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Abstract. In this paper we consider several questions emerging from the Beurling-
Lax-Halmos Theorem, which characterizes the shift-invariant subspaces of vector-valued
Hardy spaces. The Beurling-Lax-Halmos Theorem states that a backward shift-invariant
subspace is a model space H(∆) ≡ H2

E ⊖ ∆H2
E , for some inner function ∆. Our first

question calls for a description of the set F in H2
E such that H(∆) = E∗

F , where E
∗
F

denotes the smallest backward shift-invariant subspace containing the set F . In our pur-
suit of a general solution to this question, we are naturally led to take into account a
canonical decomposition of operator-valued strong L2-functions. Next, we ask: Is every
shift-invariant subspace the kernel of a (possibly unbounded) Hankel operator ? Consid-
eration of the question on the structure of shift-invariant subspaces leads us to study
and coin a new notion of “Beurling degree” for an inner function. We then establish a
deep connection between the spectral multiplicity of the model operator (the truncated
backward shift) and the Beurling degree of the corresponding characteristic function. At
the same time, we consider the notion of meromorphic pseudo-continuations of bounded
type for operator-valued functions, and then use this notion to study the spectral mul-
tiplicity of model operators between separable complex Hilbert spaces. In particular, we
consider the case of multiplicity-free: more precisely, for which characteristic function ∆
of the model operator T does it follow that T is multiplicity-free, i.e., T has multiplicity
1 ? We show that if ∆ has a meromorphic pseudo-continuation of bounded type in the
complement of the closed unit disk and the adjoint of the flip of ∆ is an outer function,
then T is multiplicity-free.
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1 Introduction

The celebrated Beurling Theorem [Beu] characterizes the shift-invariant subspaces of the
Hardy space. P.D. Lax [Lax] extended the Beurling Theorem to the case of finite mul-
tiplicity, and proved the so-called Beurling-Lax Theorem. Subsequently, P.R. Halmos
[Ha1] gave a beautiful proof for the case of infinite multiplicity, and thus established the
so-called Beurling-Lax-Halmos Theorem. Since then, the Beurling-Lax-Halmos Theo-
rem has been extended to various settings and extensively applied in connection with
model theory, system theory and the interpolation problem by many authors (cf. [Sa1],
[AD], [Car] for multiply-connected domains, [Pop] for the free-noncommutative full Fock
space, [MT] and [ADR] for the Drury-Arveson space, [Hed], [ARS], [Shi], [BaB] for the
Bergman space, [Ric] for the Dirichlet space, [AS] for the complex and quaternionic set-
ting, [BH1], [BH2], [BH4], [BH3], [BR] for the linear groups setting, and [dBR] for the de
Branges-Rovnyak space).

In this paper, we will focus on a detailed analysis of the Beurling-Lax-Halmos Theorem
for infinite multiplicity. We obtain answers to several questions emerging from the
Beurling-Lax-Halmos Theorem and establish some new and exciting results, including:
(i) a canonical decomposition for operator-valued L2-functions (in fact, for a much bigger
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class of functions), (ii) the introduction of the Beurling degree of an inner function, and
(iii) the study of the spectral multiplicity of a model operator.

Let T be the unit circle in the complex plane C. Throughout this paper, whenever
we deal with operator-valued functions Φ on T, we assume that Φ(z) is a bounded linear
operator between separable complex Hilbert spaces for almost all z ∈ T. For a separable
complex Hilbert space E, let SE be the shift operator on the E-valued Hardy space H2

E ,
i.e.,

(SEf)(z) := zf(z) for each f ∈ H2
E .

The Beurling-Lax-Halmos Theorem states that every subspaceM invariant under SE (i.e.,
a closed subspace of H2

E such that SEf ∈ M for all f ∈ M) is of the form ∆H2
E′ , where

E′ is a closed subspace of E and ∆ is an inner function. As usual, ∆ is an inner function
if ∆(z) is an isometric operator from E′ into E for almost all z ∈ T, i.e., ∆∗∆ = IE′ a.e.
on T. If, in addition, ∆∆∗ = IE a.e. on T, then ∆ is called a two-sided inner function.

There exists an equivalent description of a closed subspaceM of H2
E which is invariant

under the backward shift operator S∗
E ; that is, M = H(∆) := H2

E ⊖∆H2
E′ for some inner

function ∆. The space H(∆) is often called a model space or a de Branges-Rovnyak
space [dBR], [Sa2], [SFBK]. Thus, for a subset F of H2

E , if E
∗
F denotes the smallest

S∗
E-invariant subspace containing F , i.e.,

E∗
F :=

∨{
S∗n
E F : n ≥ 0

}
,

(where
∨

denotes the closed linear span), then E∗
F = H(∆) for some inner function ∆.

Now, given a backward shift-invariant subspace H(∆), we may ask:

Question 1.1. (i) What is the smallest number of vectors in F satisfying H(∆) = E∗
F ?

(ii) More generally, we are interested in the problem of describing the set F in H2
E such

that H(∆) = E∗
F .

To examine Question 1.1 we need to consider (bounded linear) operator-valued func-
tions (defined on the unit circle) constructed by arranging the vectors in F as column
vectors. In other words, in what follows we will encounter (bounded linear) operator-
valued functions whose “column” vectors are L2-functions. This approach naturally leads
to the notion of (operator-valued) strong L2-function. This notion seems to have been
introduced by V. Peller [Pel, Appendix 2.3] for the purpose of defining general symbols of
vectorial Hankel operators. However, Peller’s book gives only the definition of a strong
L2-function, and does not describe the properties of such functions. Besides Peller’s book,
we have not found any other references in the literature to strong L2-functions. In Ap-
pendix A we study strong L2-functions (including operator-valued L2- and L∞-functions)
and then derive some basic properties.

Let B(D,E) denote the set of all bounded linear operators between separable complex
Hilbert spaces D and E. A strong L2-function Φ is a B(D,E)-valued function defined
almost everywhere on the unit circle T such that Φ(·)x ∈ L2

E for each x ∈ D. We can
easily see that every operator-valued Lp-function (p ≥ 1) is a strong Lp-function (cf. p. 59).
Following V. Peller [Pel], we write L2

s(B(D,E)) for the set of strong L2-functions with
values in B(D,E).

The set L2
s(B(D,E)) constitutes a nice collection of general symbols of vectorial Hankel

operators (see [Pel]). Similarly, we write H2
s (B(D,E)) for the set of strong L2-functions
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with values in B(D,E) such that Φ(·)x ∈ H2
E for each x ∈ D. Of course, H2

s (B(D,E))
contains all B(D,E)-valued H2-functions. In Appendix A, we study operator-valued
Hardy classes as well as strong L2-functions as a groundwork of this paper.

Question 1.1 is closely related to a canonical decomposition of strong L2-functions.
We first observe that if Φ is an operator-valued L∞-function, then the kernel of the Hankel
operator HΦ∗ is shift-invariant. Thus by the Beurling-Lax-Halmos Theorem, the kernel
of the Hankel operator HΦ∗ is of the form ∆H2

E′ for some inner function ∆. If the kernel
of the Hankel operator HΦ∗ is trivial, take E′ = {0}. Of course, ∆ need not be a two-
sided inner function. In fact, we can show that if Φ is an operator-valued L∞-function
and ∆ is a two-sided inner function, then the kernel of the Hankel operator HΦ∗ is ∆H2

E′

if and only if Φ is expressed in the form

Φ = ∆A∗, (1)

where A is an operator-valued H∞-function such that ∆ and A are right coprime (see
Lemma 2.4). The expression (1) is called the (canonical) Douglas-Shapiro-Shields fac-
torization of an operator-valued L∞-function Φ (see [DSS], [FB], [Fu2]; in particular,
[Fu2] contains many important applications of the Douglas-Shapiro-Shields factorization
to linear system theory).

Let D be the open unit disk in the complex plane C. We recall that a meromorphic
function φ : D → C is said to be of bounded type (or in the Nevanlinna class) if it is
a quotient of two bounded analytic functions. A matrix function of bounded type is
defined by a matrix-valued function whose entries are all of bounded type. Very recently,
a systematic study on matrix-valued functions of bounded type was undertaken in the re-
search monograph [CHL3]. It is also known that every matrix-valued L∞-function whose
adjoint is of bounded type satisfies (1) (cf. [GHR]). In fact, if we extend the notion of
“bounded type” for operator-valued L∞-functions (as we will do in Definition 2.23 for
a bigger class), then we may say that the expression (1) characterizes the class of L∞-
functions whose flips are of bounded type, where the flip Φ̆ of Φ is defined by Φ̆(z) := Φ(z).
From this viewpoint, we may ask whether there exists an appropriate decomposition cor-
responding to general L∞-functions, more generally, to strong L2-functions. An answer
to the following question is the first objective of this paper,

Question 1.2. What is a canonical decomposition of strong L2-functions ?

To establish a canonical decomposition of strong L2-functions, we need to introduce
new notions; this will be done in Section 2. First of all, we coin the notion of “comple-
mentary factor” denoted by ∆c, of an inner function ∆ with values in B(D,E). This
notion is defined by using the kernel of ∆∗, denoted by ker∆∗, which is defined by the
set of vectors f in H2

E such that ∆∗f = 0 a.e. on T. Moreover, the kernel of H∆∗ can be
represented by orthogonally adding the complementary factor ∆c to ∆ (see Lemma 2.7).
We also employ a notion of “degree of non-cyclicity” on the set of all subsets (or vectors)
of H2

E , which is a complementary notion of “degree of cyclicity” due to V.I. Vasyunin and
N.K. Nikolskii [VN]. The degree of non-cyclicity, denoted by nc(F ), of subsets F ⊆ H2

E ,
is defined by the number

nc(F ) := sup
ζ∈D

dim
{
g(ζ) : g ∈ H2

E ⊖ E∗
F

}
. (2)
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Thus, in comparison with the degree of cyclicity, the degree of non-cyclicity admits ∞,
which is often beneficial when trying to understand the Beurling-Lax-Halmos Theorem.
Now, for a canonical decomposition of strong L2-functions Φ, we are tempted to guess
that Φ can be factored as ∆A∗ (where ∆ is a possibly one-sided inner function) as in the
Douglas-Shapiro-Shields factorization, in which ∆ is two-sided inner. But this is not the
case. In fact, we can see that a canonical decomposition is actually affected by the kernel
of ∆∗ through some examples (see p. 30). Upon reflection, we recognize that this is not
an accident. This is accomplished in Section 3.

Theorem 3.1 realizes the idea inside those examples: if Φ is a strong L2-function with
values in B(D,E), then Φ can be expressed in the form

Φ = ∆A∗ +B, (3)

where ∆ is an inner function with values in B(E′, E), ∆ and A are right coprime, ∆∗B = 0,
and nc{Φ+} ≤ dimE′ (where {Φ+} denotes the set of all “column” vectors of the analytic
part of Φ. Loosely defined, Φ+(·)x = P+(Φ(·)x), where P+ is the orthogonal projection
from L2 onto H2; a precise definition is given on p.11. In particular, if dimE′ < ∞
(for instance, if dimE <∞), then the expression (3) is unique (up to a unitary constant
right factor) (see Theorem 3.1, p. 32). The expression (3) will be called a canonical
decomposition of a strong L2-function Φ. The proof of Theorem 3.1 shows that the inner
function ∆ in the canonical decomposition (3) of a strong L2-function Φ can be obtained
from the equation

kerH∗
Φ̆
= ∆H2

E′

which is guaranteed by the Beurling-Lax-Halmos Theorem (see Corollary 2.6). In this
case, the expression (3) will be called the BLH-canonical decomposition of Φ, recalling that
∆ comes from the Beurling-Lax-Halmos Theorem. However, if dimE′ = ∞ (even in the
case when dimD <∞), then it is possible to get another inner function Θ of a canonical
decomposition (3) for the same function: in this case, kerH∗

Φ̆
̸= ΘH2

E′′ . Therefore the

canonical decomposition of a strong L2-function is not unique in general (see Remark
3.2). But the second assertion of Theorem 3.1 says that if the codomain of Φ(z) is
finite-dimensional (in particular, if Φ is a matrix-valued L2-function), then the canonical
decomposition (3) of Φ is unique; in other words, the inner function ∆ in (3) should be
obtained from the equation kerH∗

Φ̆
= ∆H2

E′ . Thus the unique canonical decomposition

(3) of matrix-valued L2-functions is precisely the BLH-canonical decomposition.
Further, if the flip Φ̆ of Φ is of bounded type then B turns to be a zero function,

so that the decomposition (3) reduces to the Douglas-Shapiro-Shields factorization. In
fact, the Douglas-Shapiro-Shields factorization was given for L∞-functions, but the case
B = 0 in (3) is available for strong L2-functions. Moreover, the notion of “bounded
type” for matrix-valued functions is not appropriate for operator-valued functions, i.e.,
the statement “each entry of the matrix is of bounded type” does not produce a natural
extension to operator-valued functions even though it has a meaning for infinite matrices
(remember that we deal with operators between separable Hilbert spaces).

Thus we need to introduce an appropriate notion of “bounded type” for operator-
valued functions. We will do this in Subsection 2.5. Moreover, to guarantee the state-
ment “each entry is of bounded type,” we adopt the notion of “meromorphic pseudo-
continuation of bounded type” in De := {z : 1 < |z| ≤ ∞}, which coincides with the
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notion of “bounded type” for matrix-valued functions (cf. [Fu1]): This will be done in
Subsection 2.6.

On the other hand, we recall that the spectral multiplicity for a bounded linear operator
T acting on a separable complex Hilbert space E is defined by the number µT :

µT := inf dimF,

where F ⊆ E, the infimum being taken over all generating subspaces F , i.e., subspaces
such that MF ≡

∨
{TnF : n ≥ 0} = E. In the definition of the spectral multiplicity,

F may be taken as a subset rather than a subspace. In this case, we may regard µT as
the quantity inf dim

∨
{f : f ∈ F} such that MF = E. Unless this leads to ambiguity,

we will deal with MF for subsets F ⊆ E. If SE is the shift operator on H2
E , then it

is known that µSE = dimE. By contrast, if S∗
E is the backward shift operator on H2

E ,
then S∗

E has a cyclic vector, i.e., µS∗
E

= 1. Moreover, the cyclic vectors of S∗
E form a

dense subset of H2
E (see [Ha4], [Ni1], [Wog]). We here observe that Question 1.1(i) is

identical to the problem of finding the spectral multiplicity of the truncated backward
shift operator S∗

E |H(∆), i.e., the restriction of S∗
E to its invariant subspace H(∆). The

second objective of this paper is to show that this problem has a deep connection with a
canonical decomposition of strong L2-functions involved with the inner function ∆.

To understand the smallest S∗
E-invariant subspace containing a subset F ⊆ H2

E , we
need to consider the kernels of the adjoints of unbounded Hankel operators with strong
L2-symbols involved with F . Thus we will deal with unbounded Hankel operators HΦ

with strong L2-symbols Φ. However, the adjoint of the unbounded Hankel operator
need not be a Hankel operator. But if Φ is an L∞-function then HΦ∗ = H∗

Φ̆
, where

Φ̆ is the flip of Φ. Thus for a bounded symbol Φ, we may use the notations HΦ∗ and
H∗

Φ̆
interchangeably. By contrast, for a strong L2-function Φ, HΦ∗ may not be equal to

H∗
Φ̆

even though Φ∗ is a strong L2-function. In particular, the kernel of an unbounded
Hankel operator HΦ∗ is likely to be trivial because it is defined on the dense subset of
polynomials. From this viewpoint, to avoid potential technical issues in our arguments,
we will deal with the operator H∗

Φ̆
in place of HΦ∗ . In spite of this, and since the

kernel of the adjoint of an unbounded operator is always closed, we can show that via the
Beurling-Lax-Halmos Theorem, the kernel of H∗

Φ̆
with strong L2-symbol Φ is still of the

form ∆H2
E′ (see Corollary 2.6).

We now consider several questions, which are of independent interest. This will be
done in Section 2. The next question arises naturally from the Beurling-Lax-Halmos
Theorem.

Question 1.3. Since the kernel of the Hankel operator H∗
Φ̆
is of the form ΘH2

E′ , which

property of Φ determines the dimension of the space E′ ? In particular, if Φ is an n×m
matrix-valued L2-function and dimE′ = r, which property of Φ determines the number
r ?

To answer Question 1.3, we employ the notion of degree of non-cyclicity (2). Indeed,
we can show that if the kernel of the adjoint of the Hankel operator HΦ̆ is ΘH2

E′ for some
inner function Θ, then the dimension of E′ can be computed by the degree of non-cyclicity
of {Φ+} (see Theorem 2.13).
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When ∆ is an inner function, we may ask when it is possible to complement ∆ to a
two-sided inner function by aid of an inner function Ω; in other words, when is [∆,Ω]
a two-sided inner function, where [∆(·),Ω(·)] is understood as an 1 × 2 operator matrix
defined on the unit circle T ? (It turns out that this question can be answered by using
the Complementing Lemma; see [VN] or [Ni1]). The following question refers to more
general cases.

Question 1.4. If ∆ is an n × r inner matrix function, which condition on ∆ allows us
to complement ∆ to an n × (r + q) inner matrix function using an n × q inner matrix
function ?

An answer to Question 1.4 is also subject to the degree of non-cyclicity of {∆} (see
Theorem 2.21).

By the Beurling-Lax-Halmos Theorem, we saw that the kernel of the adjoint of a
Hankel operator with a strong L2-symbol is of the form ∆H2

E′ for some inner function ∆.
In view of its converse, we may ask:

Question 1.5. Is every shift-invariant subspace ∆H2
E′ represented by the kernel of H∗

Φ̆

with some strong L2-symbol Φ with values in B(D,E) ?

Question 1.5 asks whether a strong L2-solution Φ always exists for the equation
kerH∗

Φ̆
= ∆H2

E′ for a given inner function ∆. In Theorem 4.1 we give an affirma-

tive answer to Question 1.5. The matrix-valued version of this result is as follows (see
Corollary 4.2): for a given n × r inner matrix function ∆, there always exists a solution
Φ ∈ L∞

Mn×m
of the equation kerH∗

Φ̆
= ∆H2

Cr , for some m ≤ r + 1. In view of this, it is

reasonable to ask whether such a solution Φ ∈ L2
Mn×m

exists for each m = 1, 2, · · · . But

the answer to this question is negative (see Remark 4.4).
It is then natural to ask how to determine a possible dimension of D for which there

exists a strong L2-solution Φ (with values in B(D,E)) of the equation kerH∗
Φ̆
= ∆H2

E′ .
In fact, we would like to ask what is the infimum of dimD that guarantees the existence
of a strong L2-solution Φ. To find a way to determine such an infimum, we introduce the
notion of “Beurling degree” for an inner function. We do this by employing the canonical
decomposition of a strong L2-function induced by the given inner function: if ∆ is an
inner function with values in B(E′, E), then the Beurling degree, denoted by degB(∆),
of ∆ is defined by the infimum of the dimension of the nonzero space D for which there
exists a pair (A,B) such that Φ ≡ ∆A∗ + B is a canonical decomposition of a strong
L2-function Φ with values in B(D,E) (Definition 4.5).

We now recall that the Model Theorem ([Ni1], [SFBK]) states that if a bounded linear
operator T acting on a Hilbert space H (in symbols, T ∈ B(H)) is a contraction (i.e.,
||T || ≤ 1) satisfying

lim
n→∞

Tnx = 0 for each x ∈ H, (4)

then T is unitarily equivalent to a truncated backward shift S∗
E |H(∆) for some inner

function ∆ with values in B(E′, E), where E = cl ran(I − T ∗T ). In this case, S∗
E |H(∆) is

called the the model operator of T and ∆ is called the characteristic function of T . We
often write T ∈ C0 • for a contraction T ∈ B(H) satisfying the condition (4).

We can now prove that if ∆ is the characteristic function of the model operator T with
values in B(E′, E), with dimE′ <∞ (in particular, when ∆ is an inner matrix function),
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then the spectral multiplicity of the model operator is equal to the Beurling degree of ∆.
Equivalently, given an inner function ∆ with values in B(E′, E), with dimE′ < ∞, let
T := S∗

E |H(∆). Then
µT = degB(∆) (5)

(see Theorem 4.6). The equality (5) is the second objective of this paper. It is somewhat
surprising that the spectral multiplicity of the model operator can be computed by a
function-theoretic property of the corresponding characteristic function. As a result, we
give an answer to Question 1.1 (see Corollary 4.9).

The third objective of this paper is to consider the case of µT = 1, i.e., when the
operator T has a cyclic vector. In general, if T ∈ B(H) is such that µT = 1, then T is
said to be multiplicity-free. To avoid confusion, we regard T to be multiplicity-free if the
operator T acts on the zero space. Thus we are interested in the following question on
the characteristic function ∆ of T .

Question 1.6. Let T := S∗
E |H(∆). For which inner function ∆ does it follow that T is

multiplicity-free?

To get an answer to Question 1.6, we consider the notion of “characteristic scalar”
inner function, which is a generalization of the case of two-sided inner matrix function
(and we often call it square inner matrix function) (cf. [Hel], [SFBK], [CHL3]). This will

be done in Subsection 5.1. Let ∆̃(z) := ∆(z)∗. Then we can get an answer to Question
1.6, as follows:

If T := S∗
E |H(∆), where ∆ has a meromorphic pseudo-continuation of bounded type

in De and ∆̃ is an outer function, then T is multiplicity-free (see Theorem 5.15).

The organization of this paper is as follows. The main theorems of this paper are
Theorem 3.1 (a canonical decomposition of strong L2-functions), Theorem 4.6 (the Beurl-
ing degree and the spectral multiplicity), Theorem 5.15 (multiplicity-free model opera-
tors). To prove those theorems, we need to consider several questions emerging from
the Beurling-Lax-Halmos Theorem. We also consider several auxiliary lemmas, and new
notions of complementary factors of inner functions, the degree of non-cyclicity, bounded
type strong L2-functions, and the Beurling degree of an inner function.

In Subsection 2.1 we give the notations and the basic definitions. In Subsections 2.2-
2.4 we introduce notions of complementary factors of inner functions and the degree of
non-cyclicity, and then give answers to Question 1.3 and Question 1.4. In Subsection 2.5
we introduce the notion of “bounded type” strong L2-functions, which correspond to the
functions whose entries are of bounded type in the matrix-valued case.

In Section 3 we establish a canonical decomposition of a strong L2-functions Φ, which
reduces to the Douglas-Shapiro-Shields factorization of Φ if Φ̆ is of bounded type. In
Section 4 we give an answer to Question 1.5 and then establish a connection between the
spectral multiplicity of the model operator and the Beurling degree of the corresponding
characteristic function.

In Section 5 we consider the spectral multiplicity of model operators by using the
notion of meromorphic pseudo-continuation of bounded type in the complement of the
closed unit disk and then give an answer to Question 1.6. In Section 6 we address some
unsolved problems.
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In Appendix A we study operator-valued strong L2-functions and then prove some
properties which we have not been able to find in the literature, but we need to use in
this paper. In Appendix B, we consider a reduction to the case of C0-contractions for the
spectral multiplicity of model operators. In Appendix C, by using the preceding results,
we analyze the left and right coprime-ness, the model operator and an interpolation
problem for operator-valued functions.

2 Preliminaries and auxiliary lemmas

In this section we provide notations, notions and auxiliary lemmas which will be used in
this paper. In the course, we will coin the new notions of complementary factor of an inner
function, degree of non-cyclicity, strong L2-functions of bounded type, and meromorphic
pseudo-continuation of bounded type for operator-valued functions.

2.1 Basic notions

We write D for the open unit disk in the complex plane C and T for the unit circle in
C. To avoid a confusion, we will write z for points on T and ζ for points in C \ T. For
ϕ ∈ L2, write

ϕ̆(z) := ϕ(z) and ϕ̃(z) := ϕ(z).

For ϕ ∈ L2, write
ϕ+ := P+ϕ and ϕ̆− := P−ϕ,

where P+ and P− are the orthogonal projections from L2 onto H2 and L2 ⊖H2, respec-
tively. Thus, we may write ϕ = ϕ̆− + ϕ+.

Throughout the paper, we assume that

X and Y are complex Banach spaces;

D and E are separable complex Hilbert spaces.

We write B(X,Y ) for the set of all bounded linear operators from X to Y and abbreviate
B(X,X) to B(X). For a complex Banach space X, we write X∗ for its dual. We write
Mn×m for the set of n × m complex matrices, and abbreviate Mn×n to Mn. We also
write g.c.d.(·) and l.c.m.(·) denote the greatest common inner divisor and the least com-
mon inner multiple, respectively, while left-g.c.d.(·) and left-l.c.m.(·) denote the greatest
common left inner divisor and the least common left inner multiple, respectively.

If A : D → E is a linear operator whose domain is a subspace of D, then A is also
a linear operator from the closure of the domain of A into E. So we will only consider
those A such that the domain of A is dense in D. Such an operator A is said to be
densely defined. If A : D → E is densely defined, we write domA, kerA, and ranA for
the domain, the kernel, and the range of A, respectively. If A : D → E is densely defined,
write

domA∗ =
{
e ∈ E : d 7→ ⟨Ad, e⟩ is a bounded linear functional on domA

}
.
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If e ∈ domA∗, then there exists a unique f ∈ E such that ⟨Ad, e⟩ = ⟨d, f⟩ for all
d ∈ domA. Denote this unique vector f by f ≡ A∗e. Thus ⟨Ad, e⟩ = ⟨d,A∗e⟩ for
all d ∈ domA and e ∈ domA∗. We call A∗ the adjoint of A. It is well known
from unbounded operator theory (cf. [Gol], [Con]) that if A is densely defined, then
kerA∗ = (ranA)⊥, so that kerA∗ is closed even though kerA may not be closed.

We recall ([Abr], [Co2], [GHR], [Ni1]) that a meromorphic function ϕ : D → C is said
to be of bounded type (or in the Nevanlinna class N ) if there are functions ψ1, ψ2 ∈ H∞

such that

ϕ(z) =
ψ1(z)

ψ2(z)
for almost all z ∈ T.

It is well known that ϕ is of bounded type if and only if ϕ = ψ1

ψ2
for some ψi ∈ Hp

(p > 0, i = 1, 2). If ψ2 = ψiψe is the inner-outer factorization of ψ2, then ϕ = ψi ψ1

ψe .

Thus if ϕ ∈ L2 is of bounded type, then ϕ can be written as

ϕ = θa,

where θ is inner, a ∈ H2 and θ and a are coprime.
Write De := {z : 1 < |z| ≤ ∞}. For a function g : De → C, define a function

gD : D → C by

gD(ζ) := g(1/ζ) (ζ ∈ D).
For a function g : De → C, we say that g belongs to Hp(De) if gD ∈ Hp (1 ≤ p ≤ ∞). A
function g : De → C is said to be of bounded type if gD is of bounded type. If f ∈ H2,
then the function f̂ defined in De is called a pseudo-continuation of f if f̂ is a function
of bounded type and f̂(z) = f(z) for almost all z ∈ T (cf. [BoB], [Ni1], [Sha]). Then we

can easily show that f̆ is of bounded type if and only if f has a pseudo-continuation f̂ .
In this case, f̂D(z) = f(z) for almost all z ∈ T. In particular,

ϕ ≡ ϕ̆− + ϕ+ ∈ L2 is of bounded type ⇐⇒ ϕ− has a pseudo-continuation. (6)

For a complex Banach space X and 1 ≤ p ≤ ∞, let LpX be the space of X-valued
Lp-functions and Hp

X be the Hardy space of X-valued Hp-functions. For a detailed
explanation for LpX and Hp

X , see Appendix A.
To examine Question 1.1, we need to consider operator-valued functions defined on

the unit circle constructed by arranging the vectors in F as their column vectors. Using
this viewpoint, we will consider operator-valued functions whose “column” vectors are L2-
functions. Note that (bounded linear) operators between separable Hilbert spaces may
be represented as infinite matrices, so that column vectors of operators are well justified.
This viewpoint leads us to define (operator-valued) strong L2-functions.

