WEAK SUBNORMALITY OF OPERATORS

By
RAUL E. Curto, IN SUNG HWANG AND WOO YOUNG LEE

Abstract. We consider the gap between weak subnormality and 2-hyponormality for Toeplitz operators.
In addition, we study the spectrum of the minimal partially normal extension of a weakly subnormal
operator, and the inverse of an invertible weakly subnormal operator.

Introduction.  In [15], the notion of weak subnormality of an operator was introduced as
a generalization of subnormality, with an aim at providing a model for 2-hyponormal operators.
Weak subnormality was conceived as a notion at least as strong as hyponormality, and as a tool to
understand the gap between hyponormality and 2-hyponormality; however, it remains open whether
every 2-hyponormal operator is weakly subnormal. In this paper we explore weak subnormality of
operators.

In Section 1, we consider the gap between weak subnormality and 2-hyponormality for Toeplitz
operators. In Section 2, we consider the passage from the spectrum of a weakly subnormal operator
whose self-commutator has closed range to the spectrum of its minimal partially normal extension.
In Section 3, we provide an example of an invertible subnormal operator whose inverse is neither
2-hyponormal nor weakly subnormal.

Let H and K be complex Hilbert spaces, let L(H, KC) be the set of bounded linear operators from
H to K and write L(H) := L(H,H). An operator T € L(H) is said to be normal if T*T = TT*,
hyponormal if T*T > TT*, and subnormal if T'= N|s, where N is normal on some Hilbert space
K O H. Thus the operator T' is subnormal if and only if there exist operators A and B such that

T:= (g g) is normal, i.e.,

[7*,T] := T*T — TT* = AA*
(0.1) A*T = BA*

[B*,B]+ A*A=0.
An operator T € L(H) is said to be weakly subnormal if there exist operators A € L(H',H) and
B € L(H') such that the first two conditions in (0.1) hold: [T™*,T] = AA* and A*T = BA*, or
equivalently, there is an extension 7" of T" such that
(0.2) T*Tf=TT*f forall f€H.
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The operator T is said to be a partially normal extension (briefly, p.n.e.) of T. Note that the
condition (0.2) implies ||T'f|| = ||T*f|| for all f € H, and that if (0.2) holds for all f € H & H’,
then 7 becomes normal, so T is subnormal. We also say that T € L(K) is a minimal partially
normal extension (briefly, m.p.n.e.) of a weakly subnormal operator T if K has no proper subspace
containing H to which the restriction of T is also a partially normal extension of T'. It is known ([15,
Lemma 2.5 and Corollary 2.7]) that T= m.p.n.e.(T) if and only if K = \/{f*”h :heH, n=0, 1}
and that m.p.n.e.(T") is unique. Clearly,

(0.3) subnormal — weakly subnormal =— hyponormal.

However the converse of both implications in (0.3) are not true in general (cf. [15, Examples 4.1
and 4.4]). On the other hand, it is easy to see that weak subnormality is invariant under unitary
equivalence, translation, and restriction.

An alternative description of subnormality is given by the Bram—Halmos criterion, which states
that an operator T is subnormal if and only if Zm.(Tixj,Tjwi) > 0 for all finite collections
xo,T1, 2k € H ([2],[4, 11.1.9]). Tt is easy to see that this is equivalent to the following posi-
tivity test:

I T ... T*k
T T*T ... T*T

(0.4) : : . : >0 (all & > 1).
Tk T*Tk .. T*RTE

Condition (0.4) provides a measure of the gap between hyponormality and subnormality. In fact,
the positivity condition (0.4) for k£ = 1 is equivalent to the hyponormality of T', while subnormality
requires the validity of (0.4) for all k. If we denote by [A, B] := AB — BA the commutator of two
operators A and B, and if we define T' to be k—hyponormal whenever the k x k operator matrix
My(T) := ([T*j,Ti])ﬁjzl is positive, or equivalently, the (k + 1) x (k + 1) operator matrix in (0.4)
is positive (via the operator version of Choleski’s Algorithm), then the Bram—Halmos criterion can
be rephrased as saying that T is subnormal if and only if T is k~hyponormal for every k > 1 ([18]).
Recall ([1],[18],[5]) that T' € L(H) is said to be weakly k-hyponormal if

k
LS((T,T%,---,T%) == Y ;T :a = (a1,--- ) € CF
j=1

consists entirely of hyponormal operators, or equivalently, M (T) is weakly positive, i.e.,

