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Abstract. This paper concerns algebraic and spectral properties of Toeplitz operators Tϕ,
on the Hardy space H2(T), under certain assumptions concerning the symbols ϕ ∈ L∞(T).
Among our algebraic results is a characterisation of normal Toeplitz opertors with polynomial
symbols, and a characterisation of hyponormal Toeplitz operators with polynomial symbols of a
prescribed form. The results on the spectrum are as follows. It is shown that by restricting the
spectrum, a set-valued function, to the set of all Toeplitz operators, the spectrum is continuous
at Tϕ, for each quasicontinuous ϕ. Secondly, we examine under what conditions a classic
theorem of H. Weyl, which has extensions to hyponormal and Toeplitz operators, holds for all
analytic functions of a single Toeplitz operator with continuous symbol.

Introduction

An elegant and useful theorem of C. Cowen [7] characterises the hyponormality of a
Toeplitz operator Tϕ on the Hardy space H2(T) of the unit circle T ⊂ C by properties of
the symbol ϕ ∈ L∞(T). This result makes it possible to answer an algebraic question coming
from operator theory – namely, is Tϕ hyponormal? – by studying the function ϕ itself. In a
recent paper [18] of T. Nakazi and K. Takahashi, Cowen’s method is carried out to obtain
substantial new information about hyponormal Toeplitz operators and their symbols. In
the present paper we study the hyponormality of Tϕ in the cases where ϕ is a trigonometric
polynomial ϕ(eiθ) =

∑N
−m aneinθ; the goal here is to find conditions on the coefficients

an that are necessary and sufficient for Tϕ to be hyponormal. This problem is still rather
complicated in general, however in §1 we are able to offer necessary and sufficient conditions
for the normality and hyponormality of Tϕ in the cases where the Fourier coefficients of ϕ
satisfy certain extremal and symmetry properties.
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In 1909 H. Weyl examined the spectra of all compact perturbations A + K of a single
hermitian operator A and discovered that λ ∈ σ(A + K) for every compact operator K
if and only if λ is not an isolated eigenvalue of finite multiplicity in σ(A). Today this
result is known as Weyl’s theorem, and it has been extended from hermitian operators A
to hyponormal operators and to Toeplitz operators by L. Coburn [4], and to seminormal
operators by S. Berberian [1]. In §3 of this paper we determine properties of continuous
functions ϕ that imply that Weyl’s theorem holds for all analytic functions of the Toeplitz
operator Tϕ. This analysis entails an interesting new fact, which seems to be absent from
the literature, concerning the continuity of the spectrum: when restricted to the linear
manifold of all Toeplitz operators, the spectrum is a continuous (set-valued) function at
every Toeplitz operator Tϕ with quasicontinuous symbol ϕ. In fact, somewhat more general
results are true, and these form the basis of our work in §2 of this paper.

Let L(H) and K(H) denote the algebra of bounded linear operators and the ideal of
compact operators on a complex Hilbert space H, and let π denote the canonical map
L(H) → L(H)/K(H). If T ∈ L(H) is a Fredholm operator, that is if π(T ) is invertible in
L(H)/K(H), then kerT and kerT ∗ are finite-dimensional and the index of T is the integer

ind T = dim kerT − dim kerT ∗ .

The subset of σ(T ) that is stable under compact perturbations is denoted by w(T ) and is
called the Weyl spectrum of T . Those Fredholm operators that have index zero are called
Weyl operators. The essential spectrum σe(T ) and the Weyl spectrum w(T ) are described
succintly as follows [14],[15]:

σe(T ) = {λ ∈ C : T − λ1 is not a Fredholm operator}
w(T ) = {λ ∈ C : T − λ1 is not a Weyl operator} .

Evidently σe(T ) ⊆ w(T ) ⊆ σ(T ), although unlike σe and σ, the Weyl spectrum of T need
not satisfy the spectral mapping theorem. The most general result in this direction [12]
states that if f is an analytic function on an open set containing σ(T ), then

(0.1) w(f(T )) ⊆ f(w(T )) ;

but if T is hyponormal, then [17]

(0.2) w(f(T )) = f(w(T )) .

It is of interest to know which classes of operators T satisfy (0.2), and for some time it was
thought that the Toeplitz operators with continuous symbols may be one of these classes.
In §3 we will show that this conjecture is false; conditions on ϕ ∈ C(T) will then be sought
so that w(f(Tϕ)) = f(w(Tϕ)) for every function f analytic on an open neighbourhood of
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σ(Tϕ). We arrive at our results in §3 by comparing the spectra of the operators Tf◦ϕ and
f(Tϕ).

We review here a few essential facts concerning Toeplitz operators with continuous sym-
bols that we will need to begin with, using [8] as a general reference. The Hilbert space
L2(T) has a canonical orthonormal basis given by the trigonometric functions en(z) = zn,
for all n ∈ Z, and the Hardy space H2(T) is the closed linear span of {en : n = 0, 1, . . . }.
An element f ∈ L2 is referred to as analytic if f ∈ H2 and coanalytic if f ∈ L2 ªH2. If P
denotes the projection operator L2 → H2, then for every ϕ ∈ L∞(T), the operator Tϕ on
H2 defined by

(0.3) Tϕg = P (ϕg) for all g ∈ H2

is called the Toeplitz operator with symbol ϕ. Every Toeplitz operator has connected
spectrum and essential spectrum, and by [4],

(0.4) σ(Tϕ) = w(Tϕ) .

The sets C(T) of all continuous complex-valued functions on the unit circle T and H∞(T) =
L∞ ∩ H2 are Banach algebras, and it is well-known that every Toeplitz operator with
symbol ϕ ∈ H∞ is subnormal. The C∗-algebra A generated by all Toeplitz operators Tϕ

with ϕ ∈ C(T) has an important property which is very useful for spectral theory: the
commutator ideal of A is the ideal K(H2) of compact operators on H2. As C(T) and
A/K(H2) are ∗-isomorphic C∗-algebras, then for every ϕ ∈ C(T),

Tϕ is a Fredholm operator if and only if ϕ is invertible(0.5)

indTϕ = −wn(ϕ) ,(0.6)

σe(Tϕ) = ϕ(T) ,(0.7)

where wn(ϕ) denotes the winding number of ϕ with respect to the origin. Finally, we make
note that if ϕ ∈ C(T) and if f is an analytic function defined on an open set containing
σ(Tϕ), then f ◦ ϕ ∈ C(T) and f(Tϕ) is well-defined by the analytic functional calculus.

1. Hyponormality of Toeplitz operators
with trigonometric polynomial symbols

An operator T is said to be hyponormal if its selfcommutator [T ∗, T ] = T ∗T − TT ∗ is
positive (semidefinite). Normal Toeplitz operators were characterised by a property of their
symbol in the early 1960’s by A. Brown and P.R. Halmos [3], and so it is somewhat of a
surprise that 25 years passed before the exact nature of the relationship between the symbol
ϕ ∈ L∞ and the positivity of the selfcommutator [T ∗ϕ, Tϕ] was understood (via Cowen’s
theorem [7]). As Cowen notes in his survey paper [6], the intensive study of subnormal
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Toeplitz operators in the 1970’s and early 80’s is one explanation for the relatively late
appearence of the sequel to the Brown-Halmos work. The characterisation of hyponormality
in [7] requires one to solve a certain functional equation in the unit ball of H∞ (see below); in
this section we solve this functional equation for trigonometric polynomials ϕ under certain
assumptions about the coefficients of ϕ. Very recently K. Zhu has studied the same problem
from a different point of view [27]; in his work he reformulates Cowen’s theorem, in the
case of a polynomial ϕ, so that the hyponormality of Tϕ can be decided by applying Schur’s
algorithm to the Schur function ΦN . Our results here are more readily applicable, but they
apply to only a subclass of all possible trigonometric polynomials ϕ inducing hyponormal
Toeplitz operators. The case of arbitrary trigonometric polynomials ϕ, though solved in
principle by Cowen’s theorem or Schur’s algorithm, is in practice very complicated. Indeed
it may not even be possible to find tractable necessary and sufficient conditions for the
hyponormality of Tϕ in terms of the Fourier coefficients of a trigonometric polynomial ϕ
unless certain assumptions are made about ϕ.