For 1 ≤ p < ∞, we define the class Lps(B(D,E)) ≡ Lps(T,B(D,E)) as the set of all
(WOT) measurable B(D,E)-valued functions Φ on T such that Φ(·)x ∈ LpE . A function
Φ ∈ Lps(B(D,E)) is called a strong Lp-function.

If Φ ∈ L1
s(B(D,E)) and x ∈ D, then Φ(·)x ∈ L1

E . Thus the n-th Fourier coefficient

Φ̂(·)x(n) of Φ(·)x is given by

Φ̂(·)x(n) =
∫
T
znΦ(z)x dm(z).
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We now define the n-th Fourier coefficient of Φ ∈ L1
s(B(D,E)), denoted by Φ̂(n), by

Φ̂(n)x := Φ̂(·)x(n) (n ∈ Z, x ∈ D).

We define

H2
s (B(D,E)) ≡ H2

s (T,B(D,E)) :=
{
Φ ∈ L2

s(B(D,E)) : Φ̂(n) = 0 for n < 0
}
,

or equivalently, H2
s (B(D,E)) is the set of all (WOT) measurable functions Φ on T such

that Φ(·)x ∈ H2
E for each x ∈ D. The terminology of a “strong H2-function” is reserved

for the operator-valued functions on the unit disk D, following to N.K. Nikolskii [Ni1]: A
function Φ : D → B(D,E) is called a strong H2-function if Φ(·)x ∈ H2(D, E) for each
x ∈ D. Let L∞(B(D,E)) be the space of all bounded (WOT) measurable B(D,E)-valued
functions on T and let

H∞(B(D,E)) :=
{
Φ ∈ L∞(B(D,E)) : Φ̂(n) = 0 for n < 0

}
.

In Appendix A, we provide some properties of strong L2-functions,H2
s (B(D,E))-functions,

strong H2-functions, and connections between them in addition with H2
B(D,E))-functions,

which we have not been able to find in the literature.
A function ∆ ∈ H∞(B(D,E)) is called an inner function with values in B(D,E) if

∆(z) is an isometric operator from D into E for almost all z ∈ T, i.e., ∆∗∆ = ID a.e. on
T. ∆ is called a two-sided inner function if ∆∆∗ = IE a.e. on T and ∆∗∆ = ID a.e. on
T. If ∆ is an inner function with values in B(D,E), we may assume that D is a subspace
of E, and if further ∆ is two-sided inner then we may assume that D = E.

We write PD for the set of all polynomials with values in D, i.e., p(z) =
∑n
k=0 p̂(k)z

k,
where p̂(k) ∈ D. If F ∈ H2

s (B(D,E)), then the function Fp belongs to H2
E for all

p ∈ PD. A function F ∈ H2
s (B(D,E)) is called outer if clFPD = H2

E . We then have
an analogue of the scalar factorization theorem:

Inner-Outer Factorization for H2
s -functions. If F ∈ H2

s (B(D,E)), then F can be
expressed in the form

F = F iF e,

where F e is an outer function with values in B(D,E′) and F i is an inner function with
values in B(E′, E) for some subspace E′ of E.

The proof of the above inner-outer factorization for H2
s -functions is same as that for

strong H2-function (cf. [Ni1, Corollary I.9]).

For a function Φ : T → B(D,E), write

Φ̆(z) := Φ(z), Φ̃ := Φ̆∗.

We call Φ̆ the flip of Φ. For Φ ∈ L2
s(B(D,E)), we denote by Φ̆− ≡ P−Φ and Φ+ ≡ P+Φ

the functions
((P−Φ)(·))x := P−(Φ(·)x) a.e. on T (x ∈ D);

((P+Φ)(·))x := P+(Φ(·)x) a.e. on T (x ∈ D),
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where P+ and P− are the orthogonal projections from L2
E onto H2

E and L2
E ⊖ H2

E , re-

spectively. Then we may write Φ ≡ Φ̆− + Φ+. Note that if Φ ∈ L2
s(B(D,E)), then

Φ+, Φ− ∈ H2
s (B(D,E)).

In the sequel, we will often encounter the adjoints of inner matrix functions. If ∆ is
a two-sided inner matrix function, it is easy to show that ∆∗ is of bounded type, i.e., all
entries of ∆∗ are of bounded type (see p. 4). We may predict that if ∆ is an inner matrix
function then ∆∗ is of bounded type. However the following example shows that this is
not the case.

Example 2.1. Let h(z) := e
1

z−3 . Then h ∈ H∞ and h is not of bounded type. Let

f(z) :=
h(z)√
2||h||∞

.

Clearly, f is not of bounded type. Let h1(z) :=
√
1− |f(z)|2. Then h1 ∈ L∞ and

|h1| ≥ 1√
2
. Thus there exists an outer function g such that |h1| = |g| a.e. on T (see [Do1,

Corollary 6.25]). Put

∆ :=

[
f
g

]
(f, g ∈ H∞).

Then ∆∗∆ = |f |2 + |g|2 = |f |2 + |h1|2 = 1 a.e. on T, which implies that ∆ is an inner
function. Note that ∆∗ is not necessarily of bounded type.

For a function Φ ∈ H2
s (B(D,E)), we say that an inner function ∆ with values in

B(D′, E) is a left inner divisor of Φ if Φ = ∆A for A ∈ H2
s (B(D,D′)). For Φ ∈

H2
s (B(D1, E)) and Ψ ∈ H2

s (B(D2, E)), we say that Φ and Ψ are left coprime if the only
common left inner divisor of both Φ and Ψ is a unitary operator. Also, we say that Φ
and Ψ are right coprime if Φ̃ and Ψ̃ are left coprime. The determination of left or right
coprime-ness seems to be a somewhat delicate problem. For matrix-valued functions, left
and right coprime-ness was developed in [CHKL], [CHL1], [CHL2], [CHL3] and [FF].

Lemma 2.2. If Θ is a two-sided inner function, then any left inner divisor of Θ is two-
sided inner.

Proof. Straightforward.

For an inner function ∆ ∈ H∞(B(E′, E)), H(∆) denotes the orthogonal complement
of the subspace ∆H2

E′ in H2
E , i.e.,

H(∆) := H2
E ⊖∆H2

E′ .

The space H(∆) is often called a model space or a de Branges-Rovnyak space (cf. [dBR],
[Sa2], [SFBK]).
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2.2 The Beurling-Lax-Halmos Theorem

We first review a few essential facts for (vectorial) Toeplitz operators and (vectorial)
Hankel operators, and for that we will use [BS], [Do1], [Do2], [MR], [Ni1], [Ni2], and [Pel]
for general references. For Φ ∈ L2

s(B(D,E)), the Hankel operator HΦ : H2
D → H2

E is a
densely defined operator defined by

HΦp := JP−(Φp) (p ∈ PD),

where J denotes the unitary operator from L2
E to L2

E given by (Jg)(z) := zg(z) for
g ∈ L2

E . Also a Toeplitz operator TΦ : H2
D → H2

E is a densely defined operator defined
by

TΦp := P+(Φp) (p ∈ PD).

The following lemma gives a characterization of bounded Hankel operators on H2
D.

Lemma 2.3. [Pel, Theorem 2.2] Let Φ ∈ L2
s(B(D,E)). Then HΦ is extended to a

bounded operator on H2
D if and only if there exists a function Ψ ∈ L∞(B(D,E)) such

that Ψ̂(n) = Φ̂(n) for n < 0 and

||HΦ|| = distL∞(Ψ,H∞(B(D,E)).

The following basic properties can be easily derived: If D, E, and D′ are separable
complex Hilbert spaces and Φ ∈ L∞(B(D,E)), then

T ∗
Φ = TΦ∗ , H∗

Φ = HΦ̃; (7)

HΦTΨ = HΦΨ if Ψ ∈ H∞(B(D′, D)); (8)

HΨΦ = T ∗
Ψ̃
HΦ if Ψ ∈ H∞(B(E,D′)). (9)

A shift operator SE on H2
E is defined by

(SEf)(z) := zf(z) for each f ∈ H2
E .

Thus we may write SE = TzIE .

The following theorem is a fundamental result in modern operator theory.

The Beurling-Lax-Halmos Theorem. [Beu], [Lax], [Ha1], [FF], [Pel] A subspace M
of H2

E is invariant for the shift operator SE on H2
E if and only if

M = ∆H2
E′ ,

where E′ is a subspace of E and ∆ is an inner function with values in B(E′, E). Further-
more, ∆ is unique up to a unitary constant right factor, i.e., if M = ΘH2

E′′ , where Θ is
an inner function with values in B(E′′, E), then ∆ = ΘV , where V is a unitary operator
from E′ onto E′′.
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As customarily done, we say that two inner functions A,B ∈ H∞(B(D,E)) are equal
if they are equal up to a unitary constant right factor. If Φ ∈ L∞(B(D,E)), then by (8)
and (9),

HΦ∗SE = S∗
EHΦ∗ ,

which implies that the kernel of the Hankel operator HΦ∗ is an invariant subspace of the
shift operator SE on H2

E . Thus, by the Beurling-Lax-Halmos Theorem,

kerHΦ∗ = ∆H2
E′

for some inner function ∆ with values in B(E′, E). We note that E′ may be the zero
space and ∆ need not be two-sided inner.

However, we have:

Lemma 2.4. If Φ ∈ L∞(B(D,E)) and ∆ is a two-sided inner function with values in
B(E), then the following are equivalent:

(a) kerHΦ∗ = ∆H2
E ;

(b) Φ = ∆A∗, where A ∈ H∞(B(E,D)) is such that ∆ and A are right coprime;

(c)
∨∞
n=1 S

∗n
E P+ΦD = H(∆).

Proof. Let Φ ∈ L∞(B(D,E)) and ∆ be a two-sided inner function with values in B(E).

(a) ⇒ (b): Suppose kerHΦ∗ = ∆H2
E . If we put A := Φ∗∆ then, by Lemma A.12 (see

Appendix A), A ∈ H∞(B(E,D)) and Φ = ∆A∗. We now claim that ∆ and A are right
coprime. To see this, suppose Ω is a common left inner divisor, with values in B(E′, E),

of ∆̃ and Ã. Then we may write ∆̃ = Ω∆̃1 and Ã = ΩÃ1, where ∆̃1 ∈ H∞(B(E,E′))

and Ã1 ∈ H∞(B(D,E′)). Since ∆ is two-sided inner, it follows from Lemma 2.2 and
Lemma A.12 (see Appendix A) that Ω and ∆1 are two-sided inner. Since Φ = ∆1A

∗
1, we

have
∆1H

2
E′ ⊆ kerHΦ∗ = ∆H2

E = ∆1Ω̃H
2
E ,

which implies H2
E′ = Ω̃H2

E . Thus by the Beurling-Lax-Halmos Theorem, Ω̃ is a unitary
constant and so is Ω. Therefore, ∆ and A are right coprime.

(b) ⇒ (a): Suppose (b) holds. Clearly, ∆H2
E ⊆ kerHΦ∗ . By the Beurling-Lax-

Halmos Theorem, kerHΦ∗ = ΘH2
E′ for some inner function Θ, so that ∆H2

E ⊆ ΘH2
E′ .

Thus Θ is a left inner divisor of ∆ (cf. [FF], [Pel]) so that, by Lemma 2.2, we may
write ∆ = Θ∆0 for some two-sided inner function ∆0 with values in B(E,E′). Put

G := Φ∗Θ ∈ H∞(B(E′, D)). Then G = A∆∗
0, and hence, Ã = ∆̃0G̃. But since ∆ and

A are right coprime, ∆̃0 is a unitary operator, and so is ∆0. Therefore kerHΦ∗ = ∆H2
E ,

which proves (a).

(b) ⇔ (c): See the proof of [FB, Theorem 4.7.1].

We recall that the factorization in Lemma 2.4(b) is called the (canonical) Douglas-
Shapiro-Shields factorization of Φ ∈ L∞(B(D,E)) (see [DSS], [FB], [Fu2]). Consequently,
Lemma 2.4 may be rephrased as: If Φ ∈ L∞(B(D,E)), then the following are equivalent:
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(a) Φ admits a Douglas-Shapiro-Shields factorization;

(b) kerHΦ∗ = ∆H2
E for some two-sided inner function ∆ ∈ H∞(B(E)).

The following lemma will be frequently used in the sequel.

Complementing Lemma. [Ni1, p. 49, p. 53] Let Ψ ∈ H∞(B(E′, E)) with E′ ⊆ E and
dim E′ < ∞, and let θ be a scalar inner function. Then the following statements are
equivalent:

(a) There exists a function G in H∞(B(E,E′)) such that GΨ = θIE′ ;

(b) There exist functions Φ and Ω in H∞(B(E)) with Φ|E′ = Ψ, Φ|(E⊖E′) being an
inner function such that ΩΦ = ΦΩ = θIE .

In addition, if dim E <∞, then (a) and (b) are equivalent to the following statement:

(c) ess infz∈T min
{
||Ψ(z)x|| : ||x|| = 1

}
> 0.

We recall that if Φ is a strong H2-function with values in B(D,E), with dimE <∞,
the local rank of Φ is defined by (cf. [Ni1])

RankΦ := maxζ∈D rankΦ(ζ),

where rankΦ(ζ) := dimΦ(ζ)(D).

As we have remarked in the Introduction, if Φ is a strong L2-function with values
in B(D,E), then H∗

Φ̆
need not be a Hankel operator. Of course, if Φ ∈ L∞(B(D,E)),

then by (7), H∗
Φ̆
= H˜̆

Φ
= HΦ∗ . By contrast, for a strong L2-function Φ with values in

B(D,E), H∗
Φ̆
̸= HΦ∗ in general even though Φ∗ is also a strong L2-function. We note

that if Φ∗ is a strong L2-function with values in B(E,D), then kerHΦ∗ is possibly trivial
because HΦ∗ is defined in the dense subset of polynomials in H2

E . Thus it is much better
to deal with H∗

Φ̆
in place of HΦ∗ . Even though H∗

Φ̆
need not be a Hankel operator, we

can show that the kernel of H∗
Φ̆
is still of the form ∆H2

D′ for some inner function ∆. To
see this, we observe:

Lemma 2.5. Let Φ be a strong L2-function with values in B(D,E). Then

kerH∗
Φ̆
=
{
f ∈ H2

E :
⟨
Φ(z)x, znf(z)

⟩
L2

E

= 0 for all x ∈ D and n = 1, 2, 3, · · ·
}
.

Proof. Observe that

f ∈ kerH∗
Φ̆
⇐⇒

⟨
HΦ̆p, f

⟩
L2

E

= 0 for all p ∈ PD

⇐⇒
⟨
Φ̆(z)p(z), (Jf)(z)

⟩
L2

E

= 0 for all p ∈ PD

⇐⇒
∫
T

⟨
Φ(z)xzk, zf(z)

⟩
E
dm(z) = 0 for all x ∈ D and k = 0, 1, 2, · · ·

⇐⇒
∫
T

⟨
Φ(z)x, znf(z)

⟩
E
dm(z) = 0 for all x ∈ D and n = 1, 2, 3, · · · ,

which gives the result.
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We then have:

Lemma 2.6. If Φ is a strong L2-function with values in B(D,E), then

kerH∗
Φ̆
= ∆H2

E′ , (10)

where E′ is a subspace of E and ∆ is an inner function with values in B(E′, E).

Proof. By Lemma 2.5, if f ∈ kerH∗
Φ̆
, then zf ∈ kerH∗

Φ̆
. Since kerH∗

Φ̆
is always closed,

it follows that kerH∗
Φ̆

is an invariant subspace for SE . Thus, by the Beurling-Lax-

Halmos Theorem, there exists an inner function ∆ with values in B(E′, E) such that
kerH∗

Φ̆
= ∆H2

E′ for a subspace E′ of E.

2.3 Complementary factors of inner functions

For Φ ∈ L∞(B(D,E)), we symbolically define the kernel of Φ by

kerΦ :=
{
f ∈ H2

D : Φ(z)f(z) = 0 for almost all z ∈ T
}
.

Note that the kernel of Φ consists of functions in H2
D, but not in L

2
D, such that Φf = 0

a.e. on T. Since kerΦ is an invariant subspace for SD, it follows from the Beurling-Lax-
Halmos Theorem that kerΦ = ΩH2

D′ , for some inner function Ω ∈ H∞(D′, D).
We now recall a notion from classical Banach space theory, about regarding a vector as

an operator acting on the scalars. This notion is important as motivation for the study
of strong L2-functions. Let E be a separable complex Hilbert space. For a function
f : T → E, define [f ] : T → B(C, E) by

[f ](z)α := αf(z) (α ∈ C) (11)

(see Appendix A). Let ∆ be an inner function with values in B(D,E). If g ∈ ker∆∗,
then g ∈ H2

E so that, by Lemma A.7, [g] ∈ H2
s (B(C, E)). Write

[g] = [g]i[g]e (inner-outer factorization),

where [g]e is an outer function with values in B(C, E′) and [g]i is an inner function with
values in B(E′, E) for some subspace E′ of E. If g ̸= 0, then [g]e is a nonzero outer
function, so that E′ = C. Thus, [g]i ∈ H∞(B(C, E)). If instead g = 0, then E′ = {0}.
Therefore, in this case, [g]i ∈ H∞(B({0}, E)).

We then have:

Lemma 2.7. Let ∆ be an inner function with values in B(D,E). Then we may write

ker∆∗ = ΩH2
D′ (12)

for some inner function Ω with values in B(D′, E). Put

∆c := left-g.c.d.
{
[g]i : g ∈ ker∆∗}. (13)

Then we have
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(a) Ω = ∆c;

(b) [∆,∆c] is an inner function with values in B(D ⊕D′, E);

(c) kerH∆∗ = [∆,∆c]H
2
D⊕D′ ≡ ∆H2

D

⊕
∆cH

2
D′ ,

where [∆,∆c] is obtained by complementing ∆c to ∆, in other words, [∆,∆c] is regarded
as a 1× 2 operator matrix.

Definition 2.8. The inner function ∆c in (13) is said to be the complementary factor of
the inner function ∆.

Proof of Lemma 2.7. If ker∆∗ = {0}, then (a) and (b) are trivial. Suppose that ker∆∗ ̸=
{0}. Note that

∆c := left-g.c.d.
{
[g]i : g ∈ ker∆∗} ∈ H∞(B(D′′, E)), (14)

where D′′ is a nonzero subspace of E. If g ∈ ker∆∗, then it follows from (12) that

∆cH
2
D′′ =

∨{
[g]iH2 : g ∈ ker∆∗

}
=
∨{

[g]PC : g ∈ ker∆∗
}

⊆ ker∆∗ = ΩH2
D′ .

For the reverse inclusion, let 0 ̸= g ∈ ker∆∗. Then it follows that

g(z) = [g](z)1 = ([g]i[g]e)(z)1 = [g]i(z)
(
[g]e(z)1

)
∈ [g]iH2.

Thus we have

ΩH2
D′ = ker∆∗ ⊆

∨{
[g]iH2 : g ∈ ker∆∗

}
= ∆cH

2
D′′ .

Therefore, by the Beurling-Lax-Halmos Theorem, Ω = ∆c and D
′ = D′′, which gives (a).

Note that ∆∗∆c = 0. We thus have[
∆∗

∆∗
c

]
[∆,∆c] =

[
ID 0
0 ID′

]
,

which implies that [∆,∆c] is an inner function with values in B(D ⊕D′, E), which gives
(b). For (c), we first note that ∆H2

D and ker∆∗ are orthogonal and

∆H2
D

⊕
ker∆∗ ⊆ kerH∆∗ .

For the reverse inclusion, suppose that f ∈ H2
E and f /∈ ∆H2

D

⊕
ker∆∗ ≡M . Write

f1 := PMf and f2 := f − f1 ̸= 0.
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Since f2 ∈ H2
E⊖M = H(∆)∩(H2

E⊖ker∆∗), it follows from Corollary A.15 (see Appendix
A) that ∆∗f2 ∈ L2

D ⊖H2
D and ∆∗f2 ̸= 0. We thus have H∆∗f = J(∆∗f2), and hence,

||H∆∗f || = ||∆∗f2|| ̸= 0, which implies that f /∈ kerH∆∗ . We thus have that

kerH∆∗ = ∆H2
D

⊕
ker∆∗.

Thus it follows from (a) that

kerH∆∗ = ∆H2
D

⊕
∆cH

2
D′ = [∆,∆c]H

2
D⊕D′ ,

which gives (c). This completes the proof.

2.4 The degree of non-cyclicity: Answers to Question 1.3 and
Question 1.4

For a subset F of H2
E , let E

∗
F denote the smallest S∗

E-invariant subspace containing F ,
i.e.,

E∗
F =

∨{
S∗n
E F : n ≥ 0

}
.

Then by the Beurling-Lax-Halmos Theorem, E∗
F = H(∆) for an inner function ∆ with

values in B(D,E). In general, if dimE = 1, then every S∗
E-invariant subspace M admits

a cyclic vector, i.e., M = E∗
f for some f ∈ H2. However, if dimE ≥ 2, then this is not

such a case. For example, if M = H(∆) with ∆ = [ z 0
0 z ], then M does not admit a cyclic

vector, i.e., M ̸= E∗
f for any vector f ∈ H2

C2 .

If Φ ∈ H2
s (B(D,E)) and {dk}k≥1 is an orthonormal basis for D, write

ϕk := Φdk ∈ H2
E
∼= H2

s (B(C, E)).

We then define
{Φ} := {ϕk}k≥1 ⊆ H2

E .

Hence, {Φ} may be regarded as the set of “column” vectors ϕk (in H2
E) of Φ, in which

case we may think of Φ as an infinite matrix-valued function.

Lemma 2.9. For Φ ∈ H2
s (B(D,E)), we have

E∗
{Φ} = cl ranHzΦ̆. (15)

Remark 2.10. By definition, {Φ} depends on the orthonormal basis of D. However,
Lemma 2.9 shows that E∗

{Φ} is independent of a particular choice of the orthonormal

basis of D because the right-hand side of (15) is independent of the orthonormal basis of
D.

Proof of Lemma 2.9. We first claim that if f ∈ H2
E , then

E∗
f = cl ranH[zf̆ ]. (16)
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Indeed, for each k = 1, 2, · · · ,

S∗k
E f =

∞∑
j=0

f̂(k + j)zj = JP−

(
zk−1f̆

)
= H[zf̆ ]z

k,

which gives (16). Let {dk}k≥1 be an orthonormal basis for D, and let ϕk := Φdk. Since
by (16), E∗

ϕk
= cl ranH[zϕ̆k]

for each k = 1, 2, 3, · · · , it follows that

E∗
{Φ} =

∨
ranH[zϕ̆k]

= cl ranHzΦ̆,

which gives the result.

The Douglas-Shapiro-Shields factorization in [DSS] actually has the form Φ = z ·∆B∗.
With the aid of Lemma 2.9, we can get another version of Lemma 2.4 (c) for the original
Douglas-Shapiro-Shields factorization.

Corollary 2.11. Let Φ ∈ L∞(B(D,E)) and ∆ be a two-sided inner function with values
in B(E). If

Φ = z ·∆B∗,

where B ∈ H∞(B(E,D)) is such that ∆ and B are right coprime, then

∞∨
n=0

S∗n
E P+ΦD = E∗

{Φ+} = H(∆).

Proof. Write Φ := Φ̆− +Φ+. Then zΦ̆ = zΦ− + zΦ̆+, so that

HzΦ̆ = HzΦ− +HzΦ̆+
= HzΦ̆+

and zΦ̆ = ∆̆B̃ = B̃∆∗.

It thus follows from Lemma 2.9 that

∞∨
n=0

S∗n
E P+ΦD = E∗

{Φ+} = cl ranHzΦ̆+
= cl ranHzΦ̆

=
(
kerH∗

zΦ̆

)⊥
=
(
kerHB∆∗

)⊥
= H(∆),

where the last equality comes from Lemma 2.4.

We now introduce:

Definition 2.12. Let F ⊆ H2
E . The degree of non-cyclicity, denoted by nc(F ), of F is

defined by the number

nc(F ) := sup
ζ∈D

dim
{
g(ζ) : g ∈ H2

E ⊖ E∗
F

}
.

We will often refer to nc(F ) as the nc-number of F .
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Since E∗
F is an invariant subspace for S∗

E , it follows from the Beurling-Lax-Halmos
Theorem that E∗

F = H(∆) for some inner function ∆ with values in B(D,E). Thus

nc(F ) = sup
ζ∈D

dim
{
g(ζ) : g ∈ ∆H2

D

}
= dimD.

In particular, nc(F ) ≤ dimE. We note that nc(F ) may take ∞. So it is customary
to make the following conventions: (i) if n is a natural number then n + ∞ = ∞; (ii)
∞+∞ = ∞. If dimE = r <∞, then nc(F ) ≤ r for every subset F ⊆ H2

E . If F ⊆ H2
E

and dimE = r <∞, then the degree of cyclicity, denoted by dc(F ), of F ⊆ H2
E is defined

by the number (cf. [VN])
dc(F ) := r − nc(F ). (17)

In particular, if E∗
F = H(∆), then ∆ is two-sided inner if and only if nc(F ) = r.

The following theorem gives an answer to Question 1.3.

Theorem 2.13. (An answer to Question 1.3) Let Φ be a strong L2-function with values
in B(D,E). In view of the Beurling-Lax-Halmos Theorem and Lemma 2.6, we may write

E∗
{Φ+} = H(∆) and kerH∗

Φ̆
= ΘH2

E′ ,

for some inner functions ∆ and Θ with values in B(E′′, E) and B(E′, E), respectively.
Then

∆ = Θ∆1 (18)

for some two-sided inner function ∆1 with values in B(E′′, E′). Hence, in particular,

kerH∗
Φ̆
= ΘH2

E′ ⇐⇒ nc{Φ+} = dimE′. (19)

Proof. Suppose that kerH∗
Φ̆
= ΘH2

E′ for some inner function Θ with values in B(E′, E)

and E∗
{Φ+} = H(∆) for some inner function ∆ with values in B(E′′, E). Then it follows

from Lemma 2.9 that

H(∆) = E∗
{Φ+} = cl ranHzΦ̆ =

(
kerH∗

zΦ̆

)⊥
.

It thus follows from Lemma 2.5 that

∆H2
E′′ = kerH∗

zΦ̆

=
{
f ∈ H2

E :
⟨
Φ(z)x, znf(z)

⟩
L2

E

= 0 for all x ∈ D and n = 0, 1, 2, 3, · · ·
}

⊆
{
f ∈ H2

E :
⟨
Φ(z)x, znf(z)

⟩
L2

E

= 0 for all x ∈ D and n = 1, 2, 3, · · ·
}

= kerH∗
Φ̆
= ΘH2

E′ ,

which implies that Θ is a left inner divisor of ∆. Thus we can write

∆ = Θ∆1 (20)

for some inner function ∆1 ∈ H∞(B(E′′, E′)). By the same argument as above, we
also have zΘH2

E′ ⊆ ∆H2
E′′ , so that we may write zΘ = ∆∆2 for some inner function

∆2 ∈ H∞(B(E′, E′′)). Therefore by (20), we have zIE′ = ∆1∆2, and hence by Lemma
2.2, ∆1 is two-sided inner. This proves (18) and in turn (19). This completes the
proof.
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Corollary 2.14. If Φ = ΘA∗ = z ·∆B∗ with Θ two-sided inner, A and B in operator-
valued H∞, ∆ inner, (Θ, A) and (∆, B) right coprime, then ∆ = Θ∆1 with ∆1 also
two-sided inner.

