A NEW CRITERION FOR k-HYPONORMALITY
VIA WEAK SUBNORMALITY

RAUL E. CURTO, SANG HOON LEE AND W0O YOUNG LEE

Abstract. In this article we obtain a criterion for k-hyponormality via weak subnor-
mality. Using this criterion we recapture Spitkovskii’s subnormality criterion and give a
simple proof of the main result in [Gu], which describes a gap between k-hyponormality
and (k + 1)-hyponormality for Toeplitz operators. In addition, we notice that the min-
imal normal extension of a subnormal operator is exactly the inductive limit of its
minimal partially normal extensions.

INTRODUCTION

Let H and K be separable complex Hilbert spaces, let £L(H, K) be the set of bounded
linear operators from H to K and write L(H) := L(H,H). An operator T' € L(H)
is said to be normal if T*T = TT*, hyponormal if T*T > TT*, and subnormal if
T = Nly, where N is normal on some Hilbert space K O H. Thus an operator T is

subnormal if and only if there exist operators A and B such that T := (rg g) is

normal, i.e.,

[T*,T] := T*T — TT* = AA*
(0.1) A*T = BA*
[B*,B] + A*A = 0.

An operator T' € L(H) is said to be weakly subnormal ([CuL2]) if there exist operators
A€ L(H,H)and B € L(H’) such that the first two conditions in (0.1) hold: [T, T] =
AA* and A*T = BT*, or equivalently, there is an extension T" of T such that

(0.2) T*Tf =TT*f for all f € H.

The operator T is said to be a partially normal extension (briefly, p.n.e.) of T'. Note
that the condition (0.2) implies ||Tf|| = ||T*f|| for all f € H, and that if (0.2) holds
for all f € H& H', then T becomes normal, so T is in that case subnormal. We
also say that T € L(K) is a minimal partially normal extension (briefly, m.p.n.e.) of
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a weakly subnormal operator T' if K has no proper subspace containing H to which
the restriction of 7' is also a partially normal extension of 7. It is known [Cul2,
Lemma 2.5] that if 7 is a partially normal extension of T € £(H) on K then T is
minimal if and only if K = \/{T**h : h € H, k = 0,1}. Clearly, subnormal —>
weakly subnormal = hyponormal; however, the converses are not true in general
(cf.[Cul2]).

On the other hand, the Bram—-Halmos criterion for subnormality states that an
operator T' is subnormal if and only if >, (T ‘z;,T9x;) > 0 for all finite collections
xo,x1, -, Tk € H ([Bra],[Con, II.1.9]). It is easy to see that this is equivalent to the
following positivity test:

I T ... T*
T T*T ... T*T

(0.3) : : . : >0 (all k> 1).
Tk T*Tk .. T*kTk

Condition (0.3) provides a measure of the gap between hyponormality and subnormal-
ity. In fact, the positivity condition (0.3) for £ = 1 is equivalent to the hyponormality
of T, while subnormality requires the validity of (0.3) for all k. If we denote by
[A, B] := AB — BA the commutator of two operators A and B, and if we define T' to
be k—hyponormal whenever the k x k operator matrix

(0.4) My (T) := ([T*J7Tl])§,j:1

is positive, or equivalently, the (k + 1) x (k + 1) operator matrix in (0.3) is positive
(via the operator version of Choleski’s Algorithm), then the Bram—Halmos criterion
can be rephrased as saying that T is subnormal if and only if T is k—hyponormal for
every k > 1 ([CMX]). The classes of k-hyponormal operators have been studied in an
attempt to bridge the gap between subnormality and hyponormality ([Cul], [Cu2],
[CuF1], [CuF2], [CuF3], [Cull], [CuL2], [CuL3|, [CMX], [DPY], [McCP]).

In this paper we obtain a new, different criterion for k-hyponormality via weak
subnormality. Our criterion is sometimes more helpful because it avoids the poten-
tially complicated verification of positivity needed for (0.4). Using this criterion we
recapture Spitkovskii’s subnormality criterion [Spi] and give a simple proof of the
main result in [Gu], which describes a gap between k-hyponormality and (k + 1)-
hyponormality for Toeplitz operators.

