]). Every hyponormal Toeplitz operator which is unitarily equiv-
alent to a weighted shift must be subnormal.

Finally, in 1984 Cowen and Long [CoL] constructed a symbol ϕ for which Tϕ is uni-
tarily equivalent to a weighted shift with weight sequence (1.1). This helped answer (Prob
5) in the negative.

Theorem 3 ([CoL],[Cow2]). Let 0 < α < 1 and let ψ be a conformal map of the unit disk
onto the interior of the ellipse with vertices ±(1+α)i and passing through ±(1−α). If ϕ =
(1−α2)−1(ψ+αψ̄), then Tϕ is a weighted shift with weight sequence αn = (1−α2n+2)−

1
2 .

Therefore, Tϕ is subnormal but neither normal nor analytic. In particular, ϕ is not of
bounded type.



On the other hand, the Bram–Halmos criterion for subnormality states that an oper-
ator T is subnormal if and only if ∑

i,j

(T ixj , T jxi) ≥ 0

for all finite collections x0, x1, · · · , xk ∈ H ([Bra],[Con, II.1.9]). It is easy to see that this
is equivalent to the following positivity test:

(3.1)


I T ∗ . . . T ∗k

T T ∗T . . . T ∗kT
...

...
. . .

...
T k T ∗T k . . . T ∗kT k

 ≥ 0 (all k ≥ 1).

Condition (3.1) provides a measure of the gap between hyponormality and subnormality. In
fact, the positivity condition (3.1) for k = 1 is equivalent to the hyponormality of T , while
subnormality requires the validity of (3.1) for all k. If we denote by [A,B] := AB−BA the
commutator of two operators A and B, and if we define T to be k–hyponormal whenever
the k × k operator matrix

(3.2) Mk(T ) := ([T ∗j , T i])ki,j=1

is positive, or equivalently, the (k + 1) × (k + 1) operator matrix in (3.1) is positive (via
the operator version of Choleski’s Algorithm), then the Bram–Halmos criterion can be
rephrased as saying that T is subnormal if and only if T is k–hyponormal for every k ≥ 1
([CMX]). It is then natural to try to understand the gap between k–hyponormality and
subnormality for Toeplitz operators. In [CuL1] and [CuL3], as a first inquiry in this line
of thought the following question was raised.

Question A. Is every 2–hyponormal Toeplitz operator subnormal ?

In [CuL1], the following was shown: Every trigonometric Toeplitz operator whose
square is hyponormal must be normal or analytic. Hence, in particular, every 2–hyponormal
trigonometric Toeplitz operator is subnormal. We can extend this result.

Theorem 4 ([CuL3, Corollary 6]). If Tϕ is 2–hyponormal and if ϕ or ϕ̄ is of bounded
type then Tϕ is normal or analytic, so that in particular Tϕ is subnormal.

Proof. It is known (cf. [CuL2]) that if T ∈ L(H) is 2–hyponormal then

(4.1) T
(
ker [T ∗, T ]

)
⊆ ker [T ∗, T ].

Thus the result follows at once from Theorem 1. �

We now answer Question A in the negative: there is a gap between 2–hyponormality
and subnormality for Toeplitz operators. We first establish a theorem which provides an
example of a non-weighted shift which is 2–hyponormal but not subnormal.



Theorem 5. For 0 < α < 1, let T ≡ Wβ be the weighted shift with weight sequence
β = {βn}∞n=0 with

βn :=

 n∑
j=0

α2j

 1
2

.

If Sλ := T + λT ∗ (λ ∈ C), then
(i) Sλ is hyponormal if and only if |λ| ≤ 1.

(ii) Sλ is subnormal if and only if λ = 0 or |λ| = αk for some k = 0, 1, 2, · · · .
(iii) Sλ is 2–hyponormal if and only if |λ| = 1 or |λ| ≤ α.