Proof. By Lemma 2.4, kerHΦ∗ = ΘH2
E and by Corollary 2.11, E∗

{Φ+} = H(∆). Thus
the result follows at once from Theorem 2.13.

If we write Corollary 2.14 in full, then we have: if Φ ∈ L∞(B(D,E)) and Θ is a
two-sided inner functions with values in B(E) satisfying

∞∨
n=1

S∗n
E P+ΦD = H(Θ),

and the inner ∆ is chosen so that

∞∨
n=0

S∗n
E P+ΦD = H(∆).

Then ∆ = Θ∆1 with ∆1 a two-sided inner.
On the other hand, from the proof of Theorem 2.13, we see that ∆1 is an inner divisor

of zIE′ . In this case, if E′ is finite dimensional and hence ∆1 is two-sided inner matrix
function then by Lemma 2.5 of [CHL2], we can see that ∆1 is a Blaschke-Potapov factor
zP + (IE′ − P ), where P is the orthogonal projection on Cn. However, if E′ is infinite
dimensional, we have been unable to decide whether ∆1 is a Blaschke-Potapov factor.

From Theorem 2.13, we get several corollaries.

Corollary 2.15. Let Φ be a strong L2-function with value in B(D,E). Then the
following statements are equivalent:

(a) E∗
{Φ+} = H2

E ;

(b) nc{Φ+} = 0;

(c) kerH∗
Φ̆
= {0}.

Proof. Immediate from Theorem 2.13.

Corollary 2.16. Let ∆ be an inner function with values in B(D,E). If ∆c is the
complementary factor of ∆, with values in B(D′, E), then

nc{∆} = dimD + dimD′.

Proof. Immediate from Lemma 2.7(c) and Theorem 2.13.

Corollary 2.17. If Φ is an n×m matrix L2-function, i.e., Φ ∈ L2
Mn×m

, then the following
are equivalent:

(a) Φ is of bounded type;
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(b) kerH∗
Φ = ∆H2

Cn for some two-sided inner matrix function ∆;

(c) nc {Φ−} = n.

Proof. The equivalence (a) ⇔ (c) follows from [Ni1, Corollary 2, p. 47] and (6), and the
equivalence (b) ⇔ (c) follows at once from Theorem 2.13.

The equivalence (a) ⇔ (b) of Corollary 2.17 was known from [GHR] for the cases of
Φ ∈ L∞

Mn
. On the other hand, it was known ([Abr, Lemma 4]) that if ϕ ∈ L∞, then

ϕ is of bounded type ⇐⇒ kerHϕ ̸= {0}. (21)

The following corollary shows that (21) still holds for L2-functions.

Corollary 2.18. If ϕ ∈ L2, then ϕ is of bounded type if and only if kerH∗
ϕ ̸= {0}.

Proof. Immediate from Corollary 2.17.

Corollary 2.19. If ∆ is an n×r inner matrix function then the following are equivalent:

(a) ∆∗ is of bounded type;

(b) ∆̆ is of bounded type;

(c) [∆,∆c] is two-sided inner,

where ∆c is the complementary factor of ∆.

Proof. The equivalence (a) ⇔ (b) is trivial. The equivalence (b) ⇔ (c) follows from
Lemma 2.7 and Corollary 2.17.

Remark 2.20. R.G. Douglas and J.W. Helton [DH] have considered a problem from
engineering circuit theory called Darlington synthesis which mathematically translates to:
given a contractive analytic operator-valued functions on the unit disk, can one embed S
into a two-sided 2× 2 inner matrix function Θ = [ S A

B C ] ? The special case where S = ∆
is inner and the second block-row is vacuous amounts to our problem of finding Ω so that
[∆,Ω] is two-sided inner. Thus, Corollary 2.19 can be obtained from [DH, Theorem].

The following theorem gives an answer to Question 1.4.

Theorem 2.21. (An answer to Question 1.4) If ∆ is an n × r inner matrix function,
then [∆,Ω] is inner for some n× q (q ≥ 1) inner matrix function Ω if and only if

q ≤ nc{∆} − r.

In particular, ∆ is complemented to a two-sided inner function if and only if nc{∆} = n.
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Proof. Suppose that [∆,Ω] is an inner matrix function for some n×q (q ≥ 1) inner matrix
function Ω. Then

Ir+q = [∆,Ω]∗[∆,Ω] =

[
Ir ∆∗Ω

Ω∗∆ Iq

]
,

which implies that ΩH2
Cq ⊆ ker∆∗. Since by Lemma 2.7, ker∆∗ = ∆cH

2
Cp , it follows

that ΩH2
Cq ⊆ ∆cH

2
Cp , so that ∆c is a left inner divisor of Ω. Thus we can write

Ω = ∆cΩ1 for some p× q inner matrix function Ω1.

Thus we have q ≤ p. But since by Corollary 2.16, nc{∆} = r + p, it follows that
q ≤ nc{∆} − r. For the converse, suppose that q ≤ nc{∆} − r. Then it follows from
Corollary 2.16 that the complementary factor ∆c of ∆ is in H∞

Mn×p
for some p ≥ q. Thus

if we take Ω := ∆c|Cq , then [∆,Ω] is inner.

We give an illuminating example of how to find the nc number.

Example 2.22. Let f and g be given in Example 2.1, and let

Φ :=

f f 0
g g 0
0 0 a

 (a ∈ H∞)

To find the degree of non-cyclicity of Φ, write Ψ :=
[
f f
g g

]
. Then it follows thath1h2

h3

 ∈ kerH∗
Φ̆
⇐⇒

[
h1
h2

]
∈ kerHΨ∗ and h3 ∈ kerHa.

Case 1: If a is not of bounded type, then kerH∗
Φ̆

= [f g 0]tH2. By Theorem 2.13,

nc{Φ} = 1.

Case 2: If a is of bounded type of the form a = θb (coprime), then

kerH∗
Φ̆
=

f 0
g 0
0 θ

H2
C2 .

By Theorem 2.13, nc{Φ} = 2.

2.5 Strong L2-functions of bounded type

We introduce the notion of “bounded type” for strong L2-functions. Recall that a matrix-
valued function of bounded type was defined by a matrix whose entries are of bounded
type (see p. 4). But this definition is not appropriate for operator-valued functions, in
particular strong L2-functions, even though the terminology of “entry” can be properly
interpreted. Thus we need a new idea about how to define a “bounded type” strong
L2-functions, which is equivalent to the condition that each entry is of bounded type
when the function is matrix-valued. Our motivation stems from the equivalence (a)⇔(b)
in Corollary 2.17.
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Definition 2.23. A strong L2-function Φ with values in B(D,E) is said to be of bounded
type if kerH∗

Φ = ΘH2
E for some two-sided inner function Θ with values in B(E).

On the other hand, in [FB], it was shown that if Φ belongs to L∞(B(D,E)), then Φ
admits a Douglas-Shapiro-Shields factorization (see p. 14) if and only if E∗

{Φ+} = H(Θ)
for a two-sided inner function Θ. Thus, by Theorem 2.13, we can see that if Φ ∈
L∞(B(D,E)), then

Φ̆ is of bounded type ⇐⇒ Φ admits a Douglas-Shapiro-Shields factorization. (22)

We can prove more:

Lemma 2.24. Let Φ be a strong L2-function with values in B(D,E). Then the following
are equivalent:

(a) Φ̆ is of bounded type;

(b) E∗
{Φ+} = H(∆) for some two-sided inner function ∆ with values in B(E);

(c) E∗
{Φ+} ⊆ H(Θ) for some two-sided inner function Θ with values in B(E);

(d) {Φ+} ⊆ H(Θ) for some two-sided inner function Θ with values in B(E);

(e) For {φk1 , φk2 , · · · } ⊆ {Φ}, write Ψ ≡ [φk1 , φk2 , · · · ]. Then Ψ̆ is of bounded type.

Proof. (a) ⇒ (b): Suppose that Φ̆ is of bounded type. Then kerH∗
Φ̆
= ΘH2

E for some

two-sided inner function Θ with values in B(E). It thus follows from Theorem 2.13 that
E∗

{Φ+} = H(∆) for some two-sided inner function ∆ with values in B(E).

(b) ⇒ (c), (c) ⇒ (d): Clear.
(d) ⇒ (e): Suppose that {φk1 , φk2 , · · · } ⊆ {Φ} and {Φ+} ⊆ H(Θ) for some two-sided

inner function Θ ∈ H∞(B(E)). Write Ψ ≡ [φk1 , φk2 , · · · ]. Then {Ψ+} ⊆ H(Θ), so that
E∗

{Ψ+} ⊆ H(Θ). Suppose that E∗
{Ψ+} = H(∆) for some inner function ∆ with values in

B(D′, E). Thus ΘH2
E ⊆ ∆H2

D′ , so that by Lemma 2.2, ∆ is two-sided inner. Thus, by
Theorem 2.13, kerH∗

Ψ̆
= ΩH2

E for some two-sided inner function Ω with values in B(E),
so that Ψ is of bounded type.

(e) ⇒ (a): Clear.

Corollary 2.25. Let ∆ be an inner function with values in B(D,E). Then

∆̆ is of bounded type ⇐⇒ [∆,∆c] is two-sided inner,

where ∆c is the complementary factor of ∆. Hence, in particular, if ∆ is a two-sided
inner function with values in B(E), then ∆̆ is of bounded type.

Proof. The first assertion follows from Lemma 2.7. The second assertion follows from the
first assertion together with the observation that if ∆ is two-sided inner then [∆,∆c] =
∆.
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Corollary 2.26. Let ∆ be an inner function with values in B(D,E). Then [∆,Ω] is
two-sided inner for some inner function Ω with values in B(D′, E) if and only if ∆̆ is of
bounded type.

Proof. Suppose that [∆,Ω] is two-sided inner for some inner function Ω with values in
B(D′, E). Then ∆∗Ω = 0, so that ΩH2

D′ ⊆ ker∆∗ = ∆cH
2
D′′ . Thus ∆c is a left inner

divisor of Ω, and hence [∆,∆c] is a left inner divisor of [∆,Ω]. Therefore by Lemma 2.2,
[∆,∆c] is two-sided inner, so that by Corollary 2.25, ∆̆ is of bounded type. The converse
follows at once from Corollary 2.25 with Ω = ∆c.

Also, as we noticed in Remark 2.20, the matrix-valued cases of Corollary 2.25 and
Corollary 2.26 can be also obtained from [DH, Theorem].

We now ask: If ∆ ≡ [δ1, δ2, · · · , δm] ∈ H∞
Mn×m

is an inner matrix function, does there

exist j (1 ≤ j ≤ m) such that dc{δj} = dc{∆} ? (Recall from the definition of the dc-
number given in (17) that dc = r − nc.) The answer, however, is negative. To see this,
let f and g be given in Example 2.1 and let

∆ :=


f 0
g 0
0 f
0 g

 ≡
[
δ1, δ2

]
.

Since 
f 0 0
g 0 0
0 1 0
0 0 1

 is inner,

in view of Theorem 2.21, we have dc(δ1) ≤ 1. But since dc(δ1) ̸= 0 (because δ∗1 is not
of bounded type), it follows that dc{δ1} = 1. Similarly, dc{δ2} = 1. However, we have
dc{∆} = 2, because we can show that ∆c = 0.

2.6 Meromorphic pseudo-continuations of bounded type

In general, if a strong L2-function Φ is of bounded type then we cannot guarantee that
each entry ϕij ≡ ⟨Φdj , ei⟩ is of bounded type, where {dj} and {ei} are orthonormal bases
of D and E, respectively. But if we strengthen the assumption then we may have the
assertion. To see this, for a function Ψ : De ≡ {z : 1 < |z| ≤ ∞} → B(D,E), we define
ΨD : D → B(E,D) by

ΨD(ζ) := Ψ∗(1/ζ) for ζ ∈ D.
If ΨD is a strong H2-function, inner, and two-sided inner with values in B(E,D) (see
Appendix A), then we shall say that Ψ is a strong H2-function, inner, and two-sided
inner in De with values in B(D,E), respectively.

A B(D,E)-valued function Ψ is said to be meromorphic of bounded type in De if it
can be represented by

Ψ =
G

θ
,
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where G is a strong H2-function in De, with values in B(D,E) and θ is a scalar inner
function in De. (cf. [Fu2]). A function Φ ∈ L2

s(B(D,E)) is said to have a meromorphic
pseudo-continuation Φ̂ of bounded type in De if Φ̂ is meromorphic of bounded type in De
and Φ is the nontangential SOT limit of Φ̂, that is, for all x ∈ D,

Φ(z)x = Φ̂(z)x := lim
rz→z

Φ̂(rz)x for almost all z ∈ T.

Note that for almost all z ∈ T,

Φ(z)x = lim
rz→z

Φ̂(rz)x = lim
rz→z

Φ̂∗
D(r

−1z)x = Φ̂∗
D(z)x (x ∈ D).

We then have:

Lemma 2.27. Let Φ be a strong L2-function with values in B(D,E). If Φ has a
meromorphic pseudo-continuation of bounded type in De, then Φ̆ is of bounded type.

Proof. Suppose that Φ has a meromorphic pseudo-continuation of bounded type in De.
Thus the meromorphic pseudo-continuation Φ̂ of Φ can be written as

Φ̂(ζ) :=
G(ζ)

δ(ζ)
(ζ ∈ De),

where G is a strong H2-function in De, with values in B(D,E) and δ is a scalar inner
function in De. Then for all x ∈ D,

Φ(z)x = Φ̂∗
D(z)x = δD(z)G

∗
D(z)x for almost all z ∈ T.

Thus for all x ∈ D, p ∈ PE , and n = 1, 2, 3, · · · ,∫
T

⟨
Φ(z)x, znδD(z)p(z)

⟩
E
dm(z) =

∫
T

⟨
G∗

D(z)x, z
np(z)

⟩
E
dm(z)

=
⟨
x, znGD(z)p(z)

⟩
L2

D

= 0,

where the last equality follows from the fact that znGD(z)p(z) ∈ zH2
D. Thus by Lemma

2.5, we can see that
δDH

2
E = cl δDPE ⊆ kerH∗

Φ̆
. (23)

In view of Lemma 2.6, kerH∗
Φ̆
= ∆H2

E′ for some inner function ∆ with values in B(E′, E).

Thus ∆ is a left inner divisor of δDIE (cf. [FF], [Pel]). Thus, it follows from Lemma 2.2
that that ∆ is two-sided inner, so that Φ̆ is of bounded type.

The following lemma was proved in [Fu1] under the more restrictive setting ofH∞(B(D,E)).

Lemma 2.28. Let Φ ∈ L∞(B(D,E)). Then the following are equivalent:

(a) Φ has a meromorphic pseudo-continuation of bounded type in De;

(b) θH2
E ⊆ kerHΦ∗ for some scalar inner function θ;
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(c) Φ = θA∗ for a scalar inner function θ and some A ∈ H∞(B(E,D)).

Proof. First of all, recall that L∞(B(D,E)) ⊆ L2
s(B(D,E)).

(a) ⇒ (b): This follows from (23) in the proof of Lemma 2.27.
(b) ⇒ (c): Suppose that θH2

E ⊆ kerHΦ∗ for some scalar inner function θ. Put
A := θΦ∗. Then A belongs to H∞(B(E,D)) and Φ = θA∗.

(c) ⇒ (a): Suppose that Φ = θA∗ for a scalar inner function θ and some A ∈
H∞(B(E,D)). Thus it follows from Lemma A.6 that A is a strong H2-function. Let

Φ̂(ζ) :=
A∗(1/ζ)

θ(1/ζ)
(ζ ∈ De).

Then Φ̂ is meromorphic of bounded type in De and for all x ∈ D,

Φ̂(z)x =
A∗(z)x

θ(z)
= θ(z)A∗(z)x = Φ(z)x for almost all z ∈ T,

which implies that Φ has a meromorphic pseudo-continuation of bounded type in De.

An examination of the proof of Lemma 2.28 shows that Lemma 2.28 still holds for
every function Φ ∈ L2

B(D,E).

Corollary 2.29. If Φ ∈ L2
B(D,E), then Lemma 2.28 holds with A ∈ H2

B(E,D) in place of

A ∈ H∞(B(E,D)).

The following proposition gives an answer to the opening remark of this subsection.

Proposition 2.30. Let D and E be separable complex Hilbert spaces and let {dj} and
{ei} be orthonormal bases of D and E, respectively. If Φ ∈ L2

B(D,E) has a meromorphic

pseudo-continuation of bounded type in De, then ϕ̆ij(z) ≡ ⟨Φ̆(z)dj , ei⟩E is of bounded
type for each i, j.

Proof. Let Φ ∈ L2
B(D,E). Suppose that Φ has a meromorphic pseudo-continuation of

bounded type in De. Then by Corollary 2.29, Φ = θA∗ for a scalar inner function θ and
some A ∈ H2

B(E,D). Write

ϕij(z) := ⟨Φ(z)dj , ei⟩E and aij(z) := ⟨Ã(z)dj , ei⟩E .

Then for each i, j, ∫
T
|ϕij(z)|2dm(z) =

∫
T
|⟨Φ(z)dj , ei⟩E |2dm(z)

≤
∫
T
||Φ(z)||2B(D,E)dm(z) <∞,

which implies ϕij ∈ L2. Similarly, aij ∈ L2 and for n = 1, 2, 3, · · · ,

âij(−n) =
∫
T
zn⟨Ã(z)dj , ei⟩Edm(z) = ⟨dj , z−nĂ(z)ei⟩L2

D
= 0,
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which implies aij ∈ H2. Note that

ϕ̆ij(z) = θ̆(z)⟨Ã(z)dj , ei⟩E = θ̆(z)aij(z) ,

which implies that ϕ̆ij is of bounded type for each i, j.

Example 2.31. The converse of Lemma 2.27 is not true in general. To see this, let
{αn} be a sequence of distinct points in D such that

∑∞
n=1(1 − |αn|) = ∞ and put

∆ := diag(bαn), where bαn(z) :=
z−αn

1−αnz
. Then ∆ is two-sided inner, and hence by Lemma

2.25, ∆̆ is of bounded type. On the other hand, by Lemma 2.7, kerH∆∗ = ∆H2
ℓ2 . Thus

if ∆ had a meromorphic pseudo-continuation of bounded type in De, then by Lemma
2.28, we would have θH2

ℓ2 ⊆ ∆H2
ℓ2 for a scalar inner function θ, so that we should have

θ(αn) = 0 for each n = 1, 2, · · · , and hence θ = 0, a contradiction. Therefore, ∆ cannot
have a meromorphic pseudo-continuation of bounded type in De.

For matrix-valued cases, a function having a meromorphic pseudo-continuation of
bounded type in De is actually a function whose flip is of bounded type.

Corollary 2.32. For Φ ≡ [ϕij ] ∈ L2
Mn×m

, the following are equivalent:

(a) Φ has a meromorphic pseudo-continuation of bounded type in De;

(b) Φ̆ is of bounded type;

(c) ϕ̆ij is of bounded type for each i, j.

Proof. (a) ⇒ (b): This follows from Lemma 2.27.
(b) ⇒ (a): Suppose that Φ̆ is of bounded type. Then kerH∗

Φ̆
= ΘH2

Cn for some

two-sided inner function Θ ∈ H∞
Mn

. Thus by the Complementing Lemma (cf. p. 15),
there exist a scalar inner function θ and a function G in H∞

Mn
such that GΘ = ΘG = θIn,

and hence, θH2
Cn = ΘGH2

Cn ⊆ ΘH2
Cn = kerH∗

Φ̆
. It thus follows from Corollary 2.29 that

Φ̆ has a meromorphic pseudo-continuation of bounded type in De.
(a) ⇔ (c): This follows from Corollary 2.29 and Proposition 2.30.

However, by contrast to the matrix-valued case, it may happen that an L∞-function
Φ is not of bounded type in the sense of Definition 2.23 even though each entry ϕij of Φ
is of bounded type.

Example 2.33. Let {αj} be a sequence of distinct points in (0, 1) satisfying
∑∞
j=1(1 −

αj) < ∞. For each j ∈ Z+, choose a sequence {αij} of distinct points on the circle
Cj := {z ∈ C : |z| = αj}. Let

Bij :=
bαij

(i+ j)!
(i, j ∈ Z+),
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where bα(z) :=
z−α
1−αz , and let

Φ := [Bij ] =


bα11

2!

bα12

3!

bα13

4! · · ·
bα21

3!

bα22

4!

bα23

5! · · ·
bα31

4!

bα32

5!

bα33

6! · · ·
...

...
...

 .

Observe that ∑
i,j

|Bij(z)|2 =
∑
i

i

((1 + i)!)2
≤
∑
i

1

(1 + i)2
<∞,

which implies that Φ ∈ L∞(B(ℓ2)). For a function f ∈ H2
ℓ2 , we write f = (f1, f2, f3, · · · )t

(fn ∈ H2). Thus if f = (f1, f2, f3, · · · )t ∈ kerHΦ, then
∑
j

bαij

(i+j)!fj ∈ H2 for each

i ∈ Z+, which forces that fj(αij) = 0 for each i, j. Thus fj = 0 for each j (by the

Identity Theorem). Therefore we can conclude that kerH∗
Φ̃

= {0}, so that Φ̃ is not of

bounded type. But we note that every entry of Φ̃ is of bounded type.

We conclude this section with an application to C0-contractions.
The class C0 • denotes the set of all contractions T ∈ B(H) satisfying the condition (4).

The class C00 denotes the set of all contractions T ∈ B(H) such that limn→∞ Tnx = 0
and limn→∞ T ∗nx = 0 for each x ∈ H. It was known ([Ni1, p.43]) that if T is a
C0 •-contraction with characteristic function ∆ (i.e., T ∼= S∗

E |H(∆)), then

T ∈ C00 ⇐⇒ ∆ is two-sided inner. (24)

A contraction T ∈ B(H) is called a completely non-unitary (c.n.u.) if there exists no
nontrivial reducing subspace on which T is unitary. The class C0 is the set of all c.n.u.
contractions T such that there exists a nonzero function φ ∈ H∞ annihilating T , i.e.,
φ(T ) = 0, where φ(T ) is given by the calculus of Sz.-Nagy and Foiaş. We can easily check
that C0 ⊆ C00. Moreover, it is well known ([Ni1, p.73]) that if T := PH(∆)SE |H(∆) ∈ C00

and φ ∈ H∞, then

φ(T ) = 0 ⇐⇒ ∃G ∈ H∞(B(E)) such that G∆ = ∆G = φIE . (25)

The theory of spectral multiplicity for operators of class C0 has been well developed (see
[Ni1, Appendix 1], [SFBK]). If T ∈ C0, then there exists an inner function mT such that
mT (T ) = 0 and

φ ∈ H∞, φ(T ) = 0 =⇒ φ/mT ∈ H∞.

The function mT is called the minimal annihilator of the operator T .

In view of (24), we may ask what is a condition on the characteristic function ∆ of
T for a C0 •-contraction T to belong to the class C0. The following proposition gives an
answer.

Proposition 2.34. Let T := S∗
E |H(∆) for an inner function ∆ with values in B(D,E).

Then the following are equivalent:
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(a) T ∈ C0;

(b) ∆ is two-sided inner and has a meromorphic pseudo-continuation of bounded type
in De.

Hence, in particular, if ∆ is an inner matrix function then T ∈ C0 if and only if T ∈ C00.

Proof. (a) ⇒ (b): Suppose T ∈ C0, and hence φ(T ) = 0 for some nonzero function
φ ∈ H∞. Then T ∈ C00, so that by the above remark, ∆ is two-sided inner. Thus by
the Model Theorem (cf. [Ni1, p.75]), we have

T ∼= PH(∆̃)SE |H(∆̃).

It thus follows from (25) that there exists Ω ∈ H∞(B(E)) such that ∆̃Ω = Ω∆̃ = φIE .

Thus H∆∗
(
φ̃H2

E

)
= H∆∗

(
∆Ω̃H2

E

)
= 0. We thus have

φ̃iH2
E ⊆ cl φ̃H2

E ⊆ kerH∆∗ .

It thus follows from Lemma 2.28 that ∆ has a meromorphic pseudo-continuation of
bounded type in De. This gives the implication (a)⇒(b).

(b)⇒ (a): Suppose that ∆ is two-sided inner and has a meromorphic pseudo-continuation
of bounded type in De. Then by Lemma 2.7 and Lemma 2.28, there exists a scalar func-
tion δ such that δH2

E ⊆ kerH∆∗ = ∆H2
E . Thus we may write δIE = ∆Ω = Ω∆ for some

Ω ∈ H∞(B(E)). Thus we have

δ
(
PH(∆)SE |H(∆)

)
= PH(∆)(δIE)|H(∆) = 0,

so that

δ̃(T ) =
(
δ(T ∗)

)∗
=
(
δ
(
PH(∆)SE |H(∆)

))∗
= 0,

which gives T ∈ C0. This prove the implication (b)⇒(a).
The second assertion follows from the first together with Corollary 2.25 and Corollary

2.32.

3 A canonical decomposition of strong L2-functions

In this section, we first give an answer to Question 1.2.

3.1 An answer to Question 1.2

To better understand the canonical decomposition, we first consider an example of a
matrix-valued L2-function that does not admit a Douglas-Shapiro-Shields factorization.
Suppose that θ1 and θ2 are coprime inner functions. Consider

Φ :=

θ1 0 0
0 θ2 0
0 0 a

 ≡ [ϕ1, ϕ2, ϕ3] ∈ H∞
M3
,
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where a ∈ H∞ is such that a is not of bounded type. Then a direct calculation shows
that

kerHΦ∗ =

θ1 0
0 θ2
0 0

H2
C2 ≡ ∆H2

C2 .

Since ∆ is not two-sided inner, it follows from Lemma 2.4 that Φ does not admit a
Douglas-Shapiro-Shields factorization. For a decomposition of Φ, suppose that

Φ = ΩA∗, (26)

where Ω, A ∈ H2
M3×k

(k = 1, 2), Ω is an inner function, and Ω and A are right coprime.
We then have

Φ∗Ω = A ∈ H2
M3×k

. (27)

But since a is not of bounded type, it follows from (27) that the 3rd row vector of Ω is
zero. Thus by (26), we must have a = 0, a contradiction. Therefore we could not get
any decomposition of the form Φ = ΩA∗ with a 3 × k inner matrix function Ω for each
k = 1, 2, 3. To get another idea, we note that ker∆∗ = [0 0 1]tH2 ≡ ∆cH

2. Then by a
direct manipulation, we can get

Φ =

θ1 0 0
0 θ2 0
0 0 a

 =

θ1 0
0 θ2
0 0

1 0
0 1
0 0

∗

+

00
1

 [0 0 a
]
≡ ∆A∗ +∆cC (28)

where ∆ and A are right coprime because ∆̃H2
C3

∨
ÃH2

C3 = H2
C2 .

To encounter another situation, consider

Φ :=

f f 0
g g 0
0 0 θa

 ≡ [ϕ1, ϕ2, ϕ3] ∈ H∞
M3
,

where f and g are given in Example 2.1, θ is inner, and a ∈ H∞ is such that θ and a are
coprime. It then follows from Lemma 2.7 that

kerH[f g] =

[
f
g

]
H2.

We thus have that

kerHΦ∗ = kerH[f g]

⊕
kerHθa =

f 0
g 0
0 θ

H2
C2 ≡ ∆H2

C2 .