A().% Aofﬂ
(M (T) , :|) >0forxeH and Mg, -+, A\, €C ([18]).
)\kx )\kx

If k = 2 then T is said to be quadratically hyponormal. Similarly, T € L(H) is said to be polynomially
hyponormal if p(T) is hyponormal for every polynomial p € C[z]. It is known that k-hyponormal =
weakly k-hyponormal, but the converse is not true in general. The classes of (weakly) k-hyponormal
operators have been studied in an attempt to bridge the gap between subnormality and hyponormal-
ity ([8],[9],[10],[11],[12],[14],[17],[18],[19],[21]). The study of this gap has been successful for weighted
shifts.
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1. The Gap between Weak Subnormality and 2-hyponormality for Toeplitz Op-
erators.  Recall that the Hilbert space L?(T) has a canonical orthonormal basis given by the
trigonometric functions e, (z) = 2", for all n € Z, and that the Hardy space H?(T) is the closed
linear span of {e, : n = 0,1,---}. If P denotes the orthogonal projection from L?(T) to H?(T),
then for every ¢ € L°°(T) the operator T, defined by T,g := P(¢g) is called the Toeplitz operator
with symbol ¢. The gap between subnormality and 2—hyponormality for Toeplitz operators has been
considered in [14], [15], [16], and [13]. We would now like to consider whether there is a gap between
2-hyponormality and weak subnormality for Toeplitz operators. We answer this in the affirmative.
We first establish a theorem which provides an example of an operator for which hyponormality and
weak subnormality coincide.

Theorem 1.1. For 0 < a <1, let T'= Wy be the weighted shift with weight sequence

=

(1.1.1) B =Y a¥
=0

If Sy =T+ \XT* (A€ C), then
(1) Sy is hyponormal if and only if |A| < 1;
(ii) Sy is 2-hyponormal if and only if |A| =1 or |A| < «;
(iii) Sy is weakly subnormal if and only if [N < 1;
(iv) Sy is weakly subnormal with hyponormal m.p.n.e.(T) if and only if N\ =1 or |\ < a.

Proof. (i) is known [6, Theorem 2.3], and (ii) appears in [13, Theorem 5]. Thus it suffices to focus on
assertions (iii) and (iv). Since T+ AT* is unitarily equivalent to e (T + |A| T*) with [A| = Xe~% it
follows that T 4+ A\T™* is weakly subnormal if and only if 7'+ |\| T* is weakly subnormal. Thus we can
assume A > 0. If A = 0,1 then evidently S is weakly subnormal because T' is subnormal (cf. [7]).
Thus we assume 0 < A < 1. Then a straightforward calculation shows that [S},S)] = (1 — A?) D,
where D := diag (a?*)22,. Put A, = [S;‘\,S,\]% and define By = aT + %T*. Then we have
A3S\ = ByA3. This implies that

[ Sn A
(1.1.2) Sy ._(0 BA)

is a partially normal extension of Sy, which proves (iii). Towards (iv), observe that S, in (1.1.2) is
the minimal partially normal extension of S because

VASi"h: heH, n=0,1} =l & L.

For the hyponormality of S \ we compute

[S%,5,] = 0@ ([B}, B,\] + A3 Ay)

_0@<a - = D+(1—)\2)D)
_ 2
= ( (14 a?) ?)/\ > D.
Thus Sy is hyponormal if and only if (1 + ﬁ))\Q <1+a? or A < a. This proves (iv). |

We now have:
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Corollary 1.2. Let 0 < a <1 and let ¢ be the conformal map of the unit disk onto the interior of
the ellipse with vertices £(1 + a)i and passing through £(1 — «). Let o\ = + X\ and let T, be
the corresponding Toeplitz operator on H?. Then

(i) Ty, is hyponormal if and only if X is in the closed unit disk |\| < 1.
(ii) Ty, is 2-hyponormal if and only if X is in the unit circle |\| = 1 or in the closed disk
‘A471i22 S 1j;”
(iii) T, is weakly subnormal if and only if X is in the closed unit disk |[\| < 1.

