
SOLUTION OF THE QUADRATICALLY

HYPONORMAL COMPLETION PROBLEM

Raúl E. Curto and Woo Young Lee

Abstract. For m ≥ 1, let α : α0 < · · · < αm be a collection of (m + 1) positive
weights. The Quadratically Hyponormal Completion Problem seeks necessary and
sufficient conditions on α to guarantee the existence of a quadratically hyponormal
unilateral weighted shift W with α as initial segment of weights. We prove that α
admits a quadratically hyponormal completion if and only if the self-adjoint m ×m
matrix

Dm−1(s) :=

0
BBBBBBBB@

q0 r̄0 0 . . . 0 0
r0 q1 r̄1 . . . 0 0
0 r1 q2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . qm−2 r̄m−2

0 0 0 . . . rm−2 qm−1

1
CCCCCCCCA

is positive and invertible, where qk := uk + |s|2vk, rk := s
√

wk, uk := α2
k − α2

k−1,

vk := α2
kα2

k+1 − α2
k−1α2

k−2, wk := α2
k(α2

k+1 − α2
k−1)2, and, for notational conve-

nience, α−2 = α−1 = 0. As a particular case, this result shows that a collection of
four positive numbers α0 < α1 < α2 < α3 always admits a quadratically hyponor-
mal completion. This provides a new qualitative criterion to distinguish quadratic
hyponormality from 2-hyponormality.

1. Introduction

Let H be a complex Hilbert space and let L(H) be the set of bounded linear
operators on H. An operator T ∈ L(H) is said to be normal if T ∗T = TT ∗,
hyponormal if T ∗T ≥ TT ∗, and subnormal if T = N |H, where N is normal on
some Hilbert space K ⊇ H. If T is subnormal then T is also hyponormal. The
Bram-Halmos criterion for subnormality states that an operator T is subnormal if
and only if

∑
i,j(T

ixj , T
jxi) ≥ 0 for all finite collections x0, x1, · · · , xk ∈ H ([2],[5,

II.1.9]). It is easy to see that this is equivalent to the following positivity test:

(1.1)




I T ∗ . . . T ∗k

T T ∗T . . . T ∗kT
...

...
. . .

...
T k T ∗T k . . . T ∗kT k


 ≥ 0 (all k ≥ 1).
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Condition (1.1) provides a measure of the gap between hyponormality and sub-
normality. In fact, the positivity condition (1.1) for k = 1 is equivalent to the
hyponormality of T , while subnormality requires the validity of (1.1) for all k. Let
[A,B] := AB − BA denote the commutator of two operators A and B, and define
T to be k-hyponormal whenever the k × k operator matrix

(1.2) Mk(T ) := ([T ∗j , T i])k
i,j=1

is positive. An application of the Choleski algorithm for operator matrices shows
that the positivity of (1.2) is equivalent to the positivity of the (k + 1) × (k + 1)
operator matrix in (1.1). The Bram-Halmos criterion can be then rephrased as
saying that T is subnormal if and only if T is k-hyponormal for every k ≥ 1 ([17]).

Recall ([1],[6],[17]) that T ∈ L(H) is said to be weakly k-hyponormal if

LS(T, T 2, · · · , T k) :=
{ k∑

j=1

αjT
j : α = (α1, · · · , αk) ∈ Ck

}

consists of hyponormal operators, or equivalently, Mk(T ) is weakly positive, i.e.,

(1.3) (Mk(T )




λ0x
...

λkx


 ,




λ0x
...

λkx


) ≥ 0 for x ∈ H and λ0, · · · , λk ∈ C ([17]).

If k = 2 then T is said to be quadratically hyponormal, and if k = 3 then T is
said to be cubically hyponormal. Similarly, T ∈ L(H) is said to be polynomially
hyponormal if p(T ) is hyponormal for every polynomial p ∈ C[z]. It is known that
k-hyponormal ⇒ weakly k-hyponormal, but the converse is not true in general.

The classes of (weakly) k-hyponormal operators have been studied in an attempt
to bridge the gap between subnormality and hyponormality ([8],[9],[11],[12],[13],[15],
[17],[20],[26]). The study of this gap has been only partially successful. For example,
such a gap is not yet well described for Toeplitz operators on the Hardy space of
the unit circle; in fact, even subnormality for Toeplitz operators has not yet been
characterized (cf.[7],[22]). For weighted shifts, positive results appear in [8] and [13],
although no concrete example of a weighted shift which is polynomially hyponormal
and not subnormal has yet been found (the existence of such weighted shifts was
established in [18] and [19]).

