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Abstract. In this paper we explore finite rank perturbations of unilateral weighted shifts Wα. First, we
prove that the subnormality of Wα is never stable under nonzero finite rank pertrubations unless the per-
turbation occurs at the zeroth weight. Second, we establish that 2-hyponormality implies positive quadratic
hyponormality, in the sense that the Maclaurin coefficients of Dn(s) := det Pn [(Wα+sW 2

α)∗, Wα+sW 2
α] Pn

are nonnegative, for every n ≥ 0, where Pn denotes the orthogonal projection onto the basis vectors
{e0, · · · , en}. Finally, for α strictly increasing and Wα 2-hyponormal, we show that for a small finite-rank
perturbation α′ of α, the shift Wα′ remains quadratically hyponormal.

1. Introduction

Let H and K be complex Hilbert spaces, let L(H,K) be the set of bounded linear operators from
H to K and write L(H) := L(H,H). An operator T ∈ L(H) is said to be normal if T ∗T = TT ∗,
hyponormal if T ∗T ≥ TT ∗, and subnormal if T = N |H, where N is normal on some Hilbert space
K ⊇ H. If T is subnormal then T is also hyponormal. Recall that given a bounded sequence of
positive numbers α : α0, α1, · · · (called weights), the (unilateral) weighted shift Wα associated with α
is the operator on `2(Z+) defined by Wαen := αnen+1 for all n ≥ 0, where {en}∞n=0 is the canonical
orthonormal basis for `2. It is straightforward to check that Wα can never be normal, and that Wα

is hyponormal if and only if αn ≤ αn+1 for all n ≥ 0. The Bram-Halmos criterion for subnormality
states that an operator T is subnormal if and only if

∑

i,j

(T ixj , T
jxi) ≥ 0

for all finite collections x0, x1, · · · , xk ∈ H ([2],[4, II.1.9]). It is easy to see that this is equivalent to
the following positivity test:

(1.1)




I T ∗ . . . T ∗k

T T ∗T . . . T ∗kT
...

...
. . .

...
T k T ∗T k . . . T ∗kT k


 ≥ 0 (all k ≥ 1).
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Condition (1.1) provides a measure of the gap between hyponormality and subnormality. In fact,
the positivity condition (1.1) for k = 1 is equivalent to the hyponormality of T , while subnormality
requires the validity of (1.1) for all k. Let [A,B] := AB−BA denote the commutator of two operators
A and B, and define T to be k-hyponormal whenever the k × k operator matrix

(1.2) Mk(T ) := ([T ∗j , T i])k
i,j=1

is positive. An application of the Choleski algorithm for operator matrices shows that the positivity of
(1.2) is equivalent to the positivity of the (k +1)× (k +1) operator matrix in (1.1); the Bram-Halmos
criterion can be then rephrased as saying that T is subnormal if and only if T is k-hyponormal for
every k ≥ 1 ([16]).

Recall ([1],[16],[5]) that T ∈ L(H) is said to be weakly k-hyponormal if

LS(T, T 2, · · · , T k) :=





k∑

j=1

αjT
j : α = (α1, · · · , αk) ∈ Ck





consists entirely of hyponormal operators, or equivalently, Mk(T ) is weakly positive, i.e., ([16])

(1.3) (Mk(T )




λ0x
...

λkx


 ,




λ0x
...

λkx


) ≥ 0 for x ∈ H and λ0, · · · , λk ∈ C.

If k = 2 then T is said to be quadratically hyponormal, and if k = 3 then T is said to be cubically
hyponormal. Similarly, T ∈ L(H) is said to be polynomially hyponormal if p(T ) is hyponormal for
every polynomial p ∈ C[z]. It is known that k-hyponormal ⇒ weakly k-hyponormal, but the converse
is not true in general.

The classes of (weakly) k-hyponormal operators have been studied in an attempt to bridge the gap
between subnormality and hyponormality ([7],[8],[10],[11],[12],[14],[16],[19],[22]). The study of this
gap has been only partially successful. For example, such a gap is not yet well described for Toeplitz
operators on the Hardy space of the unit circle; in fact, even subnormality for Toeplitz operators has
not been characterized (cf.[20],[6]). For weighted shifts, positive results appear in [7] and [12], although
no concrete example of a weighted shift which is polynomially hyponormal and not subnormal has yet
been found (the existence of such weighted shifts was established in [17] and [18]).

In the present paper we renew our efforts to help describe the above mentioned gap between
subnormality and hyponormality, with particular emphasis on polynomial hyponormality. We focus
on the class of unilateral weighted shifts, and initiate a study of how the above mentioned notions
behave under finite perturbations of the weight sequence. We first obtain three concrete results:

(i) the subnormality of Wα is never stable under nonzero finite rank perturbations unless the
perturbation is confined to the zeroth weight (Theorem 2.1);

(ii) 2-hyponormality implies positive quadratic hyponormality, in the sense that the Maclaurin
coefficients of Dn(s) := det Pn [(Wα + sW 2

α)∗, Wα + sW 2
α] Pn are nonnegative, for every n ≥ 0, where

Pn denotes the orthogonal projection onto the basis vectors {e0, · · · , en} (Theorem 2.2); and
(iii) if α is strictly increasing and Wα is 2-hyponormal then for α′ a small perturbation of α, the

shift Wα′ remains positively quadratically hyponormal (Theorem 2.3).
Along the way we establish two related results, each of independent interest:
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(iv) an integrality criterion for a subnormal weighted shift to have an n-step subnormal extension
(Theorem 6.1); and

(v) a proof that the sets of k-hyponormal and weakly k-hyponormal operators are closed in the
strong operator topology (Proposition 6.7).

2. Statement of Main Results

C. Berger’s characterization of subnormality for unilateral weighted shifts (cf. [21],[4, III.8.16])
states that Wα is subnormal if and only if there exists a Borel probability measure µ supported in
[0, ||Wα||2], with ||Wα||2 ∈ supp µ, such that

γn =
∫

tndµ(t) for all n ≥ 0.

