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1 Introduction

A bounded linear operator A on a Hilbert space H with inner product (·, ·) is said to be
hyponormal if its selfcommutator [A∗, A] = A∗A − AA∗ induces a positive semidefinite
quadratic form on H via ξ 7→ ([A∗, A]ξ, ξ), for ξ ∈ H. Let H2(T) denote the Hardy space
of the unit circle T = ∂D in the complex plane. Recall that given ϕ ∈ L∞(T), the Toeplitz
operator with symbol ϕ is the operator Tϕ on H2(T) defined by Tϕf = P (ϕ · f), where f ∈
H2(T) and P denotes the projection that maps L2(T) onto H2(T). The hyponormality of
Toeplitz operators has been studied by C. Cowen [1],[2], P. Fan [4], C. Gu [8], T. Ito and T.
Wong [9], T. Nakazi and K. Takahashi [11], D. Yu [13], K. Zhu [14], R. Curto, D. Farenick,
the second and the third named authors [3],[5],[6],[10] and others. An elegant theorem of C.
Cowen [2] characterizes the hyponormality of a Toeplitz operator Tϕ on H2(T) by properties
of the symbol ϕ ∈ L∞(T). K. Zhu [14] reformulated Cowen’s criterion and then showed
that the hyponormality of Tϕ with polynomial symbols ϕ can be decided by a method
based on the classical interpolation theorem of I. Schur [12]. Also Farenick and the third
named author [5] characterized the hyponormality of Tϕ in terms of the Fourier coefficients
of the trigonometric polynomial ϕ in the cases that the outer coefficients of ϕ have the
same modulus. But the case of arbitrary trigonometric polynomials ϕ, though solved in
principle by Cowen’s theorem or Zhu’s theorem, is in practice very complicated. On the
other hand, Nakazi and Takahashi [11, Corollary 5] showed that if ϕ(z) =

∑N
n=−m anzn is

a trigonometric polynomial with m ≤ N and if for every zero ζ of zmϕ such that |ζ| > 1, the
number 1/ζ is a zero of zmϕ in the open unit disk D of multiplicity greater than or equal to
the multiplicity of ζ, then Tϕ is hyponormal. But the converse is not true in general. To see
this consider the following trigonometric polynomial: ϕ(z) = z−2(z−2)(z−1)(z− 1

5 )(z− 1
3 ).

Then ϕ(z) = 2
15z−2 − 19

15z−1 + 55
15 − 53

15z + z2. Using an argument of P. Fan [4, Theorem 1]
– for every trigonometric polynomial ϕ of the form ϕ(z) =

∑2
n=−2 anzn,

(0.1) Tϕ is hyponormal ⇐⇒
∣∣det

( a−1 a−2

a1 a2

)∣∣ ≤ |a2|2 − |a−2|2,
a straightforward calculation shows that Tϕ is hyponormal. In this paper we consider
how the converse of the above result due to Nakazi and Takahashi survives for arbitrary

1Supported in part by the BSRI-97-1420 and the KOSEF through the GARC at Seoul National University.

1



2

trigonometric polynomials. The main results are as follows. Suppose ϕ(z) =
∑N

n=−m anzn

with m ≤ N and write

F := {ζ, 1/ζ : the complex numbers ζ and 1/ζ are zeros of zmϕ}.

If F contains at least (N + 1) elements then the following statements are equivalent.

(i) Tϕ is a hyponormal operator.
(ii) For every zero ζ of zmϕ such that |ζ| > 1, the number 1/ζ is a zero of zmϕ in the

open unit disk D of multiplicity greater than or equal to the multiplicity of ζ.

Moreover, in the cases where Tϕ is a hyponormal operator, the rank of the selfcommutator
of Tϕ is computed from the formula rank [T ∗ϕ, Tϕ] = N − m + ZD − ZC\D, where ZD and
ZC\D are the number of zeros of zmϕ in D and in C\D counting multiplicity. In addition, a
new necessary condition for hyponormality of Tϕ with polynomial symbols ϕ is presented:
if ϕ(z) =

∑N
n=−m anzn is such that Tϕ is hyponormal and if zm ϕ = aN

∏m+N
j=1 (z − ζj),

then
∣∣∣∑m+N

j=1

(
ζj − 1/ζj

)∣∣∣ ≤ 1Qm+N
j=1 |ζj | −

∏m+N
j=1 |ζj |.

2 Main results

We shall use a variant of Cowen’s theorem [1] that was first proposed by Nakazi and
Takahashi [11].

