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Abstract. We consider the gap between weak subnormality and 2–hyponormality for Toeplitz operators.
In addition, we study the spectrum of the minimal partially normal extension of a weakly subnormal
operator, and the inverse of an invertible weakly subnormal operator.

Introduction. In [15], the notion of weak subnormality of an operator was introduced as
a generalization of subnormality, with an aim at providing a model for 2–hyponormal operators.
Weak subnormality was conceived as a notion at least as strong as hyponormality, and as a tool to
understand the gap between hyponormality and 2–hyponormality; however, it remains open whether
every 2–hyponormal operator is weakly subnormal. In this paper we explore weak subnormality of
operators.

In Section 1, we consider the gap between weak subnormality and 2–hyponormality for Toeplitz
operators. In Section 2, we consider the passage from the spectrum of a weakly subnormal operator
whose self-commutator has closed range to the spectrum of its minimal partially normal extension.
In Section 3, we provide an example of an invertible subnormal operator whose inverse is neither
2–hyponormal nor weakly subnormal.

Let H and K be complex Hilbert spaces, let L(H,K) be the set of bounded linear operators from
H to K and write L(H) := L(H,H). An operator T ∈ L(H) is said to be normal if T ∗T = TT ∗,
hyponormal if T ∗T ≥ TT ∗, and subnormal if T = N |H, where N is normal on some Hilbert space
K ⊇ H. Thus the operator T is subnormal if and only if there exist operators A and B such that
T̂ :=

(
T A

0 B

)
is normal, i.e.,

(0.1)


[T ∗, T ] := T ∗T − TT ∗ = AA∗

A∗T = BA∗

[B∗, B] +A∗A = 0.

An operator T ∈ L(H) is said to be weakly subnormal if there exist operators A ∈ L(H′,H) and
B ∈ L(H′) such that the first two conditions in (0.1) hold: [T ∗, T ] = AA∗ and A∗T = BA∗, or
equivalently, there is an extension T̂ of T such that

(0.2) T̂ ∗T̂ f = T̂ T̂ ∗f for all f ∈ H.
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The operator T̂ is said to be a partially normal extension (briefly, p.n.e.) of T . Note that the
condition (0.2) implies ||T̂ f || = ||T̂ ∗f || for all f ∈ H, and that if (0.2) holds for all f ∈ H ⊕ H′,
then T̂ becomes normal, so T is subnormal. We also say that T̂ ∈ L(K) is a minimal partially
normal extension (briefly, m.p.n.e.) of a weakly subnormal operator T if K has no proper subspace
containing H to which the restriction of T̂ is also a partially normal extension of T . It is known ([15,
Lemma 2.5 and Corollary 2.7]) that T̂ = m.p.n.e.(T ) if and only if K =

∨{
T̂ ∗nh : h ∈ H, n = 0, 1

}
and that m.p.n.e.(T ) is unique. Clearly,

(0.3) subnormal =⇒ weakly subnormal =⇒ hyponormal.

However the converse of both implications in (0.3) are not true in general (cf. [15, Examples 4.1
and 4.4]). On the other hand, it is easy to see that weak subnormality is invariant under unitary
equivalence, translation, and restriction.

An alternative description of subnormality is given by the Bram–Halmos criterion, which states
that an operator T is subnormal if and only if

∑
i,j(T

ixj , T
jxi) ≥ 0 for all finite collections

x0, x1, · · · , xk ∈ H ([2],[4, II.1.9]). It is easy to see that this is equivalent to the following posi-
tivity test:

(0.4)


I T ∗ . . . T ∗k

T T ∗T . . . T ∗kT
...

...
. . .

...
T k T ∗T k . . . T ∗kT k

 ≥ 0 (all k ≥ 1).