Proof. The statements (i) and (ii) are known from [Cow1, Theorem 2.3]. Thus it suffices
to focus on the assertion (iii). Since T + λT ∗ is unitarily equivalent to e

i θ
2 (T + |λ|T ∗)

with |λ| = λe−iθ (cf. [Cow1, Lemma 2.1]), it follows that T +λT ∗ is 2–hyponormal if and
only if T + |λ|T ∗ is 2–hyponormal. Thus we may assume λ ≥ 0. If λ = 0, 1, then evidently
Sλ is 2–hyponormal because T is subnormal (cf. [CoL]). Thus, in view of (i), we assume
0 < λ < 1. A straightforward calculation shows that

M2(Sλ) ≡
(

[S∗λ, Sλ] [S∗2λ , Sλ]
[S∗λ, S

2
λ] [S∗2λ , S

2
λ]

)
=: (1− λ2)

(
A B
B∗ C

)
,(5.1)

where

(5.2)


A = [T ∗, T ]
B = [T ∗2, T ] + λ [T ∗, T 2]
C = (1 + λ2)[T ∗2, T 2] + λ

(
[T ∗3, T ] + [T ∗, T 3] + T ∗[T ∗, T ]T ∗ + T [T ∗, T ]T

)
.

By (3.2), Sλ is 2–hyponormal if and only if M2(Sλ) ≥ 0. Recall now Smul’jan’s Theorem
([Smu], [CuF, Proposition 2.2]), which states that if

(5.3) M :=
(
A B
B∗ C

)
:
(
H1
H2

)
−→

(
H1
H2

)
,

if A ≥ 0, and if B = A
1
2V for some V : H2 → H1 	 N(A), then M ≥ 0 if and only if

C ≥ V ∗V . Now apply this result to (5.1). We first argue that in (5.2),

(5.4) B := [T ∗2, T ] + λ [T ∗, T 2] = (1 + α2) [T ∗, T ] (
λ

α2T + T ∗).

To see this, observe that [T ∗, T 2] and [T ∗, T ]T are both unilateral weighted shifts, so it
suffices to check the (n+ 1, n)–entries:

([T ∗, T 2]en, en+1) = βn(β2
n+1 − β2

n−1) = βn(α2n+2 + α2n)



and

([T ∗, T ]Ten, en+1) = βn(β2
n+1 − β2

n) = βnα
2n+2,

which implies that

(λ[T ∗, T 2]en, en+1) = λβn(α2n+2 + α2n)

= λβn(1 +
1
α2 )α2n+2

= (λ(1 +
1
α2 )[T ∗, T ]Ten, en+1),

giving λ[T ∗, T 2] = (1 + α2) λα2 [T ∗, T ]T , and similarly [T ∗2, T ] = (1 + α2)[T ∗, T ]T ∗, which
proves (5.4). Since, in (5.1), A ≥ 0 and N(A) = {0}, it follows from (5.4) that we may
take

V := (1 + α2)[T ∗, T ]
1
2 (

λ

α2T + T ∗).

Then a straightforward calculation shows that

C − V ∗V = (1 + λ2)[T ∗2, T 2] + λ
(
[T ∗3, T ] + [T ∗, T 3] + T ∗[T ∗, T ]T ∗ + T [T ∗, T ]T

)
− (1 + α2)2 (

λ

α2T
∗ + T ) [T ∗, T ] (

λ

α2T + T ∗)

= (1 + λ2)[T ∗2, T 2]− (1 + α2)2

α4

(
λ2T ∗[T ∗, T ]T + α4T [T ∗, T ]T ∗

)
+ λ (Q+Q∗),

where

Q := [T ∗, T 3]− (α2 + 1 +
1
α2 )T [T ∗, T ]T.

Observe that both [T ∗, T 3] and T [T ∗, T ]T are unilateral weighted shifts of multiplicity 2.
Thus to determine Q, it suffices to check the (n+ 2, n)–entries. Now

(Qen, en+2) = ([T ∗, T 3]en, en+2)− (α2 + 1 +
1
α2 )(T [T ∗, T ]Ten, en+2)

= βnβn+1(β2
n+2 − β2

n−1)− (α2 + 1 +
1
α2 )βnβn+1(β2

n+1 − β2
n)

= βnβn+1

(
α2n+4 + α2n+2 + α2n − (α2 + 1 +

1
α2 )α2n+2

)
= 0,

which implies Q ≡ 0. Therefore,

C − V ∗V = (1 + λ2) [T ∗2, T 2]−
(

1 +
1
α2

)2 (
λ2T ∗[T ∗, T ]T + α4T [T ∗, T ]T ∗

)
.



