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We introduce the notion of weak subnormality, which generalizes subnormality in the sense
that for the extension bT ∈ L(K) of T ∈ L(H) we only require that bT ∗ bTf = bT bT ∗f hold for
f ∈ H; in this case we call bT a partially normal extension of T . After establishing some
basic results about weak subnormality (including those dealing with the notion of minimal
partially normal extension), we proceed to characterize weak subnormality for weighted shifts
and to prove that 2-hyponormal weighted shifts are weakly subnormal. Let α ≡ {αn}∞n=0 be
a weight sequence and let Wα denote the associated unilateral weighted shift on H ≡ `2(Z+).
If Wα is 2-hyponormal then Wα is weakly subnormal. Moreover, there exists a partially
normal extension cWα on K := H⊕H such that (i) cWα is hyponormal; (ii) σ(cWα) = σ(Wα);
and (iii) ||cWα|| = ||Wα||. In particular, if α is strictly increasing then cWα can be obtained as

cWα =

 
Wα [W ∗α,Wα]

1
2

0 Wβ

!
on K := H⊕H,

where Wβ is a weighted shift whose weight sequence {βn}∞n=0 is given by

βn := αn

vuutα2
n+1 − α2

n

α2
n − α2

n−1
(n = 0, 1, · · · ; α−1 := 0).

In this case, cWα is a minimal partially normal extension of Wα. In addition, if Wα is 3-
hyponormal then cWα can be chosen to be weakly subnormal. This allows us to shed new
light on Stampfli’s geometric construction of the minimal normal extension of a subnormal
weighted shift. Our methods also yield two additional results: (i) the square of a weakly
subnormal operator whose minimal partially normal extension is always hyponormal, and (ii)
a 2-hyponormal operator with rank-one self-commutator is necessarily subnormal. Finally, we
investigate the connections of weak subnormality and 2–hyponormality with Agler’s model
theory.

1 Introduction

Let H and K be complex Hilbert spaces, let L(H,K) be the set of bounded linear operators
from H to K and write L(H) := L(H,H). An operator T ∈ L(H) is said to be normal if
T ∗T = TT ∗, hyponormal if T ∗T ≥ TT ∗, and subnormal if T = N |H, where N is normal
on some Hilbert space K ⊇ H. Thus the operator T is subnormal if and only if there exist
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operators A and B such that T̂ :=
(
T A

0 B

)
is normal, i.e.,

(1.1)


[T ∗, T ] := T ∗T − TT ∗ = AA∗

A∗T = BA∗

[B∗, B] +A∗A = 0.

We now introduce:

Definition 1.1. An operator T ∈ L(H) is said to be weakly subnormal if there exist
operators A ∈ L(H′,H) and B ∈ L(H′) such that the first two conditions in (1.1) hold:
[T ∗, T ] = AA∗ and A∗T = BA∗. The operator T̂ is said to be a partially normal extension
of T .

Clearly,

(1.2) subnormal =⇒ weakly subnormal =⇒ hyponormal.

The converses of both implications in (1.2) are not true in general; see Examples 4.1 and
4.4. Moreover, we can easily see that the following statements are equivalent for T ∈ L(H):

(i) T is weakly subnormal;
(ii) There is an extension T̂ of T such that T̂ ∗T̂ f = T̂ T̂ ∗f for all f ∈ H;
(iii) There is an extension T̂ of T such that H ⊆ ker [T̂ ∗, T̂ ].

Weakly subnormal operators possess the following invariance properties:
(i) (Unitary equivalence) if T is weakly subnormal with a partially normal extension(

T A

0 B

)
then for every unitary U ,

(
U∗TU U∗A

0 B

)
(=
(
U∗ 0
0 I

)(
T A

0 B

)(
U 0
0 I

)
) is a par-

tially normal extension of U∗TU , i.e., U∗TU is also weakly subnormal.
(ii) (Translation) if T ∈ L(H) is weakly subnormal then T−λ is also weakly subnormal

for every λ ∈ C: indeed if T has a partially normal extension T̂ then T̂ − λ := T̂−λ
satisfies the properties in Definition 1.1.

(iii) (Restriction) if T ∈ L(H) is weakly subnormal and if M ∈ LatT then T |M is also
weakly subnormal because for a partially normal extension T̂ of T , T̂ |M := T̂ still
satisfies the required properties.

An alternative description of subnormality is given by the Bram-Halmos crite-
rion, which states that an operator T is subnormal if and only if∑

i,j

(T ixj , T jxi) ≥ 0

for all finite collections x0, x1, · · · , xk ∈ H ([Bra],[Con, II.1.9]). It is easy to see that this
is equivalent to the following positivity test:

(1.3)


I T ∗ . . . T ∗k

T T ∗T . . . T ∗kT
...

...
. . .

...
T k T ∗T k . . . T ∗kT k

 ≥ 0 (all k ≥ 1).



Condition (1.3) provides a measure of the gap between hyponormality and subnormality.
In fact, the positivity condition (1.3) for k = 1 is equivalent to the hyponormality of T ,
while subnormality requires the validity of (1.3) for all k. Let [A,B] := AB −BA denote
the commutator of two operators A and B, and define T to be k-hyponormal whenever the
k × k operator matrix

(1.4) Mk(T ) := ([T ∗j , T i])ki,j=1

is positive. An application of the Choleski algorithm for operator matrices shows that the
positivity of (1.4) is equivalent to the positivity of the (k+ 1)× (k+ 1) operator matrix in
(1.3); the Bram-Halmos criterion can be then rephrased as saying that T is subnormal if
and only if T is k-hyponormal for every k ≥ 1 ([CMX]). Now it is natural to ask whether
k-hyponormal operators admit an extension T̂ with one or more of the properties listed in
(1.1).

In this paper we characterize weak subnormality for weighted shifts and establish
that 2-hyponormal weighted shifts are weakly subnormal operators possessing partially
normal extensions which are hyponormal.

Theorem 1.2. Let α ≡ {αn}∞n=0 be a weight sequence. If Wα is a 2-hyponormal weighted
shift on H ≡ `2(Z+), then Wα is weakly subnormal. Moreover, there exists a partially
normal extension Ŵα on K := H⊕H such that

(i) Ŵα is hyponormal;
(ii) σ(Ŵα) = σ(Wα); and
(iii) ||Ŵα|| = ||Wα||.

In particular, if α is strictly increasing then Ŵα can be obtained as

(1.5) Ŵα =
(
Wα [W ∗α,Wα]

1
2

0 Wβ

)
on K := H⊕H,

where Wβ is a weighted shift whose weight sequence {βn}∞n=0 given by

βn = αn

√
α2
n+1 − α2

n

α2
n − α2

n−1
(n = 0, 1, · · · ; α−1 := 0).

In this case, Ŵα is a minimal partially normal extension of Wα. In addition, if Wα is
3-hyponormal then Ŵα can be chosen to be weakly subnormal.

Recall ([Ath],[CMX],[CoS]) that T ∈ L(H) is said to be weakly k-hyponormal
if

LS((T, T 2, · · · , T k)) :=


k∑
j=1

αjT
j : α = (α1, · · · , αk) ∈ Ck





consists entirely of hyponormal operators, or equivalently, Mk(T ) is weakly positive, i.e.,
([CMX])

(1.6) (Mk(T )

 λ0x
...

λkx

 ,

 λ0x
...