Given a bounded sequence of positive numbers α : α0, α1, · · · (called weights), the
(unilateral) weighted shift Wα associated with α is the operator on `2(Z+) defined
by Wαen := αnen+1 for all n ≥ 0, where {en}∞n=0 is the canonical orthonormal basis
for `2. It is straightforward to check that Wα can never be normal, and that Wα is
hyponormal if and only if αn ≤ αn+1 for all n ≥ 0. Weighted shifts provide a fertile
ground to analyze the relative position of subnormality, polynomial hyponormality,
k-hyponormality and weak k-hyponormality. In [13], the first named author and L.
Fialkow applied the solution of the Subnormal Completion Problem [12] to build
the first example of a one-parameter family of non-2-hyponormal quadratically hy-
ponormal weighted shifts of recursive type. Additional examples were later found
in [4],[14],[15] and [25], in some cases providing qualitative indicators to separate
quadratically hyponormality from 2-hyponormality.

In this paper we obtain a new qualitative indicator, as a corollary to the Quadrat-
ically Hyponormal Completion Criterion. Our main result is a complete solution of
the Quadratically Hyponormal Completion Problem:
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Given α : α0 < α1 < · · · < αm, find necessary and sufficient conditions for the
existence of a quadratically hyponormal weighted shift whose first (m + 1) weights
are those in α.

As a special case, we show that given four weights α0 < α1 < α2 < α3 there
always exists a quadratically hyponormal completion, thus providing a new criterion
to distinguish between quadratic hyponormality and 2-hyponormality.

Definition 1.1. A unilateral weighted shift Wα is flat (or briefly, α is flat) if
α1 = α2 = α3 = · · · .

J. Stampfli [28] showed that for subnormal weighted shifts Wα, a propagation
phenomenon occurs which forces the flatness of Wα whenever two equal weights are
present. Later, A. Joshi proved in [24] that the shift with weights α0 = α1 = a,
α2 = α3 = · · · = b, 0 < a < b, is not quadratically hyponormal, and P. Fan [21]
established that for a = 1, b = 2, and 0 < s <

√
5/5, Wα + sW 2

α is not hyponormal.
On the other hand, it was shown in [8, Theorem 2] that a hyponormal weighted
shift with three equal weights cannot be quadratically hyponormal without being
flat: If Wα is quadratically hyponormal and αn = αn+1 = αn+2 for some n ≥ 0,
then α1 = α2 = α3 = · · · , i.e., Wα is subnormal. Furthermore, in [8, Proposition
11] it was shown that, in the presence of quadratic hyponormality, two consecutive
pairs of equal weights again force flatness, thereby subnormality.

Theorem 1.2 (Propagation). Let Wα be a weighted shift with weight sequence
{αn}∞n=0.

(i) ([28, Theorem 6]) Let Wα be subnormal. If αn = αn+1 for some n ≥ 0, then
α is flat, i.e., α1 = α2 = α3 = · · · .

(ii) ([8, Corollary 6]) Let Wα be 2-hyponormal. If αn = αn+1 for some n ≥ 0,
then α is flat.

(iii) ([3, Theorem 1]) Let Wα be quadratically hyponormal. If αn = αn+1 for
some n ≥ 1, then α is flat.

An immediate consequence of Theorem 1.2 is that, for purposes of testing qua-
dratic hyponormality, we can decompose all nonsubnormal weighted shifts into two
classes: those with α0 = α1 and those with strictly increasing weight sequences.

To study quadratic hyponormality, we consider the selfcommutator [(Wα+sW 2
α)∗,

Wα + sW 2
α]. For s ∈ C, we write D(s) := [(Wα + sW 2

α)∗,Wα + sW 2
α] and we let

(1.4)

Dn(s) := Pn[(Wα + sW 2
α)∗,Wα + sW 2

α]Pn =




q0 r̄0 0 . . . 0 0
r0 q1 r̄1 . . . 0 0
0 r1 q2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . qn−1 r̄n−1

0 0 0 . . . rn−1 qn




,

where Pn is the orthogonal projection onto the subspace generated by {e0, · · · , en},

(1.5)





qn := un + |s|2vn

rn := s
√

wn

un := α2
n − α2

n−1

vn := α2
nα2

n+1 − α2
n−1α

2
n−2

wn := α2
n(α2

n+1 − α2
n−1)

2,
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and, for notational convenience, α−2 = α−1 := 0. Clearly, Wα is quadratically
hyponormal if and only if Dn(s) ≥ 0 for all s ∈ C and all n ≥ 0. Let dn(·) :=
det (Dn(·)). Then dn satisfies the following 2–step recursive formula:

(1.6) d0 = q0, d1 = q0q1 − |r0|2, dn+2 = qn+2dn+1 − |rn+1|2dn.

