WEAK SUBNORMALITY OF OPERATORS

By
Raúl E. Curto, In Sung Hwang and Woo Young lee

Abstract

We consider the gap between weak subnormality and 2-hyponormality for Toeplitz operators. In addition, we study the spectrum of the minimal partially normal extension of a weakly subnormal operator, and the inverse of an invertible weakly subnormal operator.

Introduction. In [15], the notion of weak subnormality of an operator was introduced as a generalization of subnormality, with an aim at providing a model for 2-hyponormal operators. Weak subnormality was conceived as a notion at least as strong as hyponormality, and as a tool to understand the gap between hyponormality and 2-hyponormality; however, it remains open whether every 2 -hyponormal operator is weakly subnormal. In this paper we explore weak subnormality of operators.

In Section 1, we consider the gap between weak subnormality and 2-hyponormality for Toeplitz operators. In Section 2, we consider the passage from the spectrum of a weakly subnormal operator whose self-commutator has closed range to the spectrum of its minimal partially normal extension. In Section 3, we provide an example of an invertible subnormal operator whose inverse is neither 2 -hyponormal nor weakly subnormal.

Let \mathcal{H} and \mathcal{K} be complex Hilbert spaces, let $\mathcal{L}(\mathcal{H}, \mathcal{K})$ be the set of bounded linear operators from \mathcal{H} to \mathcal{K} and write $\mathcal{L}(\mathcal{H}):=\mathcal{L}(\mathcal{H}, \mathcal{H})$. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be normal if $T^{*} T=T T^{*}$, hyponormal if $T^{*} T \geq T T^{*}$, and subnormal if $T=\left.N\right|_{\mathcal{H}}$, where N is normal on some Hilbert space $\mathcal{K} \supseteq \mathcal{H}$. Thus the operator T is subnormal if and only if there exist operators A and B such that $\widehat{T}:=\left(\begin{array}{cc}T & A \\ 0 & B\end{array}\right)$ is normal, i.e.,

$$
\left\{\begin{array}{l}
{\left[T^{*}, T\right]:=T^{*} T-T T^{*}=A A^{*}} \tag{0.1}\\
A^{*} T=B A^{*} \\
{\left[B^{*}, B\right]+A^{*} A=0}
\end{array}\right.
$$

An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be weakly subnormal if there exist operators $A \in \mathcal{L}\left(\mathcal{H}^{\prime}, \mathcal{H}\right)$ and $B \in \mathcal{L}\left(\mathcal{H}^{\prime}\right)$ such that the first two conditions in (0.1) hold: $\left[T^{*}, T\right]=A A^{*}$ and $A^{*} T=B A^{*}$, or equivalently, there is an extension \widehat{T} of T such that

$$
\begin{equation*}
\widehat{T}^{*} \widehat{T} f=\widehat{T} \widehat{T}^{*} f \quad \text { for all } f \in \mathcal{H} \tag{0.2}
\end{equation*}
$$

[^0]The operator \widehat{T} is said to be a partially normal extension (briefly, p.n.e.) of T. Note that the condition (0.2) implies $\|\widehat{T} f\|=\left\|\widehat{T}^{*} f\right\|$ for all $f \in \mathcal{H}$, and that if (0.2) holds for all $f \in \mathcal{H} \oplus \mathcal{H}^{\prime}$, then \widehat{T} becomes normal, so T is subnormal. We also say that $\widehat{T} \in \mathcal{L}(\mathcal{K})$ is a minimal partially normal extension (briefly, m.p.n.e.) of a weakly subnormal operator T if \mathcal{K} has no proper subspace containing \mathcal{H} to which the restriction of \widehat{T} is also a partially normal extension of T. It is known ([15, Lemma 2.5 and Corollary 2.7]) that $\widehat{T}=$ m.p.n.e. (T) if and only if $\mathcal{K}=\bigvee\left\{\widehat{T}^{* n} h: h \in \mathcal{H}, n=0,1\right\}$ and that m.p.n.e. (T) is unique. Clearly,

$$
\begin{equation*}
\text { subnormal } \Longrightarrow \text { weakly subnormal } \Longrightarrow \text { hyponormal. } \tag{0.3}
\end{equation*}
$$

However the converse of both implications in (0.3) are not true in general (cf. [15, Examples 4.1 and 4.4]). On the other hand, it is easy to see that weak subnormality is invariant under unitary equivalence, translation, and restriction.

An alternative description of subnormality is given by the Bram-Halmos criterion, which states that an operator T is subnormal if and only if $\sum_{i, j}\left(T^{i} x_{j}, T^{j} x_{i}\right) \geq 0$ for all finite collections $x_{0}, x_{1}, \cdots, x_{k} \in \mathcal{H}([2],[4$, II.1.9]). It is easy to see that this is equivalent to the following positivity test:

$$
\left(\begin{array}{cccc}
I & T^{*} & \ldots & T^{* k} \tag{0.4}\\
T & T^{*} T & \ldots & T^{* k} T \\
\vdots & \vdots & \ddots & \vdots \\
T^{k} & T^{*} T^{k} & \ldots & T^{* k} T^{k}
\end{array}\right) \geq 0 \quad(\text { all } k \geq 1)
$$

Condition (0.4) provides a measure of the gap between hyponormality and subnormality. In fact, the positivity condition (0.4) for $k=1$ is equivalent to the hyponormality of T, while subnormality requires the validity of (0.4) for all k. If we denote by $[A, B]:=A B-B A$ the commutator of two operators A and B, and if we define T to be k-hyponormal whenever the $k \times k$ operator matrix $M_{k}(T):=\left(\left[T^{* j}, T^{i}\right]\right)_{i, j=1}^{k}$ is positive, or equivalently, the $(k+1) \times(k+1)$ operator matrix in (0.4) is positive (via the operator version of Choleski's Algorithm), then the Bram-Halmos criterion can be rephrased as saying that T is subnormal if and only if T is k-hyponormal for every $k \geq 1$ ([18]). Recall ([1],[18],[5]) that $T \in \mathcal{L}(\mathcal{H})$ is said to be weakly k-hyponormal if

$$
L S\left(\left(T, T^{2}, \cdots, T^{k}\right)\right):=\left\{\sum_{j=1}^{k} \alpha_{j} T^{j}: \alpha=\left(\alpha_{1}, \cdots, \alpha_{k}\right) \in \mathbb{C}^{k}\right\}
$$

consists entirely of hyponormal operators, or equivalently, $M_{k}(T)$ is weakly positive, i.e.,

$$
\left(M_{k}(T)\left(\begin{array}{c}
\lambda_{0} x \\
\vdots \\
\lambda_{k} x
\end{array}\right),\left(\begin{array}{c}
\lambda_{0} x \\
\vdots \\
\lambda_{k} x
\end{array}\right)\right) \geq 0 \text { for } x \in \mathcal{H} \text { and } \lambda_{0}, \cdots, \lambda_{k} \in \mathbb{C}
$$

If $k=2$ then T is said to be quadratically hyponormal. Similarly, $T \in \mathcal{L}(\mathcal{H})$ is said to be polynomially hyponormal if $p(T)$ is hyponormal for every polynomial $p \in \mathbb{C}[z]$. It is known that k-hyponormal \Rightarrow weakly k-hyponormal, but the converse is not true in general. The classes of (weakly) k-hyponormal operators have been studied in an attempt to bridge the gap between subnormality and hyponormality $([8],[9],[10],[11],[12],[14],[17],[18],[19],[21])$. The study of this gap has been successful for weighted shifts.