λkx

) ≥ 0 for x ∈ H and λ0, · · · , λk ∈ C.

If k = 2 then T is said to be quadratically hyponormal. Similarly, T ∈ L(H) is said
to be polynomially hyponormal if p(T ) is hyponormal for every polynomial p ∈ C[z]. It
is known that k-hyponormal ⇒ weakly k-hyponormal, but the converse is not true in
general. The classes of (weakly) k-hyponormal operators have been studied in an at-
tempt to bridge the gap between subnormality and hyponormality ([Cu1],[Cu2],[CF1],
[CF2],[CF3],[CL1],[CMX], [DPY],[McCP]). The study of this gap has been only par-
tially successful. For example, such a gap is not yet well described for Toeplitz operators
on the Hardy space of the unit circle: in fact, even subnormality for Toeplitz operators has
not yet been characterized (cf.[Ha1], [Cow], [CoL]]). For weighted shifts, positive results
appear in [Cu1] and [CF3], although no concrete example of a weighted shift which is
polynomially hyponormal but not subnormal has yet been found (the existence of such
weighted shifts was established in [CP1] and [CP2]).

In Section 2 we provide a characterization of weak subnormality for weighted
shifts and some basic results needed for proving Theorem 1.2. Section 3 is devoted to the
proof of Theorem 1.2. In Section 4 we consider connections with subnormality, and in
Section 5 connections with Agler’s model theory.

2 Some Basic Results about Weak Subnormality

How does one find partially normal extensions of weakly subnormal operators ? Since
weakly subnormal operators are hyponormal, one possible solution of the equation AA∗ =
[T ∗, T ] is A := [T ∗, T ]

1
2 . Indeed this is the case.

Lemma 2.1. If T ∈ L(H) is weakly subnormal then T has a partially normal extension
T̂ on K of the form

(2.1.1) T̂ =
(
T [T ∗, T ]

1
2

0 B

)
on K := H⊕H.

The proof of Lemma 2.1 will make use of the following unpublished result of the
first-named author; for an alternative proof, see [DrMcC, par. after (2.6)].

Lemma 2.2. If T ∈ L(H) is 2-hyponormal then

(2.2.1) T
(
ker [T ∗, T ]

)
⊆ ker [T ∗, T ].

Proof. Suppose that [T ∗, T ]f = 0. If T is 2-hyponormal, it follows from (1.3) that
(cf.[CMX, Lemma 1.4])

|([T ∗2, T ]g, f)|2 ≤ ([T ∗, T ]f, f)([T ∗2, T 2]g, g) for all g ∈ H.



By assumption, we have that for all g ∈ H, 0 = ([T ∗2, T ]g, f) = (g, [T ∗2, T ]∗f), so that
[T ∗2, T ]∗f = 0, i.e., T ∗T 2f = T 2T ∗f . Therefore,

[T ∗, T ]Tf = (T ∗T 2 − TT ∗T )f = (T 2T ∗ − TT ∗T )f = T [T ∗, T ]f = 0,

which proves (2.2.1). �

Corollary 2.3. If T is weakly subnormal then T also satisfies the property (2.2.1).

Proof. By definition, there exist operators A and B such that [T ∗, T ] = AA∗ and A∗T =
BA∗. If [T ∗, T ]f = 0 then AA∗f = 0 and hence A∗f = 0. Therefore

[T ∗, T ]Tf = AA∗Tf = ABA∗f = 0,

as desired. �

Proof of Lemma 2.1. Suppose that T is weakly subnormal. Then there exists a partially
normal extension T̃ on K′ := H ⊕ H′ such that T̃ =

(
T A∗

0 B′

)
. By weak subnormality

we have [T ∗, T ] = A∗A and AT = B′A. We thus have that |A| = [T ∗, T ]
1
2 . Suppose

A = U |A| is the polar decomposition of A, where U is a partial isometry with cl
(
ran |A|

)
(⊆ H) as its initial space and cl

(
ranA

)
(⊆ H′) as its final space. Since by Corollary 2.3,

T
(
ker [T ∗, T ]

)
⊆ ker [T ∗, T ], we can write T as

T =
(
T1 T2
0 T3

)
: ker |A| ⊕ cl

(
ran |A|

)
−→ ker |A| ⊕ cl

(
ran |A|

)
.

Also |A| can be decomposed as

|A| =
(

0 0
0 |A|0

)
: ker |A| ⊕ cl

(
ran |A|

)
−→ ker |A| ⊕ cl

(
ran |A|

)
,

where |A|0 denotes the restriction of |A| to cl
(
ran |A|

)
. Write U0 for the restriction of U

to cl
(
ran |A|

)
. Then U0 : cl

(
ran |A|

)
→ cl

(
ranA

)
is an isometrical isomorphism, so U can

be decomposed as

U =
(

0 0
0 U0

)
: ker |A| ⊕ cl

(
ran |A|

)
−→ cl

(
ranA

)⊥ ⊕ cl
(
ranA

)
.

Let P be the projection of H′ onto cl
(
ranA

)
. Define an operator B : H → H by

B :=
(

0 0
0 U−1

0 PB′PU0

)
: ker |A| ⊕ cl

(
ran |A|

)
−→ ker |A| ⊕ cl

(
ran |A|

)
.

Evidently, B is bounded. Also

(2.1.2) |A|T =
(

0 0
0 |A|0T3

)
and B |A| =

(
0 0
0 U−1

0 PB′PU0|A|0

)
.



But since AT = B′A, and hence U |A|T = B′U |A|, it follows that if we write

B′ :=
(
B1 B2
B3 B4

)
: cl
(
ranA

)⊥ ⊕ cl
(
ranA

)
−→ cl

(
ranA

)⊥ ⊕ cl
(
ranA

)
,

then (
0 0
0 U0

)(
0 0
0 |A|0

)(
T1 T2
0 T3

)
=
(
B1 B2
B3 B4

)(
0 0
0 U0

)(
0 0
0 |A|0

)
,

or (
0 0
0 U0|A|0T3

)
=
(

0 B2U0|A|0
0 B4U0|A|0

)
.

Observe that B4 = PB′P and so U0|A|0T3 = PB′PU0|A|0, i.e.,

(2.1.3) |A|0T3 = U−1
0 PB′PU0|A|0,

which together with (2.1.2) implies |A|T = B |A|. Therefore T̂ =
(
T |A|
0 B

)
: H⊕H → H⊕H

is a partially normal extension of T , which proves the lemma. �

Definition 2.4. Let T be a weakly subnormal operator on H and let T̂ be a partially
normal extension of T on K. We shall say that T̂ is a minimal partially normal extension
of T if K has no proper subspace containing H to which the restriction of T̂ is also a
partially normal extension of T .

Lemma 2.5. Let T be a weakly subnormal operator on H and let T̂ be a partially normal
extension of T on K. Then T̂ is a minimal partially normal extension of T if and only if

(2.5.1) K =
∨{

T̂ ∗nh : h ∈ H, n = 0, 1
}
.

Proof. Write L ≡
∨
{T̂ ∗nh : h ∈ H, n = 0, 1}. Evidently, L contains H and T̂L ⊆ L,

which follows from the fact that if T̂ is a partially normal extension of T then T̂ T̂ ∗h = T̂ ∗T̂ h
(h ∈ H). We now must show that

(i) the restriction, T̂L, of T̂ to L is also a partially normal extension of T ;
(ii) T̂L is minimal.