Condition (0.4) provides a measure of the gap between hyponormality and subnormality. In fact,
the positivity condition (0.4) for k = 1 is equivalent to the hyponormality of T , while subnormality
requires the validity of (0.4) for all k. If we denote by [A,B] := AB − BA the commutator of two
operators A and B, and if we define T to be k–hyponormal whenever the k × k operator matrix
Mk(T ) := ([T ∗j , T i])ki,j=1 is positive, or equivalently, the (k + 1)× (k + 1) operator matrix in (0.4)
is positive (via the operator version of Choleski’s Algorithm), then the Bram–Halmos criterion can
be rephrased as saying that T is subnormal if and only if T is k–hyponormal for every k ≥ 1 ([18]).
Recall ([1],[18],[5]) that T ∈ L(H) is said to be weakly k-hyponormal if

LS((T, T 2, · · · , T k)) :=


k∑
j=1

αjT
j : α = (α1, · · · , αk) ∈ Ck


consists entirely of hyponormal operators, or equivalently, Mk(T ) is weakly positive, i.e.,

(Mk(T )

 λ0x
...

λkx

 ,

 λ0x
...

λkx

) ≥ 0 for x ∈ H and λ0, · · · , λk ∈ C ([18]).

If k = 2 then T is said to be quadratically hyponormal. Similarly, T ∈ L(H) is said to be polynomially
hyponormal if p(T ) is hyponormal for every polynomial p ∈ C[z]. It is known that k-hyponormal ⇒
weakly k-hyponormal, but the converse is not true in general. The classes of (weakly) k-hyponormal
operators have been studied in an attempt to bridge the gap between subnormality and hyponormal-
ity ([8],[9],[10],[11],[12],[14],[17],[18],[19],[21]). The study of this gap has been successful for weighted
shifts.



3

1. The Gap between Weak Subnormality and 2–hyponormality for Toeplitz Op-
erators. Recall that the Hilbert space L2(T) has a canonical orthonormal basis given by the
trigonometric functions en(z) = zn, for all n ∈ Z, and that the Hardy space H2(T) is the closed
linear span of {en : n = 0, 1, · · · }. If P denotes the orthogonal projection from L2(T) to H2(T),
then for every ϕ ∈ L∞(T) the operator Tϕ defined by Tϕg := P (ϕg) is called the Toeplitz operator
with symbol ϕ. The gap between subnormality and 2–hyponormality for Toeplitz operators has been
considered in [14], [15], [16], and [13]. We would now like to consider whether there is a gap between
2–hyponormality and weak subnormality for Toeplitz operators. We answer this in the affirmative.
We first establish a theorem which provides an example of an operator for which hyponormality and
weak subnormality coincide.

Theorem 1.1. For 0 < α < 1, let T ≡Wβ be the weighted shift with weight sequence

(1.1.1) βn :=

 n∑
j=0

α2j

 1
2

.

If Sλ := T + λT ∗ (λ ∈ C), then
(i) Sλ is hyponormal if and only if |λ| ≤ 1;

(ii) Sλ is 2–hyponormal if and only if |λ| = 1 or |λ| ≤ α;
(iii) Sλ is weakly subnormal if and only if |λ| ≤ 1;
(iv) Sλ is weakly subnormal with hyponormal m.p.n.e.(T ) if and only if |λ| = 1 or |λ| ≤ α.

Proof. (i) is known [6, Theorem 2.3], and (ii) appears in [13, Theorem 5]. Thus it suffices to focus on
assertions (iii) and (iv). Since T +λT ∗ is unitarily equivalent to e

iθ
2 (T + |λ|T ∗) with |λ| = λ e−iθ, it

follows that T +λT ∗ is weakly subnormal if and only if T + |λ|T ∗ is weakly subnormal. Thus we can
assume λ ≥ 0. If λ = 0, 1 then evidently Sλ is weakly subnormal because T is subnormal (cf. [7]).
Thus we assume 0 < λ < 1. Then a straightforward calculation shows that [S∗λ, Sλ] = (1 − λ2)D,
where D := diag (α2k)∞k=0. Put Aλ := [S∗λ, Sλ]

1
2 and define Bλ := αT + λ

α T
∗. Then we have

A∗λSλ = BλA
∗
λ. This implies that

(1.1.2) Ŝλ :=
(
Sλ Aλ
0 Bλ

)
is a partially normal extension of Sλ, which proves (iii). Towards (iv), observe that Ŝλ in (1.1.2) is
the minimal partially normal extension of Sλ because∨

{Ŝ∗nλ h : h ∈ H, n = 0, 1} = `2 ⊕ `2.