Thus by Lemma 2.4, Φ does not admit a Douglas-Shapiro-Shields factorization. Observe
that

Φ =

f f 0
g g 0
0 0 θa

 =

f 0
g 0
0 θ

1 0
1 0
0 a

∗

= ∆A∗. (29)
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Since θ̃ and ã are coprime, it follows that ∆ and A are right coprime. Note that ∆ is
not two-sided inner and ker∆∗ = {0}.

The above examples (28) and (29) seem to signal that the decomposition of a matrix-
valued H2-functions Φ satisfying kerH∗

Φ̆
= ∆H2

Cn may be affected by the kernel of ∆∗ and
in turn, the complementary factor ∆c of ∆. Indeed, if we regard ∆∗ as an operator acting
from L2

E , and hence ker∆∗ ⊆ L2
E , then B in the canonical decomposition (30) satisfies

the inclusion {B} ⊆ ker∆∗. The following theorem gives a canonical decomposition of
strong L2-functions which realizes the idea inside those examples.

We are ready for an answer to Question 1.2:

Theorem 3.1. (A canonical decomposition of strong L2-functions) If Φ is a strong L2-
function with values in B(D,E), then Φ can be expressed in the form

Φ = ∆A∗ +B, (30)

where

(i) ∆ is an inner function with values in B(E′, E), Ã ∈ H2
s (B(D,E′)), and B ∈

L2
s(B(D,E));

(ii) ∆ and A are right coprime;

(iii) ∆∗B = 0;

(iv) nc{Φ+} ≤ dimE′.

(v) In particular, if dimE′ <∞ (for instance, if dimE <∞), then the expression (30)
is unique (up to a unitary constant right factor).

Proof. If kerH∗
Φ̆
= {0}, take E′ := {0} and B := Φ. Then ∆̃ and Ã are zero operator

with codomain {0}. Thus Φ = ∆A∗ + B, where ∆ and A are right coprime. It also
follows from Theorem 2.13 that nc{Φ+} = 0, which gives the inequality (iv).

If instead kerH∗
Φ̆
̸= {0}, then in view of Lemma 2.6, we may suppose kerH∗

Φ̆
= ∆H2

E′

for some nonzero inner function ∆ with values in B(E′, E). Put A := Φ∗∆. Then it
follows from Lemma A.13 (see Appendix A) that A∗ is a strong L2-function with values

in B(D,E′). Thus Ã = Ă∗ is a strong L2-function with values in B(D,E′). Since
kerH∗

Φ̆
= ∆H2

E′ , it follows that for all p ∈ PD and h ∈ H2
E′

0 = ⟨HΦ̆p, ∆h⟩L2
E

=

∫
T

⟨
Φ̆(z)p(z), z∆(z)h(z)

⟩
E
dm(z)

=

∫
T

⟨
∆̃(z)Φ̆(z)p(z), zh(z)⟩E′dm(z)

=
⟨
HÃp, h

⟩
L2

E′
,
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which implies HÃ = 0. Thus by Lemma 2.3, Ã belongs to H2
s (B(D,E)). Put B :=

Φ−∆A∗. Then by Lemma A.13 (see Appendix A), B is a strong L2-function with values
in B(D,E). Observe that

Φ = ∆A∗ +B and ∆∗B = 0.

This completes the proof of (30) and assertions (i) and (iii).

To prove assertion (ii) we must show that ∆ and A are right coprime.
To see this, we suppose that Ω is a common left inner divisor, with values in B(E′′, E′),

of ∆̃ and Ã. Then we may write

∆̃ = Ω∆̃1 and Ã = ΩÃ1,

where ∆̃1 ∈ H∞(B(E,E′′)) and Ã1 ∈ H2
s (B(D,E′′)). Thus we have

∆ = ∆1Ω̃ and A = A1Ω̃. (31)

Since Ω is inner, it follows that ∆1 = ∆Ω̃∗. By Lemma A.12 (see Appendix A), ∆1 ∈
H∞(B(E′′, E)) and

∆∗
1∆1 = Ω̃∆∗∆Ω̃∗ = Ω̃∗Ω = I,

which implies that ∆1 is inner. We now claim that

∆1H
2
E′′ = kerH∗

Φ̆
= ∆H2

E′ . (32)

Since Ω is an inner function with values in B(E′′, E′), we know that Ω̃ ∈ H∞(B(E′, E′′))
by Lemma A.12 (see Appendix A). Thus it follows from Corollary A.14 (see Appendix
A) and (31) that

∆H2
E′ = ∆1Ω̃H

2
E′ ⊆ ∆1H

2
E′′ .

For the reverse inclusion, by (31), we may write Φ = ∆1A
∗
1 + B. Since 0 = ∆∗B =

Ω̃∗∆∗
1B, it follows that ∆∗

1B = 0. Therefore for all f ∈ H2
E′′ , x ∈ D and n = 1, 2, · · · ,

we have∫
T

⟨
Φ(z)x, zn∆1(z)f(z)

⟩
E
dm(z) =

∫
T

⟨(
∆1(z)A

∗
1(z) +B(z)

)
x, zn∆1(z)f(z)

⟩
E
dm(z)

=

∫
T

⟨
A∗

1(z)x, z
nf(z)

⟩
E′′dm(z)

=
⟨
A∗

1(z)x, z
nf(z)

⟩
L2

E′′

= 0,

where the last equality follows from the fact that A∗
1(z)x = Ã1(z)x ∈ L2

E′′ ⊖zH2
E′′ . Thus

by Lemma 2.5, we have
∆1H

2
E′′ ⊆ kerH∗

Φ̆
= ∆H2

E′ ,

which proves (32). Thus it follows from the Beurling-Lax-Halmos Theorem and (31)

that Ω̃ is a unitary operator, and so is Ω. Therefore A and ∆ are right coprime. This
completes the proof of assertion (ii).
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Assertion (iv) on the nc-number comes from Theorem 2.13. We have now completed
the proof (i)–(iv).

It remains to verify the uniqueness assertion (v). To see this, suppose dimE′ < ∞.
For the uniqueness of the expression (30), we suppose that Φ = ∆1A

∗
1 +B1 = ∆2A

∗
2 +B2

are two canonical decompositions of Φ. We want to show that ∆1 = ∆2, which gives

A∗
1 = ∆∗

1(∆1A
∗
1 +B1) = ∆∗

2(∆2A
∗
2 +B2) = A∗

2

and in turn, B1 = B2, which implies that the representation (30) is unique. To prove
∆1 = ∆2, it suffices to show that if Φ = ∆A∗+B is a canonical decomposition of Φ, then

kerH∗
Φ̆
= ∆H2

E′ . (33)

If E′ = {0}, then nc{Φ+} = 0. Thus it follows from Corollary 2.15 that

kerH∗
Φ̆
= {0} = ∆H2

E′ ,

which proves (33). If instead E′ ̸= {0}, then we suppose r := dimE′ < ∞. Thus,
we may assume that E′ = Cr, so that ∆ is an inner function with values in B(Cr, E).
Suppose that Φ = ∆A∗ +B is a canonical decomposition of Φ in L2

s(B(D,E)). We first
claim that

∆H2
Cr ⊆ kerH∗

Φ̆
. (34)

Observe that for each g ∈ H2
Cr , x ∈ D and k = 1, 2, 3, · · · ,∫

T

⟨
Φ(z)x, zk∆(z)g(z)

⟩
E
dm(z) =

∫
T

⟨
A∗(z)x, zkg(z)

⟩
Crdm(z)

=
⟨
Ã(z)x, zkg(z)

⟩
L2

Cr

= 0.

It thus follows from Lemma 2.5 that ∆H2
Cr ⊆ kerH∗

Φ̆
, which proves (34). In view of

Lemma 2.6, we may assume that kerH∗
Φ̆
= ΘH2

E′′ for some inner function Θ with values

in B(E′′, E). Then by Theorem 2.13,

p ≡ dimE′′ = nc {Φ+} ≤ r. (35)

Thus we may assume E′′ ≡ Cp. Since

∆H2
Cr ⊆ kerH∗

Φ̆
= ΘH2

Cp , (36)

it follows that Θ is left inner divisor of ∆, i.e., there exists a p× r inner matrix function
∆1 such that ∆ = Θ∆1. Since ∆1 is inner, it follows that r ≤ p. But since by (35),
p ≤ r, we must have r = p, which implies that ∆1 is two-sided inner. Thus we have

Θ∗Φ = ∆1A
∗ +∆1∆

∗B = ∆1A
∗. (37)

Since kerH∗
Φ̆
= ΘH2

Cr , it follows from Lemma 2.5 and (37) that for all f ∈ H2
Cr , x ∈ D

and n = 1, 2, · · · ,∫
T

⟨
∆1(z)A

∗(z)x, znf(z)
⟩
Crdm(z) =

∫
T

⟨
Φ(z)x, znΘ(z)f(z)

⟩
E
dm(z) = 0. (38)
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Write Ψ := ∆1A
∗. Then by Lemma A.13 (see Appendix A), Ψ ∈ L2

s(B(D,Cr)). Thus

by Lemma 2.3, Lemma 2.5 and (38), we have Ψ̆ ∈ H2
s (B(D,Cr)). Since Ã = ∆̃1Ψ̆, it

follows that ∆̃1 is a common left inner divisor of ∆̃ and Ã. But since ∆ and A are right
coprime, it follows that ∆̃1 is a unitary matrix, and so is ∆1, which proves (33). This
completes the proof of assertion (v).

This completes the proof.

The proof of Theorem 3.1 shows that the inner function ∆ in a canonical decomposition
(30) of a strong L2-function Φ can be obtained from equation

kerH∗
Φ̆
= ∆H2

E′

which is guaranteed by the Beurling-Lax-Halmos Theorem (see Corollary 2.6). In this
case, the expression (30) will be called the BLH-canonical decomposition of Φ in the
viewpoint that ∆ comes from the Beurling-Lax-Halmos Theorem. However, if dimE′ =
∞ (even though dimD < ∞), then it is possible to get another inner function Θ of
a canonical decomposition (30) for the same function: in this case, kerH∗

Φ̆
̸= ΘH2

E′′ .

Indeed, the following remark shows that the canonical decomposition (30) is not unique
in general.

Remark 3.2. If dimE′ = ∞ (even though dimD < ∞), the canonical decomposition
(30) may not be unique even if Φ̆ is of bounded type. To see this, let Φ be an inner
function with values in B(C2, ℓ2) defined by

Φ :=



θ1 0
0 0
0 θ2
0 0
0 0
0 0
...

...


,

where θ1 and θ2 are scalar inner functions. Then

kerH∗
Φ̆
= kerHΦ∗ = diag(θ1, 1, θ2, 1, 1, 1, · · · )H2

ℓ2 ≡ ΘH2
ℓ2 ,

which implies that Φ̆ is of bounded type since Θ is two-sided inner (see Definition 2.23).
Let

A := Φ∗Θ =

[
1 0 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 · · ·

]
and B := 0.

Then Ã belongs to belongs to H2
s (B(C2, ℓ2)) and Θ̃H2

ℓ2
∨
ÃH2

C2 = H2
ℓ2 , which implies that

Θ and A are right coprime. Clearly, Θ∗B = 0 and nc{Φ+} ≤ dim ℓ2 = ∞. Therefore,

Φ = ΘA∗
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is the BLH-canonical decomposition of Φ. On the other hand, to get another canonical
decomposition of Φ, let

∆ :=



θ1 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 · · ·
0 θ2 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 · · ·
0 0 0 1 0 0 0 · · ·
0 0 0 0 1 0 0 · · ·
...

...
...

...
...

...
...

. . .


.

Then ∆ is an inner function. If we define

A1 :=

[
1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·

]
and B := 0 ,

then Ã1 belongs to H2
s (B(C2, ℓ2)) such that ∆ and A1 are right coprime, ∆∗B = 0 and

nc{Φ+} ≤ dim ℓ2 = ∞. Therefore Φ = ∆A∗
1 is also a canonical decomposition of Φ. In

this case, kerH∗
Φ̆
̸= ∆H2

ℓ2 . Therefore, the canonical decomposition of Φ is not unique.

Remark 3.3. Let ∆ be an inner matrix function with values in B(E′, E). Then Theorem
3.1 says that if dimE′ < ∞, the expression (30) satisfying the conditions (i) - (iv) in
Theorem 3.1 gives kerH∗

Φ̆
= ∆H2

E′ . We note that the condition (iv) on nc-number
cannot be dropped from the assumptions of Theorem 3.1. To see this, let

∆ :=
1√
2

[
z
1

]
, A :=

[√
2
0

]
and B := 0.

If

Φ := ∆A∗ +B =

[
z 0
1 0

]
,

then Φ satisfies the conditions (i), (ii), and (iii), but kerH∗
Φ̆
= zH2 ⊕H2 ̸= ∆H2. Note

that by Theorem 2.13, nc{Φ+} = 2, which does not satisfy the condition on nc-number,
say nc{Φ+} ≤ 1.

3.2 Special cases

In this subsection we give several corollaries to Theorem 3.1.

Corollary 3.4. If ∆̆ is of bounded type then B in (30) is given by

B = ∆c∆
∗
cΦ,

where ∆c is the complementary factor of ∆, with values in B(D′, E). Moreover, if
dimE′ <∞, then dimD′ can be computed by the formula

dimD′ = nc{∆} − nc{Φ+}.
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Proof. Suppose that ∆̆ is of bounded type. Then by Corollary 2.25, [∆,∆c] is two-sided
inner, where ∆c is the complementary factor of ∆, with values in B(D′, E). We thus
have

I = [∆,∆c][∆,∆c]
∗ = ∆∆∗ +∆c∆

∗
c ,

so that
B = Φ−∆A∗ = (I −∆∆∗)Φ = ∆c∆

∗
cΦ.

This proves the first assertion. The second assertion follows at once from the facts that
nc{Φ+} = dimE′ < ∞ (by Theorem 2.13) and nc{∆} = dimE′ + dimD′ (by Corollary
2.16).

The following corollary is an extension of Lemma 2.4 (the Douglas-Shapiro-Shields
factorization) to strong L2-functions.

Corollary 3.5. If Φ is a strong L2-function with values in B(D,E), then the following
are equivalent:

(a) The flip Φ̆ of Φ is of bounded type;

(b) Φ = ∆A∗ (∆ is two-sided inner) is a canonical decomposition of Φ.

Proof. The implication (a)⇒(b) follows from the proof of Theorem 3.1. For the impli-
cation (b)⇒(a), suppose Φ = ∆A∗ (∆ is two-sided inner) is a canonical decomposition of
Φ. By Lemma 2.6, there exists an inner function Θ with values in B(D′, E) such that
kerH∗

Φ̆
= ΘH2

D′ . Then it follows from Lemma 2.5 that ∆H2
E ⊆ kerH∗

Φ̆
= ΘH2

D′ . Since
∆ is two-sided inner, we have that by Lemma 2.2, Θ is two-sided inner, and hence the
flip Φ̆ of Φ is of bounded type. This completes the proof.

If ∆ is an inner matrix function such that ∆∆∗Φ is analytic (even though ∆̆ is not of
bounded type) then the perturbation part B of the canonical decomposition may be also
determined in terms of the complementary factor of ∆.

Corollary 3.6. Let Φ be an n×m matrix-valued H2-function. Then the following are
equivalent:

(a) kerH∗
Φ̆
= ∆H2

Cr for an n× r inner matrix function ∆ such that ∆∆∗Φ is analytic;

(b) Φ = ∆A∗ +∆c∆
∗
cΦ is a canonical decomposition of Φ, where ∆c is the complemen-

tary factor of ∆.

Proof. (a)⇒(b): Suppose that kerH∗
Φ̆
= ∆H2

Cr for an n× r inner matrix function ∆ such
that ∆∆∗Φ is analytic. Then by the proof of Theorem 3.1, we can write

Φ = ∆A∗ +B,

where B = (I − ∆∆∗)Φ. Write Φ ≡ [ϕ1, ϕ1, · · · , ϕm]. Since ∆∆∗Φ ∈ H2
Mn×m

and

∆∗(I −∆∆∗) = 0, it follows from Corollary A.14 (see Appendix A) and Lemma 2.7 that
for each j = 1, 2, · · ·m,

(I −∆∆∗)ϕj ∈ ker∆∗ = ∆cH
2
Cp ,



4 THE BEURLING DEGREE 38

which implies that B = (I −∆∆∗)Φ = ∆cD for some D ∈ H2
Mp×m

. Thus

∆∗
cB = ∆∗

c(I −∆∆∗)Φ = D,

so that
B = ∆cD = ∆c∆

∗
c(I −∆∆∗)Φ = ∆c∆

∗
cΦ.

(b)⇒(a): Suppose that Φ = ∆A∗ +∆c∆
∗
cΦ is a canonical decomposition of Φ. Since

Φ is a matrix-valued function, it follows from Theorem 3.1 that

∆c∆
∗
cΦ = B = (I −∆∆∗)Φ,

so that
Φ = ∆c∆

∗
cΦ+∆∆∗Φ.

But since ⟨∆c∆
∗
cϕj , ∆∆∗ϕj⟩ = 0 for all j = 1, 2, · · · ,m, it follows that ∆∆∗Φ ∈ H2

Mn×m
.

This completes the proof.

Corollary 3.7. Let Φ be an n×m matrix-valued H2-function satisfying kerH∗
Φ̆
= ∆H2

Cr

for an n× r inner matrix function ∆ such that ∆∆∗ is analytic. Then Φ can be written
as

Φ = ∆A∗ +∆cC (with C := P+∆
∗
cΦ ∈ H2

Mp×m
), (39)

where ∆c is the complementary factor of ∆.

Proof. We claim that if ∆∆∗ is analytic, then

(I −∆∆∗)H2
Cn = ∆cH

2
Cp . (40)

To see this, let f ∈ ∆cH
2
Cp . Then f = ∆cg for some g ∈ H2

Cp . Observe that

(I −∆∆∗)f = (I −∆∆∗)∆cg = ∆cg = f,

which implies that f ∈ (I −∆∆∗)H2
Cn . Thus we have ∆cH

2
Cp ⊆ (I −∆∆∗)H2

Cn . The
converse inclusion follows from the proof of Corollary 3.6. This proves (40). Thus
I − ∆∆∗ is the orthogonal projection that maps from H2

Cn onto ∆cH
2
Cp . Therefore by

the Projection Lemma in [Ni1, P. 43], we have

(I −∆∆∗) |H2
Cn

= ∆cP+∆
∗
c ,

so that
Φ = ∆A∗ +B = ∆A∗ +∆cP+∆

∗
cΦ,

as desired

4 The Beurling degree

In this section we first give an answer to Question 1.5. Then we introduce a new notion
of the “Beurling degree” and establish a connection between the Beurling degree and the
spectral multiplicity of the model operator. Consequently, we give an answer to Question
1.1.
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4.1 An answer to Question 1.5

We first consider Question 1.5. Question 1.5 can be rephrased as: If ∆ is an inner
function with values in B(E′, E), does there exist a strong L2-function Φ with values in
B(D,E) satisfying the equation

kerH∗
Φ̆
= ∆H2

E′ ? (41)

To closely understand an answer to Question 1.5, we examine a question whether there
exists an inner function Ω satisfying kerHΩ∗ = ∆H2

E′ if ∆ is an inner function with values
in B(E′, E). In fact, the answer to this question is negative. Indeed, if kerHΩ∗ = ∆H2

E′

for some inner function Ω ∈ H∞(B(D,E)), then by Lemma 2.7, we have [Ω,Ωc] = ∆,
and hence ∆c = 0. Conversely, if ∆c = 0 then by again Lemma 2.7, we should have
kerH∆∗ = ∆H2

E′ . Consequently, kerHΩ∗ = ∆H2
E′ for some inner function Ω if and only

if ∆c = 0. Thus if

∆ :=

[
1
0

]
,

then there exists no inner function Ω such that kerHΩ∗ = ∆H2. On the other hand, we
note that the solution Φ is not unique although there exists an inner function Φ satisfying
the equation (41). For example, if ∆ := diag (z, 1, 1), then the following Φ are such
solutions:

Φ =

z0
0

 ,
z 0
0 1
0 0

 , ∆.

The following theorem gives an affirmative answer to Question 1.5: indeed, we can
always find a strong L2-function Φ with values in B(D,E) satisfying the equation kerH∗

Φ̆
=

∆H2
E′ .

Theorem 4.1. (An answer to Question 1.5) Let ∆ be an inner function with values
in B(E′, E). Then there exists a function Φ in H2

s (B(D,E)), with either D = E′ or
D = C⊕ E′, satisfying

kerH∗
Φ̆
= ∆H2

E′ .

Proof. If ker∆∗ = {0}, take Φ = ∆. Then it follows from Lemma 2.7 that

kerH∗
Φ̆
= kerH∆∗ = ∆H2

E′ .

If instead ker∆∗ ̸= {0}, let ∆c be the complementary factor of ∆ with values in B(E′′, E)
for some nonzero Hilbert space E′′. Choose a cyclic vector g ∈ H2

E′′ of S∗
E′′ and define

Φ :=
[
[z∆cg],∆

]
,

where [z∆cg](z) : C → E is given by [z∆cg](z)α := αz∆c(z)g(z). Then it follows from
Lemma A.7 and Corollary A.14 (see Appendix A) that Φ belongs to H2

s (B(D,E)), where
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D = C⊕ E′. For each x ≡ α⊕ x0 ∈ D, f ∈ H2
E′ , and n = 1, 2, 3, · · · , we have∫

T

⟨
Φ(z)x, zn∆(z)f(z)

⟩
E
dm(z) =

∫
T

⟨
αz∆c(z)g(z) + ∆(z)x0, z

n∆(z)f(z)
⟩
E
dm(z)

=

∫
T

⟨
x0, z

nf(z)
⟩
E′dm(z) (since ∆∗∆c = 0)

= 0.

It thus follows from Lemma 2.5 that

∆H2
E′ ⊆ kerH∗

Φ̆
. (42)

For the reverse inclusion, suppose h ∈ kerH∗
Φ̆
. Then by Lemma 2.5, we have that for

each x0 ∈ E′ and n = 1, 2, 3, · · · ,∫
T

⟨
∆(z)x0, z

nh(z)
⟩
E
dm(z) = 0,

which implies, by Lemma 2.5, that h ∈ kerH∆∗ . It thus follows from Lemma 2.7 that

kerH∗
Φ̆
⊆ kerH∆∗ = ∆H2

E′

⊕
∆cH

2
E′′ . (43)

Assume to the contrary that kerH∗
Φ̆

̸= ∆H2
E′ . Then by (42) and (43), there exists a

nonzero function f ∈ H2
E′′ such that ∆cf ∈ kerH∗

Φ̆
. It thus follows from Lemma 2.5 that

for each x ≡ α⊕ x0 ∈ D and n = 1, 2, 3, · · · ,

0 =

∫
T

⟨
Φ(z)x, zn∆c(z)f(z)

⟩
E
dm(z)

=

∫
T

⟨
αz∆c(z)g(z) + ∆(z)x0, z

n∆c(z)f(z)
⟩
E
dm(z)

=

∫
T

⟨
z[g](z)α, znf(z)

⟩
E′′dm(z) (since ∆∗∆c = 0),

which implies that f ∈ kerH∗
z ˘[g]

. Since g is a cyclic vector of S∗
E′′ , it thus follows from

Lemma 2.9 that
f ∈

(
cl ranH

z ˘[g]

)⊥
=
(
E∗
g

)⊥
= {0},

which is a contradiction. This completes the proof.

If ∆ is an n× r inner matrix function, then we can find a solution Φ ∈ H∞
Mn×m

(with

m ≤ r + 1) of the equation kerH∗
Φ̆
= ∆H2

Cr .

Corollary 4.2. For a given n×r inner matrix function ∆, there exists at least a solution
Φ ∈ H∞

Mn×m
(with m ≤ r + 1) of the equation kerH∗

Φ̆
= ∆H2

Cr .
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Proof. If ker∆∗ = {0}, then this is obvious. Let ker∆∗ ̸= {0} and ∆c ∈ H∞
Mn×p

be the
complementary factor of ∆. Then by Lemma 2.7, 1 ≤ p ≤ n − r. For j = 1, 2, · · · , p,
put

gj := e
1

z−αj ,

where αj are distinct points in the interval [2, 3]. Then it is known that (cf. [Ni1, P. 55])

g :=


g1
g2
...
gp

 ∈ H∞
Cp

is a cyclic vector of S∗
Cp . Put Φ :=

[
[z∆cg],∆

]
. Then by Lemma A.7 (see Appendix

A), we have Φ ∈ H∞
Mn×(r+1)

. The same argument as the proof of Theorem 4.1 gives the

result.

Corollary 4.3. If ∆ is an inner function with values in B(E′, E), then there exists a
function Φ ∈ L2

s(B(D,E)) (with D = E′ or D = C⊕ E′) such that Φ ≡ ∆A∗ + B is the
BLH-canonical decomposition of Φ.

Proof. By Theorem 4.1, there exists a function Φ ∈ H2
s (B(D,E)) such that kerH∗

Φ̆
=

∆H2
E′ , with D = E′ or D = C ⊕ E′. If we put A := Φ∗∆ and B := Φ − ∆A∗, then

by the proof of the first assertion of Theorem 3.1, Φ = ∆A∗ + B is the BLH-canonical
decomposition of Φ.

Remark 4.4. In view of Corollary 4.2, it is reasonable to ask whether such a solution
Φ ∈ L2

Mn×m
of the equation kerH∗

Φ̆
= ∆H2

Cr (∆ an n× r inner matrix function) exists for
each m = 1, 2, · · · even though it exists for some m. For example, let

∆ :=
1√
2

[
z
1

]
. (44)

Then, by Corollary 4.2, there exists a solution Φ ∈ L2
M2×m

(m = 1 or 2) of the equation

kerH∗
Φ̆
= ∆H2. For m = 2, let

Φ :=

[
z za
1 −a

]
∈ H∞

M2
, (45)

where a ∈ H∞ is such that a is not of bounded type. Then a direct calculation shows
that kerH∗

Φ̆
= kerHΦ∗ = ∆H2. We may then ask how about the case m = 1. In this

case, the answer is affirmative. To see this, let

Ψ :=

[
z + za
1− a

]
∈ H∞

M2×1
,

where a ∈ H∞ is such that a is not of bounded type. Then a direct calculation shows
that kerHΨ∗ = ∆H2. Therefore, if ∆ is given by (44), then we may assert that there
exists a solution Φ ∈ L2

Mn×m
of the equation kerH∗

Φ̆
= ∆H2 for each m = 1, 2. However,
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this assertion is not true in general, i.e., a solution exists for some m, but may not exist
for another m0 < m. To see this, let

∆ :=


z 0 0
0 z 0
0 0 1
0 0 0

 ∈ H∞
M4×3

.

Then ∆ is inner. We will show that there exists no solution Φ ∈ L2
M4×1

(i.e., the case

m = 1) of the equation kerH∗
Φ̆
= ∆H2

C3 . Assume to the contrary that Φ ∈ L2
M4×1

is a

solution of the equation kerH∗
Φ̆
= ∆H2

C3 . By Theorem 3.1, Φ can be written as

Φ = ∆A∗ +B,

where A ∈ H2
M1×3

is such that ∆ and A are right coprime. But since ∆̃H2
C4 = zH2 ⊕

zH2 ⊕H2, it follows that

∆̃H2
C4

∨
ÃH2 ̸= H2

C3 ,

which implies that ∆ and A are not right coprime, a contradiction. Therefore we cannot
find any solution Φ, in L2

M4×1
(the case m = 1), of the equation ker H∗

Φ̆
= ∆H2

C3 . By

contrast, if m = 2, then we can find a solution Φ ∈ L2
M4×2

. Indeed, let

Φ :=


z 0
0 z
0 0
a 0

 ,
where a ∈ H∞ is such that a is not of bounded type. Then kerHΦ∗ = zH2⊕ zH2⊕H2⊕
{0} = ∆H2

C3 . Thus we obtain a solution for m = 2 although there exists no solution for
m = 1.