For each ϕ ∈ L∞ let E(ϕ) = {k ∈ H∞ : ||k||∞ ≤ 1 and ϕ− kϕ ∈ H∞}. Cowen’s theorem
can be stated as follows (see [18; Lemma 1]): a Toeplitz operator Tϕ is hyponormal if and
only if the subset E(ϕ) of H∞ is nonempty. Suppose that ϕ is the trigonometric polynomial
ϕ(eiθ) =

∑N
n=−N aneinθ, where aN 6= 0. If a function k ∈ H∞ satisfies ϕ− kϕ ∈ H∞, then

k necessarily satisfies

(1.0) k

N∑
n=1

ane−inθ −
N∑

n=1

a−ne−inθ ∈ H∞ .

From (1.0) one computes the Fourier coefficients k̂(0), . . . , k̂(N − 1) of k to be k̂(n) = cn,
for n = 0, 1, . . . , N − 1, where c0, c1, . . . , cN−1 are determined uniquely from the coefficients
of ϕ by the recurrence relation

c0 =
a−N

aN

cn = (aN )−1
(
a−N+n −

n−1∑

j=0

cjaN−n+j

)
, for n = 1, . . . , N − 1 .(1.1)

Therefore if k1, k2 ∈ E(ϕ), then cn = k̂1(n) = k̂2(n) for all n = 0, 1, . . . , N − 1, and
kp(z) =

∑N−1
j=0 cjz

j is the unique (analytic) polynomial of degree less than N satisfying
ϕ−kϕ ∈ H∞. Conversely, if kp is the polynomial kp(z) =

∑N−1
j=0 cjz

j , where c0, c1, . . . , cN−1

are determined from the recurrence relation (1.1), then for every integer n > 0, the Fourier
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coefficients ϕ̂− kϕ(−n) of ϕ− kϕ satisfy

ϕ̂− kϕ(−n) = a−n −
N−n∑

j=0

cjan+j

=
(
a−n −

N−n−1∑

j=0

cjan+j

)− cN−naN

= 0 ,

which implies that ϕ − kpϕ ∈ H2. But since ϕ − kpϕ is a polynomial, it follows that
ϕ − kpϕ ∈ H∞. However despite the fact that the recurrence relation (1.1) can always
be solved uniquely to produce an analytic polynomial kp satisfying ϕ − kpϕ ∈ H∞, the
polynomial kp need not be contained in the set E(ϕ), even if E(ϕ) is known to be nonempty;
the problem here is that it is possible for the norm ||kp||∞ > 1. Consider, for example, the
trigonometric polynomial ϕ(eiθ) = e−i2θ +2e−iθ +eiθ +2ei2θ. Solving the recurrence relation
(1.1) produces the polynomial kp(z) = 1

2 + 3
4z, which has norm ||kp||∞ = 5

4 > 1, making kp

ineligible for membership in E(ϕ). On the other hand, a straightforward calculation shows
that the linear fractional transformation

b(z) =
z + 1

2

1 + 1
2z

satisfies ϕ − bϕ ∈ H∞; as b maps the unit circle onto itself, b has norm ||b||∞ = 1. Thus
b ∈ E(ϕ) and so Tϕ is hyponormal. We note here that the Fourier series of b, namely

b(eiθ) ∼ 1
2

+
3
4
eiθ − 3

2

∞∑

j=2

(
−1
2

)neinθ

= kp(eiθ) + h(eiθ) ,

converges uniformly on T to b, and that b is a finite Blaschke product. (The existence of a
such a Blaschke product in E(ϕ) is predicted by Theorem 10 of [18].)

The discussion above views the solution c0, . . . , cN−1 to the recurrence relation (1.1)
as the Fourier coefficients of every possible candidate k for membership in E(ϕ). In [27],
Zhu applies the Schur functions ΦN to the N complex numbers c0, . . . , cN−1 to obtain his
formulation of Cowen’s theorem (for trigonometeric polynomials).

Before continuing further, we record here a condition that ϕ must necessarily satisfy in
order for Tϕ to be a hyponormal operator.
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A Condition Necessary for Hyponormality. Suppose that ϕ is a trigonometric poly-
nomial of the form ϕ(eiθ) =

∑N
n=−m aneinθ, where a−m and aN are nonzero. If Tϕ is

hyponormal, then m ≤ N and |a−m| ≤ |aN |.
Proof. Proofs that m ≤ N can be found in [18;Cor5] and [27;Cor2]. Let c0, . . . , cN−1 be the
solution to the recurrence relation (1.1); because |aN | 6= 0, we have |cN−m| = |a−m|/|aN |.
There is a function k ∈ E(ϕ) such that k̂(N − m) = cN−m; thus 1 ≥ ||k||∞ ≥ |cN−m| =
|a−m|/|aN |, which implies that |a−m| ≤ |aN |. ¤

The necessary condition above shows that the cases where |a−m| = |aN | are, in some
sense, extremal among all possibilites for hyponormality. Theorem 1.4 treats such cases,
and the result will show that one further feature, namely a symmetry property, is also
present.

Proposition 1.1 shows that under strong enough conditions, the polynomial kp will be an
element of E(ϕ).

Proposition 1.1. If ϕ(eiθ) =
∑N

n=−N aneinθ, where aN 6= 0, and if c0, c1, . . . , cN−1 ∈ C
are obtained from the coefficients of ϕ by solving the recurrence relation (1.1), then the
Toeplitz operator Tϕ is hyponormal whenever

(1.1.1)
N−1∑

j=0

|cj | ≤ 1 .

Proof. As we know, the polynomial kp(z) =
∑N−1

j=0 cjz
j satisfies ϕ − kpϕ ∈ H∞. From

||kp||∞ ≤ ∑N−1
j=0 |cj | ≤ 1 we have that kp ∈ E(ϕ) and so Tϕ is hyponormal. ¤

Remark 1.2. If ϕ(eiθ) =
∑N

n=−N aneinθ, where |aj | ≤ |aN |, for all j = 2, . . . , N − 1, then
from the recurrence relation (1.1) we have that

N−1∑

j=0

|cj | ≤ |c0|+ |aN |−2
N−1∑
n=1

2n−1|Dn| ,

where Dn = det
(

a−n a−N

an aN

)
. Therefore if

(1.2.1)
N−1∑
n=1

2n−1|Dn| + |a−NaN | ≤ |aN |2 ,

then by Proposition 1.1, Tϕ is hyponormal. Because the left-hand side of (1.2.1) depends
on a−N and aN and the right-hand side depends on |aN |2, it follows that Tϕ is hyponormal
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whenever |aN | is sufficiently large. In particular, the Toeplitz operator with symbol ϕ+λeiNθ

is hyponormal whenever λ ∈ C is such that

|λ| ≥
N−1∑
n=1

2n−1(|a−n|+ |an|) + |a−N |+ |aN | .

Remark 1.3. If a−N = · · · = a−2 = 0, then the solution to the recurrence relation (1.1)
is c0 = · · · = cN−2 = 0 and cN−1 = a−1/aN ; thus the analytic polynomial kp ∈ H∞ is
kp(z) = (a−1/aN )zN−1. Therefore the norm of every k ∈ H∞ that satisfies ϕ − kϕ ∈ H∞

is such that

||k||∞ ≥
∣∣∣∣
a−1

aN

∣∣∣∣ = ||kp||∞ .

Therefore, Tϕ is hyponormal if and only if |a−1| ≤ |aN | (which was shown earlier in [11]).