Proof of (i): For f ∈ H, and if PL denotes the projection of K onto L,

T̂ ∗LT̂Lf = PLT̂
∗T̂ f = PLT̂ T̂

∗f = T̂ T̂ ∗f

(because T̂ ∗f ∈ L and T̂L ⊆ L); on the other hand,

T̂LT̂
∗
Lf = T̂PLT̂

∗f = T̂ T̂ ∗f

(because T̂ ∗f ∈ L). Therefore, H ⊆ ker [T̂ ∗L, T̂L], showing that T̂L is a partially normal
extension of T .



Proof of (ii): Let M ⊆ K be such that T̂M ⊆M and T̂M := T̂ |M is a partially
normal extension of T . We shall prove that L ⊆ M. Since H ⊆ ker [T̂ ∗M, T̂M], for f ∈ H
we have

(2.5.2) PMT̂ ∗T̂ f = T̂PMT̂ ∗f.

We claim that T̂ ∗f = PM(T̂ ∗f), which will show that T̂ ∗f ∈ M (all f ∈ H), or L ⊆ M.
Now,

(T̂ ∗f, PMT̂ ∗f)K = (f, T̂PMT̂ ∗f)K

= (f, PMT̂ ∗T̂ f)K (by (2.5.2))

= (f, T̂ ∗T̂ f)K (since f ∈ H ⊆M)

= (f, T̂ T̂ ∗f)K (because T̂ is partially normal)

= (T̂ ∗f, T̂ ∗f)K.

Therefore, T̂ ∗f = PMT̂ ∗f , as desired. This concludes the proof. �

It is well known (cf. [Con, Proposition II.2.4]) that if T is a subnormal operator
on H and N is a normal extension of T then N is a minimal normal extension of T if and
only if

K =
∨
{T̂ ∗nh : h ∈ H, n ≥ 0}.

Thus if T is a subnormal operator then T may have a partially normal extension different
from a normal extension. For, consider the unilateral (unweighted) shift U+ acting on
`2(Z+). Then m.n.e. (U+) = U , the bilateral shift acting on `2(Z), with orthonormal basis
{en}∞n=−∞. It is easy to verify that m.p.n.e. (U+) = U |L, where L :=< e−1 > ⊕ `2(Z+).

On the other hand, it is well known that a minimal normal extension of a
subnormal operator is unique. By comparison, a minimal partially normal extension of a
weakly subnormal operator is also unique.

Lemma 2.6. For k = 1, 2, let Tk be a weakly subnormal operator on Hk and let T̂k be
a minimal partially normal extension of Tk on Kk. If T1 and T2 are unitarily equivalent
then so are T̂1 and T̂2.

Proof. Suppose that U : H1 → H2 is a unitary operator such that UT1 = T2U . Define V
on K1 by

V (T̂ ∗n1 h) := T̂ ∗n2 Uh (h ∈ H1, n = 0, 1).



Note that V |H1 = U . Observe that if f, g ∈ H then

||Uf + T̂ ∗2Ug||2 = (Uf + T̂ ∗2Ug, Uf + T̂ ∗2Ug)

= (Uf,Uf) + (Ug, T̂2Uf) + (T̂2Uf,Ug) + (T̂2Ug, T̂2Ug)

(because T̂2T̂
∗
2 h = T̂ ∗2 T̂2h for all h ∈ H2)

= (Uf,Uf) + (Ug, UT̂1f) + (UT̂1f, Ug) + (UT̂1g, UT̂1g)

(because UT1 = T2U)

= (f, f) + (g, T̂1f) + (T̂1f, g) + (T̂1g, T̂1g) (because U is isometry)

= ||f + T̂ ∗g||2.

Thus
V
[
f + T̂ ∗1 g

]
= Uf + T̂ ∗2Ug

is well–defined between dense subsets of K1 and K2, respectively. Thus V extends to a
unitary operator from K1 onto K2. Moreover we have V T̂1 = T̂2V , which follows from the
following observation: for every h ∈ H1,

V T̂1h = UT̂1h = T̂2Uh = T̂2V h

and
V T̂1(T̂ ∗1 h) = V T̂ ∗1 T̂1h = T̂ ∗2U(T̂1h) = T̂ ∗2 T̂2Uh = T̂2T̂

∗
2Uh = T̂2V (T̂ ∗1 h).

This completes the proof. �

Corollary 2.7. If T is a weakly subnormal operator and T̂ (1) and T̂ (2) are minimal par-
tially normal extensions of T , then T̂ (1) and T̂ (2) are unitarily equivalent.

Lemma 2.8. Let T ∈ L(H) be weakly subnormal and write T ≡
(
T1 T2

0 T3

)
on ker [T ∗, T ]⊕

cl(ran [T ∗, T ]). If T̂ =
(
T [T∗,T ]

1
2

0 B

)
on H ⊕ H is a partially normal extension of T then

the minimal partially normal extension of T can be obtained as

(2.8.1) T̂ :=

T1 T2 0
0 T3 [T ∗, T ]

1
2
0

0 0 PBP

 :

 ker [T ∗, T ]
cl(ran [T ∗, T ])
cl
(
ran [T ∗, T ]

)
 −→

 ker [T ∗, T ]
cl(ran [T ∗, T ])
cl
(
ran [T ∗, T ]

)
 ,

where [T ∗, T ]
1
2
0 denotes the restriction of [T ∗, T ]

1
2 to cl

(
ran [T ∗, T ]

)
and P is the projection

of H onto cl
(
ran [T ∗, T ]

)
.

Proof. After a careful examination of the proof of Lemma 2.1 (with T̂ in place of T̃ ),
and since |A| = A = [T ∗, T ]

1
2 , one can show that T̂ in (2.8.1) is also a partially normal

extension of T . Furthermore,
∨{

T̂ ∗nh : h ∈ H, n = 0, 1
}

= H ⊕ cl
(
ran [T ∗, T ]

)
, which

implies that T̂ is minimal. This proves the lemma �



3 Characterization of Weak Subnormality for Weighted Shifts

Recall that given a bounded sequence of positive numbers α : α0, α1, · · · (called weights),
the (unilateral) weighted shift Wα associated with α is the operator on `2(Z+) defined by
Wαen := αnen+1 for all n ≥ 0, where {en}∞n=0 is the canonical orthonormal basis for `2.
It is straightforward to check that Wα can never be normal, and that Wα is hyponormal if
and only if αn ≤ αn+1 for all n ≥ 0.

We now have:

Theorem 3.1 (Weak Subnormality of Weighted Shifts). If α ≡ {αn}∞n=0 is a strictly
increasing weight sequence then

(3.1.1) Wα is weakly subnormal⇐⇒ lim sup
α2
n+1 − α2

n

α2
n − α2

n−1
< ∞

(n = 0, 1, · · · ;α−1 := 0).

Proof. Suppose that Wα is weakly subnormal. In view of Lemma 2.1, Wα has a partially
normal extension Ŵα of the form Ŵα =

(
Wα [W∗α,Wα]

1
2

0 B

)
on `2⊕`2, where [W ∗α,Wα]

1
2Wα =

B [W ∗α,Wα]
1
2 . Since [W ∗α,Wα]

1
2 is diagonal it follows that B is a unilateral weighted shift.