Proof. (i) is known [6, Theorem 2.4] and (ii) appears in [13, Theorem 6]. For (iii), recall that T,
is unitarily equivalent to (1 — a2)2T ([7]), where T is the weighted shift in Theorem 1.1. Thus Ty
is unitarily equivalent to (1 — a2)% (T — aT™), so T, is unitarily equivalent to

u_a%%1—xn(T+f_§ﬂf»

A—«
1- Ao

Thus by Theorem 1.1, T, is weakly subnormal if and only if ‘

<l,or A\ <1 O
One might guess that the minimal partially normal extension of a weakly subnormal operator T
is always hyponormal. Theorem 1.1 shows, however, that this is not the case.
Question A. Is every 2-hyponormal operator weakly subnormal ? If so, does it follow that its
minimal partially normal extension is hyponormal ¢
Theorem 1.1 provides evidence that the answer to Question A may be affirmative.

We now give a strategy to answer Question A in the affirmative.
First of all we recall two lemmas.

Lemma 1.3 ([15, Lemma 2.2 and Corollary 2.3]). If T € L(H) is weakly subnormal or 2-
hyponormal then T (ker[T*,T]) C ker[T*,T).

Lemma 1.4([15, Lemmas 2.1 and 2.8]). IfT € L(H) is weakly subnormal then T has a partially
normal extension T on K of the form

(1.4.1) f:(ﬁ[p;w> on K=HaeH

Moreover, a minimal partially normal extension of T = (7(;1 %) s ker [T*,T] @ cl(ran [T*,T]) —
ker [T*,T| @ cl(ran [T*,T]) can be obtained as

T 0 ker [T*,T] ker [T*, T
(1.4.2) 0 Ty [T*,T)E || cl@an[T™,T]) | — | cl(ran[T*,T]) |,
0O 0 PBP cl(ran [T, T]) cl(ran [T, T])

where [T*,T)2 denotes the restriction of [T*,T]z to cl(ran[T*,T]) and P is the projection of H
onto cl(ran [T*,T1).
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Proposition 1.5. Let P,T € L(H), let P be positive and one-one, and let P~ denote its linear
inverse (possibly unbounded). Then

(1.5.1) P*TP~2 bounded => PTP™' bounded.

Proof. Without loss of generality we may assume ||P|| = 1, and that P does not have closed range.
Let E be the spectral measure for P on the Borel subsets of o(P) such that P = [¢dE(t). For each
n € Z4, define

1 1
n+1’ n]
Then G,, # 0 for infinitely many values of n. There is no loss in simplifying the notation and
assuming that G,, # () for all n € Z,. Write H,, := E(G,)H for each n € Z;. Then P, := P|y,, is
invertible for each n € Z, . Thus since o(P) = US>, G,, U {0}, it follows that >~ | F(G,) = I. Now
assume that PTP~! is not bounded. Thus there exists a sequence {e,}, of unit vectors e, € H,
for each n € Zy such that ||[PTP~e,|| — oo as n — oc. Since Y oo | E(G,) = I, we can see that
H={>72 ajhj: (a;); € b2, hj € Hy, ||hy]| = 1}. Thus we can write, for each n € Zy,

Gn:=0c(P) N (

o0

TP le, = al"ny" where hy" € H; with ||h{"]| =1
k=1
Then || 3232, ™ P(h{™)|| = ||PTP~te,|| — oo as n — oo. Note that {P(h{")} forms an

orthogonal sequence. Therefore || Y 7o, a(") (h(" N2 =Y, o ")|2 ||P(h("))|\2 — 00 as m — 00.

Also note that ||P(h{")||2 < 2. Thus zk:1(|a;">|/k) — 00 as n — 00, so that 325 (la™|/(k +
1))? — oo as n — oo. Since the H,,’s are reducing subspace for P, we have f,, := Pe,, € H,, for each
n € Z4. Thus