For the hyponormality of Ŝλ we compute

[Ŝ∗λ, Ŝλ] = 0⊕ ([B∗λ, Bλ] +A∗λAλ)

= 0⊕
(

(α2 − λ2

α2 )D + (1− λ2)D
)

= 0⊕
(

(1 + α2)− (1 +
1
α2 )λ2

)
D.

Thus Ŝλ is hyponormal if and only if (1 + 1
α2 )λ2 ≤ 1 + α2, or λ ≤ α. This proves (iv). �

We now have:



4

Corollary 1.2. Let 0 < α < 1 and let ψ be the conformal map of the unit disk onto the interior of
the ellipse with vertices ±(1 + α)i and passing through ±(1 − α). Let ϕλ = ψ + λψ̄ and let Tϕλ be
the corresponding Toeplitz operator on H2. Then

(i) Tϕλ is hyponormal if and only if λ is in the closed unit disk |λ| ≤ 1.
(ii) Tϕλ is 2–hyponormal if and only if λ is in the unit circle |λ| = 1 or in the closed disk∣∣∣λ− α

1+α2

∣∣∣ ≤ α
1+α2 .

(iii) Tϕλ is weakly subnormal if and only if λ is in the closed unit disk |λ| ≤ 1.

Proof. (i) is known [6, Theorem 2.4] and (ii) appears in [13, Theorem 6]. For (iii), recall that Tϕα
is unitarily equivalent to (1 − α2)

1
2T ([7]), where T is the weighted shift in Theorem 1.1. Thus Tψ

is unitarily equivalent to (1− α2)
1
2 (T − αT ∗), so Tϕλ is unitarily equivalent to

(1− α2)
1
2 (1− λα)

(
T +

λ− α
1− λα

T ∗
)
.

Thus by Theorem 1.1, Tϕλ is weakly subnormal if and only if
∣∣∣ λ−α1−λα

∣∣∣ ≤ 1, or |λ| ≤ 1. �

One might guess that the minimal partially normal extension of a weakly subnormal operator T
is always hyponormal. Theorem 1.1 shows, however, that this is not the case.

Question A. Is every 2–hyponormal operator weakly subnormal ? If so, does it follow that its
minimal partially normal extension is hyponormal ?

Theorem 1.1 provides evidence that the answer to Question A may be affirmative.

We now give a strategy to answer Question A in the affirmative.
First of all we recall two lemmas.

Lemma 1.3 ([15, Lemma 2.2 and Corollary 2.3]). If T ∈ L(H) is weakly subnormal or 2–
hyponormal then T

(
ker [T ∗, T ]

)
⊆ ker [T ∗, T ].

Lemma 1.4([15, Lemmas 2.1 and 2.8]). If T ∈ L(H) is weakly subnormal then T has a partially
normal extension T̂ on K of the form

(1.4.1) T̂ =
(
T [T ∗, T ]

1
2

0 B

)
on K := H⊕H.