4.2 The Beurling degree and the spectral multiplicity: An answer
to Question 1.1

Let ∆ be an inner function with values in B(E′, E). In view of Remark 4.4, we
may ask how to determine a possible dimension of D for which there exists a solu-
tion Φ ∈ L2

s(B(D,E)) of the equation kerH∗
Φ̆

= ∆H2
E′ . In fact, if we have a solution

Φ ∈ L2
s(B(D,E)) of the equation kerH∗

Φ̆
= ∆H2

E′ , then a solution Ψ ∈ L2
s(D

′, E)) also

exists if D′ is a separable complex Hilbert space containing D: indeed, if 0 denotes the
zero operator in B(D′ ⊖ D,E) and Ψ := [Φ,0], then it follows from Lemma 2.5 that
kerH∗

Φ̆
= kerH∗

Ψ̆
. Thus we would like to ask what is the infimum of dimD such that

there exists a solution Φ ∈ L2
s(B(D,E)) of the equation kerH∗

Φ̆
= ∆H2

E′ . To answer
this question, we introduce a notion of the “Beurling degree” for an inner function, by
employing a canonical decomposition of strong L2-functions induced by the given inner
function.
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Definition 4.5. Let ∆ be an inner function with values in B(E′, E). Then the Beurling
degree of ∆, denoted by degB(∆), is defined by

degB(∆) := inf
{
dimD ∈ Z+ ∪ {∞} : ∃ a pair (A,B) such that

Φ = ∆A∗ +B is a canonical decomposition of Φ ∈ L2
s(B(D,E))

}
Note. By Corollary 4.3, degB(∆) is well-defined: indeed, 1 ≤ degB(∆) ≤ 1+dimE′. In
particular, if E′ = {0}, then degB(∆) = 1. Also if ∆ is a unitary operator then clearly,
degB(∆) = 1.

We are ready for:

Theorem 4.6. (The Beurling degree and the spectral multiplicity) Given an inner func-
tion ∆ with values in B(E′, E), with dimE′ <∞, let T := S∗

E |H(∆). Then

µT = degB(∆). (46)

Proof. Let T := S∗
E |H(∆). We first claim that

degB(∆) = inf
{
dimD : kerH∗

Φ̆
= ∆H2

E′ for some Φ ∈ L2
s(B(D,E))

with D ̸= {0}
}
.

(47)

To see this, let ∆ be an inner function with values in B(E′, E), with dimE′ < ∞.
Suppose that Φ = ∆A∗ +B is a canonical decomposition of Φ in L2

s(B(D,E)). Then by
the uniqueness of ∆ in Theorem 3.1, we have

kerH∗
Φ̆
= ∆H2

E′ , (48)

which implies

degB(∆) ≥ inf
{
dimD : kerH∗

Φ̆
= ∆H2

E′ for some Φ ∈ L2
s(B(D,E))

with D ̸= {0}
}
.

(49)

For the reverse inequality of (49), suppose Φ ∈ L2
s(B(D,E)) satisfies kerH∗

Φ̆
= ∆H2

E′ .
Then by the same argument as in the proof of the first assertion of Theorem 3.1,

Φ = ∆A∗ +B (A := Φ∗∆ and B := Φ−∆A∗)

is a canonical decomposition of Φ, and hence we have the reverse inequality of (49). This
proves the claim (47). We will next show that

degB(∆) ≤ µT . (50)

If µT = ∞, then (50) is trivial. Suppose p ≡ µT < ∞. Then there exists a subset
G = {g1, g2, · · · gp} ⊆ H2

E such that E∗
G = H(∆). Put

Ψ := z[G].
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Then by Lemma A.7 (see Appendix A), Ψ ∈ H2
s (B(Cp, E)). It thus follows from Lemma

2.9 that
H(∆) = E∗

G = cl ranHz[Ğ] = cl ranHΨ̆,

which implies kerH∗
Ψ̆

= ∆H2
E′ . Thus by (47), degB(∆) ≤ p = µT , which proves (50).

For the reverse inequality of (50), suppose that r ≡ dimE′ < ∞, Write m0 ≡ degB(∆).
Then it follows from Theorem 4.1 and (47) that m0 ≤ r + 1 < ∞ and there exists a
function Φ ∈ L2

s(B(Cm0 , E)) such that

kerH∗
Φ̆
= ∆H2

Cr . (51)

Now let
G := Φ+ − Φ̂(0).

Thus we may write G = zF for some F ∈ H2
s (B(Cm0 , E)). Then by Lemma 2.3 and

Lemma 2.9, we have that

E∗
{F} = cl ranHĞ =

(
kerH∗

Φ̆

)⊥
= H(∆),

which implies µT ≤ m0 = degB(∆). This completes the proof.

Corollary 4.7. Let T := S∗
E |H(∆). If rank (I − T ∗T ) <∞, then

µT = degB(∆).

Proof. This follows at once from Theorem 4.6 together with the observation that if ∆ is
an inner function with values in B(E′, E), then dim E′ ≤ dim E = rank (I − T ∗T ) <∞,
where the second equality comes from the Model Theorem (cf. p.7, paragraph containing
(4)).

Remark 4.8. We conclude with some observations on Theorem 4.6.

(a) From a careful analysis of the proof of Theorem 4.6, we can see that (50) holds in
general without the assumption “dim E′ < ∞”: more concretely, given an inner
function ∆ with values in B(E′, E), if T := S∗

E |H(∆), then

degB(∆) ≤ µT .

(b) From Remark 4.4 and (47), we see that if

∆ :=


z 0 0
0 z 0
0 0 1
0 0 0

 ,
then degB(∆) = 2. Let T := S∗

C4 |H(∆). Observe that

H(∆) = H(z)⊕H(z)⊕ {0} ⊕H2.
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Since H(z)⊕H(z) has no cyclic vector, we must have µT ̸= 1. In fact, if we put

f =


1
0
0
a

 and g =


0
1
0
0

 ,
where a is not of bounded type, then E∗

{f,g} = H(∆), which implies µT = 2. This
illustrates Theorem 4.6.

We now give an answer to Question 1.1.

Corollary 4.9. (An answer to Question 1.1) Suppose ∆ is an inner function with values
in B(E′, E), with dimE′ < ∞. If Φ = ∆A∗ + B is a canonical decomposition of Φ in
L2
s(B(D,E)), we define a function F by

F (z) := z
(
Φ+(z)− Φ̂(0)

)
.

We then have
E∗

{F} = H(∆). (52)

Proof. If Φ = ∆A∗ + B is a canonical decomposition of Φ in L2
s(B(D,E)), then by

Theorem 3.1 we have
kerH∗

Φ̆
= ∆H2

E′ .

It thus follows from the proof of Theorem 4.6 that E∗
{F} = H(∆).

Remark 4.10. If ∆ is two-sided inner with values in B(E), and therefore B = 0 in
Corollary 4.9, then (52) can be obtained by the equivalence (b) ⇔ (c) in Lemma 2.4 (cf.
[FB, Theorem 4.7.1]): indeed, if F (z) = z

(
Φ+(z)− Φ̂(0)

)
= S∗

EΦ+, then

E∗
{F} =

∞∨
n=0

S∗n
E S∗

EΦ+D =

∞∨
n=1

S∗n
E P+ΦD = H(∆).

5 Multiplicity free model operators

In this section, we consider Question 1.6: Let T := S∗
E |H(∆). For which inner function

∆ with values in B(E′, E), does it follow that

T is multiplicity-free, i.e., µT = 1?

If dimE′ < ∞, then in the viewpoint of Theorem 4.6, Question 1.6 is equivalent to
the following: if T is the truncated backward shift S∗

E |H(∆), which inner function ∆
guarantees that degB(∆) = 1 ? To answer Question 1.6, in Subsection 5.1, we consider
the notion of the characteristic scalar inner function of operator-valued inner functions
having a meromorphic pseudo-continuation of bounded type in De ≡ {z : 1 < |z| ≤ ∞}.
In Subsection 5.2, we give an answer to Question 1.6.
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5.1 Characteristic scalar inner functions

In this subsection we consider the characteristic scalar inner functions of operator-valued
inner functions, by using the results of Subsection 2.6. The characteristic scalar inner
function of a two-sided inner matrix function has been studied in [Hel], [SFBK] and
[CHL3].

Let ∆ ∈ H∞(B(D,E)) have a meromorphic pseudo-continuation of bounded type in
De. Then by Lemma 2.28, there exists a scalar inner function δ such that δH2

E ⊆ kerH∆∗ .
Put G := δ∆∗ ∈ H∞(B(E,D)). If further ∆ is inner then G∆ = δID, so that

g.c.d.
{
δ : G∆ = δID for some G ∈ H∞(B(E,D))

}
always exists. Thus the following definition makes sense.

Definition 5.1. Let ∆ be an inner function with values in B(D,E). If ∆ has a mero-
morphic pseudo-continuation of bounded type in De, define

m∆ := g.c.d.
{
δ : G∆ = δID for some G ∈ H∞(B(E,D))

}
,

where δ is a scalar inner function. The inner function m∆ is called the characteristic
scalar inner function of ∆.

The notion of m∆ arises in the Sz.-Nagy and Foiaş theory of contraction operators
T of class C0 (cf. p.29): the minimal annihilator mT of the C0-contraction operator T
amounts to our mΘT

, where ΘT is the characteristic function of T (cf. [Ber], [SFBK],
[CHL3]).

We would like to remark that

g.c.d.
{
δ : G∆ = δID for some G ∈ H∞(B(E,D))

}
(53)

may exist for some inner function ∆ having no meromorphic pseudo-continuation of
bounded type in De. To see this, let

∆ :=

[
f
g

]
(f, g ∈ H∞), (54)

where f and g are given in Example 2.1. Then ∆ is an inner function. Since f̆ is
not of bounded type it follows from Corollary 2.32 that ∆ has no meromorphic pseudo-
continuation of bounded type in De. On the other hand, since ∆ is inner, by the Com-
plementing Lemma, there exists a function G ∈ H∞

M1×2
such that G∆ is a scalar inner

function, so that (53) exists.

If ∆ is an n× n square inner matrix function then we may write ∆ ≡ [θij b̄ij ], where
θij is inner and θij and bij ∈ H∞ are coprime for each i, j = 1, 2, · · · , n. In Lemma 4.12
of [CHL3], it was shown that

m∆ = l.c.m.
{
θij : i, j = 1, 2, · · · , n

}
.
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In this section, we examine the cases of general inner functions that have meromorphic
pseudo-continuations of bounded type in De.

On the other hand, if Φ ∈ H∞(B(D,E)) has a meromorphic pseudo-continuation of
bounded type in De, then by Lemma 2.28, δH2

E ⊆ kerHΦ∗ for some scalar inner function
δ. Thus we may also define

ωΦ := g.c.d.
{
δ : δH2

E ⊆ kerHΦ∗ for some scalar inner function δ
}
.

If ∆ is an inner function with values in B(D,E) and has a meromorphic pseudo-continuation
of bounded type in De, then ω∆ is called the pseudo-characteristic scalar inner function
of ∆. Note that m∆ is an inner divisor of ω∆. If further ∆ is two-sided inner, then

δH2
E ⊆ kerH∆∗ ⇐⇒ G ≡ δ∆∗ ∈ H∞(B(E)) ⇐⇒ G∆ = ∆G = δIE , (55)

which implies m∆ = ω∆.

The following lemma shows a way to determine ωΦ more easily.

Lemma 5.2. Let D and E be separable complex Hilbert spaces and let {dj} and {ei}
be orthonormal bases of D and E, respectively. Suppose Φ ∈ H∞(B(D,E)) has a
meromorphic pseudo-continuation of bounded type in De. In view of Proposition 2.30,
we may write

ϕij ≡ ⟨Φdj , ei⟩E = θijaij ,

where θij is inner and θij and aij ∈ H∞ are coprime. Then we have

ωΦ = l.c.m.
{
θij : i, j = 1, 2, · · · ,

}
.

Proof. Let Φ ∈ H∞(B(D,E)) have a meromorphic pseudo-continuation of bounded type
in De. By Lemma 2.28, we may write Φ = θA∗ for some A ∈ H∞(B(E,D)) and a scalar
inner function θ. Also by an analysis of the proof of Proposition 2.30, we can see that
θ0 ≡ l.c.m.

{
θij : i, j = 1, 2, · · · ,

}
is an inner divisor of θ. Thus by Lemma 2.28, θ0 is an

inner divisor of ωΦ. Since Φ ∈ H∞(B(D,E)), it follows that for all f ∈ H2
E and j, n ≥ 1,

⟨Φ(z)dj , znθ0(z)f(z)⟩E ∈ L2. (56)

On the other hand, for all f ∈ H2
E ,

f(z) =
∑
i≥1

⟨f(z), ei⟩ei ≡
∑
i≥1

fi(z)ei for almost all z ∈ T (fi ∈ H2). (57)

Since θ0 = l.c.m.
{
θij : i, j = 1, 2, · · · ,

}
, it follows from (56) and (57) that for all j, n ≥ 1,∫

T
⟨Φ(z)dj , znθ0(z)f(z)⟩Edm(z) =

∫
T
zn
∑
i≥1

fi(z)θ0(z)θij(z)aij(z)dm(z)

= 0,
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where the last equality follows from the fact that zn
∑
i≥1 fi(z)θ0(z)θij(z)aij(z) ∈ L2⊖H2.

Since {di} is an orthonormal basis for D, it follows from Fatou’s Lemma that for all x ∈ D
and n = 1, 2, 3, · · · , ∫

T
⟨Φ(z)x, znθ0(z)f(z)⟩Edm(z) = 0.

Thus by Lemma 2.5, θ0H
2
E ⊆ kerHΦ∗ , so that ωΦ is an inner divisor of θ0, and therefore

θ0 = ωΦ. This complete the proof.

Corollary 5.3. Let ∆ be a two-sided inner matrix function. Thus, in view of Corollary
2.32, we may write ∆ ≡

[
θijbij

]
, where θij is an inner function and θij and bij ∈ H∞ are

coprime for each i, j = 1, 2, · · · . Then

ω∆ = m∆ = l.c.m.
{
θij : i, j = 1, 2, · · · ,

}
.

Proof. Immediate from Lemma 5.2.

Remark 5.4. If ∆ is not two-sided inner then Corollary 5.3 may fail. To see this, let

∆ :=
1√
2

[
1
z

]
.

Then by Corollary 2.32, ∆ has a meromorphic pseudo-continuation of bounded type in
De. It thus follows from Lemma 5.2 that ω∆ = z. On the other hand, let G :=

[√
2 0

]
.

Then G∆ = 1, so that m∆ = 1 ̸= z = ω∆. Note that, by Corollary 5.3,

[∆,∆c] =
1√
2

[
1 1
z −z

]
and m[∆,∆c] = ω[∆,∆c] = z.

The following lemma shows that Remark 5.4 is not an accident.

Lemma 5.5. Let ∆ be an inner function and have a meromorphic pseudo-continuation
of bounded type in De. Then

m[∆,∆c] = ω[∆,∆c] = ω∆

and ∆c has a meromorphic pseudo-continuation of bounded type in De: in this case, ω∆c

is an inner divisor of ω∆.

Proof. Suppose that ∆ is an inner function with values in B(D,E) and has a meromorphic
pseudo-continuation of bounded type in De. Then it follows from Corollary 2.25 and
Lemma 2.27 that [∆,∆c] is two-sided inner. On the other hand, it follows from Lemma
2.7 that

kerH∆∗ = [∆,∆c]H
2
D⊕D′ = kerH[∆,∆c]∗ .

Thus by Lemma 2.28, [∆,∆c] has a meromorphic pseudo-continuation of bounded type
in De and m[∆,∆c] = ω[∆,∆c] = ω∆. This proves the first assertion. Since [∆,∆c] has
a meromorphic pseudo-continuation of bounded type in De, it follows from Lemma 2.28
that ∆c has a meromorphic pseudo-continuation of bounded type in De. On the other
hand, by Lemma 2.7(b), ∆∗

c∆ = 0. Thus, by Lemma 2.7(a), ∆H2
D ⊆ ker∆∗

c = ∆ccH
2
D′′ ,

which implies that ∆cc is a left inner divisor of ∆. Thus, [∆cc,∆c] is a left inner divisor
of [∆,∆c], so that ω∆c = ω[∆cc,∆c] is an inner divisor of ω∆ = ω[∆,∆c]. This proves the
second assertion.
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5.2 An answer to Question 1.6

In this subsection we give an answer to Question 1.6. This is accomplished by several
lemmas.

Lemma 5.6. Let Φ ∈ H∞(B(D,E)) have a meromorphic pseudo-continuation of bounded
type in De. Then for each cyclic vector g of S∗

D,

kerH∗
[zΦg]` = kerΦ∗,

where [zΦg]` denotes the flip of [zΦg].

Proof. Let Φ ∈ H∞(B(D,E)) have a meromorphic pseudo-continuation of bounded type
in De. Then by Lemma 2.28, there exists a scalar inner function δ such that δH2

E ⊆
kerHΦ∗ . We thus have

δΦ∗h ∈ H2
D for any h ∈ H2

E . (58)

Let g be a cyclic vector of S∗
D and h ∈ kerH∗

[zΦg]` . Then it follows from Lemma 2.5 that

for all n = 1, 2, 3 · · · ,

0 =

∫
T

⟨
zΦ(z)g(z), znδ(z)h(z)

⟩
E
dm(z)

=

∫
T

⟨
S
∗(n−1)
D g(z), δ(z)Φ∗(z)h(z)

⟩
D
dm(z)

=
⟨
S
∗(n−1)
D g(z), δ(z)Φ∗(z)h(z)

⟩
L2

D

,

which implies, by (58), that δΦ∗h = 0, and hence h ∈ ker Φ∗. We thus have

kerH∗
[zgΦ]` ⊆ kerΦ∗ .

The reverse inclusion follows at once from Lemma 2.5. This completes the proof.

Lemma 5.7. Let Φ ∈ H∞(B(D,E)) have a meromorphic pseudo-continuation of bounded
type in De. Then for each cyclic vector g of S∗

D,

E∗
{Φg} = H((Φi)c), (59)

where Φi denotes the inner part in the inner-outer factorization of Φ. Hence, in particular,
S∗
E |H((Φi)c) is multiplicity-free.

Proof. Let Φ ≡ ΦiΦe be the inner-outer factorization of Φ. Since Φe has dense range,
(Φe)∗ is one-one, so that kerΦ∗ = ker (Φi)∗. It thus follows from Lemma 2.7, Lemma 2.9
and Lemma 5.6 that

E∗
{Φg} =

(
kerH∗

[zΦg]`
)⊥

=
(
kerΦ∗)⊥ = H((Φi)c),

which proves (59). This completes the proof.

As a straightforward consequence of Lemma 5.7, we have:
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Corollary 5.8. If Φ is a two-sided inner function with values in B(E) and g is a cyclic
vector for S∗

E , then Φg is also a cyclic vector for S∗
E .

The following corollary is a matrix-valued version of Lemma 5.7.

Corollary 5.9. Let ∆ be an n× r inner matrix function such that ∆̆ is of bounded type.
If g is a cyclic vector of S∗

Cr , then E∗
{∆g} = H(∆c).

Proof. It follows from Corollary 2.32 and Lemma 5.7.

The following lemma shows that the flip of the adjoint of an inner function may be
an outer function.

Lemma 5.10. Let ∆ be an inner function with values in B(D,E), with its complementary

factor ∆c with values in B(D′, E). If dimD′ <∞, then ∆̃c is an outer function.

Proof. If D′ = {0}, then this is trivial. Suppose that D′ = Cp for some p ≥ 1. Write

∆̃c ≡ (∆̃c)
i(∆̃c)

e (inner-outer factorization), (60)

where (∆̃c)
i ∈ H∞

Mp×q
and (∆̃c)

e ∈ H∞(B(E,Cq)) for some q ≤ p. It thus follows that

q = Rank (∆̃c)
i ≥ Rank ∆̃c = maxζ∈D rank ∆̃c(ζ)∆̃c(ζ)

∗ = p,

which implies p = q. Since (∆̃c)
i ∈ H∞

Mp
is two-sided inner, by the Complementing

Lemma, there exists a function G ∈ H∞
Mp

and a scalar inner function θ such that G(∆̃c)
i =

θIp. Thus by (60), we have G∆̃c = θIp(∆̃c)
e, and hence we have

θ̆IE∆cG̃ =
˜
θIpG∆̃c = (̃∆̃c)e ∈ H∞(B(Cp, E)).

Thus we have
θ̆IE∆cG̃H

2
Cp ⊆ H2

E . (61)

It thus follows from Lemma 2.7 and (61) that

∆cθ̆IpG̃H
2
Cp = θ̆IE∆cG̃H

2
Cp ⊆ ker∆∗ = ∆cH

2
Cp ,

which implies θ̆IpG̃H
2
Cp ⊆ H2

Cp . We thus have θ̆IpG̃ ∈ H∞
Mp

, so that θIpG ∈ H∞
Mp

.
Therefore we may write G = θIpG1 for some G1 ∈ H∞

Mp
. It thus follows that

θIp = G(∆̃c)
i = θIpG1(∆̃c)

i,

which gives that G1(∆̃c)
i = Ip. Therefore we have

H2
Cp = (̃∆̃c)iG̃1H

2
Cp ⊆ (̃∆̃c)iH

2
Cp , (62)

which implies that (̃∆̃c)i is a unitary matrix, and so is (∆̃c)
i. Thus, ∆̃c is an outer

function. This completes the proof.
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Corollary 5.11. If ∆ is an inner matrix function, then ∆t
c is an outer function.

Proof. Immediate from Lemma 5.10.

Remark 5.12. Let T := S∗
Cn |H(∆) for some non-square inner matrix function ∆. Then

Corollary 5.9 shows that if ∆ = Ωc for an inner matrix function Ω such that Ω̆ is of
bounded type, then T is multiplicity-free. However, the converse is not true in general,
i.e., the condition “multiplicity-free” does not guarantee that ∆ = Ωc. To see this, let
∆ := [0 z]t. Then ∆ is inner and ∆̆ is of bounded type. Since ∆t = [0 z] is not an outer
function, it follows from Corollary 5.11 that ∆ ̸= Ωc for any inner matrix function. Let
f := (a 1)t (a is not of bounded type). Then E∗

f = H(∆), so that T is multiplicity-free.

Lemma 5.13. Let ∆ be an inner function and have a meromorphic pseudo-continuation
of bounded type in De. If ∆̃ is an outer function and ker∆∗ = {0}, then ∆ is a unitary
operator.

Proof. Let ∆ be an inner function with values in B(D,E) and have a meromorphic pseudo-
continuation of bounded type in De. Then by Lemma 2.27, ∆̆ is of bounded type.
Suppose that ∆̃ is an outer function and ker∆∗ = {0}. Then by Lemma 2.7, Corollary

2.25 and Lemma 2.27, ∆ is two-sided inner, and so is ∆̃. Thus ∆ is a unitary operator,
as desired.

The following lemma is a key idea for an answer to Question 1.6.

Lemma 5.14. Let ∆ be an inner function and have a meromorphic pseudo-continuation
of bounded type in De. If ∆̃ is an outer function, then

∆cc = ∆.

Proof. Let ∆ be an inner function with values in B(D,E) and have a meromorphic pseudo-

continuation of bounded type in De. Also, suppose ∆̃ is an outer function. If ker∆∗ =
{0}, then the result follows at one from Lemma 5.13. Assume that ker∆∗ ̸= {0}. By
Lemma 2.27, ∆̆ is of bounded type, so that by Corollary 2.25, [∆,∆c] is a two-sided inner
function with values in B(D ⊕D′, E) for some nonzero Hilbert space D′. We now claim
that

∆ = ∆ccΩ for a two-sided inner function Ω with values in B(D). (63)

Since ∆cc is a left inner divisor of ∆ (cf. the Proof of Lemma 5.5), we may write

∆ = ∆ccΩ (64)

for an inner function Ω with values in B(D,D′′). Assume to the contrary that Ω is not
two-sided inner. Since ∆ has a meromorphic pseudo-continuation of bounded type in
De, it follows from Lemma 2.28 that

θH2
E ⊆ kerH∆∗ = kerHΩ∗∆∗

cc
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for some scalar inner function θ. Thus Ω∗∆∗
ccθH

2
E ⊆ H2

D. In particular, we have

Ω∗θH2
D′′ = Ω∗∆∗

ccθ∆ccH
2
D′′ ⊆ H2

D,

and hence θH2
D′′ ⊆ kerHΩ∗ , which implies, by Lemma 2.28, that Ω has a meromorphic

pseudo-continuation of bounded type in De. Thus by Lemma 2.27, Ω̆ is of bounded type.
It thus follows from Lemma 2.7 that

[Ω,Ωc] is two-sided inner,

where Ωc is the complementary factor of Ω, with values in B(D1, D
′′) for some nonzero

Hilbert space D1. On the other hand, it follows from (64) that for all f ∈ H2
D1

,

[∆,∆c]
∗∆ccΩcf =

[
Ω∗Ωcf

∆∗
c∆ccΩcf

]
= 0,

which implies that D1 = {0}, a contradiction. This proves (63). Thus we may write

∆̃ = Ω̃∆̃cc (65)

for a two-sided inner function Ω̃ with values in B(D). Since ∆̃ is an outer function and

Ω̃ is two-sided inner, it follows from (65) that Ω̃ is a unitary operator, and so is Ω. This
completes the proof.

Lemma 5.14 may fail if the condition “∆ has a meromorphic pseudo-continuation of
bounded type in De” is dropped. To see this, let

∆ :=

fg
0

 ,
where f and g are given in Example 2.1. Then ∆̃ is an outer function. A straightforward
calculation shows that

∆c =

00
1

 and ∆cc =

1 0
0 1
0 0

 ̸= ∆.

Note that ∆̆ is not of bounded type. Thus, by Corollary 2.32, ∆ has no meromorphic
pseudo-continuation of bounded type in De.

We are ready to give an answer to Question 1.6.

Theorem 5.15. (An answer to Question 1.6) Let T := S∗
E |H(∆). If ∆ has a meromor-

phic pseudo-continuation of bounded type in De and ∆̃ is an outer function, then T is
multiplicity-free.
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Proof. Let T := S∗
E |H(∆). Suppose that ∆ has a meromorphic pseudo-continuation of

bounded type in De and ∆̃ is an outer function. If ker∆∗ = {0}, then by Lemma 5.13,
∆ is a unitary operator, so that T is multiplicity-free. If instead ker∆∗ ̸= {0}, then by
Lemma 5.5, ∆c has a meromorphic pseudo-continuation of bounded type in De. Since
∆̃ is an outer function it follows from Lemma 5.14 that ∆ = ∆cc. Applying Lemma 5.7
with Φ ≡ ∆c, we can see that T has a cyclic vector, i.e., T is multiplicity-free.

The following corollary is an immediate consequence of Theorem 5.15.

Corollary 5.16. Let T := S∗
Cn |H(∆) for an inner matrix function ∆ whose flip ∆̆ is of

bounded type. If ∆t is an outer function, then T is multiplicity-free.

Proof. This follows from Theorem 5.15 and Corollary 2.32.