If we let t := |s|2, we observe that dn is a polynomial in t of degree n + 1, and if
we write dn ≡

∑n+1
i=0 c(n, i)ti, then the coefficients c(n, i) satisfy a double-indexed

recursive formula, namely

c(n + 2, i) = un+2 c(n + 1, i) + vn+2 c(n + 1, i− 1)− wn+1 c(n, i− 1),

c(n, 0) = u0 · · ·un, c(n, n + 1) = v0 · · · vn, c(1, 1) = u1v0 + v1u0 − w0

(1.7)

(n ≥ 0, i ≥ 1). We say that Wα is positively quadratically hyponormal if c(n, i) ≥ 0
for every n ≥ 0, 0 ≤ i ≤ n + 1 (cf. [10]). Positive quadratic hyponormality implies
quadratic hyponormality, but the converse is false (cf. [4]).

The idea of the proof of Theorem 1.2 (iii) is based on the following observa-
tion: if Wα is quadratically hyponormal with α1 = α2 = 1, then a straightforward
calculation shows that

d4(t) = α2
0α

2
4(α

2
0 − 1)(α2

3 − 1)3t2 + c(4, 3)t3 + c(4, 4)t4 + c(4, 5)t5,

so

lim
t→0+

d4(t)
t2

= α2
0α

2
4(α

2
0 − 1)(α2

3 − 1)3 ≥ 0,

which forces α0 = 1 or α3 = 1, so that three equal weights are present and hence
by [8, Theorem 2], flatness occurs.

Note that in Theorem 1.2 (iii) the condition “n ≥ 1” cannot be relaxed to
“n ≥ 0”. For example, if

(1.8) α0 = α1 =

√
2
3
, αn =

√
n + 1
n + 2

(n ≥ 2),

then Wα is quadratically hyponormal (cf. [8, Proposition 7]) but not cubically
hyponormal (and hence not subnormal); indeed, if we let

C5(t) := det
(

P5

[
(Wα + tW 2

α + t2 W 3
α)∗, (Wα + tW 2

α + t2 W 3
α)

]
P5

)

then

lim
t→0+

C5(t)
t8

= − 1
2041200

< 0.

We conclude this section by recalling that when α0 = α1 = 1, quadratic hyponor-
mality implies

(1.9) α2 <
√

2 and α3 ≥ (2− α2
2)
−2 (cf. [10, p.78]).
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2. Recursively Generated Shifts in the Study of Completions

If Wα is a weighted shift with weight sequence α = {αn}∞n=0, then the moments
of Wα are usually defined by β0 := 1, βn+1 := αnβn (n ≥ 0) [27]; however, we
prefer to reserve this term for the sequence γn := β2

n (n ≥ 0). A criterion for
k-hyponormality can be given in terms of these moments ([8, Theorem 4]): if we
build a (k + 1)× (k + 1) Hankel matrix A(n; k) by

A(n; k) :=




γn γn+1 . . . γn+k

γn+1 γn+2 . . . γn+k+1

...
...

...
γn+k γn+k+1 . . . γn+2k


 (n ≥ 0),

then Wα is k-hyponormal if and only if A(n; k) ≥ 0 (n ≥ 0). C. Berger’s char-
acterization of subnormality for unilateral weighted shifts (cf. [23], [5, III.8.16])
states that Wα is subnormal if and only if there exists a Borel probability measure
µ supported in [0, ||Wα||2], with ||Wα||2 ∈ supp µ, such that γn =

∫
tndµ(t) for all

n ≥ 0. Given an initial segment of weights α : α0, · · ·αm, a sequence α̂ ∈ `∞(Z+)
such that α̂i = αi (i = 0, · · · , m) is said to be recursively generated by α if there
exist r ≥ 1 and ϕ0, · · · , ϕr−1 ∈ R such that γn+r = ϕ0γn + · · · + ϕr−1γn+r−1 (all
n ≥ 0), where γ0 := 1, γn := α2

0 · · ·α2
n−1 (n ≥ 1); in this case Wα̂ is said to be

recursively generated. If we let g(t) := tr − (
ϕr−1t

r−1 + · · ·+ ϕ0

)
, then g has r

distinct real roots 0 ≤ s0 < · · · < sr−1 ([12, Theorem 3.9]). Let

V :=




1 1 . . . 1
s0 s1 . . . sr−1

...
...