Given an initial segment of weights α : α0, · · ·αm, the sequence α̂ ∈ `∞(Z+) such that α̂i = αi (i =
0, · · · , m) is said to be recursively generated by α if there exist r ≥ 1 and ϕ0, · · · , ϕr−1 ∈ R such that

(2.1) γn+r = ϕ0γn + · · ·+ ϕr−1γn+r−1 (all n ≥ 0),

where γ0 := 1, γn := α2
0 · · ·α2

n−1 (n ≥ 1). In this case Wα̂ with weights α̂ is said to be recursively
generated. If we let

(2.2) g(t) := tr − (
ϕr−1t

r−1 + · · ·+ ϕ0

)
,

then g has r distinct real roots 0 ≤ s0 < · · · < sr−1 ([11, Theorem 3.9]). Let

V :=




1 1 . . . 1
s0 s1 . . . sr−1

...
...

...
sr−1
0 sr−1

1 . . . sr−1
r−1




and let 


ρ0
...

ρr−1


 := V −1




γ0
...

γr−1


 .

If the associated recursively generated weighted shift Wα̂ is subnormal then its Berger measure is of
the form

µ := ρ0δs0 + · · ·+ ρr−1δr−1.

For example, given α0 < α1 < α2, W(α0,α1,α2)∧ is the recursive weighted shift whose weights are
calculated according to the recursive relation

(2.3) α2
n+1 = ϕ1 + ϕ0

1
α2

n

,
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where

(2.4) ϕ0 = −α2
0α

2
1(α

2
2 − α2

1)
α2

1 − α2
0

and ϕ1 =
α2

1(α
2
2 − α2

0)
α2

1 − α2
0

.

In this case, W(α0,α1,α2)∧ is subnormal with 2–atomic Berger measure. Let Wx (α0,α1,α2)∧ denote the
weighted shift whose weight sequence consists of the initial weight x followed by the weight sequence
of W(α0,α1,α2)∧ .

By the Density Theorem ([11, Theorem 4.2 and Corollary 4.3]), we know that if Wα is a subnormal
weighted shift with weights α = {αn} and ε > 0, then there exists a nonzero compact operator
K with ||K|| < ε such that Wα + K is a recursively generated subnormal weighted shift; in fact
Wα + K = W

α̂(m) for some m ≥ 1, where α(m) : α0, · · · , αm. The following result shows that K

cannot generally be taken to be finite rank.

Theorem 2.1 (Finite Rank Perturbations of Subnormal Shifts). If Wα is a subnormal weighted
shift then there exists no nonzero finite rank operator F ( 6= cP{e0}) such that Wα + F is a sub-
normal weighted shift. Concretely, suppose Wα is a subnormal weighted shift with weight sequence
α = {αn}∞n=0 and assume α′ = {α′n} is a nonzero perturbation of α in a finite number of weights
except the initial weight; then Wα′ is not subnormal.

We next consider the selfcommutator [(Wα+sW 2
α)∗,Wα+sW 2

α]. Let Wα be a hyponormal weighted
shift. For s ∈ C, we write

D(s) := [(Wα + s W 2
α)∗,Wα + sW 2

α]

and we let

(2.5) Dn(s) := Pn[(Wα + sW 2
α)∗,Wα + sW 2

α]Pn =




q0 r̄0 0 . . . 0 0
r0 q1 r̄1 . . . 0 0
0 r1 q2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . qn−1 r̄n−1

0 0 0 . . . rn−1 qn




,

where Pn is the orthogonal projection onto the subspace generated by {e0, · · · , en},

(2.6)





qn := un + |s|2vn

rn := s
√

wn

un := α2
n − α2

n−1

vn := α2
nα2

n+1 − α2
n−1α

2
n−2

wn := α2
n(α2

n+1 − α2
n−1)

2,

and, for notational convenience, α−2 = α−1 = 0. Clearly, Wα is quadratically hyponormal if and only
if Dn(s) ≥ 0 for all s ∈ C and all n ≥ 0. Let dn(·) := det (Dn(·)). Then dn satisfies the following
2–step recursive formula:

(2.7) d0 = q0, d1 = q0q1 − |r0|2, dn+2 = qn+2dn+1 − |rn+1|2dn.
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If we let t := |s|2, we observe that dn is a polynomial in t of degree n + 1, and if we write dn ≡∑n+1
i=0 c(n, i)ti, then the coefficients c(n, i) satisfy a double-indexed recursive formula, namely

c(n + 2, i) = un+2 c(n + 1, i) + vn+2 c(n + 1, i− 1)− wn+1 c(n, i− 1),

c(n, 0) = u0 · · ·un, c(n, n + 1) = v0 · · · vn, c(1, 1) = u1v0 + v1u0 − w0

(2.8)

(n ≥ 0, i ≥ 1). We say that Wα is positively quadratically hyponormal if c(n, i) ≥ 0 for every
n ≥ 0, 0 ≤ i ≤ n + 1 (cf. [9]). Evidently, positively quadratically hyponormal =⇒ quadratically
hyponormal. The converse, however, is not true in general (cf. [3]).

The following theorem establishes a useful relation between 2-hyponormality and positive quadratic
hyponormality.

Theorem 2.2. Let α ≡ {αn}∞n=0 be a weight sequence and assume that Wα is 2-hyponormal. Then
Wα is positively quadratically hyponormal. More precisely, if Wα is 2-hyponormal then

(2.9) c(n, i) ≥ v0 · · · vi−1ui · · ·un (n ≥ 0, 0 ≤ i ≤ n + 1).

In particular, if α is strictly increasing and Wα is 2-hyponormal then the Maclaurin coefficients of
dn(t) are positive for all n ≥ 0.