1. The Gap between Weak Subnormality and 2 -hyponormality for Toeplitz Operators. Recall that the Hilbert space $L^{2}(\mathbb{T})$ has a canonical orthonormal basis given by the trigonometric functions $e_{n}(z)=z^{n}$, for all $n \in \mathbb{Z}$, and that the Hardy space $H^{2}(\mathbb{T})$ is the closed linear span of $\left\{e_{n}: n=0,1, \cdots\right\}$. If P denotes the orthogonal projection from $L^{2}(\mathbb{T})$ to $H^{2}(\mathbb{T})$, then for every $\varphi \in L^{\infty}(\mathbb{T})$ the operator T_{φ} defined by $T_{\varphi} g:=P(\varphi g)$ is called the Toeplitz operator with symbol φ. The gap between subnormality and 2 -hyponormality for Toeplitz operators has been considered in [14], [15], [16], and [13]. We would now like to consider whether there is a gap between 2-hyponormality and weak subnormality for Toeplitz operators. We answer this in the affirmative. We first establish a theorem which provides an example of an operator for which hyponormality and weak subnormality coincide.
Theorem 1.1. For $0<\alpha<1$, let $T \equiv W_{\beta}$ be the weighted shift with weight sequence

$$
\begin{equation*}
\beta_{n}:=\left(\sum_{j=0}^{n} \alpha^{2 j}\right)^{\frac{1}{2}} \tag{1.1.1}
\end{equation*}
$$

If $S_{\lambda}:=T+\lambda T^{*}(\lambda \in \mathbb{C})$, then
(i) S_{λ} is hyponormal if and only if $|\lambda| \leq 1$;
(ii) S_{λ} is 2-hyponormal if and only if $|\lambda|=1$ or $|\lambda| \leq \alpha$;
(iii) S_{λ} is weakly subnormal if and only if $|\lambda| \leq 1$;
(iv) S_{λ} is weakly subnormal with hyponormal m.p.n.e.(T) if and only if $|\lambda|=1$ or $|\lambda| \leq \alpha$.

Proof. (i) is known [6, Theorem 2.3], and (ii) appears in [13, Theorem 5]. Thus it suffices to focus on assertions (iii) and (iv). Since $T+\lambda T^{*}$ is unitarily equivalent to $e^{\frac{i \theta}{2}}\left(T+|\lambda| T^{*}\right)$ with $|\lambda|=\lambda e^{-i \theta}$, it follows that $T+\lambda T^{*}$ is weakly subnormal if and only if $T+|\lambda| T^{*}$ is weakly subnormal. Thus we can assume $\lambda \geq 0$. If $\lambda=0,1$ then evidently S_{λ} is weakly subnormal because T is subnormal (cf. [7]). Thus we assume $0<\lambda<1$. Then a straightforward calculation shows that $\left[S_{\lambda}^{*}, S_{\lambda}\right]=\left(1-\lambda^{2}\right) D$, where $D:=\operatorname{diag}\left(\alpha^{2 k}\right)_{k=0}^{\infty}$. Put $A_{\lambda}:=\left[S_{\lambda}^{*}, S_{\lambda}\right]^{\frac{1}{2}}$ and define $B_{\lambda}:=\alpha T+\frac{\lambda}{\alpha} T^{*}$. Then we have $A_{\lambda}^{*} S_{\lambda}=B_{\lambda} A_{\lambda}^{*}$. This implies that

$$
\widehat{S}_{\lambda}:=\left(\begin{array}{cc}
S_{\lambda} & A_{\lambda} \tag{1.1.2}\\
0 & B_{\lambda}
\end{array}\right)
$$

is a partially normal extension of S_{λ}, which proves (iii). Towards (iv), observe that \widehat{S}_{λ} in (1.1.2) is the minimal partially normal extension of S_{λ} because

$$
\bigvee\left\{\widehat{S}_{\lambda}^{* n} h: h \in \mathcal{H}, n=0,1\right\}=\ell_{2} \oplus \ell_{2}
$$

For the hyponormality of \widehat{S}_{λ} we compute

$$
\begin{aligned}
{\left[\widehat{S}_{\lambda}^{*}, \widehat{S}_{\lambda}\right] } & =0 \oplus\left(\left[B_{\lambda}^{*}, B_{\lambda}\right]+A_{\lambda}^{*} A_{\lambda}\right) \\
& =0 \oplus\left(\left(\alpha^{2}-\frac{\lambda^{2}}{\alpha^{2}}\right) D+\left(1-\lambda^{2}\right) D\right) \\
& =0 \oplus\left(\left(1+\alpha^{2}\right)-\left(1+\frac{1}{\alpha^{2}}\right) \lambda^{2}\right) D
\end{aligned}
$$

Thus \widehat{S}_{λ} is hyponormal if and only if $\left(1+\frac{1}{\alpha^{2}}\right) \lambda^{2} \leq 1+\alpha^{2}$, or $\lambda \leq \alpha$. This proves (iv).
We now have:

Corollary 1.2. Let $0<\alpha<1$ and let ψ be the conformal map of the unit disk onto the interior of the ellipse with vertices $\pm(1+\alpha) i$ and passing through $\pm(1-\alpha)$. Let $\varphi_{\lambda}=\psi+\lambda \bar{\psi}$ and let $T_{\varphi_{\lambda}}$ be the corresponding Toeplitz operator on H^{2}. Then
(i) $T_{\varphi_{\lambda}}$ is hyponormal if and only if λ is in the closed unit disk $|\lambda| \leq 1$.
(ii) $T_{\varphi_{\lambda}}$ is 2-hyponormal if and only if λ is in the unit circle $|\lambda|=1$ or in the closed disk $\left|\lambda-\frac{\alpha}{1+\alpha^{2}}\right| \leq \frac{\alpha}{1+\alpha^{2}}$.
(iii) $T_{\varphi_{\lambda}}$ is weakly subnormal if and only if λ is in the closed unit disk $|\lambda| \leq 1$.