Cowen’s Theorem. Suppose ϕ ∈ L∞(T) is arbitrary and write

E(ϕ) = {k ∈ H∞(T) : ||k||∞ ≤ 1 and ϕ− kϕ ∈ H∞(T)} .

Then Tϕ is hyponormal if and only if the set E(ϕ) is nonempty.

On the other hand Nakazi and Takahashi [11] showed that if Tϕ is a hyponormal operator
such that rank [T ∗ϕ, Tϕ] < ∞, then there exists a finite Blaschke product k ∈ E(ϕ) of the
form

k(z) = eiθ
n∏

j=1

z − βj

1− βjz
(|βj | < 1 for j = 1, · · · , n).

It is rephrased explicitly as follows.

Lemma 1 (Nakazi-Takahashi Theorem). A Toeplitz operator Tϕ is hyponormal and
the rank of the selfcommutator [T ∗ϕ, Tϕ] is finite (e.g., ϕ is a trigonometric polynomial) if
and only if there exists a finite Blaschke product k ∈ E(ϕ) such that deg (k) = rank [T ∗ϕ, Tϕ],
where deg (k) denotes the degree of k – meaning the number of zeros of k in the open unit
disk D ([7, Page 6]).

We record here results on the hyponormality of Toeplitz operators with polynomial
symbols, which have been recently developed in [3],[5],[6],[9],[10],[11], and [14].

Lemma 2. Suppose that ϕ is a trigonometric polynomial of the form ϕ(z) =
∑N

n=−m anzn,
where a−m and aN are nonzero.

(i) If Tϕ is a hyponormal operator then m ≤ N and |a−m| ≤ |aN |.
(ii) If Tϕ is a hyponormal operator then N −m ≤ rank [T ∗ϕ, Tϕ] ≤ N .
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(iii) The hyponormality of Tϕ is independent of the particular values of the Fourier
coefficients a0, a1, · · · , aN−m of ϕ. Moreover the rank of the selfcommutator [T ∗ϕ, Tϕ]
is also independent of those coefficients.

(iv) If |a−m| = |aN | 6= 0, then Tϕ is hyponormal if and only if the following equation
holds:

(2.1) aN




a−1

a−2

...

...
a−m




= a−m




aN−m+1

aN−m+2

...

...
aN




.

In this case, the rank of [T ∗ϕ, Tϕ] is N −m.
(v) Tϕ is normal if and only if m = N, |a−m| = |aN |, and (2.1) holds with m = N .

We begin with:

Lemma 3. Suppose that B is a finite Blaschke product of degree n. If

(3.1)
r∏

j=1

(z − ζj)−B
r∏

j=1

(1− ζjz) ∈ zmH∞ (n + r < 2m; ζj ∈ C for j = 1, · · · , r),

then B is of the form

(3.2) B(z) =
r∏

j=1

z − ζj

1− ζjz
.

Thus, in particular, if B1 and B2 are finite Blaschke products such that deg(B1) ≤ deg(B2) <
N , and if B1 −B2 ∈ zNH∞, then B1 = B2.

Proof. Suppose that B is of the form

B(z) = eiω
n∏

j=1

z − βj

1− βjz
(|βj | < 1 for j = 1, · · · , n).

Without loss of generality we assume that m ≤ n + r (if m > n + r then evidently (3.2)
holds). Multiplying

∏n
j=1(1− βjz) on both sides of (3.1) gives

r∏

j=1

(z − ζj)
n∏

j=1

(1− βjz)− eiω
n∏

j=1

(z − βj)
r∏

j=1

(1− ζjz) :=
n+r∑

j=m

djz
j

for some dj (j = m, · · · , n + r). Put f(z) :=
∑n+r

j=m djz
j . Now it suffices to show that

f = 0. Observe that for z 6= 0,

f

(
1
z

)
=

n+r∑

j=m

dj

(
1
z

)j

=
r∏

j=1

(
1
z
− ζj

) n∏

j=1

(
1− βj

z

)
− eiω

n∏

j=1

(
1
z
− βj

) r∏

j=1

(
1− ζj

z

)

=
(

1
z

)n+r



r∏

j=1

(
1− ζj z

) n∏

j=1

(
z − βj

)− eiω
n∏

j=1

(
1− βj z

) r∏

j=1

(
z − ζj

)

 .
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Thus we have
n+r∑

j=m

dj zn+r−j =
r∏

j=1

(
1− ζj z

) n∏

j=1

(
z − βj

)− eiω
n∏

j=1

(
1− βj z

) r∏

j=1

(
z − ζj

)
,

so that
n+r∑

j=m

dj zn+r−j =
r∏

j=1

(
1− ζj z

) n∏

j=1

(
z − βj

)− e−iω
n∏

j=1

(
1− βj z

) r∏

j=1

(
z − ζj

)
= −e−iωf(z),

which implies

(3.3)
n+r∑

j=m

djz
j = −eiω

n+r∑

j=m

djz
n+r−j .