Moreover, a minimal partially normal extension of T ≡
(
T1 T2

0 T3

)
: ker [T ∗, T ] ⊕ cl(ran [T ∗, T ]) →

ker [T ∗, T ]⊕ cl(ran [T ∗, T ]) can be obtained as

(1.4.2)

T1 T2 0
0 T3 [T ∗, T ]

1
2
0

0 0 PBP

 :

 ker [T ∗, T ]
cl(ran [T ∗, T ])
cl
(
ran [T ∗, T ]

)
 −→

 ker [T ∗, T ]
cl(ran [T ∗, T ])
cl
(
ran [T ∗, T ]

)
 ,

where [T ∗, T ]
1
2
0 denotes the restriction of [T ∗, T ]

1
2 to cl

(
ran [T ∗, T ]

)
and P is the projection of H

onto cl
(
ran [T ∗, T ]

)
.
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Proposition 1.5. Let P, T ∈ L(H), let P be positive and one-one, and let P−1 denote its linear
inverse (possibly unbounded). Then

(1.5.1) P 2TP−2 bounded =⇒ PTP−1 bounded.

Proof. Without loss of generality we may assume ||P || = 1, and that P does not have closed range.
Let E be the spectral measure for P on the Borel subsets of σ(P ) such that P =

∫
t dE(t). For each

n ∈ Z+, define

Gn := σ(P ) ∩ (
1

n+ 1
,

1
n

].

Then Gn 6= ∅ for infinitely many values of n. There is no loss in simplifying the notation and
assuming that Gn 6= ∅ for all n ∈ Z+. Write Hn := E(Gn)H for each n ∈ Z+. Then Pn := P |Hn is
invertible for each n ∈ Z+. Thus since σ(P ) = ∪∞n=1Gn ∪ {0}, it follows that

∑∞
n=1E(Gn) = I. Now

assume that PTP−1 is not bounded. Thus there exists a sequence {en}n of unit vectors en ∈ Hn
for each n ∈ Z+ such that ||PTP−1en|| → ∞ as n → ∞. Since

∑∞
n=1E(Gn) = I, we can see that

H = {
∑∞
j=1 αjhj : (αj)j ∈ `2, hj ∈ Hj , ||hj || = 1}. Thus we can write, for each n ∈ Z+,

TP−1en ≡
∞∑
k=1

α
(n)
k h

(n)
k where h(n)

k ∈ Hk with ||h(n)
k || = 1.

Then ||
∑∞
k=1 α

(n)
k P (h(n)

k )|| = ||PTP−1en|| → ∞ as n → ∞. Note that {P (h(n)
k )}k forms an

orthogonal sequence. Therefore ||
∑∞
k=1 α

(n)
k P (h(n)

k )||2 =
∑∞
k=1 |α

(n)
k |2 ||P (h(n)

k )||2 → ∞ as n → ∞.
Also note that ||P (h(n)

k )||2 ≤ 1
k2 . Thus

∑∞
k=1(|α(n)

k |/k)2 →∞ as n→∞, so that
∑∞
k=1(|α(n)

k |/(k +
1))2 →∞ as n→∞. Since the Hn’s are reducing subspace for P , we have fn := Pen ∈ Hn for each
n ∈ Z+. Thus

P 2TP−2fn = P 2TP−1en = P (
∞∑
k=1

α
(n)
k P (h(n)

k )) =
∞∑
k=1

α
(n)
k P 2(h(n)

k ),

so

||P 2TP−2fn||2 =
∞∑
k=1

|α(n)
k |

2||P 2(h(n)
k )||2 ≥

∞∑
k=1

|α(n)
k |2

(k + 1)4

since σ(P |Hk) ⊂ ( 1
k+1 ,

1
k ]. Observe ||fn|| = ||Pen|| ≤ 1

n and hence ||nfn|| ≤ 1. But

||P 2TP−2(nfn)||2 ≥
∞∑
k=1

n2 |α(n)
k |2

(k + 1)4 = n2
∞∑
k=1

|α(n)
k |2

(k + 1)4

≥ n2
n−1∑
k=1

|α(n)
k |2

(k + 1)4

≥
n−1∑
k=1

(
|α(n)
k |

k + 1

)2

→∞ as n→∞,

where the last assertion follows from the observation that

(1.5.2)
n−1∑
k=1

|α(n)
k |

2 ||P (h(n)
k )||2 →∞ as n→∞.
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To see (1.5.2) we assume to the contrary that (1.5.2) does not hold. Then, passing to a subse-
quence, there exists M > 0 such that