If Wα is a weighted shift with weight sequence α = {αn}∞n=0, then the moments of Wα are usually
defined by β0 := 1, βn+1 := αnβn (n ≥ 0) [23]; however, we prefer to reserve this term for the
sequence γn := β2

n (n ≥ 0). A criterion for k-hyponormality can be given in terms of these moments
([7, Theorem 4]): if we build a (k + 1)× (k + 1) Hankel matrix A(n; k) by

(2.10) A(n; k) :=




γn γn+1 . . . γn+k

γn+1 γn+2 . . . γn+k+1

...
...

...
γn+k γn+k+1 . . . γn+2k


 (n ≥ 0),

then

(2.11) Wα is k-hyponormal ⇐⇒ A(n; k) ≥ 0 (n ≥ 0).

In particular, for α strictly increasing, Wα is 2-hyponormal if and only if

(2.12) det




γn γn+1 γn+2

γn+1 γn+2 γn+3

γn+2 γn+3 γn+4


 ≥ 0 (n ≥ 0).

One might conjecture that if Wα is a k-hyponormal weighted shift whose weight sequence is strictly
increasing then Wα remains weakly k-hyponormal under a small perturbation of the weight sequence.
We will show below that this is true for k = 2 (Theorem 2.3).

In [12, Theorem 4.3], it was shown that the gap between 2-hyponormality and quadratic hyponor-
mality can be detected by unilateral shifts with a weight sequence α :

√
x, (

√
a,
√

b,
√

c)∧. In particular,
there exists a maximum value H2 ≡ H2(a, b, c) of x that makes W√

x,(
√

a,
√

b,
√

c)∧ 2-hyponormal; H2

is called the modulus of 2-hyponormality (cf. [12]). Any value of x > H2 yields a non-2-hyponormal
weighted shift. However, if x−H2 is small enough, W√

x,(
√

a,
√

b,
√

c)∧ is still quadratically hyponormal.
The following theorem shows that, more generally, for finite rank perturbations of weighted shifts with
strictly increasing weight sequences, there always exists a gap between 2-hyponormality and quadratic
hyponormality.
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Theorem 2.3 (Finite Rank Perturbations of 2-hyponormal Shifts). Let α = {αn}∞n=0 be a
strictly increasing weight sequence. If Wα is 2-hyponormal then Wα remains positively quadratically
hyponormal under a small nonzero finite rank perturbation of α.

3. Proof of Theorem 2.1

Proof of Theorem 2.1. It suffices to show that if T is a weighted shift whose restriction to
∨{en, en+1, · · · }

(n ≥ 2) is subnormal then there is at most one αn−1 for which T is subnormal.
Let W := T |W{en−1,en,en+1,··· } and S := T |W{en,en+1,··· }, where n ≥ 2. Then W and S have weights

αk(W ) := αk+n−1 and αk(S) := αk+n (k ≥ 0). Thus the corresponding moments are related by the
equation

γk(S) = α2
n · · ·α2

n+k−1 =
γk+1(W )

α2
n−1

.

We now adapt the proof of [7, Proposition 8]. Suppose S is subnormal with associated Berger measure

µ. Then γk(S) =
∫ ||T ||2
0

tk dµ. Thus W is subnormal if and only if there exists a probability measure
ν on [0, ||T ||2] such that

1
α2

n−1

∫ ||T ||2

0

tk+1 dν(t) =
∫ ||T ||2

0

tk dµ(t) for all k ≥ 0,

which readily implies that t dν = α2
n−1 dµ. Thus W is subnormal if and only if the formula

(3.1) dν := λ · δ0 +
α2

n−1

t
dµ

defines a probability measure for some λ ≥ 0, where δ0 is the point mass at the origin. In particular
1
t ∈ L1(µ) and µ({0}) = 0 whenever W is subnormal. If we repeat the above argument for W and
V := T |W{en−2,en−1,··· }, then we should have that ν({0}) = 0 whenever V is subnormal. Therefore we
can conclude that if V is subnormal then λ = 0, and hence

(3.2) dν =
α2

n−1

t
dµ.

Thus we have

1 =
∫ ||T ||2

0

dν(t) = α2
n−1

∫ ||T ||2

0

1
t
dµ(t),

so that

(3.3) α2
n−1 =

(∫ ||T ||2

0

1
t
dµ(t)

)−1

,

which implies that αn−1 is determined uniquely by {αn, αn+1, · · · } whenever T is subnormal. This
completes the proof. ¤

Theorem 2.1 says that a nonzero finite rank perturbation of a subnormal shift is never subnormal un-
less the perturbation occurs at the initial weight. However, this is not the case for k-hyponormality. To
see this we use a close relative of the Bergman shift B+ (whose weights are given by α = {

√
n+1
n+2}∞n=0);

it is well known that B+ is subnormal.
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Example 3.1. For x > 0, let Tx be the weighted shift whose weights are given by

α0 :=

√
1
2
, α1 :=

√
x, and αn :=

√
n + 1
n + 2

(n ≥ 2).

Then we have:
(i) Tx is subnormal ⇐⇒ x = 2

3 ;
(ii) Tx is 2-hyponormal ⇐⇒ 63−√129

80 ≤ x ≤ 24
35 .

Proof. Assertion (i) follows from Theorem 2.1. For assertion (ii) we use (2.12): Tx is 2-hyponormal if
and only if

det




1 1
2

1
2x

1
2

1
2x 3

8x
1
2x 3

8x 3
10x


 ≥ 0 and det




1
2

1
2x 3

8x
1
2x 3

8x 3
10x

3
8x 3

10x 1
4x


 ≥ 0,

or equivalently, 63−√129
80 ≤ x ≤ 24

35 . ¤

For perturbations of recursive subnormal shifts of the form W(
√

a,
√

b,
√

c)∧ , subnormality and 2-
hyponormality coincide.

Theorem 3.2. Let α = {αn}∞n=0 be recursively generated by
√

a,
√

b,
√

c. If Tx is the weighted shift
whose weights are given by αx : α0, · · · , αj−1,

√
x, αj+1, · · · , then we have

Tx is subnormal ⇐⇒ Tx is 2-hyponormal ⇐⇒
{

x = α2
j if j ≥ 1;

x ≤ a if j = 0.