Note that the equality (3.3) holds also for z = 0 and hence for all z ∈ C. But since
n + r −m < m, it follows from (3.3) that dj = 0 for every j = m, · · · , n + r, and therefore
f = 0. This completes the proof. ¤

We need not expect that in the second assertion of Lemma 3, the condition “deg(B1) ≤
deg(B2) < N” is relaxed to the condition “deg(B1) ≤ deg(B2) ≤ N”. For example if

B1(z) := − z − 1
2

1− 1
2z

and B2(z) :=
z + 1

2

1 + 1
2z

,

then B1 −B2 ∈ z H∞ and deg (B1) = deg (B2) = 1, while B1 6= B2.
The following corollary shows that if ϕ is a trigonometric polynomial of the form ϕ(z) =∑N
n=−m anzn such that the rank of the selfcommutator [T ∗ϕ, Tϕ] is less than N , then the

finite Blaschke product of degree less than N in Lemma 1 is uniquely determined.

Corollary 4. Suppose that ϕ(z) =
∑N

n=−m anzn is such that Tϕ is hyponormal and
rank [T ∗ϕ, Tϕ] < N . If we put

B(ϕ) := {b ∈ E(ϕ) : b is a finite Blaschke product of degree less than N},
then B(ϕ) contains exactly one element.

Proof. In view of Lemma 1, there exists a finite Blaschke product b1 ∈ B(ϕ) such that
deg(b1) = rank [T ∗ϕ, Tϕ] < N . For the uniqueness we assume that there exists a finite
Blaschke product b2 ∈ B(ϕ) of degree less than N . Then ϕ − biϕ ∈ H∞ for i = 1, 2, so
that (b1 − b2)ϕ ∈ H∞. But since ϕ = z−N

(
aN + aN−1z + · · ·+ a−mzm+N

)
, it follows that

b1 − b2 ∈ zNH∞. Now applying Lemma 3 gives that b1 = b2. ¤

We don’t however guarantee that if ϕ is a trigonometric polynomial such that Tϕ is
hyponormal then there exists a unique finite Blaschke product in E(ϕ). For example if
ϕ(z) = z−1 + 3z then

b1 =
z + 1

3

1 + 1
3z

and b2 =
(z + 2

3 )(z + 1
2 )

(1 + 2
3z)(1 + 1

2z)

are both finite Blaschke products in E(ϕ).
We now have:
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Theorem 5. Suppose ϕ(z) =
∑N

n=−m anzn with m ≤ N and write

F := {ζ, 1/ζ : the complex numbers ζ and 1/ζ are zeros of zmϕ}.

If F contains at least (N + 1) elements then the following statements are equivalent.
(i) Tϕ is a hyponormal operator.
(ii) For every zero ζ of zmϕ such that |ζ| > 1, the number 1/ζ is a zero of zmϕ in D of

multiplicity greater than or equal to the multiplicity of ζ.
Moreover, in the cases where Tϕ is a hyponormal operator, the rank of the selfcommutator
of Tϕ is computed from the formula

rank [T ∗ϕ, Tϕ] = N −m + ZD − ZC\D,

where ZD and ZC\D are the number of zeros of zmϕ in D and in C\D counting multiplicity.

Proof. By assumption we can write

zmϕ = aN

r∏

j=1

(z − γj)(z − 1
γj

)
t∏

j=1

(z − αj)
m+N−2r−t∏

j=1

(z − ζj),

where |γj | > 1 (1 ≤ j ≤ r), |αj | = 1 (1 ≤ j ≤ t), 0 < |ζj | 6= 1 (1 ≤ j ≤ m + N − 2r − t),
and 2r + t ≥ N + 1. So we have

zNϕ = aN

r∏

j=1

(1− γjz)(1− 1
γj

z)
t∏

j=1

(1− αjz)
m+N−2r−t∏

j=1

(1− ζjz)

= aN

r∏

j=1

(
γj

γj

) t∏

j=1

(−αj)
r∏

j=1

(z − γj)(z − 1
γj

)
t∏

j=1

(z − αj)
m+N−2r−t∏

j=1

(1− ζjz).