Proof. (i) is known [6, Theorem 2.4] and (ii) appears in [13, Theorem 6]. For (iii), recall that $T_{\varphi_{\alpha}}$ is unitarily equivalent to $\left(1-\alpha^{2}\right)^{\frac{1}{2}} T([7])$, where T is the weighted shift in Theorem 1.1. Thus T_{ψ} is unitarily equivalent to $\left(1-\alpha^{2}\right)^{\frac{1}{2}}\left(T-\alpha T^{*}\right)$, so $T_{\varphi_{\lambda}}$ is unitarily equivalent to

$$
\left(1-\alpha^{2}\right)^{\frac{1}{2}}(1-\lambda \alpha)\left(T+\frac{\lambda-\alpha}{1-\lambda \alpha} T^{*}\right)
$$

Thus by Theorem 1.1, $T_{\varphi_{\lambda}}$ is weakly subnormal if and only if $\left|\frac{\lambda-\alpha}{1-\lambda \alpha}\right| \leq 1$, or $|\lambda| \leq 1$.
One might guess that the minimal partially normal extension of a weakly subnormal operator T is always hyponormal. Theorem 1.1 shows, however, that this is not the case.

Question A. Is every 2-hyponormal operator weakly subnormal? If so, does it follow that its minimal partially normal extension is hyponormal?

Theorem 1.1 provides evidence that the answer to Question A may be affirmative.
We now give a strategy to answer Question A in the affirmative.
First of all we recall two lemmas.
Lemma 1.3 ([15, Lemma 2.2 and Corollary 2.3]). If $T \in \mathcal{L}(\mathcal{H})$ is weakly subnormal or $2-$ hyponormal then $T\left(\operatorname{ker}\left[T^{*}, T\right]\right) \subseteq \operatorname{ker}\left[T^{*}, T\right]$.

Lemma $1.4([15$, Lemmas 2.1 and 2.8]). If $T \in \mathcal{L}(\mathcal{H})$ is weakly subnormal then T has a partially normal extension \widehat{T} on \mathcal{K} of the form

$$
\widehat{T}=\left(\begin{array}{cc}
T & {\left[T^{*}, T\right]^{\frac{1}{2}}} \tag{1.4.1}\\
0 & B
\end{array}\right) \quad \text { on } \mathcal{K}:=\mathcal{H} \oplus \mathcal{H}
$$

Moreover, a minimal partially normal extension of $T \equiv\left(\begin{array}{cc}T_{1} & T_{2} \\ 0 & T_{3}\end{array}\right): \operatorname{ker}\left[T^{*}, T\right] \oplus \operatorname{cl}\left(\operatorname{ran}\left[T^{*}, T\right]\right) \rightarrow$ $\operatorname{ker}\left[T^{*}, T\right] \oplus \operatorname{cl}\left(\operatorname{ran}\left[T^{*}, T\right]\right)$ can be obtained as

$$
\left(\begin{array}{ccc}
T_{1} & T_{2} & 0 \tag{1.4.2}\\
0 & T_{3} & {\left[T^{*}, T\right]_{0}^{\frac{1}{2}}} \\
0 & 0 & P B P
\end{array}\right):\left(\begin{array}{c}
\operatorname{ker}\left[T^{*}, T\right] \\
\operatorname{cl}\left(\operatorname{ran}\left[T^{*}, T\right]\right) \\
\operatorname{cl}\left(\operatorname{ran}\left[T^{*}, T\right]\right)
\end{array}\right) \longrightarrow\left(\begin{array}{c}
\operatorname{ker}\left[T^{*}, T\right] \\
\operatorname{cl}\left(\operatorname{ran}\left[T^{*}, T\right]\right) \\
\operatorname{cl}\left(\operatorname{ran}\left[T^{*}, T\right]\right)
\end{array}\right)
$$

where $\left[T^{*}, T\right]_{0}^{\frac{1}{2}}$ denotes the restriction of $\left[T^{*}, T\right]^{\frac{1}{2}}$ to $\operatorname{cl}\left(\operatorname{ran}\left[T^{*}, T\right]\right)$ and P is the projection of \mathcal{H} onto cl($\left.\operatorname{ran}\left[T^{*}, T\right]\right)$.

Proposition 1.5. Let $P, T \in \mathcal{L}(\mathcal{H})$, let P be positive and one-one, and let P^{-1} denote its linear inverse (possibly unbounded). Then

$$
\begin{equation*}
P^{2} T P^{-2} \text { bounded } \Longrightarrow P T P^{-1} \text { bounded. } \tag{1.5.1}
\end{equation*}
$$

Proof. Without loss of generality we may assume $\|P\|=1$, and that P does not have closed range. Let E be the spectral measure for P on the Borel subsets of $\sigma(P)$ such that $P=\int t d E(t)$. For each $n \in \mathbb{Z}_{+}$, define

$$
G_{n}:=\sigma(P) \cap\left(\frac{1}{n+1}, \frac{1}{n}\right]
$$

Then $G_{n} \neq \emptyset$ for infinitely many values of n. There is no loss in simplifying the notation and assuming that $G_{n} \neq \emptyset$ for all $n \in \mathbb{Z}_{+}$. Write $\mathcal{H}_{n}:=E\left(G_{n}\right) \mathcal{H}$ for each $n \in \mathbb{Z}_{+}$. Then $P_{n}:=\left.P\right|_{\mathcal{H}_{n}}$ is invertible for each $n \in \mathbb{Z}_{+}$. Thus since $\sigma(P)=\cup_{n=1}^{\infty} G_{n} \cup\{0\}$, it follows that $\sum_{n=1}^{\infty} E\left(G_{n}\right)=I$. Now assume that $P T P^{-1}$ is not bounded. Thus there exists a sequence $\left\{e_{n}\right\}_{n}$ of unit vectors $e_{n} \in \mathcal{H}_{n}$ for each $n \in \mathbb{Z}_{+}$such that $\left\|P T P^{-1} e_{n}\right\| \rightarrow \infty$ as $n \rightarrow \infty$. Since $\sum_{n=1}^{\infty} E\left(G_{n}\right)=I$, we can see that $\mathcal{H}=\left\{\sum_{j=1}^{\infty} \alpha_{j} h_{j}:\left(\alpha_{j}\right)_{j} \in \ell_{2}, h_{j} \in \mathcal{H}_{j},\left\|h_{j}\right\|=1\right\}$. Thus we can write, for each $n \in \mathbb{Z}_{+}$,

$$
T P^{-1} e_{n} \equiv \sum_{k=1}^{\infty} \alpha_{k}^{(n)} h_{k}^{(n)} \quad \text { where } h_{k}^{(n)} \in \mathcal{H}_{k} \text { with }\left\|h_{k}^{(n)}\right\|=1
$$