Write B := Wβ , where β ≡ {βn}∞n=0. To determine Wβ , it suffices to check the (n+ 1, n)–
entries: (

[W ∗α,Wα]
1
2Wαen, en+1

)
=
(
Wβ [W ∗α,Wα]

1
2 en, en+1

)
,

which implies

(3.1.2) αn

√
α2
n+1 − α2

n = βn

√
α2
n − α2

n−1 (n = 0, 1, · · · ; α−1 := 0).

Thus Ŵα can be obtained as

(3.1.3) Ŵα =
(
Wα [W ∗α,Wα]

1
2

0 Wβ

)
on K := H⊕H,

where Wβ is a unilateral weighted shift whose weight sequence {βn}∞n=0 is given by

βn = αn

√
α2
n+1 − α2

n

α2
n − α2

n−1
(n = 0, 1, · · · ; α−1 := 0).

But since Wβ is bounded it follows that lim supβn <∞ and hence lim sup α2
n+1−α

2
n

α2
n−α2

n−1
<∞.

This proves the forward implication in (3.1.1). The backward implication follows at once
from the observation that Ŵα in (3.1.3) is a partially normal extension of Wα. �

If Wα is a weighted shift with weight sequence α = {αn}∞n=0, then the moments
of Wα are usually defined by β0 := 1, βn+1 := αnβn (n ≥ 0) [Shi]; however, we prefer to
reserve this term for the sequence γn := β2

n (n ≥ 0). A criterion for k-hyponormality can



be given in terms of these moments ([Cu1, Theorem 4]): if we build a (k + 1) × (k + 1)
Hankel matrix A(n; k) by

(3.1.4) A(n; k) :=


γn γn+1 . . . γn+k
γn+1 γn+2 . . . γn+k+1

...
...

...
γn+k γn+k+1 . . . γn+2k

 (n ≥ 0),

then

(3.1.5) Wα is k-hyponormal ⇐⇒ A(n; k) ≥ 0 (n ≥ 0).

In particular, for α strictly increasing, Wα is 2-hyponormal if and only if

(3.1.6) det

 γn γn+1 γn+2
γn+1 γn+2 γn+3
γn+2 γn+3 γn+4

 ≥ 0 (n ≥ 0).

We let
pn := un vn+1 − wn (n ≥ 0),

where 
un := α2

n − α2
n−1

vn := α2
nα

2
n+1 − α2

n−1α
2
n−2

wn := α2
n(α2

n+1 − α2
n−1)2.

Lemma 3.2. If α ≡ {αn}∞n=0 is a strictly increasing weight sequence then the following
statements are equivalent:

(i) Wα is 2-hyponormal;
(ii) α2

n+1(un+1 + un+2)2 ≤ un+1vn+2 (n ≥ 0);

(iii) α2
n

α2
n+2

un+2
un+3

≤ un+1
un+2

(n ≥ 0);

(iv) pn ≥ 0 (n ≥ 0).

Proof. This follows from a straightforward calculation. �

J. Stampfli [Sta] showed that for subnormal weighted shifts Wα a propagation
phenomenon occurs which forces the flatness ofWα whenever two equal weights are present.
Later, A. Joshi proved in [Jos] that the shift with weights α0 = α1 = a, α2 = α3 = · · · =
b, 0 < a < b, is not quadratically hyponormal, and P. Fan [Fan] established that for
a = 1, b = 2, and 0 < s <

√
5/5, Wα + sW 2

α is not hyponormal. On the other hand,
it was shown in [Cu1, Theorem 2] that a hyponormal weighted shift with three equal
weights cannot be quadratically hyponormal without being flat: If Wα is quadratically
hyponormal and αn = αn+1 = αn+2 for some n ≥ 0, then α1 = α2 = α3 = · · · , i.e., Wα

is subnormal. Furthermore, in [Cu1, Proposition 11] it was shown that, in the presence
of quadratic hyponormality, two consecutive pairs of equal weights again force flatness,
thereby subnormality.



Lemma 3.3 (Propagation). Let Wα be a weighted shift with weight sequence {αn}∞n=0.
(i) ([Sta, Theorem 6]) Let Wα be subnormal. If αn = αn+1 for some n ≥ 0, then α is

flat, i.e., α1 = α2 = α3 = · · · .
(ii) ([Cu1, Corollary 6]) Let Wα be 2-hyponormal. If αn = αn+1 for some n ≥ 0, then

α is flat.
(iii) ([Cu1, Proposition 11]) Let Wα be quadratically hyponormal. If αn = αn+1 = αn+2

for some n ≥ 0, then α is flat.
(iv) ([Cho, Theorem 1]) Let Wα be quadratically hyponormal. If αn = αn+1 for some

n ≥ 1, then α is flat.

We denote by W(α0,α1,α2)∧ the recursive weighted shift whose weights are cal-
culated according to the recursive relation

α2
n+1 = ϕ1 + ϕ0

1
α2
n

,

where

ϕ0 = −α
2
0α

2
1(α2

2 − α2
1)

α2
1 − α2

0
and ϕ1 =

α2
1(α2

2 − α2
0)

α2
1 − α2

0
.

It is well-known that W(α0,α1,α2)∧ is subnormal with 2–atomic Berger measure ([CF2]).
We also denote by Wx1,··· ,xn,(α0,α1,α2)∧ the weighted shift whose weight sequence consists
of the weights x1, · · · , xn followed by the weight sequence of W(α0,α1,α2)∧ .

To derive a flatness condition on pn for 3-hyponormal operators, we recall ([CF2,
Proposition 2.8]) the outer propagation of positive matrices: Let C ∈Mn(C) (n ≥ 2) be a
positive matrix, and suppose that

(3.3.1) C =
(
R ∗
∗ ∗

)
=
(
∗ S
∗ ∗

)
,

where R,S ∈ Mn−1(C). Then rank (S) ≤ rank (R), so in particular, detR = 0 implies
detS = 0.

Lemma 3.4. Let Wα be a 3-hyponormal weighted shift with weight sequence α≡{αn}∞n=0.
If pn0 = 0 for some n0 ≥ 0 then Wα is subnormal. More concretely, if n0 ≥ 1 is the first
integer such that pn0 = 0 then Wα = Wα0,··· ,αn0−2,(αn0−1,αn0 ,αn0+1)∧ .

Proof. If p0 = 0 then α1 = α2. By Lemma 3.3 (ii), α1 = α2 = · · · , which implies pn = 0
for all n ≥ 0, so evidently Wα is subnormal. We now assume n0 ≥ 1 and pn0 = 0. A
straightforward calculation shows that

(3.4.1) detA(n0 − 1; 2) =
{
α4

0α
2
1 p1 (n0 = 1)

(α2
0 · · ·α2

n0−2)3α2
n0−1α

2
n0
pn0 (n0 ≥ 2),

which implies detA(n0 − 1; 2) = 0. Since Wα is 3-hyponormal we have A(n0 − 1; 3) ≥ 0
and

A(n0 − 1; 3) =
(
A(n0 − 1; 2) ∗

∗ ∗

)
=
(
∗ A(n0; 2)
∗ ∗

)
.



It thus follows from (3.3.1) that detA(n0; 2) = 0 which by (3.4.1) implies pn0+1 = 0.
Repeating this argument shows that pn = 0 for all n ≥ n0. In turn, this implies
Wα|<en0−1,···> = W(αn0−1,αn0 ,αn0+1)∧ . Thus we have Wα=Wα0,··· ,αn0−2,(αn0−1,αn0 ,αn0+1)∧ ,
which is subnormal by [CJL, Theorem 1.3]: if α : xn, · · · , x1, (α0, · · · , αk)∧ then

Wα is subnormal ⇐⇒
{
Wα is ([k+1

2 ] + 1)-hyponormal (n = 1)

Wα is ([k+1
2 ] + 2)-hyponormal (n > 1).