Combining Cowen’s theorem, Lemma 1, and Lemma 2(ii), we can see that Tϕ is hyponormal
if and only if there exists a finite Blaschke product k ∈ E(ϕ) with N −m ≤ deg (k) ≤ N ,
say

k(z) = eiθ
s∏

j=1

z − βj

1− βjz
(N −m ≤ s ≤ N).

Observe

ϕ− k ϕ =
aN

zN

r∏

j=1

(z − γj)(z − 1
γj

)
t∏

j=1

(z − αj) g(z),

where

(5.1) g(z) = zN−m
m+N−2r−t∏

j=1

(z − ζj)− eiφ
s∏

j=1

z − βj

1− βjz

m+N−2r−t∏

j=1

(1− ζjz)

with

eiφ = eiθ aN

aN

r∏

j=1

(
γj

γj

) t∏

j=1

(−αj).
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Thus ϕ − k ϕ ∈ H∞ if and only if g should be of the form g(z) =
∑∞

j=N cjz
j . If m < N

then substituting z = 0 into (5.1) gives that
∏s

j=1(−βj) = 0 and hence βj = 0 for some
j (1 ≤ j ≤ s). Repeating this process we can see that (N −m)’s βj should be zero, say
βs+m−N+1 = · · · = βs = 0. Therefore from (5.1) we can write

(5.2)
m+N−2r−t∏

j=1

(z − ζj)− eiφ
s+m−N∏

j=1

z − βj

1− βjz

m+N−2r−t∏

j=1

(1− ζjz) =
∞∑

j=m

cN−m+jz
j .

If instead m = N then evidently (5.2) holds. Note that (m + N − 2r − t) + (s + m −
N) < 2m. Therefore applying Lemma 3 gives that the equality (5.2) holds if and only if∑∞

j=m cN−m+jz
j = 0 and hence g = 0. Thus ϕ− kϕ ∈ H∞ if and only if g = 0. Therefore

a Toeplitz operator Tϕ is hyponormal if and only if ϕ = kϕ for some Blaschke product
k ∈ H∞. Observe

(5.3) k =
ϕ

ϕ
=

aN

aN

r∏

j=1

(
γj

γj

) t∏

j=1

(−αj) zN−m
m+N−2r−t∏

j=1

z − ζj

1− ζjz
.

Therefore Tϕ is hyponormal if and only if k is analytic on D if and only if for every zero ζ

of zmϕ such that |ζ| > 1, the number 1/ζ is a zero of zmϕ in D of multiplicity greater than
or equal to the multiplicity of ζ.

As we did in the first part of the proof, if there exists a finite Blaschke product k ∈ E(ϕ),
then k should be of the form k = ϕ

ϕ ; thus in this case the Blaschke product k is determined
uniquely. On the other hand if ZD and ZC\D denote the number of zeros of zmϕ in D and
in C \ D counting multiplicity, then since

zmϕ = aN

r∏

j=1

(z − γj)(z − 1
γj

)
t∏

j=1

(z − αj)
m+N−2r−t∏

j=1

(z − ζj),

it follows that ZD − ZC\D equals to the value

#


zeros of

m+N−2r−t∏

j=1

(z − ζj) in D


−#


zeros of

m+N−2r−t∏

j=1

(z − ζj) in C \ D

 .

Thus the expression (5.3) shows that the degree of k is N −m + ZD − ZC\D. It therefore
follows from Lemma 1 that rank [T ∗ϕ, Tϕ] = N −m + ZD − ZC\D. ¤

Corollary 6. Let ϕ(z) =
∑N

n=−m anzn with m ≤ N . If zmϕ has at least (N + 1)’s zeros
on the unit circle, then the following statements are equivalent.

(i) Tϕ is a hyponormal operator.
(ii) For every zero ζ of zmϕ such that |ζ| > 1, the number 1/ζ is a zero of zmϕ in the

open unit disk D of multiplicity greater than or equal to the multiplicity of ζ.

Proof. If zmϕ has at least (N+1)’s zeros on the unit circle, then this satisfies the assumption
of Theorem 5. Thus the result immediately follows from Theorem 5. ¤
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Corollary 7([5, Theorem 2]). Suppose ϕ(z) =
∑N

n=−m anzn, with m ≤ N , is a circulant
polynomial with argument ω, i.e., a−k = eiωaN−k+1 for every 1 ≤ k ≤ m and for some fixed
ω ∈ [0, 2π). If f(z) = aN−m+1 + aN−m+2z + · · ·+ aNzm−1, then the following statements
are equivalent.