...
sr−1
0 sr−1

1 . . . sr−1
r−1


 and




ρ0
...

ρr−1


 := V −1




γ0
...

γr−1


 .

If the associated recursively generated weighted shift Wα̂ is subnormal, then its
Berger measure is of the form µ := ρ0δs0 + · · · + ρr−1δr−1. Let α : α0, · · · , αm

(m ≥ 0) be an initial segment of positive weights and let ω = {ωn}∞n=0 be a
bounded sequence of positive numbers. We say that Wω is a completion of α if
ωn = αn (0 ≤ n ≤ m), and we write α ⊂ ω. The completion problem for a property
(P ) entails finding necessary and sufficient conditions on α to ensure the existence of
a weight sequence ω ⊃ α such that Wω satisfies (P ). In 1966, Stampfli [28] showed
that for arbitrary α0 < α1 < α2 there always exists a subnormal weighted shift
Wα whose first three weights are α0, α1, α2; he also proved that given four or more
weights, it may not be possible to find a subnormal completion. In [12, Theorem
3.5], the following criterion was established.

Subnormal Completion Criterion. If α : α0, · · · , αm (m ≥ 0) is an initial
segment of positive weights then the following are equivalent:

(i) α has a subnormal completion;
(ii) α has a recursively generated subnormal completion;
(iii) α has an ([m

2 ] + 1)–hyponormal completion;
(iv) the Hankel matrices

A(k) :=




γ0 γ1 . . . γk

γ1 γ2 . . . γk+1

...
...

...
γk γk+1 . . . γ2k


 and B(`− 1) :=




γ1 γ2 . . . γ`

γ2 γ3 . . . γ`+1

...
...

...
γ` γ`+1 . . . γ2`−1



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are both positive (k := [m+1
2 ] and ` := [m

2 ] + 1) and the vector




γk+1

...
γ2k+1


 (resp.




γk+1

...
γ2k


)

is in the range of A(k) (resp. B(`− 1)) when m is even (resp. odd).

Thus the Subnormal Completion Problem reduces to the Recursive Completion
Problem, which entails finding necessary and sufficient conditions on α to ensure
that the recursively generated weight sequence α̂ is well-defined and bounded.

Also in [12, Proposition 3.19], the following criterion on k-hyponormal comple-
tions was established.

k-Hyponormal Completion Criterion. If α : α0, · · · , α2m (m ≥ 1) is an initial
segment of positive weights then for 1 ≤ k ≤ m the following are equivalent:

(i) α has a k-hyponormal completion;
(ii) the Hankel matrix

A(j, k) :=




γj . . . γj+k

...
...

γj+k . . . γj+2k




is positive for all j, 0 ≤ j ≤ 2m− 2k + 1, and the vector




γ2m−k+2

...
γ2m+1




is in the range of A(2m− 2k + 2, k − 1).
If α admits a k-hyponormal completion, then it admits a recursively generated

one.

3. The Quadratically Hyponormal Completion Criterion

We now formulate and solve the corresponding problem for quadratic hyponor-
mality.

Quadratically Hyponormal Completion Problem. Given α : α0 < α1 <
· · · < αm, find necessary and sufficient conditions for the existence of a quadratically
hyponormal weighted shift whose first (m + 1) weights are given by α.

We pause to recall that, for a square matrix A, the notation A > 0 means A ≥ 0
and A invertible.