Observe that [T ∗2, T 2], T ∗[T ∗, T ]T , and T [T ∗, T ]T ∗ are all diagonal. Thus to determine
C − V ∗V , it suffices to check the (n, n)–entries. Now(
(C − V ∗V )en, en

)
= (1 + λ2)([T ∗2, T 2]en, en)−

(
1 +

1
α2

)2 (
λ2(T ∗[T ∗, T ]Ten, en) + α4(T [T ∗, T ]T ∗en, en)

)
= (1 + λ2)(β2

n+1β
2
n − β2

n−1β
2
n−2)−

(
1 +

1
α2

)2(
λ2β2

n(β2
n+1 − β2

n) + α4β2
n−1(β2

n−1 − β2
n−2)

)
= (1 + λ2)

(α2n−2 + α2n)
n−1∑
j=1

α2j + (α2n + α2n+2)
n∑
j=0

α2j


−
(

1 +
1
α2

)2
λ2α2n+2

n∑
j=0

α2j + α4α2n−2
n−1∑
j=0

α2j


=
(

1 +
1
α2

)2

α4n+2 − (1 + λ2)α4n−2(1 + α2)

= (1 + α2)(α2 − λ2)α4n−2

=
(1 + α2)(α2 − λ2)

α2 (β2
n − β2

n−1)2

=
(1 + α2)(α2 − λ2)

α2 ([T ∗, T ]en, en)2
,

which implies

C − V ∗V =
(1 + α2)(α2 − λ2)

α2 [T ∗, T ]2.

Therefore C ≥ V ∗V if and only if 0 ≤ λ ≤ α, and hence Sλ is 2–hyponormal if and only if
0 ≤ λ ≤ α. This completes the proof. �

In the following theorem, the proofs of the statements (i) and (ii) are given in [Cow1,
Theorem 2.4].

Theorem 6. Let 0 < α < 1 and let ψ be the conformal map of the unit disk onto the
interior of the ellipse with vertices ±(1+α)i and passing through ±(1−α). Let ϕ = ψ+λψ̄
and let Tϕ be the corresponding Toeplitz operator on H2. Then

(i) Tϕ is hyponormal if and only if λ is in the closed unit disk |λ| ≤ 1.

(ii) Tϕ is subnormal if and only if λ = α or λ is in the circle
∣∣∣λ− α(1−α2k)

1−α2k+2

∣∣∣ = αk(1−α2)
1−α2k+2

for k = 0, 1, 2 · · · .
(iii) Tϕ is 2–hyponormal if and only if λ is in the unit circle |λ| = 1 or in the closed

disk
∣∣∣λ− α

1+α2

∣∣∣ ≤ α
1+α2 .

Proof. It was shown in [CoL] that Tψ+αψ̄ is unitarily equivalent to (1−α2)
3
2T , where T is

the weighted shift in Theorem 5. Thus Tψ is unitarily equivalent to (1− α2)
1
2 (T − αT ∗),



so Tϕ is unitarily equivalent to

(1− α2)
1
2 (1− λα)(T +

λ− α
1− λα

T ∗) (cf. [Cow1, Theorem 2.4]),

applying Theorem 5 with λ−α
1−λα in place of λ. Now, for k = 0, 1, 2, · · · ,∣∣∣∣ λ− α1− λα

∣∣∣∣ ≤ αk ⇐⇒ |λ− α|2 ≤ α2k|1− λα|2

⇐⇒ |λ|2 − α(1− α2k)
1− α2k+2 (λ+ λ̄) +

α2 − α2k

1− α2k+2 ≤ 0

⇐⇒
∣∣∣∣λ− α(1− α2k)

1− α2k+2

∣∣∣∣ ≤ αk(1− α2)
1− α2k+2 .

If k = 0 then
∣∣∣ λ−α1−λα

∣∣∣ ≤ 1 ⇐⇒ |λ| ≤ 1. If k = 1 then
∣∣∣ λ−α1−λα

∣∣∣ ≤ α ⇐⇒ ∣∣∣λ− α
1+α2

∣∣∣ ≤ α
1+α2 .

This completes the proof. �

A moment’s reflection reveals that the circles in Theorem 6 (ii) form a nested sequence
in the sense of their convex hulls.