The following theorem and its corollary concern the extremal cases: |a−m| = |aN | 6= 0.
Equations (1.4.1) and (1.5.1) below emphasize the symmetry underlying the hyponormality
and normality of these operators.

Theorem 1.4. Suppose that ϕ(eiθ) =
∑N

n=−m aneinθ, where m ≤ N and |a−m| = |aN | 6= 0,
and let E(ϕ) ⊂ H∞ be the subset of all k ∈ H∞ for which ||k||∞ ≤ 1 and ϕ − kϕ ∈ H∞.
The following statements are equivalent.

1. The Toeplitz operator Tϕ is hyponormal.

2. For all k = 1, . . . , N − 1, det
(

a−(m−k) a−m

a(N−k) aN

)
= 0.

3. The following equation in Cm holds:

(1.4.1) aN




a−1

a−2

...

...
a−m




= a−m




aN−m+1

aN−m+2

...

...
aN




.

4. E(ϕ) = {a−m(aN )−1zN−m}.
Moreover, if Tϕ is hyponormal, then the rank of [T ∗ϕ, Tϕ] is N −m.

Proof. Let c0, . . . , cN−1 be the solution to the recurrence relation (1.1); because |a−m| =
|aN | 6= 0, we have |cN−m| = 1. Note that if m < N , then c0 = · · · = cN−m−1 = 0.

If a function k ∈ H∞ satisfies ϕ− kϕ ∈ H∞, then the Fourier series expansion of k is

k =
N−1∑

j=0

cje
ijθ +

∞∑

n=N

bneinθ for some set of bn ∈ C .
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From the fact that ||k||∞ ≥ ||k||2 we have that ||k||∞ ≥ |cN−m| = 1; if for some j > (N−m)
or n ≥ N there is a nonzero Fourier coefficient cj or bn of k, then

||k||∞ ≥ max
{√

|cN−m|2 + |cj |2,
√
|cN−m|2 + |bn|2

}
> 1 .

Thus ||k||∞ = 1 if and only if cN−m is the only nonzero Fourier coefficient of k. Therefore
E(ϕ) can have at most one element: namely cN−mzN−m. Hence, statements (1) and (4) are
equivalent. We now proceed to prove the equivalence of statements (1) and (2); obviously
(2) and (3) are the exact same statement.

Suppose that Tϕ is hyponormal. Then there exists k ∈ E(ϕ) and by the discussion above,
k(z) = cN−mzN−m. Hence, for every k = 1, . . . , m− 1,

0 = |cN−m+k| =
∣∣∣∣

1
aN

(a−(m−k) − cN−maN−k)
∣∣∣∣

=
∣∣∣∣

1
aN

∣∣∣∣
2 ∣∣∣∣det

(
a−(m−k) a−m

a(N−k) aN

)∣∣∣∣ .

Conversely, if det
(

a−(m−k) a−m

a(N−k) aN

)
= 0 for all k = 1, . . . , N − 1, then

|cN−m+1| =
∣∣∣∣

1
aN

(a−(m−1) − cN−maN−1)
∣∣∣∣ =

∣∣∣∣
1

aN

∣∣∣∣
2 ∣∣∣∣det

(
a−(m−1) a−m

a(N−1) aN

)∣∣∣∣ = 0

and hence

|cN−m+2| = | 1
aN

(a−(m−2) − cN−maN−2 − cN−m+1aN−1)|

=
∣∣∣∣

1
aN

∣∣∣∣
2 ∣∣∣∣det

(
a−(m−2) a−m

a(N−2) aN

)∣∣∣∣ = 0 .

Inductively, we obtain ck = 0 for all k = 1, . . . , N − 1. As c0 = · · · = cN−m−1 = 0 if
m < N , and |cN−m| = 1, we have that the analytic polynomial kp(z) =

∑N−1
j=0 is of the

form kp(z) = cN−mzN−m and therefore kp ∈ E(ϕ). This completes the proof that statements
(1) and (2) are equivalent.

Lastly, if Tϕ is hyponormal, then E(ϕ) = {a−m

aN
zN−m}. Because the selfcommutator

[T ∗ϕ, Tϕ] has finite rank, Theorem 10 of [18] states that there exists a finite Blaschke product
b ∈ E(ϕ) of degree equal to the rank of [T ∗ϕ, Tϕ]. In our case there is only one element in
E(ϕ): b(z) = a−m

aN
zN−m, which is a finite Blaschke product of degree N −m. ¤

The following necessary and sufficient condition for normality is to be expected, given
that every normal Toeplitz operator is a translation and rotation of a hermitian Toeplitz
operator [3].
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Corollary 1.5. If ϕ(eiθ) =
∑N

n=−m aneinθ, then Tϕ is normal if and only if m = N ,
|a−N | = |aN |, and

(1.5.1) aN




a−1

a−2

...

...
a−N




= a−N




a1

a2
...

...
aN




.

Proof. If m = N , |a−m| = |aN |, and det
(

a−(m−k) a−m

a(N−k) aN

)
= 0 for all k = 1, . . . , N − 1,

then by Theorem 1.4, Tϕ is hyponormal and rank [T ∗ϕ, Tϕ] = N − m = 0; that is, Tϕ is
normal. Conversely, if Tϕ is normal, then by the Brown-Halmos theorem [3], there are
scalars α, β ∈ C and a real-valued ψ ∈ L∞ such that Tϕ = αTψ + β1. As Tψ is a hermitian

Toeplitz operator, the Fourier coefficients of ψ satisfy ψ̂(n) = ψ̂(−n) for all n; in particular
|α| |aN | = |ψ̂(N)| = |ψ̂(−N)| = |α| |a−N |, showing that |a−N | = |aN |. Thus, N = m and
(1.5.1) holds. ¤

Remark 1.6. For trigonometric polynomials ϕ satisfying the assumptions of Theorem 1.4,
the question of whether or not the Toeplitz operator Tϕ is hyponormal is completely in-
dependent of the values the coefficients a0, . . . , aN−m of ϕ. This interesting fact does not
appear to be a coincidence, for it is noted as well by Zhu [27] under weaker assumptions.

Example 1.7. Consider the following two trigonometric polynomials:

ϕ1(eiθ) = e−i2θ + ei3θ + ei4θ

ϕ2(eiθ) = e−i2θ + e−iθ + ei3θ + ei4θ

Intuition suggests that ϕ2 is less likely than ϕ1 to induce a hyponormal Toeplitz operator,
as ϕ2 is “less analytic” in that the (coanalytic) term e−iθ is present in ϕ2 but not in ϕ1.
However the opposite is true: Theorem 1.4 shows that Tϕ2 is hyponormal (with rank-2
selfcommutator) whereas Tϕ1 is not.

With the following result, we relax the condition that |a−N | = |aN |, however we retain
some symmetry. In the case where N = 2 below, the result reduces to Theorem 1 of [10].

Theorem 1.8. Suppose that ϕ(eiθ) =
∑N

n=−N aneinθ, where N ≥ 2, |aN | 6= 0, and the
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coefficients of ϕ satisfy

(1.8.1) aN




a−2

a−3

...

...
a−N




= a−N




a2

a3
...

...
aN




.

Then Tϕ is hyponormal if and only if

(1.8.2) |aN |2 − |a−N |2 ≥
√∣∣∣∣det

(
a−1 a−N

a1 aN

)∣∣∣∣
2

+ d2 − d ,

where d = 1
2 (1− |a−N |2|aN |−2)

∑N−1
n=2 |an|2 and d is taken to be 0 of N = 2.

Proof. To begin with, assume that inequality (1.8.2) holds; we are to prove that Tϕ is
hyponormal. Solving the recurrence relation (1.1) under the condition (1.8.1) produces the
analytic polynomial kp(z) = c0 + cN−1z

N−1, where

c0 = a−N/aN and cN−1 = (aN )−2 det
(

a−1 a−N

a1 aN

)
.