This completes the proof. �

We now show that the consecutive differences of weights for 2-hyponormal
weighted shifts must satisfy a rigid condition.

Lemma 3.5. Let α ≡ {αn}∞n=0 be a strictly increasing weight sequence. If Wα is 2-
hyponormal then the sequence of quotients

(3.5.1) Θn :=
un+1

un+2
(n ≥ 0)

is bounded away from 0 and from ∞. More precisely,

(3.5.2) 1 ≤ Θn ≤
u1

u2

(
||Wα||2

α0α1

)2

for sufficiently large n.

In particular, {un}∞n=0 is eventually decreasing.

Proof. Suppose Wα is 2-hyponormal. By iterating the inequality in Lemma 3.2 (iii), we
obtain

un+1

un+2
≤ u1

u2
·
α2
nα

2
n+1

α2
0α

2
1
≤ u1

u2

(
||Wα||2

α0α1

)2

(n ≥ 2),

so that the sequence {un+1
un+2
}∞n=0 is bounded. We must now show that un+2

un+1
≤ 1 for suf-

ficiently large n. To do this observe that for every ε > 0, there exists N1 ∈ Z+ such
that

(3.5.3)
||Wα||2

αnαn+1
<
√

1 + ε for n ≥ N1.

Suppose that there exists N2 > N1 such that

(3.5.4)
uN2+2

uN2+1
> 1 + ε.

By iterating again the inequality in Lemma 3.2 (iii), we have

un+1

un+2
≤ uN2+1

uN2+2

(
αnαn+1

αN2αN2+1

)2

<
1

1 + ε

(
||Wα||2

αN2αN2+1

)2

<
1

1 + ε
· (1 + ε) = 1

for n ≥ N2, which contradicts the fact that un+1 → 0 (n→∞). This completes the proof.
�



Remark 3.6. Note that Lemma 3.5 says that if Wα is 2-hyponormal then the sequence
{un}∞n=0 eventually decreases, and it does so very slowly. To exemplify this, consider the
following weight sequences:

(i) αn := (
∑n
k=0 δn)

1
2 (n ≥ 0), where

{δn}∞n=0 :
1
2
,

1
23 ,

1
22 ,

1
25 ,

1
24 ,

1
27 ,

1
26 , · · ·

and
(ii)

α′n :=

(
1 +

n∑
k=0

1
22k

) 1
2

.

Then Wα and Wα′ are both hyponormal but not 2-hyponormal because (i) {un}∞n=0 is not
eventually decreasing; (ii) Θn(α′) is not bounded (i.e., {u′n}∞n=0 is decreasing too fast).

We now exhibit a gap between 2–hyponormality and weak subnormality for
weighted shifts.

Example 3.7. There exists a weakly subnormal weighted shift (whose weight sequence is
strictly increasing) which is not 2–hyponormal.

For, let Wα be the weighted shift whose weight sequence is given by Remark 3.6
(i). Then Wα is not 2–hyponormal. However by Theorem 3.1, Wα is weakly subnormal
because

lim sup
α2
n+1 − α2

n

α2
n − α2

n−1
= lim sup

δn+1

δn
= 2.

�

We pause to state an unexpected consequence of Lemma 3.5. First, recall that
a compact operator T ∈ L(H) is trace-class if

∞∑
n=0

sn(T ) < ∞,

where sn(T ) is the n-th s-number corresponding to T . Thus if T is a trace-class operator
with sn ≡ sn(T ) > 0 (n ≥ 0), then evidently lim sup sn+1

sn
≤ 1. Of course, we need not

expect that { sn
sn+1
}∞n=0 be bounded. We shall say that a trace-class operator T ∈ L(H)

has the ratio property if { sn
sn+1
}∞n=0 is bounded.

Corollary 3.8. Let α ≡ {αn}∞n=0 be a strictly increasing weight sequence. If Wα is 2-
hyponormal then its self-commutator has the ratio property.

Proof. Straightforward from Lemma 3.5 and the well-known fact that the self-commutator
of a hyponormal weighted shift is trace-class. �



In general, if T̂ = T |H then the spectrum of T̂ , σ(T̂ ), may contain strictly the
spectrum of T , σ(T ); in fact, the passage from σ

(
A C

0 B

)
to σ(A) ∪ σ(B) is the filling

in of some holes of σ
(
A C

0 B

)
, which happen to be subsets of σ(A) ∩ σ(B) (cf. [HLL,

Corollary 7]). Write σl(·) and σr(·) for the left- and the right- spectrum, respectively.
From Rosenblum’s corollary [LuR, Theorem 4] we know that if σr(A) ∩ σl(B) = ∅ then
σ
(
A C

0 B

)
= σ(A) ∪ σ(B). But it may happen that σ

(
A C

0 B

)
= σ(A) ∪ σ(B) even though

σr(A) ∩ σl(B) 6= ∅. The following lemma is an example of such a case.

Lemma 3.9. Let Wα and Wβ be weighted shifts. Then

(3.9.1) σ
(
Wα C

0 Wβ

)
= σ(Wα) ∪ σ(Wβ) for every C ∈ L(`2).

Proof. Recall ([HLL, Corollary 10]) that if A ∈ L(H) and B ∈ L(K) then
(3.9.2)[
σ(A)\σl(A)

]
∩
[
σ(B)\σr(B)

]
= ∅ =⇒ σ

(
A C

0 B

)
= σ(A)∪σ(B) for every C ∈ L(K,H).

Since every weighted shift W with positive weights has no eigenvalues ([Shi, Theorem 8])
and hence σ(W ) \ σr(W ) = ∅, the result immediately follows from (3.9.2). �

4 Proof of Theorem 1.2

It is well-known that if T is subnormal then it has a normal extension T̂ such that σ(T̂ ) ⊆
σ(T ) and ||T̂ || = ||T ||, namely its minimal normal extension. By comparison, our main
theorem shows that every 2-hyponormal weighted shift T has a minimal partially normal
extension T̂ such that σ(T̂ ) = σ(T ) and ||T̂ || = ||T ||. We are now ready to prove Theorem
1.2.

Proof of Theorem 1.2. Let T ≡Wα. If αn = αn+1 for some n ≥ 0 then by Lemma 3.3 (ii)
α is flat, so that T is subnormal. Thus in this case, the result is evident. Suppose that α is
strictly increasing. Then the first assertion follows at once from Theorem 3.1 and Lemma
3.5. Furthermore, as in (3.1.3) we can choose a partially normal extension T̂ of T as

(4.1) T̂ =
(
T [T ∗, T ]

1
2

0 S

)
on K := H⊕H,

where S is a weighted shift whose weight sequence {βn}∞n=0 is given by

βn = αn

√
un+1

un
(n ≥ 0).