Proof. Since α is recursively generated by
√

a,
√

b,
√

c, we have that α2
0 = a, α2

1 = b, α2
2 = c,

(3.4) α2
3 =

b(c2 − 2ac + ab)
c(b− a)

, and α2
4 =

bc3 − 4abc2 + 2ab2c + a2bc− a2b2 + a2c2

(b− a)(c2 − 2ac + ab)
.

Case 1 (j = 0): It is evident that Tx is subnormal if and only if x ≤ a. For 2-hyponormality observe
by (2.12) that Tx is 2-hyponormal if and only if

det




1 x bx
x bx bcx
bx bcx α2

3bcx


 ≥ 0,

or equivalently, x ≤ a.
Case 2 (j ≥ 1): Without loss of generality we may assume that j = 1 and a = 1. Thus α1 =

√
x.

Then by Theorem 2.1, Tx is subnormal if and only if x = b. On the other hand, by (2.12), Tx is
2-hyponormal if and only if

det




1 1 x
1 x cx
x cx α2

3cx


 ≥ 0 and det




1 x cx
x cx α2

3cx
cx α2

3cx α2
3α

2
4cx


 ≥ 0.

Thus a direct calculation with the specific forms of α3, α4 given in (3.4) shows that Tx is 2-hyponormal
if and only if (x − b)

(
x− b(c2−2c+b)

b−1

)
≤ 0 and x ≤ b. Since b ≤ b(c2−2c+b)

b−1 , it follows that Tx is 2-
hyponormal if and only if x = b. This completes the proof. ¤



8

4. Proof of Theorem 2.2

With the notation in (2.6), we let

pn := un vn+1 − wn (n ≥ 0).

We then have:

Lemma 4.1. If α ≡ {αn}∞n=0 is a strictly increasing weight sequence then the following statements
are equivalent:

(i) Wα is 2-hyponormal;
(ii) α2

n+1(un+1 + un+2)2 ≤ un+1vn+2 (n ≥ 0);

(iii) α2
n

α2
n+2

un+2
un+3

≤ un+1
un+2

(n ≥ 0);

(iv) pn ≥ 0 (n ≥ 0).

Proof. This follows from a straightforward calculation. ¤

Proof of Theorem 2.2. If α is not strictly increasing then α is flat, by the argument of [7, Corollary
6], i.e., α0 = α1 = α2 = · · · . Then

(4.1) Dn(s) =
(

α2
0+|s|2α4

0 s̄α3
0

sα3
0 |s|2α4

0

)
⊕ 0∞

(cf. (2.5)), so that (2.9) is evident. Thus we may assume that α is strictly increasing, so that
un > 0, vn > 0 and wn > 0 for all n ≥ 0. Recall that if we write dn(t) :=

∑n+1
i=0 c(n, i)ti then the

c(n, i)’s satisfy the following recursive formulas (cf. (2.8)):

(4.2) c(n + 2, i) = un+2 c(n + 1, i) + vn+2 c(n + 1, i− 1)− wn+1 c(n, i− 1) (n ≥ 0, 1 ≤ i ≤ n).

Also, c(n, n + 1) = v0 · · · vn (again by (2.8)) and pn := unvn+1 − wn ≥ 0 (n ≥ 0), by Lemma 4.1. A
straightforward calculation shows that

d0(t) = u0 + v0 t;(4.3)

d1(t) = u0u1 + (v0u1 + p0) t + v0v1 t2;

d2(t) = u0u1u2 + (v0u1u2 + u0p1 + u2p0) t + (v0v1u2 + v0p1 + v2p0) t2 + v0v1v2 t3.

Evidently,

(4.4) c(n, i) ≥ 0 (0 ≤ n ≤ 2, 0 ≤ i ≤ n + 1).

Define
β(n, i) := c(n, i)− v0 · · · vi−1ui · · ·un (n ≥ 1, 1 ≤ i ≤ n).

For every n ≥ 1, we now have

(4.5) c(n, i) =





u0 · · ·un ≥ 0 (i = 0)
v0 · · · vi−1ui · · ·un + β(n, i) (1 ≤ i ≤ n)
v0 · · · vn ≥ 0 (i = n + 1).

For notational convenience we let β(n, 0) := 0 for every n ≥ 0.
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Claim 1. For n ≥ 1,

(4.6) c(n, n) ≥ un c(n− 1, n) ≥ 0.

Proof of Claim 1. We use mathematical induction. For n = 1,

c(1, 1) = v0u1 + p0 ≥ u1 c(0, 1) ≥ 0,

and

c(n + 1, n + 1) = un+1 c(n, n + 1) + vn+1 c(n, n)− wnc(n− 1, n)

≥ un+1 c(n, n + 1) + vn+1 unc(n− 1, n)− wn c(n− 1, n) (by inductive hypothesis)

= un+1 c(n, n + 1) + pn c(n− 1, n)

≥ un+1 c(n, n + 1),

which proves Claim 1.

Claim 2. For n ≥ 2,

(4.7) β(n, i) ≥ un β(n− 1, i) ≥ 0 (0 ≤ i ≤ n− 1).

Proof of Claim 2. We use mathematical induction. If n = 2 and i = 0, this is trivial. Also,

β(2, 1) = u0 p1 + u2 p0 = u0 p1 + u2 β(1, 1) ≥ u2 β(1, 1) ≥ 0.

Assume that (4.7) holds. We shall prove that

β(n + 1, i) ≥ un+1 β(n, i) ≥ 0 (0 ≤ i ≤ n).