∑n
k=1 |α

(n)
k |2 ||P (h(n)

k )||2 ≤ M for each n ∈ Z+, and so∑∞
k=n+1 |α

(n)
k |2 ||P (h(n)

k )||2 →∞ as n→∞. But since
∑∞
k=1 |α

(n)
k |2 = ||TP−1en||2 ≤ (n+1)2 ||T ||2,

it follows that
∞∑

k=n+1

|α(n)
k |

2 ||P (h(n)
k )||2 ≤

∞∑
k=n+1

|α(n)
k |2

k2 ≤
∞∑

k=n+1

|α(n)
k |2

(n+ 1)2 ≤ ||T ||
2,

which is a contradiction. This proves (1.5.2) and completes the proof of (1.5.1). �

The converse of (1.5.1) is not true in general. For example, let T be the Hankel operator Hϕ

on H2(T) with symbol ϕ(z) =
∑∞
n=1

z−n

n2 and let P be the diagonal operator on H2(T) defined by
Pzn = zn

n+1 . Then a straightforward calculation shows that the first row of the matrix of P 2TP−2 is
(1, 1, 1, · · · ), which shows that P 2TP−2 is not bounded. On the other hand, the matrix of TP−1 is
dominated by the matrix of Hankel operator Tψ with symbol ψ(z) =

∑∞
n=1

z−n

n , which shows that
TP−1 is bounded and so is PTP−1.

We would like to formulate:

Conjecture B. Let T ∈ L(H) and let A := [T ∗, T ]
1
2 . Suppose P is the projection of H onto

cl (ranA) and write A0 := A|cl (ranA). If T is 2–hyponormal then A2
0PTPA

−2
0 is bounded.

If Conjecture B is true then the answer to Question A would be affirmative. The reason is as
follows. If Conjecture B is true then by Proposition 1.5, A0PTPA

−1
0 is also bounded. Thus if

we write T =
(
T1 T2

0 T3

)
on H ≡ kerA ⊕ cl (ranA) then since by (1.4.2), A0T3 = PBPA0, i.e.,

PBP = A0PTPA
−1
0 , it follows that

(1.5.3) T̂ =

T1 T2 0
0 T3 A0
0 0 A0PTPA

−1
0

 : H⊕ cl (ranA) −→ H⊕ cl (ranA)

is a partially normal extension of T .

The following is a more simplified conjecture:

Conjecture C. If [T ∗, T ] has the linear inverse [T ∗, T ]−1 then

T is 2–hyponormal =⇒ [T ∗, T ]T [T ∗, T ]−1 is bounded.

2. The Spectrum of m.p.n.e. (T ) for T Weakly Subnormal. If T ∈ L(H) write σ(T ) for
the spectrum of T . We also write ∂K and ηK for the topological boundary and the polynomially
convex hull of the compact set K ⊆ C, respectively. It is well-known that if T is a subnormal operator
and T̂ is a minimal normal extension of T then σ(T̂ ) ⊆ σ(T ). It was also known ([15, Theorem 1.2])
that if T is a weakly subnormal unilateral weighted shift and T̂ = m.n.p.e. (T ) then σ(T ) = σ(T̂ ).
However we do not know yet if this result holds for general weakly subnormal operators. In this
section we consider the relationship between the spectrum of a weakly subnormal operator T and
the spectrum of its minimal partially normal extension T̂ . We let A4B := (A \B)∪ (B \A) denote
the symmetric difference of the sets A and B.
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Lemma 2.1 ([20, Theorem 2, Corollaries 6 and 7]. Let

MC :=
(
A C
0 B

)
: H⊕K → H⊕K.

Then MC is invertible for some C ∈ L(K,H) if and only if
(i) A is left invertible;

(ii) B is right invertible;
(iii) (ranA)⊥ ∼= kerB.

