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ABSTRACT. For f € H?, let G’} :={g € 2zH?: f+g € L™ and Ty4g is hyponormal}.
In 1988, C. Cowen posed the following question: If g € G} is such that A g ¢ G’f (all
XA €C, |\l > 1), is g an extreme point of G’f ? In this note we answer this question
in the negative. At the same time, we obtain a general sufficient condition for the
answer to be affirmative; that is, when f € H°® is such that rank H? < oo.
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1. Introduction

A bounded linear operator A on a Hilbert space is said to be hyponormal if its
self-commutator [A*, A] := A*A— AA* is positive (semidefinite). Given ¢ € L*°(T),
the Toeplitz operator with symbol ¢ is the operator T, on the Hardy space H?(T)
of the unit circle T = D defined by T,,f := P(¢ - f), where f € H*(T) and P
denotes the orthogonal projection that maps L?*(T) onto H?(T). Let H*°(T) :=
L>* N H?, that is, H™ is the set of bounded analytic functions on . The problem
of determining which symbols induce hyponormal Toeplitz operators was solved
by C. Cowen [Co2] in 1988. Cowen’s method is to recast the operator-theoretic
problem of hyponormality for Toeplitz operators as a functional equation involving
the operator’s symbol.

Suppose that ¢ € L*°(T) is arbitrary and consider the following subset of the
closed unit ball of H>(T),

E(p) = {k € H®(T) : ||k||oc < 1 and ¢ — kg € H®(T)}.
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Cowen’s Theorem states that T, is hyponormal if and only if £(¢) is nonempty
[Co2],[NT].

We also recall the connection between Hankel and Toeplitz operators. For ¢ in
L*>, the Hankel operator H, : H> — H? is defined by H, f := J(I — P)(¢f), where
J: (H?)* — H? is given by Jz™™ = 2"~ ! for n > 1. The following are two basic
identities:

(1) T,y —T,Ty = H%qu ((,0,1,[) S LOO) and Haph = T}::Hap (h € Hoo)’

where for ( € L, we define ((z) := ((z). From this we can see that if k € £(y)
then

[T, Ty] = HzHy — H H, = H;Hg — HyHyp = Hz(1 — 117 Hy,
which implies that ker Hy C ker [T, T,].

To describe the set of g such that Ty, is hyponormal for a given f, C. Cowen
[Col] defined the set G’} as follows. If H := {h € zH*> : [|h[|s < 1}, let

o= {gEzH2: sup | < hhg,f >| > sup | < hhg,g > | foreverthHQ}.
hocH hocH

To see how this definition is relevant to hyponormality of Toeplitz operators, we

assume that f+g € L. Note that if f € H? then Hy makes sense when f has an

L>-conjugate g € H?, that is, f +g € L>. For, given h € H? we have Hy (h) =

J(I — P)(fh+gh) = J(I — P)(fh) = Hzh. If f+g € L™ (f € H%, g € zH?) and

h € H? then

sup | < hho,f >|= sup | [ hhofdu|= sup | | (I — P)(fh + gh)hodu|
T

ho€H ho€H ho€H JT
:Sup‘<(1_P>?h7%>|:Sup‘<J(I_P)?h7h0>|
ho€H ho€EH
= |[Hh||

and similarly,
sup | < hho,g > | = ||Hghl||.
ho€H
Recall ([Ab, Lemma 1]) that if ¢ = f+g € L™ (f € H? g € 2H?) then the
following are equivalent:
1. T, is hyponormal;
2. ||Hzh|| > ||Hghl| for every h € H?.
Therefore we can see that for f € H?,
(2) /f ={gczH?: f+G€ L™ and Tf43 is hyponormal}.
We call G} the reduced Cowen set for f. To avoid some technical difficulties using
the original definition of G’f when dealing with hyponormality of T'yyg, hereafter
we assume that f +g € L* and adopt (2) as our definition of G}; this appears to
be natural when studying the set G}. We can easily see that G’f is balanced and
convex. Write

VG :={geGs: \g¢ G} (al x€C, |A]>1)}

and ext G; for the set of all extreme points of G;. In [Col] the following question
was posed:



Reduced Cowen Sets 3

Question. Is VG’f C ext G’f ?