P2TP~2f, = P2TP e, Z ol P(h{™Y) Z o\ P2 (h{"M),
SO
2 2 2 = (n)2(| p2 ) 2 = (n)
PTP~f.|I° = " Pe( (n >
PPl = 3 PP 2 3 gt
since o(P|y, ) C (%, 1]. Observe || f,|| = || Pey|| < £ and hence [|nf,|| < 1. But
TRl gl e Sl Uk
M= LT T Ak
n—1 (n)|2
;|
5 ok
= 1
= (k+1)
n—1 |a’(€n)|
> — 00 asn — oo,
= k+1

where the last assertion follows from the observation that

n—1
(1.5.2) STl PP — 0o as n— .
k=1
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To see (1.5.2) we assume to the contrary that (1.5.2) does not hold. Then, passing to a subse-
quence, there exists M > 0 such that Y ,;_; ()z,(:)|2 ||P(h,(€n))|\2 < M for each n € Z;, and so
St [ P IP()|[? — oo as n — co. But since Y07, Jaf[? = [|TP e, ||? < (n+1)2 [T,
it follows that

ey o Sl P s ey 2
Z o [P ([P (g, )17 < Z S Z 1) <75,
k=n+1 k=n-+1 k=n+1
which is a contradiction. This proves (1.5.2) and completes the proof of (1.5.1). O

The converse of (1.5.1) is not true in general. For example, let T' be the Hankel operator H.,
on H*(T) with symbol ¢(z) = 320° | 2 and let P be the diagonal operator on H>(T) defined by

n=1

Pzr = nZ:1 . Then a straightforward calculation shows that the first row of the matrix of P?TP~2 is

(1,1,1,---), which shows that P2T'P~2 is not bounded. On the other hand, the matrix of TP~! is

dominated by the matrix of Hankel operator T}, with symbol ¢(z) = > 02, %, which shows that
TP~! is bounded and so is PTP~!.

We would like to formulate:

Conjecture B. Let T € L(H) and let A := [T*,T]%. Suppose P is the projection of H onto
cl(ran A) and write Ag := Alci (ran 4). If T' is 2-hyponormal then A%PTPAg2 s bounded.

If Conjecture B is true then the answer to Question A would be affirmative. The reason is as
follows. If Conjecture B is true then by Proposition 1.5, AgPTPA; 1'is also bounded. Thus if

we write T = (T01 g) on H = ker A @ cl(ran A) then since by (1.4.2), AgT3 = PBPA,, ie.,

PBP = AgPTPAS", it follows that

/T T 0
(1.5.3) T=|0 T3 Ao : Hocl(ranA) — H @ cl(ran A)
0 0 AyPTPA;!

is a partially normal extension of T

The following is a more simplified conjecture:

Conjecture C. If [T*,T] has the linear inverse [T*,T]~! then

T is 2-hyponormal = [T*,T|T[T*,T]™" is bounded.

2. The Spectrum of m.p.n.e. (T) for T Weakly Subnormal. If T € L(H) write o(T) for
the spectrum of T'. We also write d K and n K for the topological boundary and the polynomially
convex hull of the compact set K C C, respectively. It is well-known that if T is a subnormal operator
and T is a minimal normal extension of 7' then o(T) C o(T). It was also known ([15, Theorem 1.2])
that if T is a weakly subnormal unilateral weighted shift and 7' = m.n.p.e. (T) then o(T) = J(f).
However we do not know yet if this result holds for general weakly subnormal operators. In this
section we consider the relationship between the spectrum of a weakly subnormal operator T" and
the spectrum of its minimal partially normal extension 7. We let AAB := (A\ B)U(B\ A) denote
the symmetric difference of the sets A and B.



Lemma 2.1 ([20, Theorem 2, Corollaries 6 and 7]. Let

Mo = (61 g) THekK—-HaekK.

Then Mc is invertible for some C € L(K,H) if and only if
(i) A is left invertible;
(ii) B is right invertible;
(iii) (ran A)+ = ker B.
Moreover we have
n(c(Mc)) =n(c(A)Ua(B)) for every C € LK, H).

In particular, the passage from o(Mc) to o(A) Uo(B) consists of filling in certain holes in o(Mc)
which happen to be subsets of o(A) No(B).

‘We have:

Theorem 2.2. IfT € L(H) is a weakly subnormal operator whose self-commutator has closed range
and T = m.n.p.e.(T) then no(T) =no(T).