The inequality (1.8.2) implies that

(1.8.3) 1− |c0|2 ≥
√
|cN−1|2 + d2|aN |−4 − d|aN |−2 .

The right-hand side of (1.8.3) is nonnegative and so |c0| ≤ 1. Now if |c0| = 1, then |cN−1| = 0
and Tϕ is normal; assume, therefore, that |c0| < 1. Let k ∈ H2 be the function with Fourier
series expansion

k = kp(eiθ) + cN−1

∞∑
n=1

(−1)n

(
cN−1c0

|cN−1|
)n

ei(N−1)(n+1)θ .

As k̂(n) = cn for n = 0, . . . , N −1, it remains only to prove that k is in the unit ball of H∞.
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Let α = cN−1c0
|cN−1| , which is a complex number of modulus |α| = |c0| < 1. Then

k(z) = c0 + cN−1z
N−1 + cN−1

∞∑
n=1

(−1)n

(
cN−1c0

|cN−1|
)n

(zN−1)n+1

=
cN−1

1− |c0|2
(

c0cN−1

|cN−1| + (1− |c0|2)zN−1

)
+

(
1− |cN−1|

1− |c0|2
)

c0

+
cN−1

1− |c0|2
∞∑

n=1

(
−cN−1c0

|cN−1|
)n

(1− |c0|2)(zN−1)n+1

=
cN−1

1− |α|2
(
−α +

∞∑
n=0

αn(1− |α|2)(zN−1)n+1

)
+

(
1− |cN−1|

1− |α|2
)

c0

=
cN−1

1− |α|2
(

zN−1 − α

1− αzN−1

)
+

(
1− |cN−1|

1− |α|2
)

c0 .

Because the function w 7→ (w−α)(1−αw)−1 is a linear fractional transformation, mapping
T onto itself, we obtain the estimate

||k||∞ ≤ |cN−1|
1− |α|2

∣∣∣∣
zN−1 − α

1− αzN−1

∣∣∣∣ +
(

1− |cN−1|
1− |α|2

)
|c0|

≤ |cN−1|
1− |α|2 +

(
1− |cN−1|

1− |α|2
)

= 1 ,

which proves that k ∈ E(ϕ).
Conversely, suppose now that Tϕ is hyponormal. With repsect to the orthonormal basis

{zn : n = 0, 1 . . . } of H2, the selfcommutator of Tϕ is a matrix with (µ, ν)-entry given by

αµ ν =
∞∑

j=0

(aj−µaj−ν − aµ−jaν−j) , where µ, ν = 0, 1, 2, . . . .

Thus, in particular,

α0 0 =
N∑

n=1

(|an|2 − |a−n|2)

αN−1 N−1 = |aN |2 − |a−N |2
α0 N−1 = αN−1 0 = aNa1 − a−Na−1 .
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The operator [T ∗ϕ, Tϕ] is positive and, therefore, so is its 2× 2 principal submatrix
(

α0 0 α0 N−1

αN−1 0 αN−1 N−1

)
.

Hence α0 0 and αN−1 N−1 are nonnegative and

0 ≤ det
(

α0 0 α0 N−1

αN−1 0 αN−1 N−1

)
= α0 0αN−1 N−1 − |α0 N−1|2

=

(
N∑

n=1

(|an|2 − |a−n|2)
)

(|aN |2 − |a−N |2)− |aNa1 − a−Na−1|2 .

The symmetry condition (1.8.1) yields |a−n| = |a−N/aN | |an| for n = 2, . . . , N − 1. Direct
computation reveals that

(|a1|2 − |a−1|2)(|aN |2 − |a−N |2) + |aNa−1 − a−Na1|2 = |aNa1 − a−Na−1|2 ,

and so

0 ≤ det
(

α0 0 α0 N−1

αN−1 0 αN−1 N−1

)

≤ (|aN |2 − |a−N |2)2 + (|a1|2 − |a−1|2)(|aN |2 − |a−N |2)

− |aNa1 − a−Na−1|2 + (|aN |2 − |a−N |2)
N−1∑
n=2

(|an|2 − |a−n|2)

= (|aN |2 − |a−N |2)2 − |aNa−1 − a−Na1|2

+ (|aN |2 − |a−N |2)(1−
∣∣∣∣
a−N

aN

∣∣∣∣
2

)
N−1∑
n=2

|an|2 .

Therefore,

|aN |2 − |a−N |2 ≥
√∣∣∣∣det

(
a−1 a−N

a1 aN

)∣∣∣∣
2

+ d2 − d ,

where d = 1
2 (1− |a−N |2|aN |−2)

∑N−1
n=2 |an|2. ¤

Theorem 1.8 can be applied to show that the Toeplitz operator with symbol

ϕ(eiθ) = e−i5θ − e−i4θ + e−i2θ + e−iθ + 2ei2θ − 2ei4θ + 2ei5θ ,

whose coefficents satisfy the symmetric relation (1.8.1), but for which there is no symmetry
involving a−1 and a1, is hyponormal. However with full symmetry, meaning that a−1 and a1

are related as well, we obtain the following interesting necessary and sufficient condition for
hyponormality, which is, in some sense, dual to Theorem 1.4 but comparable to Corollary
1.5. The result is a generalisation of the fact that U∗ + λU , where U is the unilateral shift
operator, is hyponormal if and only if |λ| ≥ 1.
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Corollary 1.9. If ϕ(eiθ) =
∑N

n=−N aneinθ is such that

(1.9.1) aN




a−1

a−2

...

...
a−N




= a−N




a1

a2
...

...
aN




,

then Tϕ is hyponormal if and only if |a−N | ≤ |aN |.

2. Spectral variation within the manifold T of Toeplitz operators.

Let K denote the set, equipped with the Hausdorff metric, of all compact subsets of C.
The spectrum can be viewed as function σ : L(H) → K, mapping each operator T to its
spectrum σ(T ). It is well-known that the function σ is upper-semicontinuous and that σ
does have points of discontinuity. Of interest, therefore, is the identification of points of
spectral continuity, as in [5], and of classes C of operators for which σ becomes continuous
when restricted to C. Perhaps the most accessible result in the latter direction is the one of
J. Newburgh [19]: when restricted to the set of normal operators, σ is a continuous function.
As noted in Solution 104 of [13], Newburgh’s argument uses the fact that normal operators
have normal resolvents and that normal operators are normaloid (i.e., the spectral radius is
the same as the norm). Although Toeplitz operators are normaloid, their inverses need not,
in general, be normaloid. Of course, if ϕ is analytic or coanalytic, and if Tϕ is invertible,
then its inverse T−1

ϕ is also a Toeplitz operator T 1
ϕ

[25; Theorem II] and, hence, normaloid.
In this case, the arguments of Newburgh apply to show that σ is continuous when restricted
to the manifolds of analytic Toeplitz operators and co-analytic Toeplitz operators.

Let T denote the subset of L(H2) consisting of all Toeplitz operators. In this section we
study the continuity properties of σ as a function σ : T → K; that is, we restrict σ to the
set of Toeplitz operators. Although it is open in regards to whether or not the function
σ : T → K is continuous, we are able to establish points of spectral continuity at Toeplitz
operators with quasicontinuous symbols. In fact we shall demonstrate that under fairly
general assumptions on ϕ ∈ L∞, the operator Tϕ is a point of continuity for the spectral
function σ : T → K.

We require the use of certain closed subspaces and subalgebras of L∞(T), which are
described in further detail in [9] and Appendix 4 of [20]. Recall that the subspace H∞(T)+
C(T) is a closed subalgebra of L∞. The elements of the closed selfadjoint subalgebra QC,
which is defined to be

QC =
(
H∞(T) + C(T)

) ∩ (
H∞(T) + C(T)

)
,
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are called quasicontinuous functions. The subspace PC is the closure in L∞(T) of the set
of all piecewise continuous functions on T. Thus ϕ ∈ PC if and only if it is right continuous
and has both a left- and right-hand limit at every point. There are certain algebraic relations
among Toeplitz operators whose symbols come from these classes, including

(2.0.1) TψTϕ − Tψϕ ∈ K(H2) for every ϕ ∈ H∞(T) + C(T) and ψ ∈ L∞(T) ,

and

(2.0.2) the commutator [Tϕ, Tψ] is compact for every ϕ,ψ ∈ PC .