Theorem 3.1 (Quadratically Hyponormal Completion Criterion). Let m ≥
2 and let α : α0 < α1 < · · · < αm be an initial segment of positive weights. Then
the following statements are equivalent:

(i) α has a quadratically hyponormal completion;
(ii) Dm−1(t) > 0 for all t ≥ 0.
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Moreover, a quadratically hyponormal completion ω of α can be obtained in the
following recursively generated fashion:

ω : α0, · · · , αm−2, (αm−1, αm, αm+1)∧,

where αm+1 is chosen so that α2
m+1 > max

{
α2

m,
α2

m−1
α2

m

[
M (α2

m−α2
m−2)

2 + α2
m−2

]}

(M := maxt∈[0,∞)
dm−2(t)
dm−1(t)

).

Proof. We will use the notation in Section 1. First of all, note that Dm−1(t) > 0 for
all t ≥ 0 if and only if dn(t) > 0 for all t ≥ 0 and for n = 0, · · · ,m− 1; this follows
from the Nested Determinants Test (see [12, Remark 2.4]) or Choleski’s Algorithm
(see [12, Proposition 2.3]). A straightforward calculation gives

d0(t) = α2
0 + α2

0α
2
1 t

d1(t) = α2
0(α

2
1 − α2

0) + α2
0α

2
1(α

2
2 − α2

0) t + α2
0α

4
1α

2
2 t2

d2(t) = α2
0(α

2
1 − α2

0)(α
2
2 − α2

1) + α2
0α

2
2(α

2
1 − α2

0)(α
2
3 − α2

1) t

+ α2
0α

2
1α

2
2

{
α2

3(α
2
2 − α2

0)− α2
1(α

2
1 − α2

0)
}

t2 + α2
0α

4
1α

2
2(α

2
2α

2
3 − α2

1α
2
0) t3,

which shows that all coefficients of di (i = 0, 1, 2) are positive, so that di(t) > 0 for
all t ≥ 0 and i = 0, 1, 2.

Now suppose α has a quadratically hyponormal completion. Then evidently,
dn(t) ≥ 0 for all t ≥ 0 and all n ≥ 0. In view of Theorem 1.2 (iii), {αn}∞n=m is
strictly increasing. Thus dn(0) = u0 · · ·un =

∏n
i=0(α

2
i − α2

i−1) > 0 for all n ≥ 0. If
dn0(t0) = 0 for some t0 > 0 and the first such n0 > 0 (3 ≤ n0 ≤ m− 1), then (1.6)
implies that 0 ≤ dn0+1(t0) = −|rn0(t0)|2dn0−1(t0) ≤ 0, which forces rn0(t0) = 0,
so that αn0+1 = αn0−1, a contradiction. Therefore dn(t) > 0 for all t ≥ 0 and for
n = 0, · · · ,m− 1. This proves the implication (i) ⇒ (ii).

For the reverse implication, we must find a bounded sequence {αn}∞n=m+1 such
that dn(t) ≥ 0 for all t ≥ 0 and all n ≥ 0. Suppose dn(t) > 0 for all t ≥ 0 and for
n = 0, · · · ,m− 1. We now claim that there exists a constant Mk > 0 for which

(3.1)
dk−1(t)
dk(t)

≤ Mk for all t ≥ 0 and for k = 1, · · · ,m− 1.

Indeed, since dk−1(t)
dk(t) is a continuous function of t on [0, ∞), and deg (dk−1) <

deg (dk), it follows that

max
t∈[0,∞)

dk−1(t)
dk(t)

≤ max
{

1, max
t∈[0, ξ]

dk−1(t)
dk(t)

}
=: Mk,

where ξ is the largest root of the equation dk−1(t) = dk(t). This gives (3.1). Now
a straightforward calculation shows that

dm(t) = qm(t)dm−1(t)− |rm−1(t)|2dm−2(t)

=
[
um +

(
vm − wm−1

dm−2(t)
dm−1(t)

)
t

]
dm−1(t) .
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So if we write em(t) := vm−wm−1
dm−2(t)
dm−1(t)

, then by (3.1), em(t) ≥ vm−wm−1Mm−1.
Now choose αm+1 so that vm − wm−1Mm−1 > 0, i.e.,

α2
m+1 > max

{
α2

m,
α2

m−1

α2
m

[
M (α2

m − α2
m−2)

2 + α2
m−2

]}
,

where M := maxt∈[0,∞)
dm−2(t)
dm−1(t)

. Then em(t) ≥ 0 for all t ≥ 0, so that

dm(t) = (um + em(t) t)dm−1(t) ≥ umdm−1(t) > 0.