1. A NEw CRITERION FOR k-HYPONORMALITY

Given a bounded sequence of positive numbers « : ag, a1, - -+ (called weights), the
(unilateral) weighted shift W, associated with « is the operator on ¢?(Z,) defined
by Waey, := apeny1 for all n > 0, where {e,, }5 is the canonical orthonormal basis
for ¢2. Tt is straightforward to check that W, can never be normal, and that W, is
hyponormal if and only if o, < a1 for all n > 0.

In 1966, Stampfli [Sta] explicitly exhibited for a subnormal weighted shift Ag its
minimal normal extension

AO Bl 0
A1 B2

(0.5) N := 4 |
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where A,, is a weighted shift with weights {a(()n), agn), <}, By = diag{b(()n), bgn), e
and these entries satisfy:
n n n 0 .
M <(a§»)>>2 - <a§-_>(1>)2 +(b5)2 2 0 (b = 0 for all j);
(II) b, = 0= b,’; = 0;
(ITI) there exists a constant M such that ]aén)| < M and \b§n)| <M forn=0,1,---
and j =0,1,---, where

b(n—i—l)
(n+1) . 17, (m)y2 (n) 2 (n)y213 (n+1) . (n) Zj+1
b; = [(a;"7)" = (a; 1) +(b;7)°]2 and a; = a, WCEEY

J

(if b;:) = 0, then a,;:) is taken to be 0).

On the other hand, in 1982, I. Spitkovskii [Spi] gave the following subnormality
criterion for arbitrary operators. (In 1985, J. Ma and S. Zhou [MaZ] independently
proved the same result.)

Theorem 1 ([Spi]). Let Ay € L(Ho), where Hy is a separable complex Hilbert space.
Then Ay is subnormal if and only if there exists M > 0 such that for every n > 0 the
following properties hold:
(I') Dn > 0;
(I1") Ap,—1(KerD,,—1) CKerD,,_1 (n>1);
(IIl") there exists a constant M such that ||Ay,||, ||Dn|| < M, where

Dy := [AéyAO]a -Dn+1 = Dn‘Hn+1 + [A:L+17An+1]u Hn—l—l := Ran (Dn)a

and A, 11 denotes the bounded extension of Dé AnD;% to Ran (Dy,)(= Hpt1)
from Ran (D,,).

In this case, the minimal normal extension of Ag is given by the operator N in (0.5)
1
with D?_, in place of B,,.

In 1988, P. Fan [Fan] noticed that if Ay is a weighted shift, then (I) and (I'), (II)
and (II'), and (III) and (III") are equivalent, respectively. Consequently, Theorem 1
is a natural generalization of Stampfli’s subnormality criterion for weighted shifts.

We will now discuss analogues of the preceding results for k-hyponormal operators.
It was shown in [CuL2] that every 2-hyponormal weighted shift is weakly subnormal,
but whether the same implication holds for arbitrary operators was left open. Very
recently, R. Curto, I.B. Jung and S.S. Park [CJP] showed that every 2-hyponormal
operator is indeed weakly subnormal. This follows from a special case of a more
general result:

Lemma 2 ([CJP, Theorems 2.7 and 3.2]).
(i) If T € L(H) is 2-hyponormal then [T, T]%T[T*,T]_%\Ran[T*7T] 18 bounded;
(i) T € L(H) is (k + 1)-hyponormal if and only if T is weakly subnormal and
T := m.p.n.e.(T) is k-hyponormal.

In particular, it was shown in [CuL2, Lemma 2.8] that if Ay € L(H) is weakly
subnormal then the minimal partially normal extension of Ay can be obtained as

Ay = Ao Do : Ho ® Hi1 — Ho ® Hi,
0 A
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where H; = Ran[Aj, Ag] and Dy is the restriction of [AZ, Ag]2 to Hy satisfying
D()AO = AIDO- Note that

—~xk
(2.1) V{4 "ho: ho € Ho, k=0,1} =Ho & Ha.