We shall now prove that T̂ is hyponormal. Since

[T̂ ∗, T̂ ] =
(

0 0
0 [S∗, S] + [T ∗, T ]

)
,



we need to show that [S∗, S] + [T ∗, T ] ≥ 0. Observe that [S∗, S] + [T ∗, T ] is a diagonal
operator whose diagonals (dn)∞n=0 are given by

d0 = α2
1; d1 = β2

1 ;

dn = un + α2
n

un+1

un
− α2

n−1
un
un−1

(n ≥ 2)

=
u2
nun−1 + α2

nun+1un−1 − α2
n−1u

2
n

unun−1
(n ≥ 2),

which implies that
dn =

pn−1

un un−1
(n ≥ 2).

We thus have

(4.2) [S∗, S] + [T ∗, T ] =


α2

1
β2

1 0
p1
u1u2

0 p2
u2u3

. . .

 .

Since T is 2-hyponormal it follows from Lemma 3.2 that pn ≥ 0 for every n ≥ 0, so that
writing C for the square root of the (positive) diagonal matrix in (4.2), we have

(4.3) [T̂ ∗, T̂ ] = 0H
⊕

C2,

which proves that T̂ is hyponormal. For spectral equality, note that S is a weighted shift.
Since by Lemma 3.5,

un+1

un
≤ 1 for sufficiently large n,

it follows that (cf. [Ha2, Solution 91])

r(S) = lim
k

sup
n

∣∣∣∣∣
k−1∏
i=0

√
α2
n+i

un+i+1

un+i

∣∣∣∣∣
1
k

≤ lim
k

sup
n

∣∣∣∣∣
k−1∏
i=0

αn+i

∣∣∣∣∣
1
k

= r(T ),

where r(·) denotes the spectral radius. Now recall that the spectrum of a weighted shift Wα

is the disc |z| ≤ r(Wα) (cf. [Shi, Theorem 4]); it follows that σ(S) ⊆ σ(T ). Therefore, by
Lemma 3.9, we have σ(T̂ ) = σ(S)∪σ(T ) = σ(T ). For norm equality, use the hyponormality
of T̂ and T to see that ||T̂ || = r(T̂ ) = r(T ) = ||T ||, where r(·) denotes the spectral radius.



The minimality of T̂ follows from Lemma 2.5 since{
T̂ ∗nh : h ∈ H, n = 0, 1

}
= H⊕H.

Towards the weak subnormality of T̂ , suppose T is 3-hyponormal and write

[T ∗, T ]
1
2 =: D ≡ diag (uj)∞j=0 and βj := αj

√
uj+1

uj
(j ≥ 0).

Then (4.1) can be rewritten as

(4.4) T̂ =
(
T D
0 Wβ

)
, where β := {βj}∞j=0.

Recall that C is a diagonal operator with diagonal entries c0 = α1 6= 0, c1 = β1 6= 0 and
cj =

√
pj−1
uj−1uj

(j ≥ 2). If pj = 0 for some j ≥ 2 then by Lemma 3.4, T is subnormal; thus
its partially normal extension can be chosen as a normal operator and therefore the proof
is complete. Therefore suppose pj 6= 0 for all j ≥ 2 and hence cj 6= 0 for all j ≥ 0. Looking
at (4.4), with T̂ in place of T , we define

T̂ (2) :=
(
T̂ [T̂ ∗, T̂ ]

1
2

0 0H ⊕Wβ(2)

)
,

where Wβ(2) is the weighted shift with weight sequence {β(2)
j }∞j=0 given by

β
(2)
j :=

{
βj

cj+1
cj

if cj 6= 0

0 if cj = 0.

Thus we have

T̂ (2) ∼=

T D 0
0 Wβ C
0 0 Wβ(2)

 HH
H

⊕
0H.

We claim that T̂ (2) is a partially normal extension of T̂ . A straightforward calculation
shows that

CWβ =


0

c1β0 0
c2β1 0

c3β2 0
. . . . . .

 = Wβ(2)C,

so that

[T̂ (2)∗, T̂ (2)] ∼=

 [T ∗, T ]−D2 T ∗D −DW ∗β 0
DT −WβD D2 + [W ∗β ,Wβ ]− C2 W ∗βC − CW ∗β(2)

0 CWβ −Wβ(2)C C2 + [W ∗
β(2) ,Wβ(2) ]

⊕ 0H

=

 0 0 0
0 0 0
0 0 C2 + [W ∗

β(2) ,Wβ(2) ]

⊕ 0H,



which implies that T̂ is weakly subnormal. This completes the proof of Theorem 1.2. �

5 Connections with Subnormality

§5-1. Stampfli’s Normal Extension

In the proof of Theorem 1.2 we observed that if T is subnormal then C2+[W ∗
β(2) ,Wβ(2) ] ≥ 0

(cf. [Sta, Proof of Theorem 4]), showing that T̂ (2) is hyponormal. We can repeat that
argument to obtain Stampfli’s normal extension Ŵ

(∞)
α of the subnormal weighted shift

Wα. This says that if Wα is subnormal then the partially normal extension Ŵα in (1.5) is
also subnormal. Also, note that Wβ(2) may be a finite rank operator, as briefly observed in
the proof of Theorem 1.2. To illustrate this recall the recursively generated weighted shift
W(α0,α1,α2)∧ . In this case we have pn = 0 (n = 1, 2, · · · ). Thus if Ŵ is the corresponding
partially normal extension of W(α0,α1,α2)∧ then from (4.2) we can see that

[Ŵ ∗, Ŵ ] = 0 ⊕
(
α2

1 0
0 β2

1

)
.

Thus, using the above process, the Stampfli’s (minimal) normal extension of W(α0,α1,α2)∧

is obtained in the form

0 | √u0 | |
α0 0 | √

u1 | |
α1 0 | √

u2 | |

α2 0 |
. . . | |

. . . . . . |
. . . | |

−− −− −− −− −− | −− −− −− −− −− | −− −− | −− −− −− −− −− −− −−
| 0 | α1 0 |
| β0 0 | 0 β1 |
| β1 0 | 0 0 |

| β2 0 |
...

... |

|
. . . . . . |

...
... |

−− −− −− −− −− | −− −− −− −− −− | −− −− | −− −− −− −− −− −− −−
| | 0 0 | α2 0
| | √u2 0 | 0

√
β2

1−u2

−− −− −− −− −− | −− −− −− −− −− | −− −− | −− −− −− −− −− −− −−
| | | 0 0 ∗ 0
| | | ∗ 0 0 ∗
| | | 0 0 ∗ 0

| | |
. . . . . . . . . . . .


(cf. [Sta, p. 374]).

Example 5.1. There exists a weighted shift which is weakly subnormal but not subnormal.

Proof. In view of Theorem 1.2, it suffices to show that there exists a weighted shift which
is 2-hyponormal but not subnormal. Such examples abound; e.g., consider the weighted
shift whose weights are given by

α0 := x, αn :=

√
n+ 1
n+ 2

(n ≥ 1) (cf. [Cu1, Proposition 7]).



For
√

1
2 < x ≤ 3

4 , Wα is 2-hyponormal, but not subnormal. �

Theorem 1.2 says that every 2-hyponormal weighted shift has an economical
“norm- and spectrum-preserving” partially normal extension; moreover, the discussion
preceding Example 5.1 shows that 2-hyponormality is a useful notion for the study of
subnormality.

We now formulate a natural question:

Question 5.2. Is every 2-hyponormal operator weakly subnormal ?

Here is a partial answer.