We add to these relations the following one.

Lemma 2.1. If Tϕ is a Toeplitz operator with quasicontinuous symbol ϕ, and if f is an
analytic function on an open set containing σ(Tϕ), then Tf◦ϕ−f(Tϕ) is a compact operator.

Proof. Assume that ϕ ∈ QC. Recall from [8;p.188] that if ψ ∈ H∞ + C(T), then Tψ is
Fredholm if and only if ψ is invertible in H∞ + C(T). Therefore for every λ 6∈ σ(Tϕ), both
ϕ − λ and ϕ− λ are invertible in H∞ + C(T); hence, (ϕ − λ)−1 ∈ QC. Using this fact
together with (2.0.1) we have that, for ψ ∈ L∞ and λ, µ ∈ C,

Tϕ−µTψT(ϕ−λ)−1 − T(ϕ−µ)ψ(ϕ−λ)−1 ∈ K(H2) whenever λ /∈ σ(Tϕ) .

The arguments above extend to rational functions to yield: if r is any rational function with
all of its poles outside of σ(Tϕ), then r(Tϕ)− Tr◦ϕ ∈ K(H2). Suppose that f is an analytic
function on an open set containing σ(Tϕ). By Runge’s theorem there exists a sequence
of rational functions rn such that the poles of each rn lie outside of σ(Tϕ) and rn → f
uniformly on σ(Tϕ). Thus rn(Tϕ) → f(Tϕ) in the norm-topology of L(H2). Furthermore,
because rn ◦ ϕ → f ◦ ϕ uniformly, we have Trn◦ϕ → Tf◦ϕ in the norm-topology. Hence,
Tf◦ϕ − f(Tϕ) = lim

(
Trn◦ϕ − rn(Tϕ)

)
, which is compact. ¤

Lemma 2.1 does not extend to piecewise continuous symbols ϕ ∈ PC, as we cannot
guarantee that Tn

ϕ − Tϕn ∈ K(H2) for each n ∈ Z+. For example, if ϕ(eiθ) = χT+ − χT− ,
where χT+ and χT− are characteristic functions of, respectively, the upper semicircle and
the lower semicircle, then T 2

ϕ − I is not compact.

Corollary 2.2. If Tϕ is a Toeplitz operator with quasicontinuous symbol ϕ, then for every
analytic function f on an open set containing σ(Tϕ),

1. w(f(Tϕ)) = σ(Tf◦ϕ), and
2. f(Tϕ) is essentially normal and is unitarily equivalent to a compact perturbation of

f(Tϕ)⊕Mf◦ϕ, where Mf◦ϕ is the operator of multiplication by f ◦ ϕ on L2(T).
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Proof. Because the Weyl spectrum is stable under the compact perturbations, it follows
from Lemma 2.1 that w(f(Tϕ)) = w(Tf◦ϕ) = σ(Tf◦ϕ), which proves statement (1). To
prove (2), observe that because QC is a closed algebra, the composition of the analytic
function f with ϕ ∈ QC produces a quasicontinuous function f ◦ ϕ ∈ QC. Moreover, by
(2.0.1), every Toeplitz operator with quasicontinuous symbol is essentially normal. The
(normal) Laurent operator Mf◦ϕ on L2(T) has its spectrum contained within the spectrum
of the (essentially normal) Toeplitz operator Tf◦ϕ. Thus there is the following relationship
involving the essentially normal operators f(Tϕ) and Mf◦ϕ ⊕ f(Tϕ):

σe

(
f(Tϕ)⊕Mf◦ϕ

)
= σe(f(Tϕ)) and SP(f(Tϕ)) = SP(

f(Tϕ)⊕Mf◦ϕ
)
,

where SP(T ) denotes the spectral picture of an operator T . (The spectral picture SP(T ) is
the structure consisting of the set σe(T ), the collection of holes and pseudoholes in σe(T ),
and the Fredholm indices associated with these holes and pseudoholes.) Thus it follows
from the Brown-Douglas-Fillmore theorem [23] that f(Tϕ) is compalent to f(Tϕ) ⊕Mf◦ϕ,
in the sense that there exists a unitary operator W and a compact operator K such that
W

(
f(Tϕ)⊕Mf◦ϕ

)
W ∗ + K = f(Tϕ). ¤

Corollary 2.2 (1) can be viewed as saying that σ(f(Tϕ)) \ σ(Tf◦ϕ) consists of holes with
winding number zero.

Continuity modulo the compact operators will be a key to our study of spectral variation.
The first result is an easy application of a theorem of Newburgh.

Lemma 2.3. ([19, Theorem 4]) If {Tn}n is a sequence of operators converging to an oper-
ator T and such that [Tn, T ] is compact for each n, then limσe(Tn) = σe(T ).

Proof. Newburgh’s theorem is stated as follows: if in a Banach algebra A, {ai}i is a sequence
of elements commuting with a ∈ A and such that ai → a, then lim σ(ai) = σ(a). If
π denotes the canonical homomorphism of L(H) onto the Calkin algebra L(H)/K(H),
then the assumptions give that π(Tn) → π(T ) and [π(Tn), π(T )] = 0 for each n. Hence,
lim σ(π(Tn)) = σ(π(T )); that is, lim σe(Tn) = σe(T ). ¤
Theorem 2.4. Suppose that T, Tn ∈ L(H), for n ∈ Z+, are such that Tn converges to T .
Suppose that f is any analytic function whose domain is an open set V containing σ(T ). If
[Tn, T ] ∈ K(H) for each n, then

(2.4.1) lim w(f(Tn)) = w(f(T )).

Remark. Because Tn → T , by the upper-semicontinuity of the spectrum, there is a
positive integer N such that σ(Tn) ⊆ V whenever n > N . Thus, in the left-hand side of
(2.4.1) it is to be understood that n > N .

Proof of Theorem 2.4. If Tn and T commute modulo the compact operators then, when-
ever T−1

n and T−1 exist, Tn, T, T−1
n and T−1 all commute modulo the compact operators.
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Therefore r(Tn) and r(T ) also commute modulo K(H) whenever r is a rational function
with no poles in σ(T ) and n is sufficiently large. Using Runge’s theorem we can approximate
f on compact subsets of V by rational functions r who poles lie off of V . So there exists
a sequence of rational functions ri whose poles lie outside of V and ri → f uniformly on
compact subsets of V . If n > N , then by the functional calculus,

f(Tn)f(T )− f(T )f(Tn) = lim
i

(
ri(Tn)ri(T )− ri(T )ri(Tn)

)
,

which is compact for each n. Furthermore,

||f(Tn)− f(T )|| = || 1
2πi

∫

Γ

f(λ)
(
(λ− Tn)−1 − (λ− T )−1

)
dλ||

≤ 1
2πi

`(Γ) max
λ∈Γ

|f(λ)| ·max
λ∈Γ

||(λ− Tn)−1 − (λ− T )−1|| ,

where Γ is the boundary of V and `(Γ) denotes the arc length of Γ. The right-hand side of
the above inequality converges to 0, and so f(Tn) → f(T ). By Lemma 2.3, lim σe(f(Tn)) =
σe(f(T )). The arguments used by J.B. Conway and B.B. Morrel in Proposition 3.11 of [5]
can now be used here to obtain the conclusion lim w(f(Tn)) = w(f(T )). ¤

We now are ready to prove the main result in this section.

Theorem 2.5. The restriction of σ to the manifold T of all Toeplitz operators is continuous
at every Toeplitz operator with quasicontinuous symbol. Moreover, if ϕ ∈ QC, ϕn ∈ L∞,
and ||Tϕn − Tϕ|| → 0, then lim w(f(Tϕn)) = σ(Tf◦ϕ).