By using Lemma 2(ii) inductively, we can see that if Ay is k-hyponormal then we can
define

—(n) (n-1) —~(0)

Ao ::AO fOI‘TL:l,"‘,]ﬁ—l; Ao .:AQ.

Our criterion on k-hyponormality now follows:
Theorem 3. An operator Ay € L(Hy) is k-hyponormal if and only if the following
three conditions hold for all n such that 0 <n <k —1:

(In) Dy, >0;

(I1,) An—1(KerD,,—1) CKerD,,—1 (n > 1);

1 _1

(II,) D2 _1An_1D, 2 |Ran (D, 1) (n > 1) is bounded,

where

Dy := [AEkbAO]? Dy = Dn|Hn+1 + [AZ+17A7L+1]> Hn41 := Ran (D”)

and An4+1 denotes the bounded extension of DéAan% to Ran (Dy,)(= Huy1) from
Ran (D,,).

Proof. Suppose Ag is k-hyponormal. We now use induction on k. If £ = 2 then Ay
is 2-hyponormal, and so Dy := [A§, Ap] > 0. By Lemma 2(i), D[]%AOD(;%‘Ran(DO) is
bounded. Let A; be the bounded extension of DO% AODO_% from Ran (Dy) to Hy :=

- — 1 —
Ran (Dy) and Dy := Dglw, + [A], A1]. Writing Ay = 1‘2)0 ?402 >7 we have Ay =
1

m.p.n.e. (Ag), which is hyponormal by Lemma 2(ii). Thus

— (0 0
A Ayl = > 0.
o, Ao] (0 DormHA’f,Aﬂ)—

and hence D; > 0. Also by [CuL2, Lemma 2.2], Ao(Ker Dy) C Ker Dy whenever Ay
is 2-hyponormal. Thus (I,,), (II,,), and (IIL,) hold for n = 0,1. Assume now that if
Ay is k-hyponormal then (I,,),(II,,) and (IIL,) hold for all 0 < n < k — 1. Suppose
Ap is (k + 1)-hyponormal. We must show that (I,,),(II,,) and (IIL,) hold for n = k.
Define

Ay D2 0
1
Ay Dy k—1 k—1
S = @Hz — @Hl
1 =0 =0
Dy
0 A1

By our inductive assumption, Di_; > 0. Writing T = m.p.n.e.(f(”_l)) when it

—~(k—1
exists, we can see by our assumption that S = Ao( ): indeed, if
1
Ay D§ 0
1
A1 D?
S) =
1
Dy,
0 A
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then since by assumption [S/,S;] = 0@ D; and A; = Dl%—lAl_lDl_—%l’Raﬂ(Dl—l)7 it
follows that S; is the minimal partially normal extension of S;—; (1 <1 <k—1). But
since by our assumption Ag is (k + 1)-hyponormal, it follows from Lemma 2(ii) that
S is 2-hyponormal. Thus by Lemma 2(i), [S*, S]%S[S*, 5’]’% |Ran ([s*,5]) is bounded,

which says that D;ilAk—lD;;%ﬂRan(Dk_l) is bounded, proving (IIL,) for n = k.
~ 1

Observe that Ay, Hix and Dy are well-defined. Writing S := <§ D§1>, we can
k

see that § = m.p.n.e.(S), which is hyponormal, again by Lemma 2(ii). Thus, since

[§*, §] = (8 lg) ) > 0, we have Dy, > 0, proving (I,,) for n = k. On the other hand,
k

since S is 2-hyponormal, it follows that S(Ker[S*,S]) C Ker[S*, S]. Since [S*,S] =

<8 DO ), we have Ker [S*, 5] = @f:_g H; @ Ker (Dy—1). Thus, since
k—1

Ay D§ 1 0 Ho Ho
Ay D? Hi Hq
D3 Hi—2 Hi—2
k=2 Ker (Dk—l) Ker (Dk—l)
0 A1

we must have that Ai_q(Ker (Dy—1)) C Ker(Dy_1), proving (II,) for n = k. This
proves the necessity condition.

Toward sufficiency, suppose that conditions (I,,), (IL,) and (IIL,) hold for all n
such that 0 < n < k — 1. Define

Ay DE 0
A, D?
Sp 1= (I1<n<k-1).