Corollary 7. In Theorem 6, if λ lies in the open annulus between the two circles∣∣∣∣λ− α

1 + α2

∣∣∣∣ =
α

1 + α2 and
∣∣∣∣λ− α(1− α4)

1− α6

∣∣∣∣ =
α2(1− α2)

1− α6

then the corresponding Toeplitz operator Tϕ is 2–hyponormal but not subnormal.

Now we would like to pose the following conjecture.

Conjecture A. In Theorem 6, we have:
(i) Tϕ is quadratically hyponormal if and only if Tϕ is 2–hyponormal;

(ii) Tϕ is k-hyponormal if and only if λ is in the circle
∣∣∣λ− α(1−α2j)

1−α2j+2

∣∣∣ = αj(1−α2)
1−α2j+2 for

j = 0, · · · , k − 2 or in the closed disk
∣∣∣λ− α(1−α2(k−1))

1−α2k

∣∣∣ ≤ αk−1(1−α2)
1−α2k .

In a recent preprint, C. Gu [Gu] has announced a proof of part (ii) of Conjecture A,
in the context of extending our results to k ≥ 3. His techniques are different from ours,
and seem to exploit a special case of Smul’jan’s Theorem (see (5.3) above). However, we
have been unable to verify his proof; concretely, we do not follow his beginning argument
in the proof of [Gu, Theorem 3.3], using [Gu, Lemma 2.6].

In spite of Theorem 6, it seems to be interesting to consider the following problem:

Which 2–hyponormal Toeplitz operators are subnormal ?

The first inquiry involves the self-commutator. Subnormal operators with finite rank self-
commutators have been studied by many authors ([Ale], [McCY], [Mor], [OTT], [Xi1],



[Xi2]). In 1975, I. Amemiya, T. Ito and T. Wong [AIW] showed that if Tϕ is a subnormal
Toeplitz operator with rank–one self-commutator then ϕ is a linear function of a Blaschke
product of degree 1. More generally, B. Morrel [Mor] showed that a pure subnormal
operator with rank-one self-commutator is unitarily equivalent to a linear function of the
unilateral shift. Very recently, in [CuL2], it was shown that every pure 2–hyponormal
operator with rank-one self-commutator is a linear function of the unilateral shift. On
the other hand, J. McCarthy and L. Yang [McCY] have classified all rationally cyclic
subnormal operators with finite rank self-commutators. However it is still open which are
the pure subnormal operators with finite rank self–commutator. Related to this, in [CuL3]
we formulated the following:

Question B. If Tϕ is a 2–hyponormal Toeplitz operator with nonzero finite rank self-
commutator, does it follow that Tϕ is analytic ?

In fact, it remains still open even whether subnormal Toeplitz operators with finite
rank self–commutator are normal. As a strategy to answer to Question B we would like
to pose the following conjecture.

Conjecture B. If Tϕ is a 2–hyponormal Toeplitz operator with finite rank self-commutator
then

dim
(
clHϕ(ker [T ∗ϕ, Tϕ])

)⊥ ≤ dim
(
clHϕ(ker [T ∗ϕ, Tϕ])

)⊥
.

If ker [T ∗ϕ, Tϕ] = q H2 for some inner function q, then Conjecture B is true: indeed, if
k is a function in E(ϕ) then

Hϕ(ker [T ∗ϕ, Tϕ]) = Hk ϕ(qH2) = HϕTk(qH2) ⊆ Hϕ(qH2) = Hϕ(ker [T ∗ϕ, Tϕ]),

and hence
(
clHϕ(ker [T ∗ϕ, Tϕ])

)⊥ ⊆ (clHϕ(ker [T ∗ϕ, Tϕ])
)⊥, which implies that Conjecture

A is true.

We now have:

Theorem 8. Suppose that Conjecture B is true. If Tϕ is a 2–hyponormal Toeplitz operator
with finite rank self-commutator then Tϕ is normal or analytic.

Proof. If ϕ or ϕ is of bounded type then the result follows at once from Theorem 4 with
no restriction on the self-commutator. Thus we suppose that ϕ and ϕ both are not of
bounded type. Suppose ϕ is not analytic and Tϕ is a hyponormal operator with finite rank
self-commutator. It suffices to show that Tϕ is normal. By an argument of [Abr, Lemmas
3 and 4] we have that kerHϕ = kerHϕ = {0}, and ranHϕ and ranHϕ are both dense in
H2. Observe (cf. [Abr, Lemma 1]) that for h ∈ H2,

(8.1) (h, [T ∗ϕ, Tϕ]h) = ||Hϕh||2 − ||Hϕh||2.