In [CCL] an affirmative answer to the above question was given in case f is an
analytic polynomial. In this note we answer the above question in the negative, and
give a general sufficient condition for the answer to be affirmative: if rank Hy < o0
then VG’ C ext G';. In [CCL], our ploy was to use the Carathéodory-Schur Inter-
polation Problem to deal with the case of an analytic polynomial f. By comparison,
we here resort to the classical Hermite-Fejér Interpolation Problem.

2. Main results

If p € L, write ¢, = P(¢) € H?> and p_ = (I — P)(p) € zH? Thus
@ = ¢4+ + p_ is the decomposition of ¢ into its analytic and co-analytic parts.
We first reformulate Cowen’s Theorem. Suppose that ¢ € L is of the form
o(z) =307 anz" and that k(z) = > 7 ¢,2" is in H?. Then ¢ — kp € H*™ if
and only if

a; az as ap Co a—
a az ... Gp ... C1 a—2
as C2 a_
3 _ =
3) - ,

that is, Hz+k = Zp_. Thus by Cowen’s Theorem we have:

Lemma 1 ([CuL]). If ¢ = ¢ + = € L, then E(p) # O if and only if the
equation Hp—k = Zp_ admits a solution k satisfying ||k||- < 1.

Recall that a function ¢ € L™ is of bounded type (or in the Nevanlinna class)
if it can be written as the quotient of two functions in H*°(D), that is, there are
functions 1,15 in H*°(D) such that

_ i(2)
Yo (2)

for almost all z € T.

o(2)

For example, rational functions in L*° are of bounded type. By an argument of
M. Abrahamse [Ab, Lemma 3], the function ¢ is of bounded type if and only if
ker Hz # {0}. Thus if ¢ = ¢, + %= € L*™ and @ is not of bounded type then
ker Hg- = ker H = {0}, so that the equation Hz-k = Z¢_ has a unique solution
whenever it is solvable; in other words, if ¥ is not of bounded type, and T, is
hyponormal, then £(¢) has exactly one element.

We now have:

Theorem 2. Suppose that 1) € H> is such that 1 is not of bounded type, and let
f = 2%Y. Then VG'f ¢ ext G’f.
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Proof. By assumption, f € H>® and f is not of bounded type; indeed, if f were

of bounded type then f = 7 (g9,h € H*(DD)), and so ) = Z%g would be of bounded
type. Observe now that by definition and Lemma 1,

"={g¢c zH?: f+g€ L™ and Hzk = Zzg for some k € H> with [|k[[ < 1}.

Since f € 23H>, we have that Zf, Z2f, %(E—&—EQ)f all are in zH>°. A straightforward
calculation shows that

~ 1
Hy(q) =zqf forq=z, 22, §(Z+Z2>.

Since ||¢||loo < 1 and af = 57 € zH®> we have that {z f, 2°f, 3(z+72°)f} C G
We will now show that %(2+§2)f € VG, which proves VG’f 7 ext G}. Since f is
not of bounded type (so ker H7 = {0}), we know that for [A\| > 1 and ¢ := 1(z+2%),
the unique solution of the equation Hzk = Azqfis k = Aq. But A qlloo > 1, s0

Aq f ¢ G’ and therefore iz+28)f=qf € VG O

For a concrete example satisfying the hypotheses of Theorem 2, let i) be a
Riemann mapping of the unit disk onto the interior of the ellipse with vertices
+i(1 — )71 and passing through +(1 +a)~!, where 0 < a < 1. Then ¢ is in H®®,
and 9 is not of bounded type ([CoL, Corollary 2]).

In [CCL], an affirmative answer to Cowen’s Question was given in case f is an
analytic polynomial. We now establish that the answer is also affirmative in the
more general instances of rank Hy < oo0.

To see this we need the following auxiliary lemma.
Lemma 3. Let q be a finite Blaschke product, let k € H*, and let
G=G(q,k) ={bek+qH™: ||b]|loc <1}.
If G contains at least two functions then it contains a function b with ||b||ec < 1.
Proof. Write

zZ— Oy

n
q= ewa?l, where b; = T 6 € [0, 2m),
i=1
and aq,- -+, are distinct points in . If we define
2

X 1= for 1<i<n and 0<j <ny,

1wy
then the functions x; ; form a basis for H? & gH? (cf. [FF, Lemma X.1.1]). Write
k = ki+ka, where ky € H?0qH? and ky € gH?. Note that k; is entirely determined
by the values of kgj)(ai) (1<i<n,0<j<n;),and also that

k(j)(ai):k§j)(ai) for 1<i<mn and 0<j <mn,.