Therefore, dm−1(t) ≤ dm(t)
um

. With αm+2 to be chosen later, we now consider dm+1.
We have

dm+1(t) = qm+1(t)dm(t)− |rm(t)|2dm−1(t)

≥ 1
um

[
umqm+1(t)− |rm(t)|2

]
dm(t)

=
1

um

[
umum+1 + (umvm+1 − wm)t

]
dm(t)

= um+1dm(t) +
t

um
(umvm+1 − wm) dm(t).

Write fm+1 := umvm+1 − wm. If we choose αm+2 such that fm+1 ≥ 0, then
dm+1(t) ≥ 0 for all t > 0. In particular we can choose αm+2 so that fm+1 = 0. i.e.,
umvm+1 = wm, or

α2
m+2 :=

α2
m(α2

m+1 − α2
m−1)

2 + α2
m−1α

2
m(α2

m − α2
m−1)

α2
m+1(α2

m − α2
m−1)

,

or equivalently,

α2
m+2 := α2

m+1 +
α2

m−1(α
2
m+1 − α2

m)2

α2
m+1(α2

m − α2
m−1)

.

In this case, dm+1(t) ≥ um+1 dm(t) ≥ 0. Repeating the argument (with αm+3 to be
chosen later), we obtain

dm+2(t) = qm+2(t)dm+1(t)− |rm+1(t)|2dm(t)

≥ 1
um+1

[
um+1qm+2(t)− |rm+1(t)|2

]
dm+1(t)

=
1

um+1

[
um+1um+2 + (um+1vm+2 − wm+1) t

]
dm+1(t)

= um+2 dm+1(t) +
t

um+1
(um+1vm+2 − wm+1) dm+1(t).

Write fm+2 := um+1vm+2 − wm+1. If we choose αm+3 such that fm+2 = 0, i.e.,

α2
m+3 := α2

m+2 +
α2

m(α2
m+2 − α2

m+1)
2

α2
m+2(α

2
m+1 − α2

m)
,
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then dm+2(t) ≥ um+2 dm+1(t) ≥ 0. Continuing this process with the sequence
{αn}∞n=m+2 defined recursively by

ϕ1 :=
α2

m(α2
m+1 − α2

m−1)
α2

m − α2
m−1

, ϕ0 := −α2
m−1α

2
m(α2

m+1 − α2
m)

α2
m − α2

m−1

and

(3.2) α2
n+1 := ϕ1 +

ϕ0

α2
n

(n ≥ m + 1),

we obtain that dn(t) ≥ 0 for all t > 0 and all n ≥ m + 2. On the other hand,
by an argument of Stampfli [28, Theorem 5], the sequence {αn}∞n=m+2 is bounded.
Therefore, a quadratically hyponormal completion {αn}∞n=0 is obtained. The recur-
sive relation (3.2) shows that the sequence {αn}∞n=m+2 is obtained recursively from
αm−1, αm and αm+1, that is, {αn}∞n=m−1 = (αm−1, αm, αm+1)∧ (see [13], [28]).
This completes the proof. ¤

Given four weights α : α0 < α1 < α2 < α3, it may not be possible to find a
2-hyponormal completion. In fact, by the preceding criterion for subnormal and
k-hyponormal completions, the following statements are equivalent:

(i) α has a subnormal completion;
(ii) α has a 2-hyponormal completion;

(iii) det




γ0 γ1 γ2

γ1 γ2 γ3

γ2 γ3 γ4


 ≥ 0.

By contrast, a quadratically hyponormal completion always exists for four weights.

Corollary 3.2. For arbitrary α : α0 < α1 < α2 < α3, there always exists a
quadratically hyponormal completion ω of α.

Proof. In the proof of Theorem 3.1, we showed that dn(t) > 0 for all t ≥ 0 and for
n = 0, 1, 2. Thus the result immediately follows from Theorem 3.1. ¤
Remark 3.3. To discuss the hypothesis α0 < α1 < · · · < αm in Theorem 3.1, we
consider the case where α : α0, α1, · · · , αm admits equal weights:

(i) If α0 < α1 = · · · = αm then there exists a trivial quadratically hyponormal
completion (in fact, a subnormal completion) ω : α0 < α1 = · · · = αn =
αn+1 = · · · .

(ii) If {αn}m
n=0 is such that αj = αj+1 for some j = 1, 2, · · · ,m−1, and αj 6= αk

for some 1 ≤ j, k ≤ m, then in view of Theorem 1.2 (iii), there does not
exist any quadratically hyponormal completion of α.