Since Tϕ is hyponormal it follows that

(8.2) ||Hϕh|| ≤ ||Hϕh|| (h ∈ H2).



Define an operator S on ranHϕ̄ by

S(Hϕh) = Hϕh.

Then S is well defined and ||S|| ≤ 1 by (8.2), so S has an extension to H2 since ranHϕ is
dense in H2. In [Cow3, Proof of Theorem 1] it was shown that

(i) S is a contraction on H2;
(ii) S is a co-analytic Toeplitz operator, say S := Tk̄ with k ∈ H∞;
(iii) Tk̄Hϕ = Hϕ;
(iv) k̃ ∈ E(ϕ), where k̃ = k(z̄).

Since [T ∗ϕ, Tϕ] is of finite rank, we have that ker [T ∗ϕ, Tϕ] has finite co–dimension. Also by
(8.1) we have that

||Hϕh|| = ||Hϕh|| for all h ∈ ker [T ∗ϕ, Tϕ].

Thus the restriction of Tk̄ to clHϕ(ker [T ∗ϕ, Tϕ]) is an isometry. Now put

M := clHϕ(ker [T ∗ϕ, Tϕ]) and N := clHϕ(ker [T ∗ϕ, Tϕ]).

Since both Hϕ and Hϕ are one-one and have dense ranges it follows that M⊥ and N⊥ are
finite-dimensional. If Conjecture B is true then we have

dimM⊥ ≤ dimN⊥.

Since Tk̄|M is an isometry, we can see that TkTk̄ = I+K, where K is a finite rank operator.
Then by Douglas’s Theorem, which states that if Tϕ1Tϕ2−Tϕ3 is compact then ϕ1ϕ2 = ϕ3,
we have that |k|2 = 1, so that Tk is an isometry because Tk is analytic. Write Tk̄ as the
following 2× 2 operator matrix:

Tk̄ =
(
A B
C D

)
:
(
M
M⊥

)
−→

(
N
N⊥

)
,

where A is an isometry. Since Tk̄ is a contraction, it follows that C = 0. Also since Tk is
an isometry, we have

Tk̄Tk =
(
A B
0 D

)(
A∗ 0
B∗ D∗

)
=
(
AA∗ +BB∗ BD∗

DB∗ DD∗

)
=
(

1 0
0 1

)
,

so 
AA∗ +BB∗ = 1
BD∗ = 0
DD∗ = 1.

Since D∗ : N⊥ → M⊥ is an isometry, it follows that dimM⊥ = dimN⊥, so that D∗ is
unitary. Thus we must have that B = 0 and in turn, AA∗ = 1. This forces A to be unitary,
so that Tk is unitary. Therefore k is a constant of modulus 1, and hence so is k̃. But since
k̃ ∈ E(ϕ), it follows that ϕ is of the form ϕ = f̄ + eiθf for some f ∈ H∞ and θ ∈ [0, 2π),
which implies that Tϕ is normal. This completes the proof. �



The core of the proof of Theorem 8 is that if ϕ is not of bounded type for which
Tϕ is a 2–hyponormal Toeplitz operator with nonzero finite rank self-commutator then
Tϕ is analytic. One might expect that this is true with “hyponormal” in place of “ 2–
hyponormal,” but this is not the case. To see this let ψ be the conformal map in Theorem
3. Then ϕ ≡ ψ̄ + zψ is not of bounded type because, in Theorem 3, ψ̄ + αψ is not of
bounded type, so that {0} 6= kerHψ̄+αψ = kerHψ̄ = kerHϕ, and hence ϕ is not of bounded
type by [Abr, Lemma 3]. Observe that ϕ − zϕ̄ ∈ H∞ which, by Cowen’s Theorem, says
that Tϕ is hyponormal. But since

[T ∗ϕ, Tϕ] = (Tψ + Tz̄Tψ̄)(Tψ̄ + TzTψ)− (Tψ̄ + TzTψ)(Tψ + Tz̄Tψ̄)

= TψTψ̄ − TψTzTz̄Tψ̄ = Tψ(1− TzTz̄)Tψ̄,

it follows that rank [T ∗ϕ, Tϕ] = 1.
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