If ∆ is an inner matrix function then the converse of Lemma 5.14 is also true.

Corollary 5.17. Let ∆ be an inner matrix function whose flip ∆̆ is of bounded type.
Then the following are equivalent:

(a) ∆t is an outer function;

(b) ∆̃ is an outer function;

(c) ∆cc = ∆;

(d) ∆ = Ωc for some inner matrix function Ω.

Hence, in particular, ∆ccc = ∆c.

Proof. The implication (a)⇒(b) is clear and the implication (b)⇒(c) follows from Corol-
lary 2.32 and Lemma 5.14. Also the implication (c)⇒(d) is clear and the implication
(d)⇒(a) follows from Corollary 5.11. The second assertion follows from the first assertion
together with Corollary 2.25 and Corollary 5.11.

6 Some unsolved problems

In this paper we have explored the Beurling-Lax-Halmos Theorem and have tried to
answer several outstanding questions. In this process, we have gotten results on a canon-
ical decomposition of strong L2-functions, a connection between the Beurling degree and
the spectral multiplicity, and the multiplicity-free model operators. However there are
still open questions in which we are interested. In this section, we pose some unsolved
problems.

6.1. The Beurling degree of an inner matrix functions. The theory of spectral
multiplicity for operators of the class C0 has been well developed (see [Ni1, Appendix 1],
[SFBK]). For an inner matrix function ∆ ∈ H∞

MN
and k = 0, 1, · · · , N , let

δk := g.c.d. {all inner parts of the minors of order N − k of ∆}. (66)
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Then it is well-known that if T ∈ C0 with characteristic function ∆ ∈ H∞
MN

, then

µT = min
{
k : δk = δk+1

}
. (67)

In fact, the proof for “≥” in (67) is not difficult. But the proof for “≤” is so complicated.
However, Theorem 4.6 gives a simple proof for “≤” in (67) with the aid of the Moore-
Nordgren Theorem. To see this, we recall that for an inner function ∆k (k = 1, 2) with
values in MN , ∆1 and ∆2 are called quasi-equivalent if there exist functions X,Y ∈
H∞
MN

such that X∆1 = ∆2Y and such that the inner parts (detX)i and (detY )i of the

corresponding determinants are coprime to (det∆k)
i (k = 1, 2).

The following theorem shows that the spectral multiplicity of C0-operators with square-
inner characteristic functions can be computed by studying diagonal characteristic func-
tions (cf. [Nor], [MN], [Ni1]):

Nordgren-Moore Theorem.

(a) Let ∆k (k = 1, 2) be an inner function with values inMN and let Tk := PH(∆)SCN |H(∆k)

(k = 1, 2). If ∆1 and ∆2 are quasi-equivalent then µT1 = µT2 .

(b) Let ∆ be an inner function with values in MN . Then ∆ is quasi-equivalent to a
unique diagonal inner function

diag (δ0/δ1, δ1/δ2, · · · , δN−1/δN ).

By the Nordgren-Moore Theorem (a), the Model theorem and Theorem 4.6, we can
see that if ∆1 and ∆2 are quasi-equivalent square inner matrix functions then

degB(∆̃1) = degB(∆̃2). (68)

We now have:

Proposition 6.1. If ∆ is an N ×N square-inner matrix function then

degB(∆) ≤ min
{
k : δk = δk+1

}
. (69)

Proof. Let m := min
{
k : δk = δk+1

}
. Then by the Nordgren-Moore Theorem, ∆ is

quasi-equivalent to Θ ≡ diag (δ0/δ1, · · · , δm−1/δm, 1, · · · , 1). We now take

Φ :=



δ0/δ1 0 · · · 0

0 δ1/δ2
...

...
. . . 0

0 · · · 0 δm−1/δm
0 · · · 0 1

...
...

0 · · · 0 1


∈ H∞

MN×m
.
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Then a direct calculation shows that

kerHΦ∗ =

(
m∑
k=1

⊕
(δk−1/δk)H

2

)⊕
H2

CN−m = ΘH2
Cn .

It thus follows from (47) and (68) that degB(∆) = degB(Θ) ≤ m.

Corollary 6.2. If Θ is a diagonal inner matrix function of the form Θ := diag(θ1, · · · , θN )
(where each θi is a scalar inner function) then

degB(Θ) = max card
{
σ : σ ⊆ {1, · · · , N}, g.c.d.{θi : i ∈ σ} ≠ 1

}
.

Proof. This follows at once from (67) and Theorem 4.6.

Now Proposition 6.1 together with Theorem 4.6 gives a simple proof for “≤” in (67).
Consequently, in (69), we may take “=” in place of “≤”. However we were unable to
derive a similar formula to (69) for non-square inner matrix function. Thus we would
like to pose:

Problem 6.3. If ∆ is an n×m inner matrix function, describe degB(∆) in terms of its
entries (e.g., minors).

6.2. Spectra of model operators. We recall that if θ is a scalar inner function, then
we may write

θ(ζ) = B(ζ)exp

(
−
∫
T

z + ζ

z − ζ
dµ(z)

)
,

where B is a Blaschke product and µ is a singular measure on T and that the spectrum,
σ(θ), of θ is defined by

σ(θ) :=
{
λ ∈ clD :

1

θ
can be continued analytically into a neighborhood of λ

}
.

Then it was ([Ni1, p.63]) known that the spectrum σ(θ) of θ is given by

σ(θ) = cl θ−1(0)
∪

suppµ. (70)

It was also (cf. [Ni1, p.72]) known that if T ≡ PH(∆)SE |H(∆) ∈ C0, then

σ(T ) = σ(m∆). (71)

In view of (71), we may ask what is the spectrum of the model operator S∗
E |H(∆) ? Here

is an answer.

Proposition 6.4. Let T := S∗
E |H(∆) for an inner function ∆ with values in B(D,E). If

∆ has a meromorphic pseudo-continuation of bounded type in De and ω∆ is the pseudo-
characteristic scalar inner function of ∆, then

σ(ω∆̃) ⊆ σ(T ). (72)
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Proof. If ∆c is the complementary factor, with values in B(D′, E), of ∆, then by the proof
of Lemma 5.5, [∆,∆c] is two-sided inner and has a meromorphic pseudo-continuation of
bounded type in De. Thus, by Proposition 2.34, S∗

E |H([∆,∆c]) belongs to C0. Then by
the Model Theorem, we have

S∗
E |H([∆,∆c])

∼= P
H( ˜[∆,∆c])

SE |H( ˜[∆,∆c])
.

It thus follows from Lemma 5.5 and (71) that

σ(S∗
E |H([∆,∆c])) = σ(m ˜[∆,∆c]

) = σ(ω∆̃). (73)

On the other hand, observe

[∆,∆c]H
2
D⊕D′ = ∆H2

D ⊕∆cH
2
D′ ,

and hence
H(∆) = H([∆,∆c])⊕∆cH

2
D′ .

Thus we may write

T =

[
T1 ∗
0 T2

]
:

[
H([∆,∆c])
∆cH

2
D′

]
→
[
H([∆,∆c])
∆cH

2
D′

]
. (74)

Note that T1 = S∗
E |H([∆,∆c]). Since by (70) and (73), σ(T1) has no interior points, so

that σ(T1) ∩ σ(T2) has no interior points. Thus we have σ(T ) = σ(T1) ∪ σ(T2) because
in the Banach space setting, the passage from σ (A C

0 B ) to σ(A) ∪ σ(B) is the filling in
certain holes in σ (A C

0 B ), occurring in σ(A) ∩ σ(B) (cf. [HLL]). Therefore, by (73), we
have σ(ω∆̃) ⊆ σ(T ).

We would like to pose:

Problem 6.5. If T := S∗
E |H(∆) for an inner function ∆ having a meromorphic pseudo-

continuation of bounded type in De, describe the spectrum of T in terms of the pseudo-
characteristic scalar inner function of ∆.

Appendix A: Strong L2-functions

In this appendix we provide some properties of strong L2-functions,H2
s (B(D,E))-functions,

strong H2-functions, and connections between them in addition with H2
B(D,E)-functions,

which we have not been able to find in the literature.
We first review a few essential facts concerning vector-valued Lp- and Hp-functions

by using [DS], [Dur], [FF], [HP], [Hof], [Ni1], [Ni2], [Pel], [Sa2] as general references.
Let (Ω,M, µ) be a positive σ-finite measure space and X be a complex Banach space.

A function f : Ω → X of the form f =
∑∞
k=1 xkχσk

(where xk ∈ X, σk ∈ M and
σk∩σj = ∅ for k ̸= j) is said to be countable-valued. A function f : Ω → X is called weakly
measurable if the map s 7→ ϕ(f(s)) is measurable for all ϕ ∈ X∗ and is called strongly
measurable if there exist countable-valued functions fn such that f(s) = limn fn(s) for
almost all s ∈ Ω. It is known that when X is separable,
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(i) if f is weakly measurable, then ||f(·)|| is measurable;

(ii) f is strongly measurable if and only if it is weakly measurable.

A countable-valued function f =
∑∞
k=1 xkχσk

is called (Bochner) integrable if∫
Ω

||f(s)||dµ(s) <∞

and its integral is defined by ∫
Ω

fdµ :=

∞∑
k=1

xkµ(σk).

A function g : Ω → X is called integrable if there exist countable-valued integrable
functions gn such that g(s) = limn gn(s) for almost all s ∈ Ω and limn

∫
Ω
||g− gn||dµ = 0.

Then
∫
Ω
gdµ ≡ limn

∫
Ω
gndµ exists and

∫
Ω
gdµ is called the (Bochner) integral of g. If

f : Ω → X is integrable, then we can see that

T

(∫
Ω

fdµ

)
=

∫
Ω

(Tf)dµ for each T ∈ B(X,Y ). (75)

Let m denote the normalized Lebesgue measure on T. For a complex Banach space X
and 1 ≤ p ≤ ∞, let

LpX ≡ Lp(T, X) :=
{
f : T → X : f is strongly measurable and ||f ||p <∞

}
,

where

||f ||p ≡ ||f ||Lp
X
:=


(∫

T ||f(z)||
p
Xdm(z)

) 1
p

(1 ≤ p <∞);

ess supz∈T ||f(z)||X (p = ∞).

Then we can see that LpX forms a Banach space. For f ∈ L1
X , the n-th Fourier coefficient

of f , denoted by f̂(n), is defined by

f̂(n) :=

∫
T
znf(z) dm(z) for each n ∈ Z.

Also, Hp
X ≡ Hp(T, X) is defined by the set of f ∈ LpX with f̂(n) = 0 for n < 0. A

function f : D → X is (norm) analytic if f can be written as

f(ζ) =
∞∑
n=0

xnζ
n (ζ ∈ D, xn ∈ X),

Let Hol(D, X) denote the set of all analytic functions f : D → X. Also we writeH2(D, X)
for the set of all f ∈ Hol(D, X) satisfying

||f ||H2(D,X) := sup
0<r<1

(∫
T
||f(rz)||2Xdm(z)

) 1
2

<∞.
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Let E be a separable complex Hilbert space. As in the scalar-valued case, if f ∈ H2(D, E),
then there exists a “boundary function” bf ∈ H2

E such that

f(rz) = (bf ∗ Pr)(z) (r ∈ [0, 1) and z ∈ T)

(where Pr denotes the Poisson kernel) and

(bf)(z) = lim
rz→z

f(rz) nontangentially a.e. on T.

Moreover, the mapping f 7→ bf is an isometric bijection (cf. [Ni2, Theorem 3.11.7]). We
conventionally identify H2(D, E) with H2

E ≡ H2(T, E). For f, g ∈ L2
E with a separable

complex Hilbert space E, the inner product ⟨f, g⟩ is defined by⟨
f, g

⟩
≡
⟨
f(z), g(z)

⟩
L2

E

:=

∫
T

⟨
f(z), g(z)

⟩
E
dm(z).

If f, g ∈ L2
X with X =Mn×m, then ⟨f, g⟩ =

∫
T tr (g

∗f)dm.

For a function Φ : T → B(D,E), write

Φ∗(z) := Φ(z)∗ for z ∈ T.

A function Φ : T → B(X,Y ) is called SOT measurable if z 7→ Φ(z)x is strongly measurable
for every x ∈ X and is called WOT measurable if z 7→ Φ(z)x is weakly measurable for
every x ∈ X. We can easily check that if Φ : T → B(X,Y ) is strongly measurable,
then Φ is SOT-measurable and if D and E are separable complex Hilbert spaces then
Φ : T → B(D,E) is SOT measurable if and only if Φ is WOT measurable.

We then have:

Lemma A.1. If Φ : T → B(D,E) is WOT measurable, then so is Φ∗.

Proof. Suppose that Φ is WOT measurable. Then the function

z 7→
⟨
Φ∗(z)y, x

⟩
=
⟨
x, Φ∗(z)y

⟩
=
⟨
Φ(z)x, y

⟩
is measurable for all x ∈ D and y ∈ E. Thus the function z 7→

⟨
Φ∗(z)y, x

⟩
is measurable

for all x ∈ D and y ∈ E.

Let Φ : T → B(D,E) be a WOT measurable function. Then Φ is called WOT
integrable if

⟨
Φ(·)x, y

⟩
∈ L1 for every x ∈ D and y ∈ E, and there exists an operator

U ∈ B(D,E) such that
⟨
Ux, y

⟩
=
∫
T
⟨
Φ(z)x, y

⟩
dm(z). Also Φ is called SOT integrable if

Φ(·)x is integrable for every x ∈ D. In this case, the operator V : x 7→
∫
T Φ(z)xdm(z) is

bounded, i.e., V ∈ B(D,E). If Φ : T → B(D,E) is SOT integrable, then it follows from
(75) that for every x ∈ D and y ∈ E,⟨∫

T
Φ(z)xdm(z), y

⟩
=

∫
T

⟨
Φ(z)x, y

⟩
dm(z), (76)

which implies that Φ is WOT integrable and that the SOT integral of Φ is equal to the
WOT integral of Φ.

We can say more:
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Lemma A.2. For Φ ∈ L1
B(D,E), the Bochner integral of Φ is equal to the SOT integral

of Φ, in the sense that(∫
T
Φ(z)dm(z)

)
x =

∫
T
Φ(z)xdm(z) for all x ∈ D.

Proof. This follows from a straightforward calculation.

Let L∞(B(D,E)) be the space of all bounded (WOT) measurable B(D,E)-valued
functions on T. For Ψ ∈ L∞(B(D,E)), define

||Ψ||∞ := ess supz∈T||Ψ(z)||.

For 1 ≤ p < ∞, we define the class Lps(B(D,E)) ≡ Lps(T,B(D,E)) as the set of all
(WOT) measurable B(D,E)-valued functions Φ on T such that Φ(·)x ∈ LpE . A function
Φ ∈ Lps(B(D,E)) is called a strong Lp-function. We claim that

LpB(D,E) ⊆ Lps(B(D,E)) : (77)

indeed if Φ ∈ LpB(D,E), then for all x ∈ D with ||x|| = 1,

||Φ(z)x||p
Lp

E
=

∫
T
||Φ(z)x||pEdm(z) ≤

∫
T
||Φ(z)||pB(D,E)dm(z) = ||Φ||p

Lp
B(D,E)

,

which gives (77). Also we can easily check that

L∞
B(D,E) ⊆ L∞(B(D,E)) ⊆ Lps(B(D,E)). (78)

We define

H∞(B(D,E)) ≡ H∞(T,B(D,E)) :=
{
Φ ∈ L∞(B(D,E)) : Φ̂(n) = 0 for n < 0

}
.

On the other hand, we define H∞(D,B(D,E)) as the set of all analytic functions Φ : D →
B(D,E) satisfying

||Φ||H∞ := sup
ζ∈D

||Φ(ζ)||.

If D and E are separable Hilbert spaces, we conventionally identify H∞(D,B(D,E)) with
H∞(T,B(D,E)) (cf. [Ni2, Theorem 3.11.10]).

On the other hand, by (77), we have L1
B(D,E) ⊆ L1

s(B(D,E)). Thus if Φ ∈ L1
B(D,E),

then there are two definitions of the n-th Fourier coefficient of Φ. However, we can, by
Lemma A.2, see that the n-th Fourier coefficient of Φ as an element of L1

B(D,E) coincides

with the n-th Fourier coefficient of Φ as an element of L1
s(B(D,E)).

We now denote by H2
s (D,B(D,E)) the set of all strong H2-functions with values in

B(D,E).
We then have:

Lemma A.3. H2(D,B(D,E)) ⊆ H2
s (D,B(D,E)).
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Proof. Let Φ ∈ H2(D,B(D,E)). Then Φ can be written as

Φ(ζ) =
∞∑
n=0

Anζ
n (An ∈ B(D,E)).

Thus for each x ∈ D,

Φ(ζ)x =
∞∑
n=0

(Anx)ζ
n ∈ Hol(D, E).

Observe that

||Φ(·)x||2H2(D,E) = sup0<r<1

∫
T
||Φ(rz)x||2Edm(z)

≤ ||Φ||2H2(D,B(D,E)) · ||x||
2
D

<∞,

which implies Φ ∈ H2
s (D,B(D,E)).

Theorem A.4. If dimD <∞, then

H2(D,B(D,E)) = H2
s (D,B(D,E)),

where the equality is set-theoretic.

Proof. By Lemma A.3, we have H2(D,B(D,E)) ⊆ H2
s (D,B(D,E)). For the reverse

inclusion, suppose Φ ∈ H2
s (D,B(D,E)) and dimD = d < ∞. Let {ej : j = 1, 2, · · · , d}

be an orthonormal basis of D. Then for each j = 1, 2, · · · , d,

ϕj(ζ) ≡ Φ(ζ)ej ∈ H2(D, E). (79)

Thus we may write

ϕj(ζ) =
∞∑
n=0

a(j)n ζn (a(j)n ∈ E).

For each n = 0, 1, 2, · · · , define An : D → E by

Anx :=
d∑
j=1

αja
(j)
n

(
where x :=

d∑
j=1

αjej

)
.

Then An ∈ B(D,E). We claim that

Φ(ζ) =
∞∑
n=0

Anζ
n ∈ Hol(D,B(D,E)). (80)

To prove (80), let ϵ > 0 be arbitrary. For each ζ ∈ D, there exists M > 0 such that for
all j = 1, 2, · · · , d, ∣∣∣∣∣

∣∣∣∣∣
∞∑

n=M

a(j)n ζn

∣∣∣∣∣
∣∣∣∣∣
E

<
ϵ

d
.
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Let x :=
∑d
j=1 αjej with ||x||D = 1. Then we have∣∣∣∣∣

∣∣∣∣∣(Φ(ζ)−
M−1∑
n=0

Anζ
n
)
x

∣∣∣∣∣
∣∣∣∣∣
E

=

∣∣∣∣∣
∣∣∣∣∣

∞∑
n=M

d∑
j=1

αja
(j)
n ζn

∣∣∣∣∣
∣∣∣∣∣
E

≤
d∑
j=1

∣∣∣∣∣
∣∣∣∣∣

∞∑
n=M

a(j)n ζn

∣∣∣∣∣
∣∣∣∣∣
E

< ϵ,

which proves (80). For all r ∈ [0, 1), we have that

||Φ(rz)x||2E =

∣∣∣∣∣
∣∣∣∣∣
d∑
j=1

αjΦ(rz)ej

∣∣∣∣∣
∣∣∣∣∣
2

E

≤

(
d∑
j=1

|αj |||Φ(rz)ej ||E

)2

≤
d∑
j=1

||Φ(rz)ej ||2E .

Thus ||Φ(rz)||2B(D,E) ≤
∑d
j=1 ||Φ(rz)ej ||2E , and hence it follows from (79) that

||Φ||H2(D,B(D,E)) = sup
0<r<1

∫
T
||Φ(rz)||2B(D,E)dm(z)

≤ sup
0<r<1

∫
T

d∑
j=1

||Φ(rz)ej ||2Edm(z)

≤
d∑
j=1

||ϕj ||2H2(D,E) <∞,

which implies Φ ∈ H2(D,B(D,E)). This completes the proof.

Remark A.5. Theorem A.4 may fail if the condition “dimD < ∞ is dropped. For
example, if Φ is defined on the unit disk D by

Φ(ζ) :=
[
ζ ζ2 ζ3 · · ·

]
: ℓ2 → C (ζ ∈ D),
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then Φ(ζ) is a bounded linear operator for each ζ ∈ D: indeed,

||Φ(ζ)||B(ℓ2,C) = sup
||x||=1

∣∣Φ(ζ)x∣∣
= sup

||x||=1

∣∣∣∣∣
∞∑
n=1

ζnxn

∣∣∣∣∣ (x ≡ (xn) ∈ ℓ2)

= sup
||x||=1

∣∣∣⟨(ζ, ζ2, ζ3, · · · ), (x1, x2, x3, · · · )⟩∣∣∣
=
∣∣∣∣(ζ, ζ2, ζ3, · · · )∣∣∣∣

ℓ2

=
( |ζ|2

1− |ζ|2
) 1

2

.

Moreover, for each x ≡ (xn) ∈ ℓ2,

Φ(ζ)x =

∞∑
n=1

xnζ
n ∈ H2(D,C),

which says that Φ ∈ H2
s (D,B(ℓ2,C)). However, we have Φ /∈ H2(D,B(ℓ2,C)): indeed,

for ζ = rz ∈ D,

||Φ(ζ)||2B(ℓ2,C) = ||Φ(ζ)Φ(ζ)∗||B(ℓ2,C) =
r2

1− r2
,

so that

sup
0<r<1

∫
T
||Φ(rz)||2B(ℓ2,C)dm(z) = sup

0<r<1

∫
T

r2

1− r2
dm(z)

= sup
0<r<1

r2

1− r2

= ∞.

In general, the boundary values of strong H2-functions do not need to be bounded
linear operators (defined almost everywhere on T). Thus we do not guarantee that the
boundary value of a strong H2-function belongs to H2

s (T,B(D,E)). For example, if Φ is
defined on the unit disk D by

Φ(ζ) =
[
1 ζ ζ2 ζ3 · · ·

]
: ℓ2 → C (ζ ∈ D),

then by Remark A.5, Φ is a strong H2-function with values in B(ℓ2,C). However, the
boundary value

Φ(z) =
[
1 z z2 z3 · · ·

]
: ℓ2 → C (z ∈ T)

is not bounded for all z ∈ T because for any z0 ∈ T, if we let

x0 :=
(
1, z0,

z20
2
,
z30
3
, · · ·

)t
∈ ℓ2,

then

Φ(z0)x0 = 1 +
∞∑
n=1

1

n
= ∞,
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which shows that Φ /∈ H2
s (T,B(D,E)).

In spite of it, there are useful relations between the set H2
s (D,B(D,E)) and the set

H2
s (T,B(D,E)). To see this, let Φ ∈ H2

s (T,B(D,E)). Then Φ(z) ∈ B(D,E) for almost
all z ∈ T and Φ(z)x ∈ H2

E for each x ∈ D. We now define a (function-valued with
domain D) function pΦ on the unit disk D by the Poisson integral in the strong sense:

pΦ(reiθ)x := (Φ(·)x ∗ Pr) (eiθ) (x ∈ D)

=

∫ 2π

0

Pr(θ − t)Φ(eit)x dm(t) ∈ E,

where Pr(·) is the Poisson kernel. Then pΦ(ζ)x ∈ H2(D, E). Thus, for all ζ ∈ D, pΦ(ζ)
can be viewed as a function from D into E. A straightforward calculation shows that
pΦ(ζ) is a linear map for each ζ ∈ D. Since pΦ(ζ)x ∈ H2(D, E) is the Poisson integral
of Φ(z)x ∈ H2

E , we will conventionally identify Φ(z)x and pΦ(ζ)x for each x ∈ D. From
this viewpoint, we will also regard Φ ∈ H2

s (T,B(D,E)) as an (linear, but not necessarily
bounded) operator-valued function defined on the unit disk D.

We thus have:

Lemma A.6. The following inclusion holds:

H2
B(D,E) ∪H

∞(B(D,E)) ⊆ H2
s (D,B(D,E)).

Proof. Note that by (77) and (78), H2
B(D,E) ∪H

∞(B(D,E)) ⊆ H2
s (T,B(D,E)). Thus in

view of the preceding remark, it suffices to show Φ(ζ) ∈ B(D,E) for all ζ ∈ D. To see
this we first claim that there exists M > 0 such that

sup
{
||Φ(·)x||L1

E
: x ∈ D with ||x|| = 1

}
< M, (81)

To see this, if Φ ∈ H2
B(D,E), then for all x ∈ D with ||x|| = 1,

||Φ(·)x||L1
E
≤ ||Φ(·)x||L2

E

≤

(∫
T
||Φ(z)||2B(D,E)dm(z)

) 1
2

= ||Φ||L2
B(D,E)

.

If instead Φ ∈ H∞(B(D,E)), then for all x ∈ D with ||x|| = 1,

||Φ(·)x||L1
E
=

∫
T
||Φ(z)x||Edm(z) ≤ ||Φ(z)||∞,

which proves the claim (81). Now, let ζ = reiθ ∈ D and x ∈ D with ||x|| = 1. Then for
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y ∈ E with ||y|| ≤ 1,

∣∣∣⟨Φ(reiθ)x, y⟩
E

∣∣∣ = ∣∣∣∣∣⟨
∫ 2π

0

Pr(θ − t)Φ(eit)xdm(t), y
⟩
E

∣∣∣∣∣
=

∣∣∣∣∣
∫ 2π

0

⟨
Pr(θ − t)Φ(eit)x, y

⟩
E
dm(t)

∣∣∣∣∣ (by (76))

≤ 1 + r

1− r

∫ 2π

0

∣∣⟨Φ(eit)x, y⟩
E

∣∣dm(t),

which implies, by our assumption,

||Φ(ζ)x||E ≤ 1 + r

1− r

∫ 2π

0

∣∣∣∣Φ(eit)x∣∣∣∣
E
dm(t)

=
1 + r

1− r
||Φ(·)x||L1

E

<∞,

which shows that Φ(ζ) ∈ B(D,E) for all ζ ∈ D. Thus we have Φ ∈ H2
s (D,B(D,E)).

We now recall a notion from classical Banach space theory, about regarding a vector
as an operator acting on the scalars. This notion is important as motivation for the study
of strong L2-functions. Let E be a separable complex Hilbert space. For a function
f : T → E, define [f ] : T → B(C, E) by

[f ](z)α := αf(z) (α ∈ C). (82)

If g : T → E is a countable-valued function of the form

g =
∞∑
k=1

xkχσk
(xk ∈ E),

then for each α ∈ C, ( ∞∑
k=1

[xk]χσk

)
α =

∞∑
k=1

αxkχσk
= αg = [g]α,

which implies that [g] is a countable-valued function of the form [g] =
∑∞
k=1[xk]χσk

.

We then have:

Lemma A.7. Let E be a separable complex Hilbert space and 1 ≤ p ≤ ∞. Define
Γ : LpE → LpB(C,E) by

Γ(f)(z) = [f ](z),

where [f ](z) : C → E is given by [f ](z)α := αf(z). Then
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(a) Γ is unitary, and hence LpE
∼= LpB(C,E);

(b) LpB(C,E) = Lps(B(C, E)) for 1 ≤ p <∞;

(c) [̂f ](n) = [f̂(n)] for f ∈ LpE and n ∈ Z.

In particular, Hp
E
∼= Hp

B(C,E) = Hp
s (B(C, E)) for 1 ≤ p <∞.

Proof. (a) Let f ∈ LpE (1 ≤ p ≤ ∞) be arbitrary. We first show that [f ] ∈ LpB(C,E).