For,

β(n + 1, i) + v0 · · · vi−1ui · · ·un+1 = c(n + 1, i) (by (4.2))

= un+1c(n, i) + vn+1c(n, i− 1)− wnc(n− 1, i− 1)

= un+1

(
β(n, i) + v0 · · · vi−1ui · · ·un

)

+ vn+1

(
β(n, i− 1) + v0 · · · vi−2ui−1 · · ·un

)

− wn

(
β(n− 1, i− 1) + v0 · · · vi−2ui−1 · · ·un−1

)
,

so that

β(n + 1, i) = un+1β(n, i) + vn+1β(n, i− 1)− wnβ(n− 1, i− 1)

+ v0 · · · vi−2ui−1 · · ·un−1 (unvn+1 − wn)

= un+1β(n, i) + vn+1β(n, i− 1)− wnβ(n− 1, i− 1) + (v0 · · · vi−2ui−1 · · ·un−1) pn

≥ un+1β(n, i) + vn+1unβ(n− 1, i− 1)− wnβ(n− 1, i− 1)

(by the inductive hypothesis and Lemma 4.1;

observe that i− 1 ≤ n− 1, so (4.7) applies)

= un+1β(n, i) + pn β(n− 1, i− 1)

≥ un+1 β(n, i),
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which proves Claim 2.
By Claim 2 and (4.5), we can see that c(n, i) ≥ 0 for all n ≥ 0 and 1 ≤ i ≤ n− 1. Therefore (4.4),

(4.5), Claim 1 and Claim 2 imply

c(n, i) ≥ v0 · · · vi−1ui · · ·un (n ≥ 0, 0 ≤ i ≤ n + 1).

This completes the proof. ¤

5. Proof of Theorem 2.3

To prove Theorem 2.3 we need:

Lemma 5.1 ([15, Lemma 2.3]). Let α ≡ {αn}∞n=0 be a strictly increasing weight sequence. If Wα

is 2-hyponormal then the sequence of quotients

(5.1) Θn :=
un+1

un+2
(n ≥ 0)

is bounded away from 0 and from ∞. More precisely,

(5.2) 1 ≤ Θn ≤ u1

u2

( ||Wα||2
α0α1

)2

for sufficiently large n.

In particular, {un}∞n=0 is eventually decreasing.

Proof of Theorem 2.3. By Theorem 2.2, Wα is strictly positively quadratically hyponormal, in the
sense that all coefficients of dn(t) are positive for all n ≥ 0. Note that finite rank perturbations of α
affect a finite number of values of un, vn and wn. More concretely, if α′ is a perturbation of α in the
weights {α0, · · · , αN}, then un, vn, wn and pn are invariant under α′ for n ≥ N + 3. In particular,
pn ≥ 0 for n ≥ N + 3.

Claim 1. For n ≥ 3, 0 ≤ i ≤ n + 1,

c(n, i) =un c(n− 1, i) + pn−1 c(n− 2, i− 1) +
n∑

k=4

pk−2




n∏

j=k

vj


 c(k − 3, i− n + k − 2)

+ vn · · · v3 ρi−n+1,(5.3)

where

ρi−n+1 =





0 (i < n− 1)
u0p1 (i = n− 1)
v0p1 + v2p0 (i = n)
v0v1v2 (i = n + 1)

(cf. [12, Proof of Theorem 4.3]).
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Proof of Claim 1. We use induction. For n = 3, 0 ≤ i ≤ 4,

c(3, i) = u3 c(2, i) + v3 c(2, i− 1)− w2 c(1, i− 1)

= u3 c(2, i) + v3

(
u2 c(1, i− 1) + v2 c(1, i− 2)− w1 c(0, i− 2)

)
− w2 c(1, i− 1)

= u3 c(2, i) + p2 c(1, i− 1) + v3

(
v2 c(1, i− 2)− w1 c(0, i− 2)

)

= u3 c(2, i) + p2 c(1, i− 1) + v3 ρi−2,

where by (4.3),

ρi−2 =





0 (i < 2)
u0p1 (i = 2)
v0p1 + v2p0 (i = 3)
v0v1v2 (i = 4).

Now,

c(n + 1, i) = un+1c(n, i) + vn+1c(n, i− 1)− wnc(n− 1, i− 1)

= un+1c(n, i) + vn+1

(
unc(n− 1, i− 1) + pn−1c(n− 2, i− 2)

+
n∑

k=4

pk−2




n∏

j=k

vj


 c(k − 3, i− n + k − 3) + vn · · · v3ρi−n

)
− wn c(n− 1, i− 1)

= un+1c(n, i) + pnc(n− 1, i− 1) + vn+1pn−1c(n− 2, i− 2)

+ vn+1

n∑

k=4

pk−2




n∏

j=k

vj


 c(k − 3, i− n + k − 3) + vn+1 · · · v3ρi−n

(by inductive hypothesis)

= un+1c(n, i) + pnc(n− 1, i− 1) +
n+1∑

k=4

pk−2




n+1∏

j=k

vj


 c(k − 3, i− n + k − 3)

+ vn+1 · · · v3ρi−n,

which proves Claim 1.

Write u′n, v′n, w′n, p′n, ρ′n, and c′(·, ·) for the entities corresponding to α′. If pn > 0 for every
n = 0, · · · , N + 2, then in view of Claim 1, we can choose a small perturbation such that p′n > 0
(0 ≤ n ≤ N + 2) and therefore c′(n, i) > 0 for all n ≥ 0 and 0 ≤ i ≤ n + 1, which implies that Wα′

is also positively quadratically hyponormal. If instead pn = 0 for some n = 0, · · · , N + 2, careful
inspection of (5.3) reveals that without loss of generality we may assume p0 = · · · = pN+2 = 0. By
Theorem 2.2, we have that for a sufficiently small perturbation α′ of α,

(5.4) c′(n, i) > 0 (0 ≤ n ≤ N + 2, 0 ≤ i ≤ n + 1) and c′(n, n + 1) > 0 (n ≥ 0).

Write
kn :=

vn

un
(n = 2, 3, · · · ).
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Claim 2. {kn}∞n=2 is bounded.