Proof. Suppose ϕ ∈ QC, ϕn ∈ L∞, and ||Tϕn − Tϕ|| → 0. Then by (2.0.1), [Tϕn , Tϕ] ∈
K(H2). Therefore by Theorem 2.4, lim w(Tϕn) = w(Tϕ), and hence lim σ(Tϕn) = σ(Tϕ).
Also, because f ◦ϕ ∈ QC and f ◦ϕn → f ◦ϕ, it follows from Lemma 2.1 that limw(f(Tϕn)) =
limσ(Tf◦ϕn) = σ(Tf◦ϕ). ¤

The argument of Theorem 2.5 is limited to quasicontinuous symbols, as we need to ensure
that [Tϕn

, Tϕ] is compact for every n. If one imposes more requirements on the functions
ϕn ∈ L∞, then Theorem 2.5 can be made more general. This occurs, in particular, if each
ϕn is an element of PC.

Corollary 2.6. The restriction of σ to TPC is continuous, where TPC is the set of all
Toeplitz operators having symbols that are uniform limits of piecewise continuous functions.

Proof. This follows from (2.0.2) and Theorem 2.4. ¤
With a piecewise continuous function ϕ, one can obtain a continuous curve ϕ# by joining

ϕ(ei θ−0) and ϕ(ei θ) (0 ≤ θ < 2π) by the line segment [ϕ(ei θ−0), ϕ(ei θ)]. Widom [25]
showed that for every ϕ ∈ PC, σe(Tϕ) = ϕ#(T) and σ(Tϕ) consists of ϕ#(T) together with
some of its holes. This work is described in [8] and [20] as well. In a footnote on page
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23 of his monograph [9], R.G. Douglas observes that the results he had been developing
for Toeplitz operators with piecewise continuous symbols in fact hold, more generally, for
symbols ϕ ∈ L∞(T) having the property that

(2.7.1) Vλ0(ϕ) =
⋂
ε>0

cl
[
ϕ(λ0 − ε, λ0 + ε)

]

is contained in some line segment Lλ0 for each λ0 ∈ T. In this case,

(2.7.2) σe(Tϕ) =
⋃

λ0∈T
conv Vλ0(ϕ).

We shall call functions ϕ satisfying (2.7.1) Douglas functions; let D(T) denote the set of all
Douglas functions in L∞(T). Our aim is to extend Corollary 2.6 so that TPC is replaced by
a more general class in which every Toeplitz operator with symbol ϕ ∈ D(T) is a point of
spectral continuity (see Theorem 2.12). This general class of operators will be the Toeplitz
operators whose symbols are pseudo-piecewise continuous functions.

Definition 2.8. Letˆ: L∞ → C(∂̃H∞) denote the Gelfand transform, where ∂̃H∞ is the
S̆ilov boundary of H∞(T) (i.e. ∂̃H∞ is the maximal ideal space of L∞). If ϕ ∈ L∞, then by
the Gelfand theory, ϕ̂(∂̃H∞) is the spectrum of ϕ, as an element of L∞; namely, ϕ̂(∂̃H∞)
is the closure of the essential range ess-ran ϕ of ϕ. Now given ϕ ∈ L∞(T), let Vλ0(ϕ) be
as in (2.7.1). If ϕ has the property that ∂ convVλ0(ϕ) ⊆ ϕ̂(∂̃H∞), or that ∂ convVλ0(ϕ) is
contained in some line segment Lλ0 , for each λ0 ∈ T, then ϕ will be called pseudo-piecewise
continuous. Write PPC for the set of all pseudo-piecewise continuous functions in L∞.

For every λ0 ∈ T and ϕ ∈ D(T), convVλ0(ϕ) = ∂convVλ0(ϕ), and so D(T) ⊆ PPC. If
ϕ ∈ PPC, then (2.7.2) (together with the fact that Tϕ is not a Fredholm operator whenever
ϕ cannot be inverted in L∞(T)) gives

(2.8.1)
⋃

λ0∈T
∂ conv Vλ0(ϕ) ⊆ σe(Tϕ) .

The following example shows that the inclusion D(T) ⊆ PPC is proper.

Example 2.9. There exists ϕ ∈ L∞(T) such that ϕ ∈ PPC \D(T).

Proof. Set

ϕ(ei θ) =





ei π(1+ 1
2 sin 1

θ ) (0 < θ < 2
3π )

( 1
π + i) + 1

π e
i 3π2

6π2−8
(2π− 2

π−θ) ( 2
3π ≤ θ ≤ 2π − 2

π )

2π − θ + i sin 1
2π−θ (2π − 2

π < θ < 2π)
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At λ0 = 0, the graphs of ϕ(T) and V0(ϕ) are in Figure 1. Therefore convV0(ϕ) is contained
in no line segment and hence ϕ /∈ D(T). But evidently, ∂ convVλ0(ϕ) = Vλ0(ϕ) for each
λ0 ∈ T. In fact, ⋃

λ0∈T
Vλ0(ϕ) = {ϕ̂(γ) : γ ∈ ∂̃H∞} .

Therefore ϕ ∈ PPC. ¤

Figure 1

Definition 2.10. The map ∂σ : L(H) → K sends every operator T ∈ L(H) to the topo-
logical boundary ∂σ(T ) of its spectrum σ(T ).

Theorem 2.11. The restriction of ∂σ to the set of all Toeplitz operator with pseudo-
piecewise continuous symbol is lower-semicontinuous at each Toeplitz operator with Dou-
glas symbol; that is, if ϕn ∈ PPC, ϕ ∈ D(T) and ||Tϕn − Tϕ|| −→ 0 then ∂σ(Tϕ) ⊆
lim inf ∂σ(Tϕn).

Proof. Observe that lim inf ∂σ(Tϕn) = ∂
(
lim inf σ(Tϕn)

)
. Since lim inf σ(Tϕn) ⊆ σ(Tϕ) and

hence int
(
lim inf σ(Tϕn)

) ⊆ intσ(Tϕ), it suffices to show that ∂σ(Tϕ) ⊆ lim inf σ(Tϕn).
Assume λ /∈ lim inf σ(Tϕn). Then there exists a neighborhood N1(λ) of λ such that does
not intersect infinitely many σ(Tϕn). Thus we can choose a subsequence {ϕni} of {ϕn} such
that Tϕni

− µ is invertible for each µ ∈ N1(λ), which says that ϕni(T)∩N1(λ) = ∅ for each
ni. Since ||ϕn −ϕ||∞ = ||Tϕn − Tϕ|| → 0, there exists a neighborhood N2(λ) of λ such that
ϕ(T) ∩N2(λ) = ∅ and N2(λ) ⊆ N1(λ). There are two cases to consider.

(Case i) Suppose ϕ(T) winds around N2(λ). Theorem 7.42 of [8] states that if ϕ ∈ L∞(T)
and C is a rectifiable simple closed curve lying in C \ σe(Tϕ), then convϕ(T) lies either
entirely inside or entirely outside of C. But since by (2.7.2), N2(λ) ⊆ C \ σe(Tϕ), it follows
that either N2(λ) ⊆ σe(Tϕ) or N2(λ) ∩ σe(Tϕ) = ∅. Therefore λ /∈ ∂σ(Tϕ).

(Case ii) Suppose ϕ(T) does not wind around N2(λ). We now claim that

λ /∈
⋃

λ0∈T
convVλ0(ϕ).