Since f is strongly measurable, there exist countable-valued functions fn such that f(z) =
limn fn(z) for almost all z ∈ T. Observe that for almost all z ∈ T,

||[f ](z)||B(C,E) = sup|α|=1||[f ](z)α||E = ||f(z)||E .

Thus we have that∣∣∣∣[fn](z)− [f ](z)
∣∣∣∣
B(C,E)

=
∣∣∣∣fn(z)− f(z)

∣∣∣∣
E
→ 0 as n→ ∞,

which implies that [f ] is strongly measurable and ||[f ]||Lp
B(C,E)

= ||f ||Lp
E
. Thus Γ is an

isometry. For h ∈ LpB(C,E), let g(z) := h(z)1 ∈ LpE . Then for all α ∈ C, we have

Γ(g)(z)α = αh(z)1 = h(z)α,

which implies that Γ is a surjection from LpE onto LpB(C,E). Thus Γ is unitary, so that

LpE
∼= LpB(C,E). This proves (a).

(b) Suppose h ∈ Lps(B(C, E)) (1 ≤ p < ∞). If g(z) := h(z)1 ∈ LpE , then h = [g] ∈
LpB(C,E). The converse is clear.

(c) Let f ∈ LpE . Then for all α ∈ C and n ∈ Z,

[̂f ](n)α =

∫
T
zn[f ](z)αdm = α

∫
T
znf(z)dm = αf̂(n) = [f̂(n)]α,

which gives (c).
The last assertion follows at once from (b) and (c).

For X a closed subspace of D, PX denotes the orthogonal projection from D onto X .
Then we have:

Lemma A.8. If dimD <∞, then

(a) L2
s(T,B(D,E)) = L2

B(D,E);

(b) H2
s (T,B(D,E)) = H2

B(D,E),

where the equalities are set-theoretic.
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Proof. (a) Let d := dimD < ∞. It follows from (77) that L2
B(D,E) ⊆ L2

s(B(D,E)).

For the reverse inclusion, let {ej}dj=1 be an orthonormal basis of D. Suppose Φ ∈
L2
s(B(D,E)). Then

ϕj(z) ≡ Φ(z)ej ∈ L2
E (j = 1, 2, · · · , d).

It thus follows from Lemma A.7 that [ϕj ] ∈ L2
B(C,E). For j = 1, 2, · · · , d, define Φj : T →

B(D,E) by

Φj := [ϕj ]PDj

(
C ∼= Dj :=

∨
ej

)
.

Since [ϕj ] is strongly measurable, it is easy to show that Φj is strongly measurable for
each j = 1, 2, · · · . It follows from Lemma A.7 that

||Φj ||2L2
B(D,E)

=

∫
T

∣∣∣∣Φj(z)∣∣∣∣2B(D,E)
dm(z)

=

∫
T

∣∣∣∣[ϕj ](z)∣∣∣∣2B(C,E)
dm(z)

=
∣∣∣∣[ϕj ]∣∣∣∣2L2

B(C,E)

= ||ϕj ||2L2
E

<∞.

Thus Φj ∈ L2
B(D,E), and hence Φ =

∑d
j=1 Φj ∈ L2

B(D,E). This proves (a).

(b) This follows from Lemma A.2 and (a).

To proceed, we define a “boundary function” bΦ for each function Φ ∈ H2
s (D,B(D,E))

with dim D <∞. In this case, we may assume that D = Cd.
Let Φ ∈ H2

s (D,B(D,E)) and {ej}dj=1 be the canonical basis for Cd. Then ϕj(ζ) ≡
Φ(ζ)ej ∈ H2(D, E). Thus we have

ϕj(z) ≡ (bϕj)(z) := lim
rz→z

ϕj(rz) ∈ H2
E . (83)

It follows from Lemma A.7 that for each j = 1, 2, 3, · · · , d,

[ϕj ] ∈ H2
B(C,E) = H2

s (T,B(C, E)),

where [ϕj ](z)α := αϕj(z) for all α ∈ C. Note that there exists a subset σ ⊂ T with
m(σ) = 0 such that

ϕj(z) ∈ E for each z ∈ T0 := T \ σ. (84)

Define a function b on H2
s (D,B(D,E)) by

(bΦ)(z) :=
[
[ϕ1](z), [ϕ2](z), · · · , [ϕd](z)

]
(z ∈ T0). (85)

Then we have that for all x ∈ D,

(bΦ)(z)x = lim
rz→z

Φ(rz)x ∈ E (z ∈ T0). (86)



6 SOME UNSOLVED PROBLEMS 67

A straightforward calculation shows that (bΦ)(z) is a linear mapping from D into E for
almost all z ∈ T.

We thus have:

Theorem A.9. If dimD < ∞, then the function b defined by (85) is a linear bijection
from H2

s (D,B(D,E)) onto H2
s (T,B(D,E)).

Proof. Let d := dimD < ∞. Then we may assume that D = Cd. Let {ej}dj=1 be the

canonical basis for Cd and T0 be defined as the above.

(1) b is well-defined: Let Φ ∈ H2
s (D,B(Cd, E)). Then it follows from (84) that for

each z0 ∈ T0,

||(bΦ)(z0)||B(Cd,E) ≤
d∑

n=1

||ϕj(z0)||E <∞

which implies that (bΦ)(z0) is bounded for each z0 ∈ T0. If x ≡ (x1, x2, · · · , xd)t ∈ Cd,
then

(bΦ)(z)x =
d∑

n=1

xjϕj(z) ∈ H2
E ,

which implies that bΦ ∈ H2
s (B(Cd, E)), and hence b is well-defined.

(2) b is linear: Immediate from a direct calculation.

(3) b is one-one: Let Φ,Ψ ∈ H2
s (D,B(Cd, E)). If bΦ = bΨ, then it follows that for

each x ∈ Cd and rz ∈ D,

Φ(rz)x = ((bΦ)x ∗ Pr)(z)

=

∫ 2π

0

Pr(θ − t)(bΦ)(eit)xdm(t)

=

∫ 2π

0

Pr(θ − t)(bΨ)(eit)xdm(t)

= Ψ(rz)x (z = eiθ),

which gives the result.

(4) b is onto: Let A ∈ H2
s (T,B(Cd, E)). Then A(z)ej ∈ H2

E for all j = 1, 2, · · · , d.
For each j = 1, 2, · · · , d, let

ϕj(rz) := (Aej ∗ Pr)(z) ∈ H2(D, E)

and define
Φ(ζ) := [ϕ1(ζ), ϕ2(ζ), · · · , ϕd(ζ)] (ζ := rz).
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Then Φ ∈ H2
s (D,B(Cd, E)). It follows from (86) that for all x = (x1, x2, · · · , xd)t ∈ Cd

and for almost all z ∈ T,
(bΦ)(z)x = lim

rz→z
Φ(rz)x

= lim
rz→z

d∑
j=1

xjϕj(rz)

=
d∑
j=1

xjA(z)ej

= A(z)x,

which implies that b is onto. This completes the proof.

We thus have:

Corollary A.10. If dimD < ∞, then the function b defined by (85) is an isometric
bijection from H2(D,B(D,E)) onto H2

B(D,E).

Proof. By Theorem A.9 together with Theorem A.4 and Lemma A.8, the function b
defined by (85) is a linear bijection from H2(D,B(D,E)) onto H2

B(D,E). In view of the

Banach space-valued version of the usual Hardy space theory (cf. [Ni2, Theorem 3.11.6]),
it suffices to show that

Φ(reit) = (bΦ ∗ Pr)(eit). (87)

Indeed, if x ∈ D, then

(bΦ ∗ Pr)(eit)x =

(∫ 2π

0

Pr(θ − t)(bΦ)(eit)dm(t)

)
x

=

∫ 2π

0

Pr(θ − t)(bΦ)(eit)xdm(t) (by Lemma A.2)

= Φ(reit)x,

which gives (87).

According to the convention of the usual Hardy space theory, we will identify bΦ with
Φ ∈ H2(D,B(D,E)). In this sense, we eventually have:

Corollary A.11. If dim D <∞, then

H2
s (D,B(D,E)) = H2(D,B(D,E)) = H2

B(D,E) = H2
s (T,B(D,E)),

where the first and last equalities are set-theoretic, while the second equality establishes
an isometric isomorphism.

Proof. This follows from Theorem A.4, Lemma A.8, and Corollary A.10.
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Lemma A.12. If Φ ∈ L∞(B(D,E)), then Φ∗ ∈ L∞(B(E,D)). In this case,

Φ̂∗(−n) = ̂̃
Φ(n) = Φ̂(n)∗ (n ∈ Z). (88)

In particular, Φ ∈ H∞(B(D,E)) if and only if Φ̃ ∈ H∞(B(E,D)).

Proof. Suppose Φ ∈ L∞(B(D,E)). Then

ess supz∈T||Φ∗(z)|| = ess supz∈T||Φ(z)|| <∞,

which together with Lemma A.1 implies Φ∗ ∈ L∞(B(E,D)). The first equality of the
assertion (88) comes from the definition. For the second equality, observe that for each
x ∈ D, y ∈ E and n ∈ Z,⟨

Φ̂(n)x, y
⟩
=

⟨∫
T
znΦ(z)xdm(z), y

⟩
=

∫
T

⟨
znΦ(z)x, y

⟩
dm(z) (by (76))

=

∫
T

⟨
x, znΦ̃(z)y

⟩
dm(z)

=
⟨
x,
̂̃
Φ(n)y

⟩
.

Lemma A.13. Let 1 ≤ p <∞. If Φ ∈ L∞(B(D,E)), then ΦLps(B(E′, D)) ⊆ Lps(B(E′, E)).
Also, if Φ ∈ H∞(B(D,E)), then ΦH2

s (B(E′, D)) ⊆ H2
s (B(E′, E)).

Proof. Suppose that Φ ∈ L∞(B(D,E)) and A ∈ Lps(B(E′, D)). Let x ∈ E′ be arbitrary.
Then we have A(z)x ∈ LpD. Let {dk}k≥1 be an orthonormal basis for D. Thus we may
write

A(z)x =
∑
k≥1

⟨A(z)x, dk⟩dk for almost all z ∈ T. (89)

Thus it follows that for all y ∈ E,⟨
Φ(z)A(z)x, y

⟩
=
∑
k≥1

⟨
A(z)x, dk

⟩⟨
Φ(z)dk, y

⟩
,

which implies that ΦA is WOT measurable. On the other hand, since Φ ∈ L∞(B(D,E)),
it follows that∫

T
||(ΦA)(z)x||pEdm(z) ≤ ||Φ||p∞

∫
T
||A(z)x||pDdm(z) <∞ (x ∈ E′),

which implies that ΦA ∈ Lps(B(E′, E)). This proves the first assertion. For the second
assertion, suppose Φ ∈ H∞(B(D,E)) and A ∈ H2

s (B(E′, D)). Then ΦA ∈ L2
s(B(E′, E)).

Assume to the contrary that ΦA /∈ H2
s (B(E′, E)). Thus, there exists n0 > 0 such that

Φ̂A(−n0) ̸= 0. Thus for some x0 ∈ E′,∫
T
zn0Φ(z)A(z)x0dm(z) ̸= 0. (90)
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Then by (76), there exists a nonzero y0 ∈ E such that

0 ̸=
⟨∫

T
zn0Φ(z)A(z)x0dm(z), y0

⟩
=

∫
T

⟨
A(z)x0, z

n0Φ∗(z)y0
⟩
dm(z). (91)

On the other hand, since Φ ∈ H∞(B(D,E)), it follows from Lemma A.12 that Φ̂∗(n0) =

Φ̂(−n0)∗ = 0. Thus it follows from (76) that

0 =
⟨
Φ̂∗(n0)y0, A(z)x0

⟩
=

∫
T

⟨
zn0Φ∗(z)y0, A(z)x0

⟩
dm(z),

a contradiction.

Corollary A.14. Let 1 ≤ p < ∞. If Φ ∈ L∞(B(D,E)), then ΦLpD ⊆ LpE . Also, if
Φ ∈ H∞(B(D,E)), then ΦH2

D ⊆ H2
E .

Proof. Suppose that Φ ∈ L∞(B(D,E)). For f ∈ LPD, we can see that [Φf ] = Φ[f ]. The
result thus follows from Lemma A.7 and Lemma A.13.

We then have:

Corollary A.15. Let ∆ be an inner function with values in B(D,E). Then f ∈ H(∆) if
and only if f ∈ H2

E and ∆∗f ∈ L2
D ⊖H2

D.

Proof. Let f ∈ H2
E . By Lemma A.12 and Corollary A.14, ∆∗f ∈ L2

D. Then f ∈ H(∆) if
and only if

⟨
f,∆g

⟩
= 0 for all g ∈ H2

D if and only if
⟨
∆∗f, g

⟩
= 0 for all g ∈ H2

D, which
gives the result.

Appendix B: Spectral multiplicity of model operators

The theory of spectral multiplicity for C0-operators has been well developed in terms of
their characteristic functions (cf. [Ni1, Appendix 1]). However this theory is not applied
directly to C0 •-operators, in which cases their characteristic functions need not be two-
sided inner. In this appendix we show that if the characteristic function of a C0 •-operator
T has a finite-dimensional domain and a meromorphic pseudo-continuation of bounded
type in De, then its spectral multiplicity can be computed by that of the C0-operator
induced by T . The main theorem of this appendix is as follows: Given an inner function
∆ with values in B(E′, E), with dim E′ <∞, let T := S∗

E |H(∆). If ∆ has a meromorphic
pseudo-continuation of bounded type in De, then

µT = µTs , (92)

where Ts is a C0-contraction of the form Ts := S∗
E′ |H(∆s) with ∆s := (̃∆̃)i. Hence in

particular, µT ≤ dim E′. (Here (·)i means the inner part of the inner-outer factorization
of the given H∞-function.) (see Theorem B.8).
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In Theorem B.8, we note that ∆s ≡ (̃∆̃)i is a two-sided inner function (see Lemma
B.5) (and hence, Ts belongs to the class C0). Therefore (92) shows that the spectral
multiplicity of a C0 •-operator can be determined by the induced C0-operator if its char-
acteristic function has a meromorphic pseudo-continuation of bounded type in De. On
the other hand, it was known (cf. [Ni1, p. 41]) that if T := S∗

E |H(∆) for an inner function
∆ with values in B(E′, E), with dim E′ < dim E, then

µT ≤ dim E′ + 1; (93)

if further dim E′ = dim E <∞, then

µT ≤ dim E′. (94)

Thus, the equation (92) shows that (94) still holds without the assumption dim E′ =
dim E.

We first observe:

Lemma B.1. If Φ ∈ L2
B(D,E) and f ∈ H∞

D , then Φf ∈ L2
E .

Proof. Suppose Φ ∈ L2
B(D,E) and f ∈ H∞

D . Since f is strongly measurable, there exist

countable valued functions fn =
∑∞
k=1 d

(n)
k χ

σ
(n)
k

such that f(z) = limn fn(z) for almost

all z ∈ T. For all e ∈ E and n = 1, 2, 3, · · · ,

⟨
Φ(z)fn(z), e

⟩
E
=

∞∑
k=1

χ
σ
(n)
k

(z) ·
⟨
Φ(z)d

(n)
k , e

⟩
D
. (95)

But since Φ is WOT measurable, by (95), Φfn is weakly measurable and in turn, Φf :
T → E is weakly measurable, and hence it is strongly measurable. Observe that∫

T
||Φ(z)f(z)||2Edm(z) ≤ ||f ||∞

∫
T
||Φ(z)||2dm(z) <∞,

which implies that Φf ∈ L2
E . This completes the proof.

Lemma B.2. Let Φ ∈ L2
B(D,E) and let A : H2

D → H2
E be a densely defined operator,

with domain H∞
D ⊂ H2

D, defined by

Af := JP−(Φf) (f ∈ H∞
D ).

Then
kerA∗ = kerH∗

Φ.

Proof. Let Φ ∈ L2
B(D,E) ⊆ L2

s(B(D,E)). Since the domain of HΦ is a subset of the
domain of A, it follows that the domain of A∗ is a subset of the domain of H∗

Φ, so that
kerA∗ ⊆ kerH∗

Φ. For the reverse inclusion, suppose g ∈ kerH∗
Φ. Then⟨

HΦp, g
⟩
L2

E

= 0 for all p ∈ PD. (96)
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Let f ∈ H∞
D be arbitrary. Then we may write

f(z) =
∞∑
k=0

akz
k (ak ∈ D).

Let

pn(z) :=
n∑
k=0

akz
k ∈ PD.

Then it follows from (96) that

0 = lim
n→∞

⟨
HΦpn, g

⟩
L2

E

= lim
n→∞

⟨
pn, Φ

∗Jg
⟩
L2

D

=
⟨
Φf, Jg

⟩
L2

E

=
⟨
Af, g

⟩
L2

E

,

which implies that g ∈ kerA∗, so that kerH∗
Φ ⊆ kerA∗. This completes the proof.

Corollary B.3. If Φ ∈ H2
B(D,E), then

E∗
{Φ} = cl

{
JP−

(
zΦ̆h

)
: h ∈ H∞

D

}
.

Proof. Define A : H2
D → H2

E by Af := JP−(zΦ̆h) (h ∈ H∞
D ). By Lemma B.2, kerH∗

zΦ̆
=

kerA∗. By Lemma 2.9, we have

E∗
{Φ} = cl ranHzΦ̆ = cl ranA = cl

{
JP−

(
zΦ̆h

)
: h ∈ H∞

D

}
.

We thus have:

Lemma B.4. Suppose ∆ is a two-sided inner function and has a meromorphic pseudo-
continuation of bounded type in De. Let F ≡ {f1, f2, · · · , fp} ⊆ H(∆) . Then

E∗
F =

∨{
P+(h̆jfj) : hj ∈ H∞ ∩H(ω̃∆), j = 1, 2, · · · p

}
,

where ω∆ is the pseudo-characteristic scalar inner function of ∆.

Proof. Suppose ∆ is a two-sided inner function with values in B(E) and has a meromor-
phic pseudo-continuation of bounded type in De. Let F ≡ {f1, f2, · · · , fp} ⊆ H(∆).
Write [F ] :=

[
[f1], [f2], · · · , [fp]

]
and θ := ω∆. Then, by Lemma A.7, [fj ] ∈ H2

B(C,E) for

each j = 1, 2, · · · , p, so that F ∈ H2
B(Cp,E). We first claim that

E∗
F = cl

{
JP−(z ˘[F ]h) : h ∈ H∞

Cp ∩H(θ̃Ip)
}
. (97)

By Corollary B.3 we have

E∗
F = cl

{
JP−(z ˘[F ]h) : h ∈ H∞

Cp

}
⊇ cl

{
JP−(z ˘[F ]h) : h ∈ H∞

Cp ∩H(θ̃Ip)
}
.
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For the reverse inclusion, it suffices to show that

P−(z ˘[F ]θ̃h) = 0 for all h ∈ H∞
Cp . (98)

By Lemma 2.28, we may write

∆ = θA∗ for some A ∈ H∞(B(E)).

Since ∆ is two-sided inner, it follows that IE = ∆∆∗ = A∗A, so that θH2
E = ∆AH2

E ⊆
∆H2

E . We thus have
H(∆) ⊆ H(θIE).

Thus fj ∈ H(θIE) (j = 1, · · · , p). By Corollary A.15, θfj ∈ L2
E ⊖ H2

E . Hence for all

h ∈ H∞
Cp , by Lemma B.1, we have θ[F ]h̆ ∈ L2

E ⊖ H2
E , so that z ˘[F ]θ̃h ∈ H2

E , and hence

P−(z ˘[F ]θ̃h) = 0, which gives (98). This proves (97). Write h = (h1, h2, · · ·hp)t ∈
H∞

Cp ∩ H(θ̃Ip), and hence hj ∈ H∞ ∩H(θ̃). Thus it follows from (97) that

E∗
F = cl

{
JP−(z ˘[F ]h) : h ∈ H∞

Cp ∩H(θ̃Ip)
}

=
∨{

JP−(z ˘[fj ]hj) : hj ∈ H∞ ∩H(θ̃), j = 1, 2, · · · p
}

=
∨{

P+(h̆jfj) : hj ∈ H∞ ∩H(θ̃), j = 1, 2, · · · p
}
.

This completes the proof.

Lemma B.5. Let ∆ be an inner function with values in B(E′, E), with dimE′ <∞. If

∆̃ = (∆̃)i(∆̃)e is the inner-outer factorization of ∆̃, then we have:

(a) (∆̃)i is a two-sided inner function with values in B(E′);

(b) (̃∆̃)e is an inner function with values in B(E′, E).

Proof. Let dimE′ = r. Then the inner part (∆̃)i is an r × p inner matrix function for
some p ≤ r. Thus we have

p = Rank (∆̃)i ≥ Rank ∆̃ = Rank∆ = r,

which proves (a). For (b), observe ∆ = (̃∆̃)e(̃∆̃)i. Since ∆ is inner, we have that

Ir = ∆∗∆ = (̃∆̃)i
∗
(̃∆̃)e

∗
(̃∆̃)e(̃∆̃)i.

But since (∆̃)i is two-sided inner, so is (̃∆̃)i. Thus it follows that

(̃∆̃)e
∗
(̃∆̃)e = (̃∆̃)i(̃∆̃)i

∗
= Ir,

which implies that (̃∆̃)e is an inner function. This proves (b).
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Lemma B.6. Suppose ∆ is an inner function with values in B(E′, E)), with dimE′ <∞
and has a meromorphic pseudo-continuation of bounded type in De. Write

∆1 := (̃∆̃)e.

Then ∆1 has a meromorphic pseudo-continuation of bounded type in De.

Proof. Let dimE′ = r and let ∆̃ = (∆̃)i(∆̃)e be the inner-outer factorization of ∆̃. Then

∆ = (̃∆̃)e(̃∆̃)i ≡ ∆1∆s

(
where ∆1 ≡ (̃∆̃)e and ∆s ≡ (̃∆̃)i

)
.

By Lemma B.5, ∆s ∈ H∞
Mr

is square inner and ∆1 ∈ H∞(B(Cr, E)) is inner. Since ∆
has a meromorphic pseudo-continuation of bounded type in De, it follows from Lemma
2.28 that there exists a scalar inner function θ such that θH2

E ⊆ kerH∆∗ = kerH∆∗
s∆

∗
1
.

Thus we have
∆∗

s∆
∗
1θH

2
E ⊆ H2

Cr . (99)

Since ∆s is square inner, it follows from (99) that ∆∗
1θH

2
E ⊆ ∆sH

2
Cr ⊆ H2

Cr , so that
θH2

E ⊆ kerH∆∗
1
, which implies, by Lemma 2.28, that ∆1 has a meromorphic pseudo-

continuation of bounded type in De. This completes the proof.

Lemma B.7. Let ∆1 be an inner function with values in B(D,E) and ∆2 be a two-sided
inner function with values in B(D). Then,

H(∆1∆2) = H(∆1)
⊕

∆1H(∆2).

Proof. This follows from a straightforward calculation together with Corollary A.14 and
Corollary A.15.

We are ready for:

Theorem B.8. (The spectral multiplicity of model operators) Given an inner function
∆ with values in B(E′, E), with dim E′ <∞, let T := S∗

E |H(∆). If ∆ has a meromorphic
pseudo-continuation of bounded type in De, then

µT = µTs , (100)

where Ts is a C0-contraction of the form Ts := S∗
E′ |H(∆s) with ∆s := (̃∆̃)i. Hence in

particular, µT ≤ dim E′.

Proof. Let T := S∗
E |H(∆). Suppose ∆ has a meromorphic pseudo-continuation of bounded

type in De. Let ∆s ≡ (̃∆̃)i and write

Ts := S∗
E′ |H(∆s).

If ∆ is two-sided inner, then ∆ = ∆s, so that µT = µTs . Suppose that ∆ is not two-
sided inner. Without loss of generality, we may assume that E′ = Cr. By Lemma B.5,
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∆s ∈ H∞
Mr

is square inner. Thus by (24) and Proposition 2.34, we have that Ts ∈ C0.
We will prove that

µT = µTs . (101)

Write

∆1 ≡ (̃∆̃)e.

Then it follows from Lemma B.5 and Lemma B.6 that ∆1 is an inner function having a
meromorphic pseudo-continuation of bounded type in De. Let

θ := ω∆1ω∆s . (102)

Let p := µTs . In view of (94), we have p ≤ r. Then there exists a set F ≡ {f1, f2, · · · , fp} ⊆
H(∆s) such that E∗

F = H(∆s). Since by (102), H(ω̃∆s) ⊆ H(θ̃), it follows from Lemma
B.4 that

H(∆s) =
∨{

P+(h̆jfj) : hj ∈ H∞ ∩H(θ̃), j = 1, 2, · · · p
}
. (103)

Write
Ω := (∆1)c ∈ H∞(E′′, E) (E′′ is a subspace of E).

Since ∆̃1 is outer, it follows from Lemma 5.14 that ∆1 = Ωc. Choose a cyclic vector g of
S∗
E′′ . Then it follows from Lemma 5.5, Lemma 5.7 and Lemma B.4 that

H(∆1) = E∗
Ωg = cl

{
P+

(
h̆Ωg

)
: h ∈ H∞}. (104)

Let
γ1 := θΩg +∆1f1 and γj := ∆1fj (j = 2, 3, · · · , p).

Now we will show that

H(∆) =
∨{

P+(η̆jγj) : ηj ∈ H∞, j = 1, 2, · · · p
}
. (105)

Let ξ ∈ H(∆) and ϵ > 0 be arbitrary. Then, by Lemma B.7, we may write

ξ = ξ1 +∆1ξ2
(
ξ1 ∈ H(∆1), ξ2 ∈ H(∆s)

)
.

By (103), there exist hj ∈ H∞ ∩H(θ̃) (j = 1, 2, · · · , p) such that∣∣∣∣∣
∣∣∣∣∣

p∑
j=1

P+(h̆jfj)− ξ2

∣∣∣∣∣
∣∣∣∣∣
L2

Cr

<
ϵ

2
. (106)

For each j = 1, 2, · · · , p, observe that

P+(h̆j∆1fj) = P+(∆1h̆jfj)

= ∆1P+(h̆jfj) + P+

(
∆1P−(h̆jfj)

)
,

(107)

and
∆1P+(h̆jfj) ∈ ∆1H(∆s) and P+

(
∆1P−(h̆jfj)

)
∈ H(∆1). (108)



6 SOME UNSOLVED PROBLEMS 76

Since ker(θΩ)∗ = kerΩ∗, we have (θΩ)c = Ωc. Thus by (104), P+(h̆1θΩg) belongs to
H(∆1). Thus it follows from (108) that

ξ0 ≡ ξ1 −
p∑
j=1

P+

(
∆1P−(h̆jfj)

)
− P+(h̆1θΩg) ∈ H(∆1).

Thus by (104), there exists h0 ∈ H∞ such that∣∣∣∣∣∣P+

(
h̆0Ωg

)
−ξ0

∣∣∣∣∣∣
L2

E

<
ϵ

2
. (109)

Let
η1 := θ̃h0 + h1 and ηj := hj (j = 2, 3, · · · , p).

It follows from Lemma 2.28 that

∆s = ω∆sA
∗ (A ∈ H∞

Mr
).

It thus follows that ω∆sf1 = A∗∆∗
sf1 ∈ L2

Cr ⊖H2
Cr . Thus we have

θh̆0∆1f1 = h̆0ω∆1∆1ω∆sf1 ∈ L2
E ⊖H2

E ,

which implies P+(θh̆0∆1f1) = 0. Therefore,

p∑
j=1

P+(η̆jγj) = P+

(
(θh̆0 + h̆1)(θΩg +∆1f1)

)
+

p∑
j=2

P+(h̆j∆1fj)

= P+

(
h̆0Ωg

)
+ P+(h̆1θΩg) +

p∑
j=1

P+(h̆j∆1fj).