(iii) If α0 = α1, the conclusion of Theorem 3.1 may fail: for example, if α :
1, 1, 2, 3 then dn(t) > 0 for all t ≥ 0 and for n = 0, 1, 2, whereas α admits no
quadratically hyponormal completion because by (1.9) we must have α2

2 < 2.

Problem 3.4. Given α : α0 = α1 < α2 < · · · < αm, find necessary and sufficient
conditions for the existence of a quadratically hyponormal completion ω of α.

In [14], related to Problem 3.4, weighted shifts of the form 1, (1,
√

b,
√

c)∧ have
been studied and their quadratic hyponormality completely characterized in terms
of b and c.
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Remark 3.5. In Theorem 3.1, the recursively quadratically hyponormal comple-
tion requires a sufficiently large αm+1. One might conjecture that if the quadrati-
cally hyponormal completion of α : α0 < α1 < α2 < · · · < αm exists, then

ω : α0, · · · , αm−3, (αm−2, αm−1, αm)∧

is such a completion. However, if α :
√

9
10 ,
√

1,
√

2,
√

3 then ω :
√

9
10 , (

√
1,
√

2,
√

3)∧

is not quadratically hyponormal (by [13, Theorem 4.3], [25, Theorem 4.6]), even
though by Corollary 3.2 a quadratically hyponormal completion does exist.

We conclude this section by establishing that for five or more weights, the gap
between 2-hyponormal and quadratically hyponormal completions can be extremal.

Proposition 3.6. For a < b < c, let η : (
√

a,
√

b,
√

c)∧ be a recursively generated
weight sequence, and consider α(x) :

√
a,
√

b,
√

c,
√

x, η4 (five weights). Then
(i) α has a subnormal completion ⇐⇒ x = η3;
(ii) α has a 2-hyponormal completion ⇐⇒ x = η3;
(iii) α has a quadratically hyponormal completion ⇐⇒ c < x < η2

4.

Proof. Assertions (i) and (ii) follow from the argument used in the proof of [16,
Theorem 3.2]. For assertion (iii), observe that by Theorem 3.1, α has a quadratically
hyponormal completion if and only if d3(t) > 0 for all t ≥ 0. Without loss of
generality, we write a = 1, b = 1 + r, c = 1 + r + s, and x = 1 + r + s + u (r > 0,
s > 0, u > 0). A straightforward calculation using Mathematica shows that the
Maclaurin coefficients c(3, i) of d3(t) are given by

c(3, 0) = rsu;

c(3, 1) = s3(r + s)(1 + r + s + u)(r + r2 + 2rs + s2)−1;

c(3, 2) = (1 + r + s)(s4 + rsu + 4r2su + 5r3su + 2r4su + 2rs2u + 7r2s2u + 5r3s2u

+ 2s3u + 4rs3u + 4r2s3u + s4u + rs4u + r2u2 + 2r3u2 + r4u2 + 3r2su2

+ 3r3su2 + 2rs2u2 + 3r2s2u2 + s3u2 + rs3u2)(r + r2 + 2rs + s2)−1;

c(3, 3) = (1 + r)(r + s)(1 + r + s)(1 + r + s + u)(r2s2 + r3s2 + s3 + 2rs3

+ 2r2s3 + s4 + rs4 + r2u + 2r3u + r4u + 3r2su + 3r3su + 2rs2u + 3r2s2u

+ s3u + rs3u)(r2 + r3 + 2r2s + rs2)−1; and

c(3, 4) = (1 + r)2(1 + r + s)(r + r2 + 2s + 2rs + s2 + u + ru + su)(r2s + 2r3s + r4s

+ rs2 + 4r2s2 + 3r3s2 + s3 + 3rs3 + 3r2s3 + s4 + rs4 + r2u + 2r3u + r4u

+ 3r2su + 3r3su + 2rs2u + 3r2s2u + s3u + rs3u)(r2 + r3 + 2r2s + rs2)−1.

This readily shows that for c < x < α2
4, all Maclaurin coefficients of d3(t) are

positive, so that d3(t) > 0 for all t ≥ 0. Moreover if x = c or α2
4 then Theorem 1.2

shows that no quadratically hyponormal completion exists. This proves assertion
(iii). ¤
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