Moreover we have
η(σ(MC)) = η(σ(A) ∪ σ(B)) for every C ∈ L(K,H).

In particular, the passage from σ(MC) to σ(A) ∪ σ(B) consists of filling in certain holes in σ(MC)
which happen to be subsets of σ(A) ∩ σ(B).

We have:

Theorem 2.2. If T ∈ L(H) is a weakly subnormal operator whose self-commutator has closed range
and T̂ = m.n.p.e. (T ) then η σ(T ) = η σ(T̂ ).

Proof. Since by assumption ran [T ∗, T ] is closed and T (ker [T ∗, T ]) ⊆ ker [T ∗, T ], we can write

T =
(
T1 T2
0 T3

)
:
(

ker [T ∗, T ]
ran [T ∗, T ]

)
→
(

ker [T ∗, T ]
ran [T ∗, T ]

)
.

Since minimal partially normal extensions of T are unitarily equivalent ([15, Corollary 2.7]) we can
write T̂ as in (1.5.3):

(2.2.1) T̂ =

T1 T2 0
0 T3 A
0 0 AT3A

−1

 :

 ker [T ∗, T ]
ran [T ∗, T ]
ran [T ∗, T ]

→
 ker [T ∗, T ]

ran [T ∗, T ]
ran [T ∗, T ]

 ,

where A := [T ∗, T ]
1
2
0 and in particular A is invertible by assumption. Using Lemma 2.1 we obtain

η σ(T̂ ) = η(σ(T ) ∪ σ(AT3A
−1)) = η(σ(T ) ∪ σ(T3)) = η σ(T ).

�

The following theorem provides the passage from σ(T ) to σ(T̂ ) under the assumption that [T ∗, T ]
has closed range.

Theorem 2.3. Let T ∈ L(H) be a weakly subnormal operator whose self-commutator has closed
range and T̂ = m.p.n.e. (T ). If we write

T =
(
T1 T2
0 T3

)
:
(

ker [T ∗, T ]
ran [T ∗, T ]

)
→
(

ker [T ∗, T ]
ran [T ∗, T ]

)
,

then σ(T )4σ(T̂ ) is the union of certain holes in σ(T ) or σ(T̂ ), which happen to be subsets of
σ(T1) ∩ σ(T3). In particular, if T has finite rank self-commutator then σ(T ) = σ(T̂ ).

Proof. Write T̂ as in (2.2.1):

T̂ =

T1 T2 0
0 T3 A
0 0 AT3A

−1

 .
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Evidently,

(2.3.1) σ(T̂ ) ⊆ σ(T1) ∪ σ(T3) ∪ σ(AT3A
−1) = σ(T1) ∪ σ(T3).

By Theorem 2.2 we can see that

(2.3.2) ∂ (σ(T1) ∪ σ(T3)) = ∂(σ(T ) ∪ σ(T3)) = ∂(σ(T ) ∪ σ(AT3A
−1)) ⊆ ∂ σ(T̂ ).

We now claim that

(2.3.3) σ(T )4σ(T̂ ) ⊆ σ(T1) ∩ σ(T3).

Towards (2.3.3) we first prove that σ(T ) \ σ(T̂ ) ⊆ σ(T1) ∩ σ(T3). Suppose that λ ∈ σ(T ) \ σ(T̂ ).
Assume to the contrary that λ /∈ σ(T1)∩σ(T3). If T1−λ is invertible then, since T̂ −λ is invertible,
it follows from Lemma 2.1 that

(
T3−λ A

0 A(T3−λ)A−1

)
is invertible, and so T3 − λ is left invertible and

A(T3 − λ)A−1 is right invertible, which implies that T3 − λ is invertible and hence so is T − λ,
a contradiction. If instead T3 − λ is invertible then

(
T3−λ A

0 A(T3−λ)A−1

)
is also invertible, so that

Lemma 2.1 again shows that T1 − λ is invertible and hence so is T − λ, a contradiction.
We next prove that σ(T̂ ) \ σ(T ) ⊆ σ(T1) ∩ σ(T3). Suppose that λ ∈ σ(T̂ ) \ σ(T ). Assume that

λ /∈ σ(T1) ∩ σ(T3). Thus T1 − λ or T3 − λ is invertible. But since T − λ is invertible it follows that
T1 − λ and T3 − λ are both invertible, and hence so is T̂ − λ, a contradiction. This proves (2.3.3).