3 vl

D —2
An—l

0

Then Si_o is weakly subnormal and S;_; = m.p.n.e. (Sk_2). Since, by assumption,

Dy_1 > 0, we have [S}_{,Sk—1] = (8 D£_1> > 0. It thus follows from Lemma 2(ii)

that Sk_o is 2-hyponormal. Note that S,, = m.p.n.e.(S,—1) forn = 1,--- |k — 1
(So := Ap). Thus, again by Lemma 2(ii), Sx_3 is 3-hyponormal. Now repeating this
argument, we can conclude that Sy = Ay is k-hyponormal. This completes the proof.
O

We now present a strengthened version of Spitkovskii’s subnormality criterion.

Corollary 4. An operator Ag € L(Hyp) is subnormal if and only if the conditions
(I,), (IL,), and (111,,) hold for all n > 0. In this case, the minimal normal extension
N of Ag is given by

Ay Dg 0

1

Ay D:

" i=0 i=0

=

Az
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Proof. The first assertion follows from Theorem 3 together with the fact that Ay
is subnormal if and only if Ay is k-hyponormal for all £ > 1. Toward the second
assertion, observe by a straightforward calculation that N*N = NN*, i.e., N is a
(possibly unbounded) normal operator. For the boundedness of N, observe that

() 1
Ay DZ 0
A D;
o —(n)
- AO )
~ Dpy
0 A,

(ii) [|Ao|| = ||;1\0(n)|] for all n > 1 (see [CJP, Corollary 3.3]).

1
Thus we can see that ||A,||, ||Dz2_1|| < [|Ao]|| for all n > 1. Therefore evidently, N is
bounded. For the minimality of N we must show that

(4.1) P Hi =\ {N*ho: ho € Ho, k> 0}.
i=0
To show this it will suffice to prove that

42 Pri=V {(Zo("))*kho . ho € Ho, k=0,1, - n} for all n > 1.
1=0

We use induction on n. Since Ay = m.p.n.e. (Ap) it follows from (2.1) that
—~xk
Ho ® Ha :\/{Ao ho : ho € Ho, k‘:O,l},

which proves (4.2) for n = 1. We assume that (4.2) holds for n = m. Note that

T\ e e e Y (M
0 T\ DED: _,---DE x) \@eriH, ot )

Thus, we have
*k
—~(m+1)
\/{(AO > hOIhOGHO,kZO,l,“',m"'l}

*k *(m+1)
—~(m+1 —~(m+1
= {{ (AO( i )> hO : hO € HOa k= Oala"' 7m}7 <A0( ! )) (H())}

_\/ {éHi’ (;ﬁ)(m—kl))*(”wl) (Ho)}

=0
m 11 N m—+1
=V { (EB%) @ pin;_, - D (Ho)} - P .
i=0 i=0

which proves (4.2) for n = m + 1. This completes the proof. O
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It is interesting to note that Corollary 4 is a strengthened version of Spitkovskii’s
criterion in the sense that Spitkovskii’s criterion requires the uniform boundedness of
{A,,} and {D,,} for subnormality of Ag, while our criterion drops this condition. In
fact, the uniform boundedness condition follows automatically from the construction
of the minimal partially normal extension via weak subnormality as we saw in the
proof of Corollary 4. This is an advantage of using weak subnormality.

2. GAPS BETWEEN k-HYPONORMALITY AND
SUBNORMALITY FOR TOEPLITZ OPERATORS

Recall that the Hilbert space L?(T) has a canonical orthonormal basis given by the
trigonometric functions e, (z) = 2", for all n € Z, and that the Hardy space H?(T)
is the closed linear span of {e,, : n = 0,1,---}. An element f € L?(T) is said to
be analytic if f € H?(T), and co-analytic if f € L?(T) © H?(T). If P denotes the
orthogonal projection from L?(T) to H?(T), then for every ¢ € L>(T) the operator
T, on H?(T) defined by

Tog = P(eg) (g€ H*(T))

is called the Toeplitz operator with symbol .