(i) Tϕ is a hyponormal operator.
(ii) For every zero ζ of f such that |ζ| > 1, the number 1/ζ is a zero of f in the open

unit disk D of multiplicity greater than or equal to the multiplicity of ζ.

Proof. In view of Lemma 2(iii), we assume that a0 = a1 = · · · = aN−m = 0. Note that

zm ϕ =
(
eiω + zN+1

)
f(z).

Thus zmϕ has at least (N + 1)’s zeros on the unit circle, and the set of zeros of zmϕ
not on the unit circle is the set of zeros of f not on the unit circle. Therefore the result
immediately follows from Corollary 6. ¤

Theorem 8. Suppose ϕ(z) =
∑N

n=−m anzn, where m ≤ N and |aN | = |a−m| 6= 0, and let
ψ := ϕ−∑N−m

n=0 anzn. Then the following statements are equivalent.
(i) Tϕ is a hyponormal operator.
(ii) For every zero ζ of zmψ, the number 1/ζ is a zero of zmψ of multiplicity equal to

the multiplicity of ζ.

Proof. In view of Lemma 2(iii), Tϕ is hyponormal if and only if Tψ is. By Lemma 2(iv),
Tψ is hyponormal if and only if the Fourier coefficients of ψ satisfy the following equation:

(8.1) aN




a−1

a−2

...

...
a−m




= a−m




aN−m+1

aN−m+2

...

...
aN




.

Since |aN | = |a−m|, there exists θ ∈ [0, 2π) such that a−m = aNeiθ. Then by (8.1) we have
that a−j = aN−m+je

iθ for every j = 1, · · · ,m. Thus we may rewrite ψ as

ψ(z) = eiθ

(
aNz−m + · · ·+ aN−m+1z

−1

)
+ aN−m+1z

N−m+1 + · · ·+ aNzN .

Therefore Tψ is hyponormal if and only if ψ = k ψ with k = a−m

aN
zN−m. Observe

ζ is a zero of zmψ ⇐⇒ 1/ζ is a zero of zNψ.

But since

k = zN−m zmψ

zNψ
=

a−m

aN
zN−m

N+m∏

j=1

z − ζj

z − 1/ζj

(note that ζj 6= 0 for every 1 ≤ j ≤ N + m because a−m 6= 0), it follows that Tψ is
hyponormal if and only if for every zero ζ of zmψ, the number 1/ζ is a zero of zmψ of
multiplicity equal to the multiplicity of ζ. This completes the proof. ¤



8

Corollary 9. If ϕ(z) =
∑N

n=−N anzn then the following statements are equivalent.
(i) Tϕ is a normal operator.
(ii) For every zero ζ of zN (ϕ−a0), the number 1/ζ is a zero of zN (ϕ−a0) of multiplicity

equal to the multiplicity of ζ.

Thus in particular if ϕ(z) =
∑N

n=−N anzn, where a−N = aN and a0 is real (e.g., the
Fourier coefficients of ϕ are real) then Tϕ is a normal operator if and only if for any zero
ζ of zNϕ, the number 1/ζ is a zero of zNϕ of multiplicity equal to the multiplicity of ζ.

Proof. From Lemma 2(v), we have that Tϕ is normal if and only if |a−N | = |aN | and
the Fourier coefficients of ϕ satisfy the symmetry condition (8.1) with m = N . Note
that the condition (ii) implies the condition “|a−N | = |aN |”. Therefore the first assertion
immediately follows from Theorem 8. For the second assertion observe that if a−N = aN

then we can see from the proof of Theorem 8 that the Blaschke product k is in E(ϕ) if and
only if k = 1. Therefore if k ∈ E(ϕ) and a0 is real then 0 = (ϕ− a0)− k (ϕ− a0) = ϕ− ϕ,
i.e., ϕ = ϕ and therefore Tϕ is normal if and only if for every zero ζ of zNϕ, the number
1/ζ is a zero of zNϕ of multiplicity equal to the multiplicity of ζ. ¤

Example 10. Consider the following trigonometric polynomials:

ϕ1(z) = z−4(z − 1)5(z − 2)(z − 1
2
)2 and ϕ2(z) = z−4(z − 1)5(z − 2)(z − 1

10
)2.