On the other hand, Lemma 2.1 shows that the passage from σ(T ) to σ(T1) ∪ σ(T3) is the filling
of certain holes in σ(T ), which happen to be subsets of σ(T1)∩ σ(T3). Moreover, by (2.3.1), (2.3.2),
and (2.3.3), the passage from σ(T̂ ) to σ(T1) ∪ σ(T3) is the filling of certain holes in σ(T1) ∪ σ(T3),
which happen to be subsets of σ(T1) ∩ σ(T3). This proves the first assertion. The second assertion
follows from the first together with the observation that if σ(T1)∩ σ(T3) has no interior points then
σ(T ) = σ(T̂ ) and that if rank [T ∗, T ] < ∞ then ran [T ∗, T ] is finite dimensional and hence T3 is a
finite dimensional operator. �

In [15, Lemma 2.1] it was shown that if T is a 2–hyponormal operator whose self-commutator
has closed range then T is weakly subnormal. Thus Theorem 2.2 and Theorem 2.3 also hold for
2–hyponormal operators.

In general we need not expect that if T is a weakly subnormal operator and T̂ = m.p.n.e (T ) then
σ(T̂ ) ⊆ σ(T ). To see this we use the bilateral weighted shift. Let {en}+∞n=−∞ denote the canonical
orthonormal basis for `2(Z). For a bounded sequence of positive numbers α ≡ {αn}+∞n=−∞, let Uα be
the bilateral weighted shift on `2(Z) defined by Uαen := αnen+1 (−∞ < n < +∞). Then we have:

Proposition 2.4 (Weak Subnormality of Bilateral Weighted Shifts). Let Uα be the bilateral
weighted shift with strictly increasing weight sequence α ≡ {αn}+∞n=−∞. Then

(2.4.1) Uα is weakly subnormal ⇐⇒ sup
n∈Z

{
α2
n+1 − α2

n

α2
n − α2

n−1

}
<∞.

Proof. If Uα is weakly subnormal then by Lemma 1.4, Uα has a partially normal extension Ûα of
the form

(2.4.2) Ûα =
(
Uα [U∗α, Uα]

1
2

0 B

)
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on `2 ⊕ `2, where [U∗α, Uα]
1
2Uα = B [U∗α, Uα]

1
2 . Since [U∗α, Uα]

1
2 is diagonal it follows that B is a

bilateral weighted shift. Write B := Uβ , where β ≡ {βn}∞n=−∞. To determine Uβ , it suffices to
check the (n+ 1, n)–entries (n ∈ Z):(

[U∗α, Uα]
1
2Uαen, en+1

)
=
(
Uβ [U∗α, Uα]

1
2 en, en+1

)
,

which implies

(2.4.3) αn

√
α2
n+1 − α2

n = βn

√
α2
n − α2

n−1,

so

βn = αn

√
α2
n+1 − α2

n

α2
n − α2

n−1
.

But since Uβ is bounded it follows that sup βn < ∞ and hence sup α2
n+1−α

2
n

α2
n−α2

n−1
< ∞. This proves the

forward implication in (2.4.1). The backward implication follows at once from the observation that
Ûα in (2.4.2) is a partially normal extension of Uα. �

Example 2.5. Let Uα be the bilateral weighted shift with weight sequence given by

αn :=

 (
∑n
k=0 δk)

1
2 (n ≥ 0)(

δ0 −
∑−n
k=1 δ−k

) 1
2

(n < 0),

where
δ0 = 2, δk =

1
2k

(k ≥ 1), and

{δ−k}∞k=1 :
1
22 ,

1
23 ,

1
24 ,

1
25 ,

1
22 ,

1
23 ,

1
24 ,

1
25 ,

1
26 ,

1
27 ,

1
23 ,

1
24 , · · · ,

1
29 ,

1
24 ,

1
25 , · · · ,

1
211 , · · · · · · .