It was recently shown in [CLL| that there exists a gap between 2-hyponormality and
subnormality for Toeplitz operators. Subsequently, C. Gu [Gu] gave a more general
result: there exists a gap between k-hyponormality and (k + 1)-hyponormality for
Toeplitz operators for each k£ > 1.

Theorem 5 ([Gu, Theorem 3.5]). Let0 < a < 1 and let ¢ be the conformal map of
the unit disk onto the interior of the ellipse with vertices £(1+a)i and passing through
+(1 —a). Let o = + X and let T, be the corresponding Toeplitz operator on H?.

23 j 2
Then T, is k-hyponormal if and only if X is in the circle ‘z - D{(_lojzc;:z) = O{J_(i;joiz)

a(l_a2(k71))
1—a?k

ak*l(l_a2)
> T_a2k

for j=0,1,--- ,k —2 orin the closed disk |z —

Gu’s proof of Theorem 5 relies on intricate and explicit computations using a special
case of Smul’jan’s Theorem [Smu]. We here give a simple proof using our criterion
(Theorem 3). This illustrates that our criterion on k-hyponormality is more effective
than the positivity conditions (0.3) or (0.4).

For 0 < a < 1, let T = Wp be the weighted shift with weight sequence 3 =
{Bn}5y, where (cf. [Cow2, Proposition 9])

(5.1) B = (Zoﬂj)% forn=0,1,---.

§=0
Let D be the diagonal operator, D = diag (a™), and let Sy =T+ AT (A € C). Then
we have that

[T*,T] = D* = diag (&®") and [S%,S\] = (1 — |\*)[T*,T] = (1 — |\*) D2

Define )
A=a'T+ =T (1=0,41,42,--).
(6%



8 RAUL E. CURTO, SANG HOON LEE AND WOO YOUNG LEE

It follows that Ag = S, and

(5.2) DA; = Ai1D and A;D=DAj,, (1=0%1,£2,--).

The following theorem is the essence of C. Gu’s argument [Gu], which consists of
a complicated computation. By contrast our proof is shorter and more transparent.

Theorem 6 ([Gu, Theorem 3.3]). Let 0 < o < 1 and T' = Wpg be the weighted
shift with weight sequence = {B,}5%,, where

n

ﬂn:(Zoﬁj)% forn=0,1,---.

=0

Then Ag := T + \T* is k-hyponormal if and only if || < a*~1 or |\| = o/ for some
G=0,1,- k-2

Proof. Observe that

p) A
(A}, A)] = [o/T* + ST, o'T + 5 T7]
« [0
. A A
(6.1) =o?[T 7T]—W[T T = Cﬂ_ﬂ D?.

Since Ker D = {0} and DA, = A, 1D, it follows that H,, = H for all n; if we use
A; for the operator A,, in Theorem 3 then we have, by (6.1) and the definition of D,
that

Dj = Dj,1 + [A;,Aj] = Dj,Q + [A*

j—1

Aj ]+ A Al =

EENYE
=mam+mmm+m+mpﬁza—wmﬂ+~+Gw—”)DQ

o2
1 — 20+1) A2 )
:<1ﬂﬂ><‘aw>D'

By Theorem 3, Ag is k-hyponormal if and only if Dy_; > 0 or D; = 0 for some j
such that 0 < j < k —2 (in this case A is subnormal). Note that D; = 0 if and only
if [\| = a’. On the other hand, if D; >0 for j =0,1,--- ,k — 2, then

1— a2k ’)\|2 )
Dk1_<1_a2><1_a2(k1)>D =0
if and only if |\| < a*~1. Therefore Ay is k-hyponormal if and only if [A| < aF~! or
Al = o’ for some j, j =0,1, -,k — 2. O

We are ready for:

Proof of Theorem 5. It was shown in [Col] that T, ,; is unitarily equivalent to
(1—a2)%T , where T is the weighted shift in Theorem 6. Thus T, is unitarily equivalent
to (1 —a2)2(T — aT*), so T, is unitarily equivalent to