Then $\left\|\sum_{k=1}^{\infty} \alpha_{k}^{(n)} P\left(h_{k}^{(n)}\right)\right\|=\left\|P T P^{-1} e_{n}\right\| \rightarrow \infty$ as $n \rightarrow \infty$. Note that $\left\{P\left(h_{k}^{(n)}\right)\right\}_{k}$ forms an orthogonal sequence. Therefore $\left\|\sum_{k=1}^{\infty} \alpha_{k}^{(n)} P\left(h_{k}^{(n)}\right)\right\|^{2}=\sum_{k=1}^{\infty}\left|\alpha_{k}^{(n)}\right|^{2}\left\|P\left(h_{k}^{(n)}\right)\right\|^{2} \rightarrow \infty$ as $n \rightarrow \infty$. Also note that $\left\|P\left(h_{k}^{(n)}\right)\right\|^{2} \leq \frac{1}{k^{2}}$. Thus $\sum_{k=1}^{\infty}\left(\left|\alpha_{k}^{(n)}\right| / k\right)^{2} \rightarrow \infty$ as $n \rightarrow \infty$, so that $\sum_{k=1}^{\infty}\left(\left|\alpha_{k}^{(n)}\right| /(k+\right.$ $1))^{2} \rightarrow \infty$ as $n \rightarrow \infty$. Since the \mathcal{H}_{n} 's are reducing subspace for P, we have $f_{n}:=P e_{n} \in \mathcal{H}_{n}$ for each $n \in \mathbb{Z}_{+}$. Thus

$$
P^{2} T P^{-2} f_{n}=P^{2} T P^{-1} e_{n}=P\left(\sum_{k=1}^{\infty} \alpha_{k}^{(n)} P\left(h_{k}^{(n)}\right)\right)=\sum_{k=1}^{\infty} \alpha_{k}^{(n)} P^{2}\left(h_{k}^{(n)}\right)
$$

so

$$
\left\|P^{2} T P^{-2} f_{n}\right\|^{2}=\sum_{k=1}^{\infty}\left|\alpha_{k}^{(n)}\right|^{2}\left\|P^{2}\left(h_{k}^{(n)}\right)\right\|^{2} \geq \sum_{k=1}^{\infty} \frac{\left|\alpha_{k}^{(n)}\right|^{2}}{(k+1)^{4}}
$$

since $\sigma\left(\left.P\right|_{\mathcal{H}_{k}}\right) \subset\left(\frac{1}{k+1}, \frac{1}{k}\right]$. Observe $\left\|f_{n}\right\|=\left\|P e_{n}\right\| \leq \frac{1}{n}$ and hence $\left\|n f_{n}\right\| \leq 1$. But

$$
\begin{aligned}
\left\|P^{2} T P^{-2}\left(n f_{n}\right)\right\|^{2} \geq \sum_{k=1}^{\infty} \frac{n^{2}\left|\alpha_{k}^{(n)}\right|^{2}}{(k+1)^{4}} & =n^{2} \sum_{k=1}^{\infty} \frac{\left|\alpha_{k}^{(n)}\right|^{2}}{(k+1)^{4}} \\
& \geq n^{2} \sum_{k=1}^{n-1} \frac{\left|\alpha_{k}^{(n)}\right|^{2}}{(k+1)^{4}} \\
& \geq \sum_{k=1}^{n-1}\left(\frac{\left|\alpha_{k}^{(n)}\right|}{k+1}\right)^{2} \rightarrow \infty \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

where the last assertion follows from the observation that

$$
\begin{equation*}
\sum_{k=1}^{n-1}\left|\alpha_{k}^{(n)}\right|^{2}\left\|P\left(h_{k}^{(n)}\right)\right\|^{2} \rightarrow \infty \quad \text { as } n \rightarrow \infty \tag{1.5.2}
\end{equation*}
$$

To see (1.5.2) we assume to the contrary that (1.5.2) does not hold. Then, passing to a subsequence, there exists $M>0$ such that $\sum_{k=1}^{n}\left|\alpha_{k}^{(n)}\right|^{2}\left\|P\left(h_{k}^{(n)}\right)\right\|^{2} \leq M$ for each $n \in \mathbb{Z}_{+}$, and so $\sum_{k=n+1}^{\infty}\left|\alpha_{k}^{(n)}\right|^{2}\left\|P\left(h_{k}^{(n)}\right)\right\|^{2} \rightarrow \infty$ as $n \rightarrow \infty$. But since $\sum_{k=1}^{\infty}\left|\alpha_{k}^{(n)}\right|^{2}=\left\|T P^{-1} e_{n}\right\|^{2} \leq(n+1)^{2}\|T\|^{2}$, it follows that

$$
\sum_{k=n+1}^{\infty}\left|\alpha_{k}^{(n)}\right|^{2}\left\|P\left(h_{k}^{(n)}\right)\right\|^{2} \leq \sum_{k=n+1}^{\infty} \frac{\left|\alpha_{k}^{(n)}\right|^{2}}{k^{2}} \leq \sum_{k=n+1}^{\infty} \frac{\left|\alpha_{k}^{(n)}\right|^{2}}{(n+1)^{2}} \leq\|T\|^{2}
$$

which is a contradiction. This proves (1.5.2) and completes the proof of (1.5.1).
The converse of (1.5.1) is not true in general. For example, let T be the Hankel operator H_{φ} on $H^{2}(\mathbb{T})$ with symbol $\varphi(z)=\sum_{n=1}^{\infty} \frac{z^{-n}}{n^{2}}$ and let P be the diagonal operator on $H^{2}(\mathbb{T})$ defined by $P z^{n}=\frac{z^{n}}{n+1}$. Then a straightforward calculation shows that the first row of the matrix of $P^{2} T P^{-2}$ is $(1,1,1, \cdots)$, which shows that $P^{2} T P^{-2}$ is not bounded. On the other hand, the matrix of $T P^{-1}$ is dominated by the matrix of Hankel operator T_{ψ} with $\operatorname{symbol} \psi(z)=\sum_{n=1}^{\infty} \frac{z^{-n}}{n}$, which shows that $T P^{-1}$ is bounded and so is $P T P^{-1}$.

We would like to formulate:
Conjecture B. Let $T \in \mathcal{L}(\mathcal{H})$ and let $A:=\left[T^{*}, T\right]^{\frac{1}{2}}$. Suppose P is the projection of \mathcal{H} onto $\mathrm{cl}(\operatorname{ran} A)$ and write $A_{0}:=\left.A\right|_{\mathrm{cl}(\operatorname{ran} A)}$. If T is 2-hyponormal then $A_{0}^{2} P T P A_{0}^{-2}$ is bounded.