Proof. Since by assumption ran [T, 7] is closed and T'(ker [T, T]) C ker [T*, T, we can write
T Ty To\ [ ker[T*,T] _ ker [T*, T
0 T5) \ran[T*T] ran [T*,T] ) °
Since minimal partially normal extensions of T' are unitarily equivalent ([15, Corollary 2.7]) we can
write T as in (1.5.3):

R T, T, 0 ker [T, T ker [T*, T
(2.2.1) T=| 0 T3 A | ran[T*,7]) | — | ran[T*,T] |,
0 0 ATzA-! ran [T*, T ran [T*, T
1
where A := [T*,T]¢ and in particular A is invertible by assumption. Using Lemma 2.1 we obtain

no(T) = n(o(T) Uo(AT5A™Y)) = n(o(T) Uo(Ts)) = no(T).
]

-~

The following theorem provides the passage from o(T) to o(T') under the assumption that [T, T
has closed range.

Theorem 2.3. Let T € L(H) be a weakly subnormal operator whose self-commutator has closed
range and T = m.p.n.e. (T). If we write

v (5 B () - (),

then o(T)Ao(T) is the union of certain holes in o(T) or o(T), which happen to be subsets of
o(Ty) No(T3). In particular, if T has finite rank self-commutator then o(T) = o(T).

Proof. Write T as in (2.2.1):
(T T 0
T=(o0o n 4
0 0 ATgAil
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Evidently,

(2.3.1) o(T) Co(Ty) Uo(Ts) Ua(AT3AY) = o(Ty) U o(Ts).

By Theorem 2.2 we can see that

(2.3.2) A (o(Ty) Ua(Ts)) = 0(a(T)Uo(T3)) = d(a(T) Ua(AT3A™Y)) C 80(?).
We now claim that

(2.3.3) o(T)Ao(T) C o(Ty) N o (Ts).
Towards (2.3.3) we first prove that o(T) \ o(T) C o(Ty) N o(T3). Suppose that A € o(T) \ o(T).

Assume to the contrary that A ¢ o(T1) No(T3). If Ty — X is invertible then, since T' — )\ is invertible,

TS(; A A(Tgi) 4-1 | is invertible, and so T3 — A is left invertible and

A(T3 — \)A™! is right invertible, which implies that T3 — X is invertible and hence so is T — A,
Ts—A A
30 A(T3—N)A™!
Lemma 2.1 again shows that 77 — A is invertible and hence so is T — A, a contradiction.
We next prove that o(7) \ o(T) € o(T1) N o(T3). Suppose that A € o(T) \ o(T). Assume that
A ¢ o(Ty)No(Ts). Thus Ty — X or T3 — A is invertible. But since T' — A is invertible it follows that
Ty, — X\ and T3 — A are both invertible, and hence so is T - A, a contradiction. This proves (2.3.3).
On the other hand, Lemma 2.1 shows that the passage from (T to o(T1) U o(T5) is the filling
of certain holes in o(7"), which happen to be subsets of o(T1) No(T3). Moreover, by (2.3.1), (2.3.2),

and (2.3.3), the passage from a(f) to o(Th) U o(T3) is the filling of certain holes in o(T1) U o(T3),
which happen to be subsets of o(T7) N o(T3). This proves the first assertion. The second assertion
follows from the first together with the observation that if o(T7) N o (75) has no interior points then

o(T) = o(T) and that if rank [T*,T] < oo then ran [T*,T] is finite dimensional and hence T3 is a
finite dimensional operator. |

it follows from Lemma 2.1 that

a contradiction. If instead T35 — A is invertible then ) is also invertible, so that

In [15, Lemma 2.1] it was shown that if 7" is a 2-hyponormal operator whose self-commutator
has closed range then T is weakly subnormal. Thus Theorem 2.2 and Theorem 2.3 also hold for
2-hyponormal operators.

In general we need not expect that if T" is a weakly subnormal operator and T = m.p.n.e (T') then

~

o(T) C o(T). To see this we use the bilateral weighted shift. Let {e,};>° . denote the canonical

n=—oo
orthonormal basis for £2(7Z). For a bounded sequence of positive numbers o = {av,}7>° | let U, be

n=—oo?’

the bilateral weighted shift on £2(Z) defined by Uye, := apens1 (—o0 < n < +00). Then we have:
Proposition 2.4 (Weak Subnormality of Bilateral Weighted Shifts). Let U, be the bilateral

weighted shift with strictly increasing weight sequence o = {a, }12° . Then
0‘%+1 —-ap

(2.4.1) Us is weakly subnormal <= supq ———5— ¢ < 0.
nezZ (O — O 4

Proof. If U, is weakly subnormal then by Lemma 1.4, U, has a partially normal extension ﬁa of
the form