A—a
1- )«

(1-a®)2(1—Xa)(T + T*) (ct. [Cowl, Theorem 2.4]).
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Applying Theorem 6 with /\*o‘a in place of A, we have that for k =0,1,2,---,

T—x

A\ —

2| <af <= |A—al? < a1 - Aaf?
1-)da
) a(l _ a2k) B a2 — a2k
= [ g = ()\+>\)+71_a2k+2 <0
')\ _a(l- a?F) < k(1 - a2)'
— 1 _ q2k+2 1 _ o2k+2
This completes the proof. O

3. k-HYPONORMALITY OF WEIGHTED SHIFTS

If Ag is a weighted shift then by Theorem 3 and the remarks following Theorem 1
we know that the following are equivalent:
(i) Ap is k-hyponormal;
(ii) conditions (I), (II), (III), given right after (0.5), hold for all n, 0 <n <k — 1.

In [Cul, Theorem 4], it was shown that the k-hyponormality for a weighted shift
W, with o = {a,, }22, can be tested by the positivity of a (k + 1) x (k + 1) Hankel
matrix A(n; k) built in terms of the moments ~,, of W,,, where

Bo:=1, Bat1:=anbBy (n>0), and =, := 5721 (n>0)

and
Tn Tnt1 oo Intk
Yo+l Tnd2 oo Undktl
A(nsk) = | " i (n > 0).
Tntk  TIntk+l --- 0 Unt2k

Thus we have:
Corollary 7 (k-Hyponormality of Weighted Shifts). Let Ay be a weighted shift
with weight sequence {, }52 . Then the following are equivalent:

(i) Ag is k-hyponormal;
(ii) A(n;k) >0 for alln > 0;
(iii) conditions (I), (II) and (III) hold for allmn, 0 <n <k — 1.

Sometimes the equivalence (i) < (iii) is more helpful than the equivalence (i) <
(ii). The following example illustrates this fact.

Example 8. For xz > 0, let T, be the weighted shift whose weight sequence is given

by
n+1
:: n: >1.
@0 Too Vn+2 (n_)

. _ . . k+1 . .
Then T} is k-hyponormal if and only if x < k(5D In particular, T, is subnormal

if and only if x < \/g; that is, the Bergman shift is extremal amongst all subnormal
weighted shifts of the form T,.

Proof. We use the equivalence (i) < (iii) in Corollary 7. Write a;o) =y (j = 0).
First, observe that

T, is k-hyponormal <= (bg-k))2 = (a&k_l))2 — (a§’€__11))2+ (byc_l))2 >0 for all j > 0.
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Since T}, has, beginning with n = 1, a Bergman tail, it follows that
T, is k-hyponormal < (b)) := (al* )2 — (a{F7V)2 4 (s(F"D)2 > 0.

We now claim that

k (k4 1)% = 2k(k + 2)a?

(k)2
(8.1) (by)? = 202k +1) k2 —2(k — 1)(k + 1)z

Note that for j > k+ 1

(k)2 _ k? ()y2 _ (j+1)?
(8.2) (b;7) =~ GERGThED and (a;’) S G R DG TR

For (8.1) we use induction on k. If k£ =1 then (bgl))2 = (ago))2 — (a(()o))2 =2-2% s0
(8.1) holds for k = 1. Suppose that (8.1) holds for k. Then by (8.2),

k k k) k
B2 = (@) )2 = @2 + (0F),)?

—(a (k) )2 ( (k—l)) (512121) (b(k) 2

k1 Ay b(k:) k+1
— @™ ®) ) (ai )% = (b2
k+1 k+1 b(k)
= (@® )2 = P )2 2(2k +1)a”
aisn)” ~ (i) k2{(k + 1 — 2k(k + 2)x2}
(k +2)? 2(2k + 1)a?

- (2k+2)(2k+3) (2k+1)(2k+2) Ck{(k + 1)2 — 2k(k + 2)2?}
(R D{(k+2)® —2(k + 1)(k + 3)2?}
22k +3){(k+1)2 — 2k(k 4+ 2)22}

which proves (8.1). Therefore T, is k-hyponormal <= r < —f+L . O

= /2k(k+2)
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