If Conjecture B is true then the answer to Question A would be affirmative. The reason is as follows. If Conjecture B is true then by Proposition $1.5, A_{0} P T P A_{0}^{-1}$ is also bounded. Thus if we write $T=\left(\begin{array}{cc}T_{1} & T_{2} \\ 0 & T_{3}\end{array}\right)$ on $\mathcal{H} \equiv \operatorname{ker} A \oplus \operatorname{cl}(\operatorname{ran} A)$ then since by (1.4.2), $A_{0} T_{3}=P B P A_{0}$, i.e., $P B P=A_{0} P T P A_{0}^{-1}$, it follows that

$$
\widehat{T}=\left(\begin{array}{ccc}
T_{1} & T_{2} & 0 \tag{1.5.3}\\
0 & T_{3} & A_{0} \\
0 & 0 & A_{0} P T P A_{0}^{-1}
\end{array}\right): \mathcal{H} \oplus \operatorname{cl}(\operatorname{ran} A) \longrightarrow \mathcal{H} \oplus \operatorname{cl}(\operatorname{ran} A)
$$

is a partially normal extension of T.
The following is a more simplified conjecture:
Conjecture C. If $\left[T^{*}, T\right]$ has the linear inverse $\left[T^{*}, T\right]^{-1}$ then

$$
T \text { is 2-hyponormal } \Longrightarrow\left[T^{*}, T\right] T\left[T^{*}, T\right]^{-1} \text { is bounded. }
$$

2. The Spectrum of m.p.n.e. (T) for T Weakly Subnormal. If $T \in \mathcal{L}(\mathcal{H})$ write $\sigma(T)$ for the spectrum of T. We also write $\partial \mathbf{K}$ and $\eta \mathbf{K}$ for the topological boundary and the polynomially convex hull of the compact set $\mathbf{K} \subseteq \mathbb{C}$, respectively. It is well-known that if T is a subnormal operator and \widehat{T} is a minimal normal extension of T then $\sigma(\widehat{T}) \subseteq \sigma(T)$. It was also known ([15, Theorem 1.2]) that if T is a weakly subnormal unilateral weighted shift and $\widehat{T}=$ m.n.p.e. (T) then $\sigma(T)=\sigma(\widehat{T})$. However we do not know yet if this result holds for general weakly subnormal operators. In this section we consider the relationship between the spectrum of a weakly subnormal operator T and the spectrum of its minimal partially normal extension \widehat{T}. We let $A \triangle B:=(A \backslash B) \cup(B \backslash A)$ denote the symmetric difference of the sets A and B.

Lemma 2.1 ([20, Theorem 2, Corollaries 6 and 7]. Let

$$
M_{C}:=\left(\begin{array}{cc}
A & C \\
0 & B
\end{array}\right): \mathcal{H} \oplus \mathcal{K} \rightarrow \mathcal{H} \oplus \mathcal{K}
$$

Then M_{C} is invertible for some $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$ if and only if
(i) A is left invertible;
(ii) B is right invertible;
(iii) $(\operatorname{ran} A)^{\perp} \cong \operatorname{ker} B$.

Moreover we have

$$
\eta\left(\sigma\left(M_{C}\right)\right)=\eta(\sigma(A) \cup \sigma(B)) \quad \text { for every } C \in \mathcal{L}(\mathcal{K}, \mathcal{H})
$$

In particular, the passage from $\sigma\left(M_{C}\right)$ to $\sigma(A) \cup \sigma(B)$ consists of filling in certain holes in $\sigma\left(M_{C}\right)$ which happen to be subsets of $\sigma(A) \cap \sigma(B)$.

We have:
Theorem 2.2. If $T \in \mathcal{L}(\mathcal{H})$ is a weakly subnormal operator whose self-commutator has closed range and $\widehat{T}=$ m.n.p.e. (T) then $\eta \sigma(T)=\eta \sigma(\widehat{T})$.
Proof. Since by assumption $\operatorname{ran}\left[T^{*}, T\right]$ is closed and $T\left(\operatorname{ker}\left[T^{*}, T\right]\right) \subseteq \operatorname{ker}\left[T^{*}, T\right]$, we can write

$$
T=\left(\begin{array}{cc}
T_{1} & T_{2} \\
0 & T_{3}
\end{array}\right):\binom{\operatorname{ker}\left[T^{*}, T\right]}{\operatorname{ran}\left[T^{*}, T\right]} \rightarrow\binom{\operatorname{ker}\left[T^{*}, T\right]}{\operatorname{ran}\left[T^{*}, T\right]}
$$

Since minimal partially normal extensions of T are unitarily equivalent ([15, Corollary 2.7]) we can write \widehat{T} as in (1.5.3):

$$
\widehat{T}=\left(\begin{array}{ccc}
T_{1} & T_{2} & 0 \tag{2.2.1}\\
0 & T_{3} & A \\
0 & 0 & A T_{3} A^{-1}
\end{array}\right):\left(\begin{array}{c}
\operatorname{ker}\left[T^{*}, T\right] \\
\operatorname{ran}\left[T^{*}, T\right] \\
\operatorname{ran}\left[T^{*}, T\right]
\end{array}\right) \rightarrow\left(\begin{array}{c}
\operatorname{ker}\left[T^{*}, T\right] \\
\operatorname{ran}\left[T^{*}, T\right] \\
\operatorname{ran}\left[T^{*}, T\right]
\end{array}\right)
$$

where $A:=\left[T^{*}, T\right]_{0}^{\frac{1}{2}}$ and in particular A is invertible by assumption. Using Lemma 2.1 we obtain

$$
\eta \sigma(\widehat{T})=\eta\left(\sigma(T) \cup \sigma\left(A T_{3} A^{-1}\right)\right)=\eta\left(\sigma(T) \cup \sigma\left(T_{3}\right)\right)=\eta \sigma(T)
$$

The following theorem provides the passage from $\sigma(T)$ to $\sigma(\widehat{T})$ under the assumption that $\left[T^{*}, T\right]$ has closed range.
Theorem 2.3. Let $T \in \mathcal{L}(\mathcal{H})$ be a weakly subnormal operator whose self-commutator has closed range and $\widehat{T}=$ m.p.n.e. (T). If we write

$$
T=\left(\begin{array}{cc}
T_{1} & T_{2} \\
0 & T_{3}
\end{array}\right):\binom{\operatorname{ker}\left[T^{*}, T\right]}{\operatorname{ran}\left[T^{*}, T\right]} \rightarrow\binom{\operatorname{ker}\left[T^{*}, T\right]}{\operatorname{ran}\left[T^{*}, T\right]}
$$

then $\sigma(T) \triangle \sigma(\widehat{T})$ is the union of certain holes in $\sigma(T)$ or $\sigma(\widehat{T})$, which happen to be subsets of $\sigma\left(T_{1}\right) \cap \sigma\left(T_{3}\right)$. In particular, if T has finite rank self-commutator then $\sigma(T)=\sigma(\widehat{T})$.
Proof. Write \widehat{T} as in (2.2.1):

$$
\widehat{T}=\left(\begin{array}{ccc}
T_{1} & T_{2} & 0 \\
0 & T_{3} & A \\
0 & 0 & A T_{3} A^{-1}
\end{array}\right)
$$