Note that α is strictly increasing, and so Uα is hyponormal. A straightforward calculation shows
that

lim
n→∞

αn =
√

3 and lim
n→−∞

αn =

√
13
24
,

which implies that σ(Uα) = {z ∈ C :
√

13
24 ≤ |z| ≤

√
3} (cf. [4, Theorem II.6.7]). Also note that

δn+1 = α2
n+1 − α2

n (N ∈ Z) and that supn∈Z+

δn+1
δn

= 1
2 and supn∈Z−

δn+1
δn

= 2, which together with

Proposition 2.4 implies that Uα is weakly subnormal. On the other hand, if Ûα = m.p.n.e. (Uα)
then, by the proof of Proposition 2.4, Ûα is given by

Ûα =
(
Uα [U∗α, Uα]

1
2

0 Uβ

)
,

where Uβ is the bilateral weighted shift with the weight sequence

βn := αn

√
δn+1

δn
(n ∈ Z).
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Observe that the sequence
{
δn+1
δn

}
contains a subsequence which converges to 0 and so ranUβ is not

closed. Therefore Uβ is not right invertible, and hence 0 ∈ σ(Ûα). Therefore σ(Ûα) * σ(Uα).

3. The Inverse of an Invertible Weakly Subnormal Operator. It is well known that if
T is an invertible hyponormal operator then T−1 is also hyponormal. One might ask if the inverse
of an invertible weakly subnormal operator is weakly subnormal. However, there exist invertible
subnormal operators whose inverses are neither 2-hyponormal nor weakly subnormal. In this section
we provide such an example. For T ∈ L(H), let NT := ker [T ∗, T ].

Proposition 3.1. Let T ∈ L(H) be an invertilbe operator such that TNT ⊆ NT . If T−1NT−1 ⊆
NT−1 then TNT = NT .

Proof. Observe that
[T−1∗, T−1] = (T ∗T )−1[T ∗, T ](TT ∗)−1,

so
NT−1 = TT ∗NT = T ∗TNT .

Then

NT = (TT ∗)−1
NT−1

= T ∗−1T−1
NT−1

⊆ T ∗−1
NT−1

= T ∗−1T ∗TNT

= TNT ⊆ NT ,

from which it follows that TNT = NT . �

Corollary 3.2. Let T ∈ L(H) be an invertible operator. If T and T−1 are both 2-hyponormal or
weakly subnormal then T (ker [T ∗, T ]) = ker [T ∗, T ].

Proof. This follows from Proposition 3.1 and Lemma 1.3. �

We can now present the above mentioned example.

Example 3.3. Let θ be a nonconstant inner function and put ϕ = θ + 2. Then Tϕ is an invertible
subnormal operator (consequently 2-hyponormal and weakly subnormal). Since [T ∗ϕ, Tϕ] = [T ∗θ , Tθ] =
H∗
θ̄
Hθ̄, we have NTϕ ≡ ker [T ∗ϕ, Tϕ] = kerHθ̄ = θH2. But TϕNTϕ = Tθ+2(θH2) = θ(θ + 2)H2. Thus

if TϕNTϕ = NTϕ then θ(θ+ 2) = c θ for some constant c, and hence θ+ 2 = c, which contradicts the
assumption that θ is nonconstant. Therefore we must have that TϕNTϕ 6= NTϕ , which by Corollary
3.2, implies that T−1

ϕ is neither 2-hyponormal nor weakly subnormal.
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