On the contrary, we assume that λ ∈ convVλ0(ϕ) for some λ0 ∈ T. Since ϕ(T)∩N2(λ) = ∅,
and ϕ ∈ D(T), λ must lie in some line segment Lλ0(ϕ) such that Lλ0(ϕ) ∩ ϕ(T) 6= ∅. Since
||ϕni − ϕ|| → 0, we have Vλ0(ϕni) → Vλ0(ϕ) and hence ∂ convVλ0(ϕni) → ∂ convVλ0(ϕ).
But since ∂ convVλ0(ϕ) is contained in a line segment and, by (2.9.1), ∂ convVλ0(ϕni) ⊆
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σe(Tϕni
), if follows that for each neighborhood N (λ), there exists a µ ∈ N (λ) such that

Tϕni
− µ is not Fredholm, which gives a contradiction. Therefore λ /∈ ⋃

λ0∈T convVλ0(ϕ).
Thus by (2.8.2), Tϕ − λ is Fredholm. Now because for every T ∈ L(H), ∂σ(T ) \ σe(T )
consists of isolated points of σ(T ), we can conclude λ /∈ ∂σ(Tϕ) because σ(Tϕ) is connected.
This completes the proof. ¤

We now have our extension of Corollary 2.6 with the following result.

Theorem 2.12. The restriction of σ to the set of all Toeplitz operators with pseudo-
piecewise continuous symbols is continuous at each Toeplitz operator with Douglas symbol.

Proof. Suppose ϕn ∈ PPC, ϕ ∈ D(T) and ||Tϕn
− Tϕ|| → 0. By Theorem 2.11

σ(Tϕ)∧ =
(
lim inf σ(Tϕn)

)∧
,

where K∧ denotes the polynomial-convex hull of K. Consequently, the passage from
lim inf σ(Tϕn) to σ(Tϕ) is the filling of some holes of lim inf σ(Tϕn). Thus if σ(Tϕ) has no
holes, then evidently σ(Tϕ) = lim inf σ(Tϕn). If σ(Tϕ) has a hole Ω, then ∂Ω can be regarded
as a “local closed curve ”(see [9]) determined by convVλ(ϕ). As ∂Ω ⊆ ⋃

λ0∈T convVλ0(ϕ) =⋃
λ0∈T ∂convVλ0(ϕ), we have

∂Ω =
⋃

λ0∈S
∂convVλ0(ϕ) for some subset S of T.

Because also
⋃

λ0∈T ∂conv Vλ0(ϕni) →
⋃

λ0∈T ∂convVλ0(ϕ), we conclude that for sufficiently
large ni, ϕni behaves like a Douglas function locally on S. Thus the index theory for
continuous symbols can be applied for this local closed curve ([9]). But ||ϕn − ϕ||∞ → 0
and so for sufficiently large n,

−ind (Tϕ − λ) = wn (ϕ− λ) = wn(ϕn − λ) = −ind (Tϕn − λ) for each λ ∈ Ω .

Hence σ(Tϕ) \ lim inf σ(Tϕn) has no hole with non-zero winding number, and consequently
σ(Tϕ) = lim inf σ(Tϕn). ¤

We were unable to decide whether or not, in Theorem 2.12, D(T) can be replaced by
PPC. (If we could have equality in (2.8.1), then the answer would be yes.) More interesting
still is the the following open problem.

Problem A. Is the restriction of σ to the set of all Toeplitz operators continuous?
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3. Weyl’s theorem for analytic functions of Toeplitz operators

We follow [4] in saying that Weyl’s theorem holds for T if

w(T ) = σ(T ) \ π00(T ) ,

where π00(T ) is the set of isolated points of σ(T ) that are eigenvalues of finite multiplicity.
The set of operators for which Weyl’s theorem holds includes all seminormal operators and
all Toeplitz operators [1],[4],[21]. The following old question of K. Oberai [22] led to the
work in this section: if Tϕ is a Toeplitz operator, then does Weyl’s theorem hold for T 2

ϕ ?
To answer the Oberai’s question, we begin with a spectral property of Toeplitz operators

with continuous symbols.

Lemma 3.1. Suppose that ϕ is continuous and that f is an analytic function defined on
some open set containing σ(Tϕ). Then

(3.1.1) σ(Tf◦ϕ) ⊆ f(σ(Tϕ)) ,

and equality occurs if and only if Weyl’s theorem holds for f(Tϕ).

Proof. By Corollary 2.2, σ(Tf◦ϕ) = w(f(Tϕ)) ⊆ σ(f(Tϕ)) = f(σ(Tϕ)). Because σ(Tϕ) is
connected, so is f(σ(Tϕ)) = σ(f(Tϕ)); therefore the set π00(f(Tϕ)) is empty. Again by
Corollary 2.2, w(f(Tϕ)) = σ(Tf◦ϕ) and so w(f(Tϕ)) = σ(f(Tϕ)) \ π00(f(Tϕ)) if and only if
σ(Tf◦ϕ) = f(σ(Tϕ)). ¤
Remark 3.2. If ϕ is not continuous, it is possible for Weyl’s theorem to hold for some
f(Tϕ) without σ(Tf◦ϕ) being equal to f(σ(Tϕ)). One example is as follows. Let ϕ(ei θ) =
e

i θ
3 (0 ≤ θ < 2π), a piecewise continuous function. The operator Tϕ is invertible but Tϕ2

is not; hence 0 ∈ σ(Tϕ2) \ {σ(Tϕ)}2. However w(T 2
ϕ) = σ(T 2

ϕ), and π00(T 2
ϕ) is empty (see

Figure 2); therefore Weyl’s theorem holds for T 2
ϕ.

Figure 2
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Figure 3

We can now answer Oberai’s question: the answer is no.

Example 3.3. There exists a continuous function ϕ ∈ C(T) such that σ(Tϕ2) 6= {σ(Tϕ)}2.
Proof. Let ϕ be defined by

ϕ(ei θ) =
{ −e2i θ + 1 (0 ≤ θ ≤ π)

e−2i θ − 1 (π ≤ θ ≤ 2π) .

The orientation of the graph of ϕ is shown in Figure 3. Evidently, ϕ is continuous and,
in Figure 3, ϕ has winding number +1 with respect to the hole of C1; the hole of C2 has
winding number −1. Thus we have σe(Tϕ) = ϕ(T) and σ(Tϕ) = conv ϕ(T). On the other
hand, a straightforward calculation shows that ϕ2(T) is the Cardioid r = 2(1 + cos θ).
In particular, ϕ2(T) traverses the Cardioid once in a counterclockwise direction and then
traverses the Cardioid once in a clockwise direction. Thus wn(ϕ2−λ) = 0 for each λ in the
hole of ϕ2(T). Hence Tϕ2−λ is a Weyl operator and is, therefore, invertible for each λ in
the hole of ϕ2(T). This implies that σ(Tϕ2) is the Cardioid r = 2(1 + cos θ). But because
{σ(Tϕ)}2 = {conv ϕ(T)}2 = {(r, θ) : r ≤ 2(1+ cos θ)}, it follows that σ(Tϕ2) 6= {σ(Tϕ)}2. ¤

Remark 3.4. It is instructive to observe that Lemma 3.1 gives a necessary condition for Tϕ

to be hyponormal. We recall [17] that if T ∈ L(H) is hyponormal, then Weyl’s theorem holds
for every f(T ). In conjunction with Lemma 3.1, this is to say that if Tϕ is hyponormal, then
σ(Tf◦ϕ) = f(σ(Tϕ)). But this necessary condition is not sufficient, for a slight extension of
Theorem 1 in [17] shows that Weyl’s theorem holds for f(Tϕ), where Tϕ is the cohyponormal
Toeplitz operator with symbol ϕ(ei θ) = e−i θ; hence σ(Tf◦ϕ) = f(σ(Tϕ)).

We conclude our work by studying continuous symbols ϕ that have the property that
Weyl’s theorem holds for f(Tϕ), for every analytic function f on a neigbourhood of σ(Tϕ).