Evidently,

$$
\begin{equation*}
\sigma(\widehat{T}) \subseteq \sigma\left(T_{1}\right) \cup \sigma\left(T_{3}\right) \cup \sigma\left(A T_{3} A^{-1}\right)=\sigma\left(T_{1}\right) \cup \sigma\left(T_{3}\right) \tag{2.3.1}
\end{equation*}
$$

By Theorem 2.2 we can see that

$$
\begin{equation*}
\partial\left(\sigma\left(T_{1}\right) \cup \sigma\left(T_{3}\right)\right)=\partial\left(\sigma(T) \cup \sigma\left(T_{3}\right)\right)=\partial\left(\sigma(T) \cup \sigma\left(A T_{3} A^{-1}\right)\right) \subseteq \partial \sigma(\widehat{T}) \tag{2.3.2}
\end{equation*}
$$

We now claim that

$$
\begin{equation*}
\sigma(T) \triangle \sigma(\widehat{T}) \subseteq \sigma\left(T_{1}\right) \cap \sigma\left(T_{3}\right) \tag{2.3.3}
\end{equation*}
$$

Towards (2.3.3) we first prove that $\sigma(T) \backslash \sigma(\widehat{T}) \subseteq \sigma\left(T_{1}\right) \cap \sigma\left(T_{3}\right)$. Suppose that $\lambda \in \sigma(T) \backslash \sigma(\widehat{T})$. Assume to the contrary that $\lambda \notin \sigma\left(T_{1}\right) \cap \sigma\left(T_{3}\right)$. If $T_{1}-\lambda$ is invertible then, since $\widehat{T}-\lambda$ is invertible, it follows from Lemma 2.1 that $\left(\begin{array}{cc}T_{3}-\lambda & A \\ 0 & A\left(T_{3}-\lambda\right) A^{-1}\end{array}\right)$ is invertible, and so $T_{3}-\lambda$ is left invertible and $A\left(T_{3}-\lambda\right) A^{-1}$ is right invertible, which implies that $T_{3}-\lambda$ is invertible and hence so is $T-\lambda$, a contradiction. If instead $T_{3}-\lambda$ is invertible then $\left(\begin{array}{cc}T_{3}-\lambda & A \\ 0 & A\left(T_{3}-\lambda\right) A^{-1}\end{array}\right)$ is also invertible, so that Lemma 2.1 again shows that $T_{1}-\lambda$ is invertible and hence so is $T-\lambda$, a contradiction.

We next prove that $\sigma(\widehat{T}) \backslash \sigma(T) \subseteq \sigma\left(T_{1}\right) \cap \sigma\left(T_{3}\right)$. Suppose that $\lambda \in \sigma(\widehat{T}) \backslash \sigma(T)$. Assume that $\lambda \notin \sigma\left(T_{1}\right) \cap \sigma\left(T_{3}\right)$. Thus $T_{1}-\lambda$ or $T_{3}-\lambda$ is invertible. But since $T-\lambda$ is invertible it follows that $T_{1}-\lambda$ and $T_{3}-\lambda$ are both invertible, and hence so is $\widehat{T}-\lambda$, a contradiction. This proves (2.3.3).

On the other hand, Lemma 2.1 shows that the passage from $\sigma(T)$ to $\sigma\left(T_{1}\right) \cup \sigma\left(T_{3}\right)$ is the filling of certain holes in $\sigma(T)$, which happen to be subsets of $\sigma\left(T_{1}\right) \cap \sigma\left(T_{3}\right)$. Moreover, by (2.3.1), (2.3.2), and (2.3.3), the passage from $\sigma(\widehat{T})$ to $\sigma\left(T_{1}\right) \cup \sigma\left(T_{3}\right)$ is the filling of certain holes in $\sigma\left(T_{1}\right) \cup \sigma\left(T_{3}\right)$, which happen to be subsets of $\sigma\left(T_{1}\right) \cap \sigma\left(T_{3}\right)$. This proves the first assertion. The second assertion follows from the first together with the observation that if $\sigma\left(T_{1}\right) \cap \sigma\left(T_{3}\right)$ has no interior points then $\sigma(T)=\sigma(\widehat{T})$ and that if $\operatorname{rank}\left[T^{*}, T\right]<\infty$ then $\operatorname{ran}\left[T^{*}, T\right]$ is finite dimensional and hence T_{3} is a finite dimensional operator.

In [15, Lemma 2.1] it was shown that if T is a 2 -hyponormal operator whose self-commutator has closed range then T is weakly subnormal. Thus Theorem 2.2 and Theorem 2.3 also hold for 2-hyponormal operators.

In general we need not expect that if T is a weakly subnormal operator and $\widehat{T}=$ m.p.n.e (T) then $\sigma(\widehat{T}) \subseteq \sigma(T)$. To see this we use the bilateral weighted shift. Let $\left\{e_{n}\right\}_{n=-\infty}^{+\infty}$ denote the canonical orthonormal basis for $\ell^{2}(\mathbb{Z})$. For a bounded sequence of positive numbers $\alpha \equiv\left\{\alpha_{n}\right\}_{n=-\infty}^{+\infty}$, let U_{α} be the bilateral weighted shift on $\ell^{2}(\mathbb{Z})$ defined by $U_{\alpha} e_{n}:=\alpha_{n} e_{n+1}(-\infty<n<+\infty)$. Then we have:

Proposition 2.4 (Weak Subnormality of Bilateral Weighted Shifts). Let U_{α} be the bilateral weighted shift with strictly increasing weight sequence $\alpha \equiv\left\{\alpha_{n}\right\}_{n=-\infty}^{+\infty}$. Then

$$
\begin{equation*}
U_{\alpha} \text { is weakly subnormal } \Longleftrightarrow \sup _{n \in \mathbb{Z}}\left\{\frac{\alpha_{n+1}^{2}-\alpha_{n}^{2}}{\alpha_{n}^{2}-\alpha_{n-1}^{2}}\right\}<\infty . \tag{2.4.1}
\end{equation*}
$$