Proof of Claim 2. Observe that

kn =
vn

un
=

α2
nα2

n+1 − α2
n−1α

2
n−2

α2
n − α2

n−1

= α2
n + α2

n−1 + α2
n

α2
n+1 − α2

n

α2
n − α2

n−1

+ α2
n−1

α2
n−1 − α2

n−2

α2
n − α2

n−1

.(5.5)

Therefore if Wα is 2-hyponormal then by Lemma 5.1, the sequences
{

α2
n+1 − α2

n

α2
n − α2

n−1

}∞

n=2

and
{

α2
n−1 − α2

n−2

α2
n − α2

n−1

}∞

n=2

are both bounded, so that {kn}∞n=2 is bounded. This proves Claim 2.

Write k := supn kn. Without loss of generality we assume k < 1 (this is possible from the ob-
servation that cα induces {c2kn}). Choose a sufficiently small perturbation α′ of α such that if we
let

(5.6) h := sup
0≤`≤N+2
0≤m≤1

∣∣∣∣∣∣

N+4∑

k=4

p′k−2




N+3∏

j=k

v′j


 c′(k − 3, `) + v′N+3 · · · v′3 ρ′m

∣∣∣∣∣∣

then

(5.7) c′(N + 3, i)− 1
1− k

h > 0 (0 ≤ i ≤ N + 3)

(this is always possible because by Theorem 2.2, we can choose a sufficiently small |p′i| such that

c′(N + 3, i) > v0 · · · vi−1ui · · ·uN+3 − ε and |h| < (1− k)
(
v0 · · · vi−1ui · · ·uN+3 − ε

)

for any small ε > 0).

Claim 3. For j ≥ 4 and 0 ≤ i ≤ N + j,

(5.8) c′(N + j, i) ≥ uN+j · · ·uN+4

(
c′(N + 3, i)−

j−3∑
n=1

kn h

)
.

Proof of Claim 3. We use induction. If j = 4 then by Claim 1 and (5.6),

c′(N + 4, i) = u′N+4c
′(N + 3, i) + p′N+3c

′(N + 2, i− 1)

+ v′N+4

N+4∑

k=4

p′k−2




N+3∏

j=k

v′j


 c′(k − 3, i−N + k − 6) + v′N+4 · · · v′3ρ′i−(N+3)

≥ u′N+4c
′(N + 3, i) + p′N+3c

′(N + 2, i− 1)− v′N+4h

≥ uN+4

(
c′(N + 3, i)− kN+4h

)

≥ uN+4

(
c′(N + 3, i)− k h

)
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because u′N+4 = uN+4, v′N+4 = vN+4 and p′N+3 = pN+3 ≥ 0. Now suppose (5.8) holds for some j ≥ 4.
By Claim 1, we have that for j ≥ 4,

c′(N + j + 1, i) = u′N+j+1c
′(N + j, i) + p′N+jc(N + j − 1, i− 1)

+
N+j+1∑

k=4

p′k−2




N+j+1∏

j=k

v′j


 c′(k − 3, i−N + k − j − 3) + v′N+j+1 · · · v′3ρ′i−(N+j)

= u′N+j+1c
′(N + j, i) + p′N+jc(N + j − 1, i− 1)

+
N+j+1∑

k=N+5

p′k−2




N+j+1∏

j=k

v′j


 c′(k − 3, i−N + k − j − 3)

+
N+4∑

k=4

p′k−2




N+j+1∏

j=k

v′j


 c′(k − 3, i−N + k − j − 3) + v′N+j+1 · · · v′3ρ′i−(N+j).

Since p′n = pn > 0 for n ≥ N + 3 and c′(n, `) > 0 for 0 ≤ n ≤ N + j by the inductive hypothesis, it
follows that

(5.9) p′N+jc(N + j − 1, i− 1) +
N+j+1∑

k=N+5

p′k−2




N+j+1∏

j=k

v′j


 c′(k − 3, i−N + k − j − 3) ≥ 0.

By inductive hypothesis and (5.9),

c′(N + j + 1, i)

≥ u′N+j+1c
′(N + j, i) +

N+4∑

k=4

p′k−2




N+j+1∏

j=k

v′j


 c′(k − 3, i−N + k − j − 3) + v′N+j+1 · · · v′3ρ′i−(N+j)

≥ uN+j+1uN+j · · ·uN+4

(
c′(N + 3, i)−

j−3∑
n=1

knh

)

+ vN+j+1vN+j · · · vN+4




N+4∑

k=4

p′k−2




N+3∏

j=k

v′j


 c′(k − 3, i−N + k − j − 3) + v′N+3 · · · v′3ρ′i−(N+j)




≥ uN+j+1uN+j · · ·uN+4

(
c′(N + 3, i)−

j−3∑
n=1

knh

)
− vN+j+1vN+j · · · vN+4 h

= uN+j+1uN+j · · ·uN+4

(
c′(N + 3, i)−

j−3∑
n=1

knh− kN+j+1kN+j · · · kN+4 h

)

≥ uN+j+1uN+j · · ·uN+4

(
c′(N + 3, i)−

j−2∑
n=1

knh

)
,

which proves Claim 3.
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Since
∑j

n=1 kn < 1
1−k for every j > 1, it follows from Claim 3 and (5.7) that

(5.10) c′(N + j, i) > 0 for j ≥ 4 and 0 ≤ i ≤ N + j.

It thus follows from (5.4) and (5.10) that c′(n, i) > 0 for every n ≥ 0 and 0 ≤ i ≤ n + 1. Therefore
Wα′ is also positively quadratically hyponormal. This completes the proof. ¤

Corollary 5.2. Let Wα be a weighted shift such that αj−1 < αj for some j ≥ 1, and let Tx be the
weighted shift with weight sequence

αx : α0, · · · , αj−1, x, αj+1, · · · .

Then {x : Tx is 2-hyponormal} is a proper closed subset of {x : Tx is quadratically hyponormal}
whenever the latter set is non-empty.

Proof. Write
H2 := {x : Tx is 2-hyponormal}.