(2.4.2) Ua = (l{)a [Ué’g&]é>
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on ly & by, where [UZ,U]2U, = B[UX,Uy]2. Since [Uf,Uy]? is diagonal it follows that B is a
bilateral weighted shift. Write B := Ug, where 8 = {8,}52 To determine Usg, it suffices to
check the (n + 1, n)-entries (n € Z):

—00"

([Uéan]%Uaena en+1) = (Uﬂ[Ué,Ua]%em en+1),

which implies

2 2 2 2
(243) Qp, an+1 - = ﬂn an — a1,
SO
2 _ A2
_ an+1 an
ﬁn = Qp ) 2 .
an — 0 1

2 2
App1 Xy

DR
A1

forward implication in (2.4.1). The backward implication follows at once from the observation that

But since Ug is bounded it follows that sup 3, < oo and hence sup < 00. This proves the

U, in (2.4.2) is a partially normal extension of U,. O

Example 2.5. Let U, be the bilateral weighted shift with weight sequence given by

Nl

(Xk=0 k)’ (n > 0)

Qp = 1
(d0 =522 0-0)" (< 0),
where )
0o =2, (5k—2—k(k>1)7 and
500.111111111111 1 1 1 1
{*k}kzl'2727?32747?7?7?7?3%7%7?7?7?)”'7?7?7?3”'7@3 """

Note that « is strictly increasing, and so U, is hyponormal. A straightforward calculation shows
that

1
lim a, = V3 and lim a, =4/ —,

n— oo n——oo 2

= w

which implies that o(U,) = {z € C : LB <12 < /3) (cf. 4, Theorem I1.6.7]). Also note that
24

bnt1 =02, —a? (N € Z) and that SUPpez, 52“ =1 and sup,,¢z_ 6;’;'& = 2, which together with

Proposition 2.4 implies that U, is weakly subnormal. On the other hand, if ﬁ; = m.p.n.e. (Uy)
then, by the proof of Proposition 2.4, U, is given by

~ _(Us (UL U2
Ua_<0 Ug )

where Upg is the bilateral weighted shift with the weight sequence

Bn 1= ay, % (neZ).
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Observe that the sequence { ‘Sg“ } contains a subsequence which converges to 0 and so ran Ug is not

o~ —~

closed. Therefore Ug is not right invertible, and hence 0 € o (U, ). Therefore o(U,) € (Uy).

3. The Inverse of an Invertible Weakly Subnormal Operator. It is well known that if
T is an invertible hyponormal operator then 7! is also hyponormal. One might ask if the inverse
of an invertible weakly subnormal operator is weakly subnormal. However, there exist invertible
subnormal operators whose inverses are neither 2-hyponormal nor weakly subnormal. In this section
we provide such an example. For T' € L(H), let N := ker [T*, T.

Proposition 3.1. Let T € L(H) be an invertilbe operator such that TNy C Np. If TNy C
‘JITfl then T‘J‘(T = ‘)‘(T.

Proof. Observe that
[0~ 771 = (T*T) [T, T(TT™) ™,

SO
Ny =TT Ny =T*TN7.
Then
Ny = (TT*) Ny
=T 177N
g T*—lmT71
=T '"T*TNy
= TNy C Ny,
from which it follows that T9tr = Dir. O

Corollary 3.2. Let T € L(H) be an invertible operator. If T and T~ are both 2-hyponormal or
weakly subnormal then T (ker[T™,T]) = ker[T™,T].

Proof. This follows from Proposition 3.1 and Lemma 1.3. O

We can now present the above mentioned example.

Example 3.3. Let 0 be a nonconstant inner function and put ¢ = 6 + 2. Then T}, is an invertible
subnormal operator (consequently 2-hyponormal and weakly subnormal). Since [T, T,| = [Ty, Tp] =
H?Hg, we have Ny, = ker [T}, T,] = ker Hy = 0 H?. But T, My, = Ty42(0H?) = 6(0 4 2)H?. Thus
if T,MN7, = Nr, then 6(0 + 2) = c0 for some constant ¢, and hence 6 + 2 = ¢, which contradicts the
assumption that ¢ is nonconstant. Therefore we must have that 7,97, # Nz, which by Corollary
3.2, implies that T, ! is neither 2-hyponormal nor weakly subnormal.
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