Proof. If U_{α} is weakly subnormal then by Lemma 1.4, U_{α} has a partially normal extension \widehat{U}_{α} of the form

$$
\widehat{U}_{\alpha}=\left(\begin{array}{cc}
U_{\alpha} & {\left[U_{\alpha}^{*}, U_{\alpha}\right]^{\frac{1}{2}}} \tag{2.4.2}\\
0 & B
\end{array}\right)
$$

on $\ell_{2} \oplus \ell_{2}$, where $\left[U_{\alpha}^{*}, U_{\alpha}\right]^{\frac{1}{2}} U_{\alpha}=B\left[U_{\alpha}^{*}, U_{\alpha}\right]^{\frac{1}{2}}$. Since $\left[U_{\alpha}^{*}, U_{\alpha}\right]^{\frac{1}{2}}$ is diagonal it follows that B is a bilateral weighted shift. Write $B:=U_{\beta}$, where $\beta \equiv\left\{\beta_{n}\right\}_{n=-\infty}^{\infty}$. To determine U_{β}, it suffices to check the $(n+1, n)$-entries $(n \in \mathbb{Z})$:

$$
\left(\left[U_{\alpha}^{*}, U_{\alpha}\right]^{\frac{1}{2}} U_{\alpha} e_{n}, e_{n+1}\right)=\left(U_{\beta}\left[U_{\alpha}^{*}, U_{\alpha}\right]^{\frac{1}{2}} e_{n}, e_{n+1}\right)
$$

which implies

$$
\begin{equation*}
\alpha_{n} \sqrt{\alpha_{n+1}^{2}-\alpha_{n}^{2}}=\beta_{n} \sqrt{\alpha_{n}^{2}-\alpha_{n-1}^{2}} \tag{2.4.3}
\end{equation*}
$$

so

$$
\beta_{n}=\alpha_{n} \sqrt{\frac{\alpha_{n+1}^{2}-\alpha_{n}^{2}}{\alpha_{n}^{2}-\alpha_{n-1}^{2}}}
$$

But since U_{β} is bounded it follows that $\sup \beta_{n}<\infty$ and hence $\sup \frac{\alpha_{n+1}^{2}-\alpha_{n}^{2}}{\alpha_{n}^{2}-\alpha_{n-1}^{2}}<\infty$. This proves the forward implication in (2.4.1). The backward implication follows at once from the observation that \widehat{U}_{α} in (2.4.2) is a partially normal extension of U_{α}.

Example 2.5. Let U_{α} be the bilateral weighted shift with weight sequence given by

$$
\alpha_{n}:= \begin{cases}\left(\sum_{k=0}^{n} \delta_{k}\right)^{\frac{1}{2}} & (n \geq 0) \\ \left(\delta_{0}-\sum_{k=1}^{-n} \delta_{-k}\right)^{\frac{1}{2}} & (n<0)\end{cases}
$$

where

$$
\begin{gathered}
\delta_{0}=2, \quad \delta_{k}=\frac{1}{2^{k}}(k \geq 1), \quad \text { and } \\
\left\{\delta_{-k}\right\}_{k=1}^{\infty}: \frac{1}{2^{2}}, \frac{1}{2^{3}}, \frac{1}{2^{4}}, \frac{1}{2^{5}}, \frac{1}{2^{2}}, \frac{1}{2^{3}}, \frac{1}{2^{4}}, \frac{1}{2^{5}}, \frac{1}{2^{6}}, \frac{1}{2^{7}}, \frac{1}{2^{3}}, \frac{1}{2^{4}}, \cdots, \frac{1}{2^{9}}, \frac{1}{2^{4}}, \frac{1}{2^{5}}, \cdots, \frac{1}{2^{11}}, \cdots \cdots .
\end{gathered}
$$

Note that α is strictly increasing, and so U_{α} is hyponormal. A straightforward calculation shows that

$$
\lim _{n \rightarrow \infty} \alpha_{n}=\sqrt{3} \quad \text { and } \quad \lim _{n \rightarrow-\infty} \alpha_{n}=\sqrt{\frac{13}{24}}
$$

which implies that $\sigma\left(U_{\alpha}\right)=\left\{z \in \mathbb{C}: \sqrt{\frac{13}{24}} \leq|z| \leq \sqrt{3}\right\}$ (cf. [4, Theorem II.6.7]). Also note that $\delta_{n+1}=\alpha_{n+1}^{2}-\alpha_{n}^{2}(N \in \mathbb{Z})$ and that $\sup _{n \in \mathbb{Z}_{+}} \frac{\delta_{n+1}}{\delta_{n}}=\frac{1}{2}$ and $\sup _{n \in \mathbb{Z}_{-}} \frac{\delta_{n+1}}{\delta_{n}}=2$, which together with Proposition 2.4 implies that U_{α} is weakly subnormal. On the other hand, if $\widehat{U_{\alpha}}=$ m.p.n.e. $\left(U_{\alpha}\right)$ then, by the proof of Proposition 2.4, $\widehat{U_{\alpha}}$ is given by

$$
\widehat{U_{\alpha}}=\left(\begin{array}{cc}
U_{\alpha} & {\left[U_{\alpha}^{*}, U_{\alpha}\right]^{\frac{1}{2}}} \\
0 & U_{\beta}
\end{array}\right)
$$

where U_{β} is the bilateral weighted shift with the weight sequence

$$
\beta_{n}:=\alpha_{n} \sqrt{\frac{\delta_{n+1}}{\delta_{n}}} \quad(n \in \mathbb{Z})
$$

Observe that the sequence $\left\{\frac{\delta_{n+1}}{\delta_{n}}\right\}$ contains a subsequence which converges to 0 and so ran U_{β} is not closed. Therefore U_{β} is not right invertible, and hence $0 \in \sigma\left(\widehat{U_{\alpha}}\right)$. Therefore $\sigma\left(\widehat{U_{\alpha}}\right) \nsubseteq \sigma\left(U_{\alpha}\right)$.
3. The Inverse of an Invertible Weakly Subnormal Operator. It is well known that if T is an invertible hyponormal operator then T^{-1} is also hyponormal. One might ask if the inverse of an invertible weakly subnormal operator is weakly subnormal. However, there exist invertible subnormal operators whose inverses are neither 2-hyponormal nor weakly subnormal. In this section we provide such an example. For $T \in \mathcal{L}(\mathcal{H})$, let $\mathfrak{N}_{T}:=\operatorname{ker}\left[T^{*}, T\right]$.

Proposition 3.1. Let $T \in \mathcal{L}(\mathcal{H})$ be an invertilbe operator such that $T \mathfrak{N}_{T} \subseteq \mathfrak{N}_{T}$. If $T^{-1} \mathfrak{N}_{T^{-1}} \subseteq$ $\mathfrak{N}_{T^{-1}}$ then $T \mathfrak{N}_{T}=\mathfrak{N}_{T}$.