Without loss of generality, we can assume that H2 is non-empty, and that j = 1. Recall that a
2-hyponormal weighted shift with two equal weights is of the form α0 = α1 = α2 = · · · or α0 < α1 =
α2 = α3 = · · · . Let xm := inf H2. By Proposition 6.7 below, Txm is hyponormal. Then xm > α0.
By assumption, xm < α2. Thus α0, xm, α2, α3, · · · is strictly increasing. Now we apply Theorem
2.3 to obtain x′ such that α0 < x′ < xm and Tx′ is quadratically hyponormal. However Tx′ is not
2-hyponormal by the definition of xm. The proof is complete. ¤

The following question arises naturally:

Question 5.3. Let α be a strictly increasing weight sequence and let k ≥ 3. If Wα is a k-hyponormal
weighted shift, does it follow that Wα is weakly k-hyponormal under a small perturbation of the weight
sequence ?

6. Other Related Results

§6.1 Subnormal Extensions

Let α : α0, α1, · · · be a weight sequence, let xi > 0 for 1 ≤ i ≤ n, and let (xn, · · ·x1)α : xn, · · · , x1, α0, α1, · · ·
be the augmented weight sequence. We say that W(xn,··· ,x1)α is an extension (or n-step extension) of
Wα. Observe that

W(xn,··· ,x1)α|W{en,en+1,··· } ∼= Wα.

The hypothesis F 6= c P{e0} in Theorem 2.1 is essential. Indeed, there exist infinitely many one-step
subnormal extension of a subnormal weighted shift whenever one such extension exists. Recall ([7,
Proposition 8]) that if Wα is a weighted shift whose restriction to

∨{e1, e2, · · · } is subnormal with
associated measure µ, then Wα is subnormal if and only if

(i) 1
t ∈ L1(µ);

(ii) α2
0 ≤

(||1t ||L1(µ)

)−1.
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Also note that there may not exist any one-step subnormal extension of the subnormal weighted shift:
for example, if Wα is the Bergman shift then the corresponding Berger measure is µ(t) = t, and hence
1
t is not integrable with respect to µ; therefore Wα does not admit any subnormal extension. A similar
situation arises when µ has an atom at {0}.

More generally we have:

Theorem 6.1 (Subnormal Extensions). Let Wα be a subnormal weighted shift with weights α :
α0, α1, · · · and let µ be the corresponding Berger measure. Then W(xn,··· ,x1)α is subnormal if and only
if

(i) 1
tn ∈ L1(µ);

(ii) xj =
(
|| 1

tj−1 ||L1(µ)

|| 1
tj ||L1(µ)

) 1
2

for 1 ≤ j ≤ n− 1;

(iii) xn ≤
(
|| 1

tn−1 ||L1(µ)

|| 1
tn ||L1(µ)

) 1
2

.

In particular, if we put

S := {(x1, · · · , xn) ∈ Rn : W(xn,··· ,x1)α is subnormal}

then either S = ∅ or S is a line segment in Rn.

Proof. Write Wj := W(xn,··· ,x1)α|W{en−j ,en−j+1,··· } (1 ≤ j ≤ n) and hence Wn = W(xn,··· ,x1)α. By the
argument used to establish (3.2) we have that W1 is subnormal with associated measure ν1 if and only
if

(i) 1
t ∈ L1(µ);

(ii) dν1 = x2
1
t dµ, or equivalently, x2

1 =
(∫ ||Wα||2

0
1
t dµ(t)

)−1

.

Inductively Wn−1 is subnormal with associated measure νn−1 if and only if

(i) Wn−2 is subnormal;
(ii) 1

tn−1 ∈ L1(µ);

(iii) dνn−1 = x2
n−1
t dνn−2 = · · · = x2

n−1···x2
1

tn−1 dµ, or equivalently, x2
n−1 =

R ||Wα||2
0

1
tn−2 dµ(t)

R ||Wα||2
0

1
tn−1 dµ(t)

.

Therefore Wn is subnormal if and only if

(i) Wn−1 is subnormal;
(ii) 1

tn ∈ L1(µ);

(iii) x2
n ≤

(∫ ||Wα||2
0

1
t dνn−1

)−1

=
(∫ ||Wα||2

0

x2
n−1···x2

1
tn dµ(t)

)−1

=
R ||Wα||2
0

1
tn−1 dµ(t)

R ||Wα||2
0

1
tn dµ(t)

.

¤

Corollary 6.2. If Wα is a subnormal weighted shift with associated measure µ, there exists an n-step
subnormal extension of Wα if and only if 1

tn ∈ L1(µ).

For the next result we refer to the notation in (2.1) and (2.2).
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Corollary 6.3. A recursively generated subnormal shift with ϕ0 6= 0 admits an n-step subnormal
extension for every n ≥ 1.

Proof. The assumption about ϕ0 implies that the zeros of g(t) are positive, so that s0 > 0. Thus for
every n ≥ 1, 1

tn is integrable with respect to the corresponding Berger measure µ = ρ0δs0 + · · · +
ρr−1δsr−1 . By Corollary 6.2, there exists an n-step subnormal extension. ¤

We need not expect that for arbitrary recursively generated shifts, 2-hyponormality and subnor-

mality coincide as in Theorem 3.2. For example, if α :
√

1
2 ,
√

x, (
√

3,
√

10
3 ,

√
17
5 )∧ then by (2.12) and

Theorem 6.1,
(i) Tx is 2-hyponormal ⇐⇒ 4−√6 ≤ x ≤ 2;
(ii) Tx is subnormal ⇐⇒ x = 2.

A straightforward calculation shows, however, that Tx is 3-hyponormal if and only if x = 2; for,

A(0; 3) :=




1 1
2

1
2x 3

2x
1
2

1
2x 3

2x 5x
1
2x 3

2x 5x 17x
3
2x 5x 17x 58x


 ≥ 0 ⇐⇒ x = 2.

This behavior is typical of general recursively generated weighted shifts: we show in [13] that subnor-
mality is equivalent to k-hyponormality for some k ≥ 2.

§6-2 Convexity and Closedness

Next, we will show that canonical rank-one perturbations of k-hyponormal weighted shifts which
preserve k-hyponormality form a convex set. To see this we need an auxiliary result.