Theorem 5.3. If T ∈ L(H) is 2-hyponormal then T has a linear (not necessarily bounded)
extension T̂ on H⊕H satisfying the equality T̂ ∗T̂ f = T̂ T̂ ∗f for all f ∈ H. More precisely,

(5.3.1) T̂ :=
(
T [T ∗, T ]

1
2

0 S̃

)
: H⊕H −→ H⊕H,

where S̃ : ker[T ∗, T ]⊕ ran[T ∗, T ] −→ H is defined by

(5.3.2) S̃f :=
{

[T ∗, T ]
1
2Tg if f = [T ∗, T ]

1
2 g with g ∈ ran [T ∗, T ]

0 if f ∈ ker [T ∗, T ].

Moreover if [T ∗, T ] has closed range (e.g., if [T ∗, T ] is finite rank) then T is weakly sub-
normal.

Proof. Put A := [T ∗, T ]
1
2 . We look for S̃ such that AT = S̃A, which naturally leads

to define S̃(Ag) := ATg (g ∈ H), and S̃f := 0 for f ⊥ ranA. To guarantee that S̃ is
well-defined, we need Ag = 0 =⇒ ATg = 0 (all g ∈ H), i.e., T (kerA) ⊆ kerA, which holds
by Lemma 2.2. Thus S̃ is well-defined. Note that

(5.3.3) [T̂ ∗, T̂ ] =
(

0 T ∗A−AS̃∗
AT − S̃A [S̃∗, S̃] +A2

)
=
(

0 0
0 [S̃∗, S̃] +A2

)
.

We have thus established the first assertion. For the second assertion, a matricial argument
works well. Take A := [T ∗, T ]

1
2 . Since T (kerA) ⊆ kerA and ranA is closed, we can write

T as

(5.3.4) T =
(
T0 R
0 V

)
kerA
ranA .

Also A can be decomposed as

(5.3.5) A =
(

0 0
0 A0

)
kerA
ranA .



Note that A0 is invertible. Thus if we define

(5.3.6) B :=
(

0 0
0 A0V A

−1
0

)
,

then A∗T =
(

0 0
0 A0V

)
= BA∗ and evidently, [T ∗, T ] = AA∗. This completes the proof. �

Towards an affirmative answer to Question 5.2 we must find a partially normal
extension T̂ . As a candidate one might suggest, in view of (5.3.1),

T̂ =
(
T [T ∗, T ]

1
2

0 S

)
,

where S is a continuous linear extension of S̃ in Theorem 5.3. The key missing step is to
show that S is bounded.

§5-2. Outer Propagation for Weighted Shifts

Do there exist hyponormal operators which are not weakly subnormal ? To answer this
question, we first establish that weakly subnormal weighted shifts possess a propagation
property.

Theorem 5.4 (Outer Propagation of Weak Subnormality). Let T ≡ Wα be a
weighted shift with weight sequence α = {αn}∞n=0. Assume that T is weakly subnormal. If
αn = αn+1 for some n ≥ 0 then αn+k = αn for all k ≥ 1. In particular, if for some n0,
α0 < · · · < αn0 and αn0+k = αn0 for all k ≥ 1 then T is weakly subnormal.

Proof. The first assertion follows at once from (3.1.2). Towards the second assertion,
observe that if Wβ is a weighted shift whose weight sequence β ≡ {βn}∞n=0 is given by

βn =

 αn

√
α2
n+1−α2

n

α2
n−α2

n−1
if n < n0

0 if n ≥ n0,

then T̂ =
(
Wα [W∗α,Wα]

1
2

0 Wβ

)
is a partially normal extension of T . This completes the proof.

�

Example 5.5. There exists a quadratically hyponormal weighted shift which is not weakly
subnormal.

For, let

α0 = α1 =

√
2
3
, αn =

√
n+ 1
n+ 2

(n ≥ 2) (cf. [Cu1, Proposition 7]);

then Wα is quadratically hyponormal but not weakly subnormal (by Theorem 5.4). �



Example 5.6. There exists a weakly subnormal weighted shift which is not quadratically
hyponormal.

For, let Wα be a weighted shift with weight sequence α ≡ {αn}∞n=0, where
α0 < α1 < α2 = α3 = · · · . Then, by Theorem 5.4 Wα is weakly subnormal while it is not
quadratically hyponormal by Lemma 3.3 (iv). �

We now show an additional property that must be satisfied by a weakly subnor-
mal operator whose partially normal extension is hyponormal. First, recall that T 2 need
not be hyponormal when T is just hyponormal (cf. [Ha2, Solution 209]).

Theorem 5.7. Let T ∈ L(H) be a weakly subnormal operator whose minimal partially
normal extension is hyponormal (e.g., a weighted shift; see Theorem 1.2). Then T 2 is
hyponormal.

Proof. Let T̂ := m.p.n.e. (T ), and let f ∈ H. Then we have

||T 2f || = ||T̂ 2f || = ||T̂ (T̂ f)||

≥ ||T̂ ∗(T̂ f)|| (by hyponormality of T̂ )

= ||T̂ T̂ ∗f || (because T̂ is partially normal)

≥ ||T̂ ∗2f || (again by hyponormality of T̂ )

≥ ||T ∗2f ||
= ||(T 2)∗f ||,

which implies that T 2 is hyponormal. �

§5.3. The Case of Finite-Rank Self-Commutator

The self-commutator of an operator plays an important role in the study of subnormality
(cf. [McCY]). On the other hand, weak subnormality gives useful information on self-
commutator, i.e., if T ∈ L(H) is weakly subnormal then there exist operators A and B
satisfying

[T ∗, T ] = AA∗ and A∗T = BA∗.

Subnormal operators with finite rank self-commutators have been extensively
studied ([Ale], [McCY], [Mor], [OTT], [Xi1], [Xi2]). In particular, B. Morrel [Mor]
showed that a pure subnormal operator with rank-one self-commutator is unitarily equiv-
alent to a linear function of the unilateral shift. Morrel essentially showed (also see [Con,
p.162]) that if

(i) T is hyponormal;
(ii) [T ∗, T ] is rank-one; and
(iii) ker [T ∗, T ] is invariant for T ,

then T − β is quasinormal for some β ∈ C. Now remember that every pure quasinormal
operator is unitarily equivalent to U⊗A, where U is the unilateral shift and A is a positive
operator with trivial kernel. Thus if [T ∗, T ] is of rank-one (and hence so is [(T − β)∗, (T −



β)]), we must have A ∼= λ (6= 0) ∈ C, so that T − β ∼= αU , or T ∼= αU + β. Now, by
the above considerations, (1.2), Lemma 2.2, and Corollary 2.3, we can see that every pure
weakly subnormal (or 2-hyponormal) operator with rank-one self-commutator is unitarily
equivalent to a linear function of the unilateral shift.

Theorem 5.8. Every weakly subnormal or 2-hyponormal operator T with rank-one self-
commutator is subnormal. In addition, if T is pure then T is unitarily equivalent to a
linear function of the unilateral shift.

What can we say about weakly subnormal operators with finite rank self-commu-
tator ? The following example illustrates that we need not expect that they be subnormal
in general.

Example 5.9. Consider a weighted shift Wα with weight sequence

(5.9.1) α :

√
1
2
,

√
8
5
, (
√

3,

√
10
3
,

√
17
5

)∧.