Proof. Observe that

$$
\left[T^{-1 *}, T^{-1}\right]=\left(T^{*} T\right)^{-1}\left[T^{*}, T\right]\left(T T^{*}\right)^{-1}
$$

so

$$
\mathfrak{N}_{T^{-1}}=T T^{*} \mathfrak{N}_{T}=T^{*} T \mathfrak{N}_{T}
$$

Then

$$
\begin{aligned}
\mathfrak{N}_{T} & =\left(T T^{*}\right)^{-1} \mathfrak{N}_{T^{-1}} \\
& =T^{*-1} T^{-1} \mathfrak{N}_{T^{-1}} \\
& \subseteq T^{*-1} \mathfrak{N}_{T^{-1}} \\
& =T^{*-1} T^{*} T \mathfrak{N}_{T} \\
& =T \mathfrak{N}_{T} \subseteq \mathfrak{N}_{T},
\end{aligned}
$$

from which it follows that $T \mathfrak{N}_{T}=\mathfrak{N}_{T}$.

Corollary 3.2. Let $T \in \mathcal{L}(\mathcal{H})$ be an invertible operator. If T and T^{-1} are both 2 -hyponormal or weakly subnormal then $T\left(\operatorname{ker}\left[T^{*}, T\right]\right)=\operatorname{ker}\left[T^{*}, T\right]$.

Proof. This follows from Proposition 3.1 and Lemma 1.3.

We can now present the above mentioned example.
Example 3.3. Let θ be a nonconstant inner function and put $\varphi=\theta+2$. Then T_{φ} is an invertible subnormal operator (consequently 2-hyponormal and weakly subnormal). Since $\left[T_{\varphi}^{*}, T_{\varphi}\right]=\left[T_{\theta}^{*}, T_{\theta}\right]=$ $H_{\bar{\theta}}^{*} H_{\bar{\theta}}$, we have $\mathfrak{N}_{T_{\varphi}} \equiv \operatorname{ker}\left[T_{\varphi}^{*}, T_{\varphi}\right]=\operatorname{ker} H_{\bar{\theta}}=\theta H^{2}$. But $T_{\varphi} \mathfrak{N}_{T_{\varphi}}=T_{\theta+2}\left(\theta H^{2}\right)=\theta(\theta+2) H^{2}$. Thus if $T_{\varphi} \mathfrak{N}_{T_{\varphi}}=\mathfrak{N}_{T_{\varphi}}$ then $\theta(\theta+2)=c \theta$ for some constant c, and hence $\theta+2=c$, which contradicts the assumption that θ is nonconstant. Therefore we must have that $T_{\varphi} \mathfrak{N}_{T_{\varphi}} \neq \mathfrak{N}_{T_{\varphi}}$, which by Corollary 3.2, implies that T_{φ}^{-1} is neither 2-hyponormal nor weakly subnormal.

References

[1] A. Athavale, On joint hyponormality of operators, Proc. Amer. Math. Soc. 103 (1988), 417-423.
[2] J. Bram, Subnormal operators, Duke Math. J. 22 (1955), 75-94.
[3] Y.B. Choi, A propagation of quadratically hyponormal weighted shifts, Bull. Korean Math. Soc. 37 (2000), 347-352.
[4] J.B. Conway, The Theory of Subnormal Operators, Math. Surveys and Monographs vol. 36, Amer. Math. Soc., Providence, 1991.
[5] J.B. Conway and W. Szymanski, Linear combination of hyponormal operators, Rocky Mountain J. Math. 18 (1988), 695-705.
[6] C.C. Cowen, More subnormal Toeplitz operators, J. Reine Angew. Math. 367 (1986), 215-219.
[7] C.C. Cowen and J.J. Long, Some subnormal Toeplitz operators, J. Reine Angew. Math. 351 (1984), 216-220.
[8] R.E. Curto, Quadratically hyponormal weighted shifts, Integral Equations Operator Theory 13 (1990), 49-66.
[9] , Joint hyponormality:A bridge between hyponormality and subnormality, Operator Theory: Operator Algebras and Applications (Durham, NH, 1988) (W.B. Arveson and R.G. Douglas, eds.), Proc. Sympos. Pure Math., vol. 51, part II, American Mathematical Society, Providence, (1990), Part 11, 69-91.
[10] R.E. Curto and L.A. Fialkow, Recursiveness, positivity, and truncated moment problems, Houston J. Math. 17 (1991), 603-635.
[11] , Recursively generated weighted shifts and the subnormal completion problem, Integral Equations Operator Theory 17 (1993), 202-246.
$[12]$, Recursively generated weighted shifts and the subnormal completion problem. II, Integral Equations Operator Theory 18 (1994), 369-426.
[13] R.E. Curto, S.H. Lee and W.Y. Lee, Subnormality and 2-hyponormality for Toeplitz operators (preprint 2000).
[14] R.E. Curto and W.Y. Lee, Joint hyponormality of Toeplitz pairs, Memoirs Amer. Math. Soc. no. 712, Amer. Math. Soc., Providence, 2001.
[15] , Towards a model theory for 2-hyponormal operators (preprint 2000).
$[16] \ldots$, Subnormality and k-hyponormality of Toeplitz operators: A brief survey and open questions (preprint 2000).
[17] , Flatness, perturbations and completions of weighted shifts (preprint 2000).
[18] R.E. Curto, P.S. Muhly and J. Xia, Hyponormal pairs of commuting operators, Contributions to Operator Theory and Its Applications (Mesa,AZ, 1987) (I. Gohberg, J.W. Helton and L. Rodman, eds.), Operator Theory: Adv Appl., vol. 35, Birkhäuser, Basel-Boston, (1988), 1-22.
[19] R.G. Douglas, V.I. Paulsen, and K. Yan, Operator theory and algebraic geometry, Bull. Amer. Math. Soc. (N.S.) 20 (1989), 67-71.
[20] J.K. Han, H.Y. Lee, and W.Y. Lee, Invertible completions of 2×2 upper triangular operator matrices, Proc. Amer. Math. Soc. 128 (2000), 119-123.
[21] S. McCullough and V. Paulsen, A note on joint hyponormality, Proc. Amer. Math. Soc. 107 (1989), 187-195.
[22] J. Stampfli, Which weighted shifts are subnormal, Pacific J. Math. 17 (1966), 367-379.
Department of Mathematics, University of Iowa, Iowa City, IA 52242
E-mail address: curto@math.uiowa.edu

Department of Mathematics, SungKyunKwan University, Suwon 440-746, Korea
E-mail address: ishwang@math.skku.ac.kr

Department of Mathematics, SungKyunKwan University, Suwon 440-746, Korea
E-mail address: wylee@yurim.skku.ac.kr

[^0]: 2000 Mathematics Subject Classification. Primary 47B20, 47B35, 47A63; Secondary 47B37, 47B38, 42A05, 30D50
 Key words and phrases. Weakly subnormal operators, 2-hyponormal operators, unilateral weighted shifts, Toeplitz operators.

 The work of the first-named author was partially supported by NSF research grant DMS-9800931.
 The work of the second- and third-named authors were partially supported by KRF grant (KRF-2000-015-DP0005) and KOSEF grant (2000-1-10100-002-3).