Lemma 6.4. Let I = {1, · · · , n} × {1, · · · , n} and let J be a symmetric subset of I. Let A = (aij) ∈
Mn(C) and let C = (cij) ∈ Mn(C) be given by

cij =
{

c aij if (i, j) ∈ J

aij if (i, j) ∈ I \ J
(c > 0).

If A and C are positive semidefinite then B = (bij) ∈ Mn(C) defined by

bij =
{

b aij if (i, j) ∈ J

aij if (i, j) ∈ I \ J
(b ∈ [1, c] or [c, 1])

is also positive semidefinite.

Proof. Without loss of generality we may assume c > 1. If b = 1 or b = c the assertion is trivial. Thus
we assume 1 < b < c. The result is now a consequence of the following observation. If [D](i,j) denotes
the (i, j)-entry of the matrix D then

[
c− b

c− 1

(
A +

b− 1
c− b

C

)]

(i,j)

=





c−b
c−1

(
1 + b−1

c−b c
)

aij if (i, j) ∈ J

c−b
c−1

(
1 + b−1

c−b

)
aij if (i, j) ∈ I \ J

=
{

b aij if (i, j) ∈ J

aij if (i, j) ∈ I \ J

= [B](i,j),
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which is positive semidefinite because positive semidefinite matrices in Mn(C) form a cone. ¤

An immediate consequence of Lemma 6.4 is that positivity of a matrix forms a convex set with
respect to a fixed diagonal location; i.e., if

Ax =



∗ ∗ ∗
∗ x ∗
∗ ∗ ∗




then {x : Ax is positive semidefinite} is convex.

We now have:

Theorem 6.5. Let α = {αn}∞n=0 be a weight sequence, let k ≥ 1, and let j ≥ 0. Define α(j)(x) :
α0, · · · , αj−1, x, αj+1, · · · . Assume Wα is k-hyponormal and define

Ωk,j
α := {x : Wα(j)(x) is k-hyponormal}.

Then Ωk,j
α is a closed interval.

Proof. Suppose x1, x2 ∈ Ωk,j
α with x1 < x2. Then by (2.11), the (k + 1)× (k + 1) Hankel matrix

Axi(n; k) :=




γn γn+1 . . . γn+k

γn+1 γn+2 . . . γn+k+1

...
...

...
γn+k γn+k+1 . . . γn+2k


 (n ≥ 0; i = 1, 2)

is positive, where Axi corresponds to α(j)(xi). We must show that tx1 + (1− t)x2 ∈ Ωk,j
α (0 < t < 1),

i.e.,
Atx1+(1−t)x2(n; k) ≥ 0 (n ≥ 0, 0 < t < 1).

Observe that it suffices to establish the positivity of the 2k Hankel matrices corresponding to α(j)(tx1+
(1 − t)x2) such that tx1 + (1 − t)x2 appears as a factor in at least one entry but not in every entry.
A moment’s thought reveals that without loss of generality we may assume j = 2k. Observe that

Az1(n; k)−Az2(n; k) = (z2
1 − z2

2) H(n; k)

for some Hankel matrix H(n; k). For notational convenience, we abbreviate Az(n; k) as Az. Then

Atx1+(1−t)x2 =





t2Ax1 + (1− t)2Ax2 + 2t(1− t)A√x1x2 for 0 ≤ n ≤ 2k
(
t + (1− t)x2

x1

)2

Ax1 for n ≥ 2k + 1.

Since Ax1 ≥ 0, Ax2 ≥ 0 and A√x1x2 have the form described by Lemma 6.4 and since x1 <
√

x1x2 <
x2 it follows from Lemma 6.4 that A√x1x2 ≥ 0. Thus evidently, Atx1+(1−t)x2 ≥ 0, and therefore
tx1 +(1− t)x2 ∈ Ωk,j

α . This shows that Ωk,j
α is an interval. The closedness of the interval follows from

Proposition 6.7 below. ¤

In [17] and [18], it was shown that there exists a non-subnormal polynomially hyponormal operator.
Also in [22], it was shown that there exists a non-subnormal polynomially hyponormal operator if and
only if there exists one which is also a weighted shift. However, no concrete weighted shift has yet
been found. As a strategy for finding such a shift, we would like to suggest the following:
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Question 6.6. Does it follow that the polynomial hyponormality of the weighted shift is stable under
small perturbations of the weight sequence ?

If the answer to Question 6.6 were affirmative then we would easily find a polynomially hyponormal
non-subnormal (even non-2-hyponormal) weighted shift; for example, if

α : 1,
√

x, (
√

3,

√
10
3

,

√
17
5

)∧

and Tx is the weighted shift associated with α, then by Theorem 3.2, Tx is subnormal ⇔ x = 2,
whereas Tx is polynomially hyponormal ⇔ 2−δ1 < x < 2+δ2 for some δ1, δ2 > 0 provided the answer
to Question 6.6 is yes; therefore for sufficiently small ε > 0,

αε : 1,
√

2 + ε, (
√

3,

√
10
3

,

√
17
5

)∧

would induce a non-2-hyponormal polynomially hyponormal weighted shift.

The answer to Question 6.6 for weak k-hyponormality is negative. In fact we have:

Proposition 6.7.

(i) The set of k-hyponormal operators is sot-closed.
(ii) The set of weakly k-hyponormal operators is sot-closed.

Proof. Suppose Tη ∈ L(H) and Tη → T in sot. Then, by the Uniform Boundedness Principle, {||Tη||}η

is bounded. Thus T ∗iη T j
η → T ∗iT j in sot for every i, j, so that Mk(Tη) → Mk(T ) in sot (where Mk(T )

is as in (1.2)). (i) In this case Mk(Tη) ≥ 0 for all η, so Mk(T ) ≥ 0, i.e., T is k-hyponormal.
(ii) Here, Mk(Tη) is weakly positive for all η. By (1.3), Mk(T ) is also weakly positive, i.e., T is

weakly k-hyponormal. ¤
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