Then Wα is 2-hyponormal but not subnormal (cf. [CL2]). Observe that α is a two-
step extension of a recursively generated weight sequence, so pn = 0 for all n ≥ 3. A
straightforward calculation shows that p1 = 6/125 and p2 = 16/125. Using the notation
in the proof of Theorem 1.2, we define

(5.9.2) Ŵα :=
(
Wα D
0 Wβ

)
,

where D := [W ∗α,Wα]
1
2 . Then Ŵα is a partially normal extension of Wα, and a straight-

forward calculation using (4.3) gives

[Ŵ ∗α, Ŵα]
1
2 = 0H

⊕
√

8/5 √
112/55 √

12/385 √
48/175

⊕ 0∞,

which shows that Ŵα has a rank-four self-commutator. We now claim that Ŵα is weakly
subnormal. To this end, we need to construct a partially normal extension of Ŵα. The
argument is similar to that in the proof of Theorem 1.2. Consider the extension

Ŵ (2)
α :=

Wα D 0
0 Wβ C
0 0 R

 HH
H,

where

C := [Ŵ ∗α, Ŵα]
1
2 	 0H and R :=


0√
7/5 0√

12/385 0√
44/7 0

⊕ 0∞.



Then we have

CWβ =


0√

56/25 0√
192/3025 0√

48/245 0

⊕ 0∞ = RC.

A straightforward calculation shows that

[Ŵ (2)∗
α , Ŵ (2)

α ] =

 [W ∗α,Wα]−D2 W ∗αD −DW ∗β 0
DWα −WβD D2 + [W ∗β ,Wβ ]− C2 W ∗βC − CR∗

0 CWβ −RC C2 + [R∗, R]



= 0H⊕H
⊕

3
257/385

44/7
−1052/175

⊕ 0∞,

which implies that H ⊕H ⊆ ker [Ŵ (2)∗
α , Ŵ

(2)
α ], so Ŵα is weakly subnormal. However Ŵα

is not subnormal, otherwise Wα would be subnormal. �

6 Connections with Agler’s Model Theory

Recently, M. Dritschel and S. McCullough [DrMcC] have developed a model theory for
hyponormal contractions in the context of the Agler’s abstract model theory [Agl]. The
purpose is to find a small, representative subcollection of a given family of operators, a
so–called model, with the property that any member of the family extends to a member
of the subcollection. Following Agler [Agl], a family F is a bounded collection of Hilbert
space operators which is closed with respect to arbitrary direct sums, restrictions to invari-
ant subspaces, and unital ∗-representations. There are many examples of such families:
subnormal contractions, contractions, isometries, etc. The extremals extF of F are those
operators T in F whose only extensions in F are obtained by adding a direct summand to
T . The extremals have a role in finding the smallest possible model for F , the boundary
∂F of F . In [Agl, Propositions 5.9 and 5.10] it was shown that the extremals belong to
every model, and that every element of F lifts to an element of extF . In [DrMcC] it was
proved that if T is a contractive n-hyponormal operator and if

(6.1) ran (T ∗kA) ∩ ranA = {0}

and

(6.2) kerT ∗k ∩ ranA = {0}

for some 1 ≤ k ≤ n, where [T ∗, T ] = AA∗, then T is extremal. The following corollary
shows that if T is weakly subnormal then conditions (6.1) and (6.2) force T to be normal.



Theorem 6.1. Let T ∈ L(H) be a weakly subnormal operator satisfying (6.1) and (6.2)
for some 1 ≤ k ≤ n. Then T must be normal, and therefore T is extremal for the collection
Fws of contractive weakly subnormal operators.

Proof. Suppose T is weakly subnormal. Then there exists a partially normal extension T̂
of T such that

T̂ =
(
T A
0 B

)
with [T ∗, T ] = AA∗ and T ∗A = AB∗.

Thus by induction, T ∗kA = AB∗k, so ranT ∗kA ⊆ ranA for 1 ≤ k ≤ n. Thus Mk :=
ran (T ∗kA) ∩ ranA = ran (T ∗kA). By (6.1) we have that Mk = {0}, i.e., T ∗kA = 0 for
some 1 ≤ k ≤ n. Let f ∈ H, and let g := Af . We have

T ∗kg = T ∗kAf = 0 =⇒ g ∈ kerT ∗k ∩ ranA

=⇒ g = 0 (by (6.2))
=⇒ Af = 0.

It follows that A = 0, which implies that T is normal. The extremality of normal operators
for Fws follows by looking at self-commutators. �

Corollary 6.2. Let T be a contractive 2-hyponormal operator with closed range self-
commutator. Assume that T satisfies (6.1) and (6.2). Then T must be normal, and
therefore T is extremal for h2, the family of 2–hyponormal contractions.

A natural question arises: Is every 2-hyponormal operator satisfying (6.1) and
(6.2) normal ? If the answer is negative then in view of Theorem 6.1 we can conclude that
there exists a 2-hyponormal operator which is not weakly subnormal; this would answer
Question 5.2 in the negative.

Finally, we examine five additional questions.

Question 6.3. Does every 2-hyponormal operator have a partially normal extension which
is also 2-hyponormal ?

Let us suppose that the answer is affirmative. Let N , S, and h2 denote the
collections of normal, subnormal, and 2-hyponormal contractions, respectively. We now
claim that if every element of h2 has a partially normal extension in h2, then ext h2 = N .
The inclusion N ⊆ ext h2 is evident, and was mentioned in Corollary 6.2. For the converse,
suppose T ∈ ext h2. By our assumption T has a partially normal extension T̂ which is
2-hyponormal:

T̂ =
(
T A
0 S

)
∈ h2.

By extremality, we have A = 0, so weak subnormality forces T to be normal. Therefore
ext h2 = N . By [Agl, Proposition 5.10], every element in h2 would then have a normal
extension, and hence h2 = S, which leads to a contradiction because we know that there
are non–subnormal 2-hyponormal operators. We have thus obtained the following result,
which answers Question 6.3 in the negative.



Proposition 6.4. There exists a 2–hyponormal operator T which either does not have a
partially normal extension, or such that m.p.n.e. (T ) is not 2–hyponormal.

Question 6.5. Does the collection Fws of weakly subnormal contractions form a family ?

Note that Fws is closed with respect to (i) restrictions to invariant subspaces (c.f.
basic facts below Definition 1.1); (ii) unital ∗-representations (evident from the definition);
and (iii) finite direct sums, by the following observation: if T1 and T2 have partially normal
extensions

(
T1 A

0 B

)
and

(
T2 C

0 D

)
, then


T1 0 A 0
0 T2 0 C
0 0 B 0
0 0 0 D


is a partially normal extension of T1 ⊕ T2. But it is not clear whether Fws is closed with
respect to arbitrary direct sums.

Question 6.6. Is Fws sot-closed ?

Remember that S is sot-closed (in fact, S = sot-clN ) and that the collection
hk of k-hyponormal contractions is also sot-closed for each k ≥ 1 (cf. [CL2]). In view of
Theorem 1.2, we anticipate that every 2-hyponormal operator is weakly subnormal, so we
conjecture that

h2 ⊆ Fws ⊆ h1.

Thus an affirmative answer to Question 6.6 would probably exhibit a sot-closed collection
of operators between h2 and h1. More generally, we have:

Question 6.7. Is there a sot-closed collection of operators between hk and hk+1 for each
k ≥ 1 ?

On the other hand, if Fws were not sot-closed, we would ask:

Question 6.8. Is every hyponormal operator a sot-limit of a sequence of weakly subnormal
operators, i.e., h1 = sot-clFws ?
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