Therefore the problem of finding a function b in k + ¢H > with ||b]|c < 1 is equiv-
alent to the problem of finding a function b € H* satisfying

1. 89 () = k;j)(ai) for1<i<nand0<j<ny;

2. |b]|eo < 1.
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This is exactly the classical Hermite-Fejér Interpolation Problem (HFIP) (If n = 1,
this is the Carathéodory—Schur Interpolation Problem and if n; = 1 for all 4, this is
the Nevanlinna-Pick Interpolation Problem; cf. [FF]). Then by [FF, Theorem X.5.6
and Corollary X.5.7], there exists a solution to HFIP if and only if the Hermite-
Fejér matrix My, associated with k; is a contraction, and furthermore the solution
is unique if and only if || My, || = 1. (M, is the d x d lower triangular matrix whose
entries involve the values of k) (c;), where d = >, n;.) Suppose that G contains
two functions. Then the Hermite-Fejér matrix M}, has norm less than 1. We can
then choose a positive number A > 1 for which |[Myk, || < 1. This implies that
[[Ak1 + ghl|oc < 1 for some h € H*. Let b := ky + tqh; then b € k + ¢H> and
|[bl[sc < § < 1. This proves the lemma. O

In Section 1 we noticed that if ¢ = ¢ +p_ € L is such that T}, is a hyponormal
operator then ker Hy- = ker Hy C ker [T}, T,]. Thus we can see that if p = f +7,
where f € H* and g € G’} and if rank Hy < oo then rank [T5,T,] < rank H% =
rank Hy.

We now have:

Theorem 4. If f € H* is such that rank Hy < o0 then VG} C ext G}.

Proof. Suppose that rank Hf = N. By the above considerations, if g € G’f and
¢ = f + g then rank[T7,T,] < N. We observe that if g € VG’f then every
solution k of the equation H?k‘ = zg has exactly norm 1; for, if k is a solution of
the equation Hyk = Zg with [|k||oc < 1 then ﬁ € EW) for ¥ = f + g/||kl|,
and hence m cg = m € G, a contradiction. We now claim that if g € VG
then £(f + g) consists of exactly one finite Blaschke product. To see this observe
that by Beurling’s Theorem, ker Hf = q H? for some inner function q. (Recall
that the second identity in (1) implies that z(ker H,) C ker H,, for all ¢ € L™.)
Since rank Hy < 00, ¢ must be a finite Blaschke product. Furthermore if £ is in
E(f +9), that is, k is a solution of the equation Hyk = Zg and |[k[|s < 1, then
E(f+9) =Glq,k)={bek+qH™: ||b]|lo < 1}. By the above considerations and
Lemma 3, £(f + g) then contains exactly one element. Since [T};,T,] is of finite
rank it follows from an argument of T. Nakazi and K. Takahashi [NT, Theorem
10] that £(f + g) contains a finite Blaschke product, and consequently, £(f + g)
consists of one finite Blaschke product.

To prove VG} C ext G’f, we now assume, without loss of generality, that ¢,
92, 3(g1 +g2) € VG'; it will suffice to show that g1 = g». By what we have just
discussed, there exist finite Blaschke products b; and by corresponding to g; and
g2 respectively. Since Hzb; = Zg; for i = 1,2, it follows that %(bl + b2) is a solution
of the equation Hzk = 2Z(g1 + g2). Further since ||3(by + b2)||so < 1, we have that

2(b1+b2) € E(f+3(g1 + g2)). But since 3(g1+g2) € VG, it follows that £ (b; +b2)
is a finite Blaschke product. However since Blaschke products are extreme points
of the unit ball of H*® (cf. [Ga, p.179]), we can conclude that by = bs, which
implies g1 = go. (In fact, by an argument of K. deLeeuw and W. Rudin [dLR], if
f € H™,||f|leo =1, then f is an extreme point of the unit ball of H* if and only
if [log(1— |f(e')])d0 = —o0.) This completes the proof of the theorem. O
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