Theorem 3.5. If ϕ ∈ C(T) is such that σ(Tϕ) has planar Lebesgue measure zero, then
σ(Tf◦ϕ) = f(σ(Tϕ)) for every analytic function f defined on an open set containing σ(Tϕ).

proof. As ϕ is continuous, so is f ◦ ϕ and thus σe(Tϕ) = ϕ(T) and σe(f(Tϕ)) = σe(Tf◦ϕ) =
f ◦ ϕ(T). The planar measure of σ(Tϕ) is zero; because σ(Tϕ) is a compact connected set
consisting of ϕ(T) and some of its holes, it follows that ∂σ(Tϕ) = σe(Tϕ) = σ(Tϕ), which
is just a continuous curve. Furthermore, as analytic functions map open connected sets
onto open connected open sets, we have that ∂σ(f(Tϕ)) = σe(f(Tϕ)) = σ(f(Tϕ)). Thus
σ(f(Tϕ)) ⊆ σ(Tf◦ϕ), which together with (3.1.1) gives the result. ¤
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Remark 3.6. We note here that Toeplitz operators whose symbol satisfies the hypothesis
of Theorem 3.5 are essentially normal of the type “normal + compact.” To see this, let D
be a diagonal operator whose spectrum is ϕ(T). Because Tϕ and D are both essentially
normal and SP(Tϕ) = SP(D), it follows from the Brown-Douglas-Fillmore theorem that
Tϕ and D are compalent; that is, Tϕ = N +K for some normal operator N on H2 and some
K ∈ K(H2). This observation is of interest because if σ(Tϕ) has planar Lebesgue measure
zero and, further, if Tϕ is hyponormal, then by Putnam’s inequality Tϕ is normal and ϕ(T)
must be a line segment.

Theorem 3.7. If the winding number of ϕ ∈ C(T) with respect to each hole of ϕ(T) is
nonnegative (or is nonpositive), then σ(Tf◦ϕ) = f(σ(Tϕ)) for every analytic function f
defined an an open set containing σ(Tϕ).

Proof. Suppose that the holes of ϕ(T) have only nonnegative winding numbers. Since ϕ is
continuous, it follows that σe(Tϕ) = ϕ(T) and

(3.7.1) σe(Tf◦ϕ) = σe(f(Tϕ)) = f(σe(Tϕ)) .

If ϕ(T) has no holes or has holes of winding number zero only, then σ(Tϕ) = σe(Tϕ); thus

f(σ(Tϕ)) = f(σe(Tϕ)) = σe(f(Tϕ)) = σe(Tf◦ϕ) ⊆ σ(Tf◦ϕ) ,

which together with (3.1.1) gives σ(Tf◦ϕ) = f(σ(Tϕ)). Now assume that there exists at least
a hole Ω of ϕ(T) such that wn(ϕ− λ) 6= 0 for all λ ∈ Ω. Namely, wn(ϕ− λ) = w > 0 for all
λ ∈ Ω. In view of (3.7.1), it suffices to show that f(σ(Tϕ))\f(σe(Tϕ)) ⊆ σ(Tf◦ϕ)\σe(Tf◦ϕ).
Thus the proof is completed by showing that if λ ∈ Ω, then f(λ) ∈ σ(Tf◦ϕ). Suppose that
λ ∈ Ω; thus Tϕ − λ is Fredholm with ind (Tϕ − λ) = −wn(ϕ− λ) = −w < 0. Write

f(z)− f(λ) = (z − λ)(z − µ1)α1 · · · (z − µn)αnF (z) ,

where αi ∈ Z+, µi ∈ σ(Tϕ) (1 ≤ i ≤ n) and F (z) is analytic and has no zeros in σ(Tϕ). We
have

f ◦ ϕ− f(λ) = (ϕ− λ)(ϕ− µ1)α1 · · · (ϕ− µn)αnF ◦ ϕ .

From (3.7.1), Tf◦ϕ−f(λ) is Fredholm and hence f ◦ ϕ − f(λ) is invertible on T. So each
ϕ − µi (1 ≤ i ≤ n) and F ◦ ϕ vanish nowhere on T. Therefore Tϕ−µi and TF◦ϕ are all
Fredholm. By assumption, wn(ϕ − µi) ≥ 0, and because F ◦ ϕ has no zeros in σ(Tϕ),
wn(F ◦ ϕ) = 0. Thus

ind (Tf◦ϕ−f(λ)) = −wn{(ϕ− λ)(ϕ− µ1)α1 · · · (ϕ− µn)αnF (ϕ)}

= −wn(ϕ− λ)−
n∑

i=1

αi wn(ϕ− µi) < 0 ,

which shows that Tf◦ϕ−f(λ) is not a Weyl operator and hence is not invertible. We conclude
that f(λ) ∈ σ(Tf◦ϕ). The proof of the case of nonpositive winding numbers is similar. ¤
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Example 3.8. If ϕ is of the form of p(a
z + bz), where a, b ∈ R and p is any polynomial,

then σ(Tf◦ϕ) = f(σ(Tϕ)).

Proof. If a = b, then Tϕ is hermitian and the desired conclusion is evident. If a 6= b, set
ψ = a

z + bz. Then

ψ(T) = {(u, v) ∈ C : (
u

b + a
)2 + (

v

b− a
)2 = 1} ,

which is a circle or an ellipse. Thus ϕ(T) = (p ◦ψ)(T) = p(ψ)(T), which has no holes or has
exactly one hole (because polynomials map continuous curves onto continuous curves and
open sets onto open sets). The conclusion nows follows from Theorem 3.7. ¤
Remark 3.9. Lemma 3.1 and Theorems 3.5, 3.7 hold for quasicontinuous symbol ϕ. In
this case, if Tϕ is Fredholm, then the index of Tϕ is the negative of the winding number
with respect to the origin of the curve ϕ̂(reiθ) for 1− δ < r < 1, and

σe(Tϕ) =
⋂

0<δ<1

cl {ϕ̂(reiθ) : 1− δ < r < 1} ,

where ϕ̂ is the harmonic extension of ϕ to the open unit disk D (cf. [8]).

Remark 3.10. The index of a hyponormal opertor is always nonpositive and therefore, in
general, the holes of the essential spectrum of a hyponormal operator cannot have negative
winding numbers. This fact may lead one to believe that if ϕ(T) has no hole with negative
winding number (in particular, in case that ϕ is a trigonometric polynomial), then Tϕ is
hyponormal. But such is not the case. For example, if

ϕ1(ei θ) = e−2iθ + eiθ + e2iθ, and ϕ2(eiθ) = e−2iθ − e−iθ + eiθ + e2iθ ,

then ϕ1(T) has just one essential hole whose winding number is +1, and ϕ2(T) has no hole,
as shown in Figure 4. But by Theorem 1.4, Tϕ1 and Tϕ2 both fail to be hyponormal.

Figure 4

Remark 3.11. Recall [23] that an operator T ∈ L(H) is quasitriangular if there exists
an increasing sequence {Pn} of projections of finite rank in L(H) that converges strongly
to the identity and satisfies ||PnTPn − TPn|| → 0. By the work of Apostol, Foias, and
Voiculescu, it is known that T is quasitriangular if and only if SP(T ) contains no hole
or pseudohole with negative winding number. Rewrite Theorem 3.7 as follows: if Tϕ is a
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quasitriangular (or T ∗ϕ is a quasitriangular) Toeplitz operator with continuous symbol ϕ,
then σ(Tf◦ϕ) = f(σ(Tϕ)). In Remark 3.10 we showed that even if T ∗ϕ is a quasitriangular
Toeplitz operator (with trigonometric polynomial symbol ϕ), Tϕ may fail to be hyponormal.
In spite of this, it would be interesting to have a method by which one could determine the
winding numbers of curves given by trigonometric polynomials with respect to the various
holes these polynomials produce. We expect the solution will make extensive use of Theorem
3.7. The following open problem is of particular interest in operator theory.

Problem B. If ϕ is a trigonometric polynomial, find necessary and sufficient conditions,
in terms of the coefficients of ϕ, in order for the Toeplitz operator T ∗ϕ to be quasitriangular.
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