Since ∆1 is inner, it follows from (106), (107) and (109) that∣∣∣∣∣
∣∣∣∣∣
p∑
j=1

P+(η̆jγj)− ξ

∣∣∣∣∣
∣∣∣∣∣
L2

E

≤

∣∣∣∣∣
∣∣∣∣∣P+

(
h̆0Ωg

)
−ξ0

∣∣∣∣∣
∣∣∣∣∣
L2

E

+

∣∣∣∣∣
∣∣∣∣∣

p∑
j=1

∆1P+(h̆jfj)−∆1ξ2

∣∣∣∣∣
∣∣∣∣∣
L2

E

< ϵ.

This proves (105). Let Γ := {γ1, γ2, · · · , γp}. It thus follows from Lemma B.4 and (105)
that

E∗
Γ =

∨{
P+(η̆jγj) : ηj ∈ H∞, j = 1, 2, · · · p

}
= H(∆),

which implies that µT ≤ µTs . For the reverse inequality, let q ≡ µT < ∞. Then there
exists a set F ≡ {f1, f2, · · · , fq} ⊆ H(∆) such that E∗

F = H(∆). For each j = 1, 2 · · · q,
by Lemma B.7, we can write

fj = gj +∆1γj (gj ∈ H(∆1), γj ∈ H(∆s)).

Now we will show that

E∗
Γ = H(∆s) (Γ ≡ {γj : j = 1, 2, · · · , q}). (110)
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Clearly, E∗
Γ ⊆ H(∆s). On the other hand, since E∗

F = H(∆) and H(∆1) is an invariant
subspace for S∗

E , it follows from Lemma B.4, (107) and (108) that

∆1H(∆s) =
∨{

P∆1H(∆s)

(
S∗n
E ∆1γj

)
: j = 1, 2, · · · q, n = 0, 1, 2 · · ·

}
=
∨{

P∆1H(∆s)(h̆j∆1γj) : hj ∈ H∞, j = 1, 2, · · · p
}

=
∨{

∆1P+(h̆jγj) : hj ∈ H∞, j = 1, 2, · · · p
}

= ∆1E
∗
Γ.

This proves (110). Thus we have that µTs ≤ q = µT . This proves (101). The last
assertion follows at once from (94) since ∆s is square-inner. This completes the proof.

Corollary B.9. Suppose ∆ is an n× r inner matrix function whose flip ∆̆ is of bounded
type. If T := S∗

E |H(∆), then µT ≤ r.

Proof. It follows from Corollary 2.32 and Theorem B.8.

On the other hand, we were unable to find an example showing that Theorem B.8
may fail if the condition “∆ has a meromorphic pseudo-continuation of bounded type in
De” is dropped. Thus we would like to pose:

Problem B.10. Find an example of the operator T ≡ S∗
E |H(∆) for an inner function ∆

with values in B(E′, E), with dim E′ <∞, satisfying µT = dim E′ + 1.

Appendix C: Miscellanea

In this appendix, by using the preceding results, we analyze left and right coprimeness,
the model operator, and an interpolation problem for operator-valued functions.

C.1. Left and right coprime-ness. In this subsection we consider conditions for the
equivalence of left coprime-ness and right coprime-ness.

If δ is a scalar inner function, a function A ∈ H∞(B(E)) is said to have a scalar inner
multiple δ if there exists a function G ∈ H∞(B(E)) such that

GA = AG = δIE .

We write mul (A) for the set of all scalar inner multiples of A, and we define

mA := g.c.d.
{
δ : δ ∈ mul (A)

}
. (111)

We note that if ∆ is a two-sided inner function then by Lemma 2.28 and (55), the following
are equivalent:

(a) ∆ has a meromorphic pseudo-continuation of bounded type in De;
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(b) ∆ has a scalar inner multiple.

Thus if ∆ ∈ H∞(B(E)) is two-sided inner and has a scalar multiple, then m∆ defined
in (111) coincides with the characteristic function of ∆. This justifies the use of the
notation mA for (111).

On the other hand, we may ask:

Question C.1. If A ∈ H∞(B(D,E)) has a scalar inner multiple, does it follow that
mA ∈ mul (A) ?

If A is two-sided inner with values in B(E), then the answer to Question C.1 is
affirmative: indeed, by (55),

mAH
2
E =

∨{
δH2

E : δ ∈ mul (A)
}
⊆ kerHA∗ ,

which implies, again by (55), that

mA ∈ mul (A). (112)

Lemma C.2. If A ∈ H∞(B(E)) is an outer function having a scalar inner multiple, then
1 ∈ mul (A), i.e., A is invertible in H∞(B(E)).

Proof. Suppose that A ∈ H∞(B(E)) is an outer function having a scalar inner multiple
δ. Then

AG = GA = δIE for some G ∈ H∞(B(E)). (113)

We claim that
AH2

E = clAH2
E . (114)

To see this, suppose f ∈ clAH2
E . Then there exists a sequence (gn) in H2

E such that
||Agn − f ||L2

E
−→ 0. Thus we have that

||GAgn −Gf ||L2
E
≤ ||G||∞||Agn − f ||L2

E
−→ 0. (115)

It thus follows from (113) and (115) that

||gn − δGf ||L2
E
= ||δgn −Gf ||L2

E
= ||GAgn −Gf ||L2

E
−→ 0

But since H2
E is a closed subspace of L2

E , we have g ≡ δGf ∈ H2
E . Since A ∈ H∞(B(E)),

it follows that
||Agn −Ag||L2

E
≤ ||A||∞||gn − g||L2

E
−→ 0,

which implies that f = Ag ∈ AH2
E . This proves (114). Since A is an outer function, it

follows from (114) that
AH2

E = clAH2
E ⊇ clAPE = H2

E ,

so that
AH2

E = H2
E . (116)
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We thus have that
H2
E = (δG)AH2

E = δGH2
E ,

which implies that G1 := δG ∈ H∞(B(E)). It thus follows from (113) that

AG1 = G1A = IE ,

which gives the result.

We are tempted to guess that (116) holds for every outer function A in H∞(B(E)).
However, the following example shows that this is not such a case.

Example C.3. Let A := diag( 1n ) ∈ H∞(B(ℓ2)). Then (1, 12 ,
1
3 , · · · )

t /∈ AH2
ℓ2 , so that

AH2
ℓ2 ̸= H2

ℓ2 .

It is easy to show that A is an outer function.

Lemma C.4. If A ∈ H∞(B(E)) has a scalar inner multiple, then

(a) Ai is two-sided inner and has a scalar inner multiple with mul (A) ⊆ mul (Ai);

(b) 1 ∈ mul (Ae).

Proof. Suppose that A ∈ H∞(B(E)) has a scalar inner multiple δ, i.e., δ ∈ mul (A).
Then there exist a function G ∈ H∞(B(E)) such that

AG = GA = δIE . (117)

Thus A(z) and G(z) are invertible for almost all z ∈ T. Write

A = AiAe (inner-outer factorization).

Since A(z) is invertible for almost all z ∈ T, Ai(z) is onto, so that Ai(z) is an unitary
operator for almost all z ∈ T. We thus have that

Ai(AeG) = AG = δIE = (AeG)Ai,

which implies that Ai has a scalar inner multiple δ, i.e., δ ∈ mul (Ai). This proves (a).
Also observe that

(GAi)Ae = δIE = Ae(GAi),

which implies that Ae has a scalar inner multiple. Thus by Lemma C.2, 1 ∈ mul (Ae).
This proves (b).

Lemma C.5. If A ∈ H∞(B(E)) has a scalar inner multiple, then

mul (A) = mul (Ai).
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Proof. In view of Lemma C.4 (a), it suffices to show that mul (Ai) ⊆ mul (A). To see
this, let δ ∈ mul (Ai). Then

AiG = GAi = δIE for some G ∈ H∞(B(E)).

Put G0 := (Ae)−1G. Then by Lemma C.4, G0 ∈ H∞(B(E)) and

AG0 = AiAe(Ae)−1G = δIE .

But since A has a scalar inner multiple, A(z) is invertible for almost all z ∈ T. Thus we
have δ ∈ mul (A). This proves mul (Ai) ⊆ mul (A). This completes the proof.

The following corollary gives an affirmative answer to Question C.1.

Corollary C.6. If A ∈ H∞(B(E)) has a scalar inner multiple then

mA ∈ mul (A).

Proof. By Lemma C.4, Ai is two-sided inner. By (112), mAi ∈ mul (Ai). Thus it follows
from Lemma C.5 that

mA = mAi ∈ mul (Ai) = mul (A).

The following lemma is elementary.

Lemma C.7. Let E be a complex Hilbert space. If θ and δ are scalar inner functions,
then

left-g.c.d. {θIE , δIE} = g.c.d. {θ, δ}IE .

Proof. Let
Ω := left-g.c.d. {θIE , δIE} and ω := g.c.d. {θ, δ}.

Then we can write
θ = ωθ1 and δ = ωδ1,

where θ1 and δ1 are coprime inner functions. Thus we have

ΩH2
E = θH2

E

∨
δH2

E = ωθ1H
2
E

∨
ωδ1H

2
E = ω

(
θ1H

2
E

∨
δ1H

2
E

)
= ωH2

E ,

which implies that Ω = ωIE . This completes the proof.

Lemma C.8. Let A ∈ H∞(B(E)) have a scalar inner multiple and θ be a scalar inner
function. Suppose that mA is not an inner divisor of θ. If δ0 ∈ mul (A) is such that A
and ωIE ≡ g.c.d.{θ, δ0}IE are left coprime, then δ0ω ∈ mul (A).
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Proof. Let A ∈ H∞(B(E)) have a scalar inner multiple and θ be a scalar inner function.
Suppose that mA is not an inner divisor of θ. Then we should have 1 /∈ mul (A). Thus,
by Lemma C.2, A is not an outer function, so that Ai is not a unitary operator. Let
δ0 ∈ mul (A) be such that A and ωIE ≡ g.c.d.{θ, δ0}IE are left coprime. Then, by Lemma
C.7, we may write

θ = ωθ1 and δ0 = ωδ1, (118)

where θ1 and δ1 are coprime scalar inner functions. On the other hand, since δ0 ∈ mul (A),
we have that

δ0IE = GA = AG for some G ∈ H∞(B(E)). (119)

Thus by (118) and (119), we have that

G(ωIE)A = (ωIE)GA = δ1IE ∈ H∞(B(E)),

which implies that
AH2

E ⊆ kerHG(ωIE) ≡ ΘH2
E′ . (120)

Thus Θ is a left inner divisor of A. Since also ωH2
E ⊆ kerHGωIE = ΘH2

E′ , Θ is a left
inner divisor of ωIE . Thus Θ is a common left inner divisor of A and ωIE , so that, by
our assumption, Θ is a unitary operator. Thus

kerHGωIE = ΘH2
E′ = H2

E ,

which implies that ωIEG ∈ H∞(B(E)). On the other hand, by (118) and (119), we have

δ1IE = (ωδ0)IE = (ωIEG)A = A(ωIEG),

which implies that δ1 = δ0ω ∈ mul (A). This completes the proof.

We then have:

Theorem C.9. Let A ∈ H∞(B(E)) and θ be a scalar inner function. If A has a scalar
inner multiple, then the following are equivalent:

(a) θ and mA are coprime;

(b) θIE and A are left coprime;

(c) θIE and A are right coprime.

Proof. Let A ∈ H∞(B(E)) have a scalar inner multiple. Write

A = AiAe (inner-outer factorization).

(a) ⇒ (b): Suppose that θIE and A are not left coprime. Then

θH2
E

∨
AiH2

E ̸= H2
E .

By Corollary C.6, there exists G ∈ H∞(B(E)) such that GA = AG = mAIE . Thus we
have that

left-g.c.d. {θIE ,mAIE}H2
E = θH2

E

∨
AGH2

E ⊆ θH2
E

∨
AiH2

E ̸= H2
E ,
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which implies that θIE and mAIE are not left coprime. Thus by Lemma C.7, θ and mA

are not coprime.

(b) ⇒ (a): Suppose that θ and mA are not coprime. If mA is an inner divisor of θ,
then by Corollary C.6 and Lemma C.7, we may write

θIE = mAθ1IE = AiAeGθ1IE (G ∈ H∞(B(E)), θ1 is a scalar inner).

Thus, Ai is a common left inner divisor of θIE and A. If Ai is a unitary operator, then
A is an outer function. It thus follows from Lemma C.2 that mA = 1, so that θ and mA

are coprime, a contradiction. Therefore Ai is not a unitary operator, and hence θIE and
A are not left coprime. Suppose instead that mA is not an inner divisor of θ. Write
ω ≡ g.c.d.{θ,mA} ≠ 1. We then claim that

A and ωIE are not left coprime. (121)

Towards (121), we assume to the contrary that A and ωIE are left coprime. Then it
follows from Corollary C.6 and Lemma C.8 that ωmA ∈ mul (A), which contradicts the
definition of mA. This proves (121). But since ω is an inner divisor of θ, it follows from
Lemma C.7 that A and θIE is not left coprime.

(b) ⇔ (c). Since δ ∈ mul (A) if and only if δ̃ ∈ mul (Ã), it follows that m̃A = mÃ. It
thus follows from (a) ⇔ (b). This completes the proof.

Corollary C.10. Let ∆ be an inner function with values in B(D,E) and θ be a scalar
inner function. If ∆ has a meromorphic pseudo-continuation of bounded type in De, then
the following are equivalent:

(a) θ and ω∆ are coprime;

(b) θIE and [∆,∆c] are left coprime;

(c) θIE and [∆,∆c] are right coprime.

Proof. Suppose that ∆ has a meromorphic pseudo-continuation of bounded type in De.
Then by Lemma 2.27, ∆̆ is of bounded type, so that by Corollary 2.25, [∆,∆c] is two-sided
inner. Thus the result follows from Theorem C.9 and Lemma 5.5.

Example C.11. Let

∆ :=

bα 0
0 bβ
0 0

 (α ̸= 0, β ̸= 0).

Then zI3 and ∆ are not left coprime because zH2
C3

∨
∆H2

C2 ̸= H2
C3 . But zI3 and [∆,∆c]

are left coprime, so that, by Corollary C.10, z and ω∆ are coprime. Indeed, we note that
kerH∆∗ = [∆,∆c]H

2
C3 , and hence ω∆ = bαbβ .

The following example shows that if the condition “A has a scalar inner multiple” is
dropped in Theorem C.9, then Theorem C.9 may fail.
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Example C.12. Let
∆(z) = SE (E = ℓ2(Z+))

Then ∆ is an inner function (not two-sided inner, an isometric operator) with values in
B(E). For f ∈ H2

E , we can write

f(z) =

∞∑
n=0

anz
n (an ∈ E).

We thus have that

(∆̃f)(z) = S∗
( ∞∑
n=0

anz
n
)
=

∞∑
n=0

(S∗an)z
n.

Thus ∆̃H2
E = H2

E , so that ∆ and θIE are right coprime for all scalar inner function θ.
Let θ(z) = zθ1 (θ1 a scalar inner). Then

(∆f)(z) = S
( ∞∑
n=0

anz
n
)
=

∞∑
n=0

(San)z
n.

We thus have

∆H2
E

∨
θH2

E = ∆H2
E

∨
zθ1H

2
E ⊆ ∆H2

E

∨
zH2

E ̸= H2
E ,

which implies that θIE and ∆ are not left coprime. Note that ∆ has no scalar inner
multiple.

On the other hand, since kerH∆∗ = H2
E , we have ω∆ = 1. Thus, it follows from

Corollary C.10 that θIE and [∆,∆c] are left (and right) coprime for all scalar inner
function θ.

Lemma C.13. If ∆ ∈ H∞
Mn

is an inner function then

θ and m∆ are coprime ⇐⇒ θ and det∆ are coprime. (122)

Proof. If ∆ ∈ H∞
Mn

is inner, then m∆ ∈ mul (∆), so that we may write

m∆In = ∆G for some inner function G ∈ H∞
Mn

.

Thus, det∆detG = mn
∆. If θ and m∆ are coprime, then θ and mn

∆ are coprime, so that
θ and det∆ are coprime. Conversely, suppose that θ and det∆ are coprime. Since
(det∆)In = (adj∆)∆, it follows that det∆ ∈ mul (∆). Thus, m∆ is an inner divisor of
det∆, and hence θ and m∆ are coprime. This proves (122).

We can recapture [CHL3, Theorem 4.16].

Corollary C.14. Let A ∈ H2
Mn

and θ be a scalar inner function. Then the following
are equivalent:

(a) θ and detA are coprime;
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(b) θIn and A are left coprime;

(c) θIn and A are right coprime.

Proof. If ∆ ∈ H∞
Mn

is inner then by Theorem C.9 and Lemma C.13, we have

θIn and ∆ are left coprime ⇐⇒ θ and det∆ are coprime. (123)

We now write
A = AiAe (inner-outer factorization).

Now we will show that if (b) or (c) holds, then Ai is two-sided inner: indeed if (b)
or (c) holds, then by [CHL3, Lemma 4.15], detA ̸= 0, so that A(z) is invertible, and
hence Ai(z) is onto for almost all z ∈ T. Thus Ai is two-sided inner. Then by the
Helson-Lowdenslager Theorem (cf. [Ni1, p.22]) we have that

detA = detAi · detAe (inner-outer factorization)

It thus follows from (123) that

θIn and A are left coprime ⇐⇒ θIn and Ai are left coprime

⇐⇒ θ and detAi are coprime

⇐⇒ θ and detA are coprime

For right coprime-ness, we apply the above result and the fact that detÃ = d̃etA.

C.2. The model operator. We recall that the model theorem (p. 7) states that if
T ∈ B(H) is a contraction such that limn→∞ Tnx = 0 for each x ∈ H (i.e., T ∈ C0 •),
then there exists a unitary imbedding V : H → H2

E with

E = cl ran (I − T ∗T ). (124)

such that VH = H(∆) for some inner function ∆ with values in B(E′, E) and

T = V ∗
(
S∗
E |H(∆)

)
V. (125)

We may now ask what is a necessary and sufficient condition for dim E′ <∞ in the Model
Theorem. In this subsection, we give a necessary condition for the finite-dimensionality
of E′.

For an inner function ∆ with values in B(E′, E), define

H0 :=
{
f ∈ H(∆) : lim

n→∞
PH(∆)S

n
Ef = 0

}
. (126)

Then H0 is a closed subspace of H(∆) and in this case, write

E0(∆) := H(∆)⊖H0.

Then E0(∆) is an invariant subspace of S∗
E , so that there exists an inner function ∆s ∈

H∞(B(E1, E)) such that
E0(∆) = H(∆s). (127)

We then have:
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Lemma C.15. Let ∆ be an inner function with values in B(E′, E). Then

∆ = ∆s∆1

for some two-sided inner function ∆1 with values in B(E′, E1).

Proof. Observe that H2
E = ∆H2

E′ ⊕ E0(∆)⊕H0. Thus,

∆H2
E′ ⊆ H2

E ⊖ E0(∆) = ∆sH2
E1
,

which implies that ∆ = ∆s∆1 for some inner function ∆1 with values in B(E′, E1). We
must show that ∆1 is two-sided. We first claim that

f ∈ ∆sH2
E1

⇐⇒ ||f ||L2
E
= ||∆∗f ||L2

E′
: (128)

indeed, since limn→∞ ||(IE − P+)∆
∗SnEf ||L2

E′
= 0 for each f ∈ H2

E , a straightforward

calculation shows that

lim
n→∞

||PH(∆)S
n
Ef ||2L2

E
= ||f ||2L2

E
− ||∆∗f ||2L2

E′
,

giving (128). Thus for all x ∈ E1 with ||x|| = 1,

1 = ||∆sx||L2
E
= ||∆∗∆sx||L2

E′
= ||∆∗

1x||L2
E′
,

which says that ∫
T
||∆∗

1(z)x||2dm(z) = 1.

But since ||∆∗
1(z)x|| ≤ 1, it follows that ||∆∗

1(z)x|| = 1 a.e. on T, so that ∆∗
1(z) is isometry

for almost all z ∈ T and therefore ∆1 is two-sided inner. This completes the proof.

We then have:

Theorem C.16. Let T ∈ B(H) be a contraction such that limn→∞ Tnx = 0 for each
x ∈ H and have a characteristic function ∆ with values in B(E′, E). Then,

supζ∈D dim
{
f(ζ) : f ∈ H0

}
≤ dimE′,

where H0 is defined by (126). In particular, if dimE′ <∞, then maxζ∈D dim
{
f(ζ) : f ∈

H0

}
is finite.

Proof. It follows from (127) that

H0 = H(∆)⊖ E0(∆) = H(∆)⊖H(∆s) ⊆ ∆sH2
E′ .

Thus, by Lemma C.15, we have

supζ∈D dim
{
f(ζ) : f ∈ H0

}
≤ supζ∈D dim

{
∆s(ζ)g(ζ) : g ∈ H2

E′

}
= dimE′.
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Until now, we were unable to determine E′ in terms of spectral properties of T as in
(124). In Theorem C.16, we give a necessary condition for “dim E′ < ∞.” Thus, we
would like to pose:

Problem C.17. Let T ∈ C0 • and ∆ ∈ H∞(B(E′, E)) be the characteristic function of
T . For which operator T , we have dim E′ <∞ ?

C.3. An interpolation problem. In the literature, many authors have considered the
special cases of the following (scalar-valued or operator-valued) interpolation problem (cf.
[Co1], [CHL2], [CHL3], [FF], [Gar], [Gu], [GHR], [HKL], [HL1], [HL2], [NT], [Zhu]).

Problem C.18. For Φ ∈ L∞(B(E)), when does there exist a function K ∈ H∞(B(E))
with ||K||∞ ≤ 1 satisfying

Φ−KΦ∗ ∈ H∞(B(E)) ? (129)

If Φ is a matrix-valued rational function, this question reduces to the classical Hermite-
Fejér interpolation problem.

For notational convenience, we write, for Φ ∈ L∞(B(E)),

C(Φ) :=
{
K ∈ H∞(B(E)) : Φ−KΦ∗ ∈ H∞(B(E))

}
.

We then have:

Theorem C.19. Let Φ ≡ Φ̆− +Φ+ ∈ L∞(B(E)). If C(Φ) is nonempty then

kerH∗
Φ̆+

⊆ kerH∗
Φ∗

−
.

In particular,
nc{Φ+} ≤ nc{Φ̃−}.

Proof. Suppose C(Φ) ̸= ∅. Then there exists a function K ∈ H∞(B(E)) such that
Φ−KΦ∗ ∈ H∞(B(E)), then HΦ = T ∗

K̃
HΦ∗ , which implies that kerHΦ∗ ⊆ kerHΦ. But

since Φ ≡ Φ̆− +Φ+ ∈ L∞(B(E)), it follows that

HΦ∗ = HΦ∗
+
= H∗

Φ̆+
and HΦ = HΦ̆−

= H∗
Φ∗

−
.

We thus have
kerH∗

Φ̆+
⊆ kerH∗

Φ∗
−
.

On the other hand, it follows from Lemma 2.6 that

ΩH2
E′ = kerH∗

Φ̆+
⊆ kerH∗

Φ∗
−
= kerH∗

˘̃
Φ−

= ∆H2
E′′ (130)

for some inner functions Ω and ∆ with values in B(E′, E) and B(E′′, E), respectively.
Thus ∆ is a left inner divisor of Ω, so that we have dimE′ ≤ dimE′′, which implies, by
Theorem 2.13, that nc{Φ+} ≤ nc{Φ̃−}.
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Corollary C.20. Let Φ ≡ Φ̆− + Φ+ ∈ L∞(B(E)) and C(Φ) ̸= ∅. If Φ̆+ is of bounded
type, then Φ∗

− is of bounded type.

Proof. Suppose that Φ ≡ Φ̆− + Φ+ ∈ L∞(B(E)). Then by Lemma A.12, Φ∗ = (Φ̆−)
∗ +

(Φ+)
∗ ∈ L∞(B(E)). Thus (Φ̆−)

∗ is a strong L2-function and so is Φ∗
−. Assume that

C(Φ) ̸= ∅ and Φ̆+ is of bounded type. Then it follows from Theorem C.19 and Lemma
2.6 that

ΩH2
E = kerH∗

Φ̆+
⊆ kerH∗

Φ∗
−
= ∆H2

E′′ (131)

for some two-sided inner function Ω with values in B(E) and an inner function ∆ with
values in B(E′′, E). Thus, ∆ is a left inner divisor of Ω and hence, by Lemma 2.2, ∆ is
two-sided inner, so that Φ∗

− is of bounded type.

For Φ ∈ L∞(B(E)), write

E(Φ) :=
{
K ∈ H∞(B(E)) : Φ−KΦ∗ ∈ H∞(B(E)) and ||K||∞ ≤ 1

}
,

i.e., E(Φ) = {K ∈ C(Φ) : ||K||∞ ≤ 1} (cf. p.86). If dim E = 1 and Φ ≡ φ is a
scalar-valued function then an elegant theorem of C. Cowen (cf. [Co1], [NT], [CL]) says
that E(φ) is nonempty if and only if Tφ is hyponormal, i.e., the self-commutator [T ∗

φ, Tφ]
is positive semi-definite. Cowen’s Theorem is to recast the operator-theoretic problem
of hyponormality into the problem of finding a solution of an interpolation problem. In
[GHR], it was shown that the Cowen’s theorem still holds for a Toeplitz operator TΦ with
a matrix-valued normal (i.e., Φ∗Φ = ΦΦ∗) symbol Φ ∈ L∞

Mn
.

Problem C.21. Extend Cowen’s theorem for a Toeplitz operator with an operator-valued
normal symbol Φ ∈ L∞(B(E)) .

We recall that an operator T ∈ B(H) is called subnormal if T has a normal extension,
i.e., T = N |H, where N is a normal operator on some Hilbert space K ⊇ H such that H
is invariant for N . In 1979, P.R. Halmos posed the following problem, listed as Problem
5 in his Lecture “Ten problems in Hilbert space” ([Ha2], [Ha3]): Is every subnormal
Toeplitz operator Tφ with symbol φ ∈ L∞ either normal or analytic (i.e., φ ∈ H∞) ?
In 1984, C. Cowen and J. Long [CoL] have answered this question in the negative. To
date, a characterization of subnormality of Toeplitz operators Tφ in terms of the symbols
φ has not been found. The best partial answer to Halmos’ Problem 5 was given by M.B.
Abrahamse: If φ ∈ L∞ is such that φ or φ is of bounded type, then Tφ is either normal
or analytic; this is called Abrahamse’s Theorem. Very recently, in [CHL3, Theorem 7.3],
Abrahamse’s Theorem was extended to the cases of Toeplitz operators TΦ with matrix-
valued symbols Φ under some constraint on the symbols Φ; concretely, when “Φ has a
tensored-scalar singularity.”

We would like to pose:

Problem C.22. Extend Abrahamse’s Theorem to Toeplitz operators TΦ with operator-
valued symbols Φ ∈ L∞(B(E)).
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Raúl E. Curto
Department of Mathematics, University of Iowa, Iowa City, IA 52242, U.S.A.
E-mail: raul-curto@uiowa.edu

In Sung Hwang
Department of Mathematics, Sungkyunkwan University, Suwon 16419, Korea
E-mail: ihwang@skku.edu

Woo Young Lee
Department of Mathematics and RIM, Seoul National University, Seoul 08826, Korea
E-mail: wylee@snu.ac.kr