In [5, Remark 1.2], it was shown that if ϕ(z) =
∑N

n=−m anzn and if |aN | is sufficiently
large in comparison with other coefficients, then Tϕ is hyponormal. Thus intuition suggests
that ϕ1 is less likely than ϕ2 to induce a hyponormal Toeplitz operator, as the modulus of
the “co-analytic” outer coefficient of ϕ1 is greater than that of ϕ2. However the opposite
is true: Theorem 5 shows that Tϕ1 is hyponormal whereas Tϕ2 is not.

Example 11. Consider the following trigonometric polynomial:

ϕ(z) = z−3(z − 2)2(z − 1
2
)2(z − α)(z − β).

Theorem 5 shows that Tϕ is hyponormal if and only if αβ = 1. Also Corollary 9 shows that
if α, β ∈ R then hyponormality and normality coincide for Tϕ.

In view of the preceding results, one might guess that if ϕ(z) =
∑N

n=−m anzn is such
that Tϕ is hyponormal, then the number of zeros of zmϕ in the open unit disk D is greater
than or equal to the number of zeros of zmϕ outside D. In the sequel we provide an
example which shows that this guess is wrong (see Example 16 below). For this we give
a necessary condition for hyponormality of Tϕ with polynomial symbol ϕ of the form
ϕ(z) =

∑N
n=−m anzn, in terms of zeros of the analytic polynomial zmϕ; in fact, with

arbitrary trigonometric polynomials, the known necessary conditions for practical use are
only the statements (i) and (ii) in Lemma 2. To do this we review here Schur’s algorithm,
due to K. Zhu [14], determining hyponormality for Toeplitz operators with polynomial
symbols.

Suppose that k(z) =
∑∞

j=0 cjz
j is in the closed unit ball of H∞(T). If k0 = k, define by

induction a sequence {kn} of functions in the closed unit ball of H∞(T) as follows:

kn+1(z) =
kn(z)− kn(0)

z
(
1− kn(0) kn(z)

) , |z| < 1, n = 0, 1, 2, · · · .
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We write
kn(0) = Φn(c0, · · · , cn), n = 0, 1, 2, · · · ,

where Φn is a function of n + 1 complex variables. We call the Φn’s Schur’s functions.
Then Zhu’s theorem can be written as follows: if ϕ(z) =

∑N
n=−N anzn, where aN 6= 0 and

if

(11.1)




c0

c1
...

cN−1


 =




a1 a2 . . . aN−1 aN

a2 a3 . . . aN 0
...

...
. . .

...
...

aN 0 . . . 0 0




−1 


a−1

a−2

...
a−N


 ,

then Tϕ is hyponormal if and only if |Φn(c0, · · · , cn)| ≤ 1 for every n = 0, 1, · · · , N − 1.
If k(z) =

∑∞
j=0 cjz

j is a function in H∞ such that ϕ − kϕ ∈ H∞, then c0, · · · , cN−1

are just the values given in (11.1). Thus Zhu’s theorem shows that if k(z) =
∑∞

j=0 cjz
j

satisfies ϕ − kϕ ∈ H∞, then the hyponormality of Tϕ is determined by the values of cj ’s
for 0 ≤ j ≤ N − 1. On the other hand, Zhu’s theorem can be reformulated as follows:

Lemma 12 (Zhu’s Theorem). If ϕ(z) =
∑N

n=−m anzn, where m ≤ N and aN 6= 0, then
Tϕ is hyponormal if and only if |Φn(c0, · · · , cn)| ≤ 1 for every n = 0, 1, · · · , N − 1, where
the cn are given by the following recurrence relation:

(12.1)





c0 = c1 = · · · = cN−m−1 = 0
cN−m = a−m

aN

cn = (aN )−1
(
a−N+n −

∑n−1
j=N−m cjaN−n+j

)
for n = N −m + 1, · · · , N − 1.

Proof. See [10, Proposition 1]. ¤

We also recall:

Lemma 13 ([10, Proposition 3]). Suppose that k(z) =
∑∞

j=0 cjz
j is in the closed unit

ball of H∞(T) and that {Φn} is a sequence of Schur’s functions associated with {cn}. If
c1 = · · · = cn−1 = 0 and cn 6= 0, then we have that Φ0 = c0, Φ1 = · · · = Φn−1 = 0,

Φn =
cn

1− |c0|2 and Φn+1 =
cn+1(

1− |c0|2
)(

1− |Φn|2
) .

We now get a condition that ϕ must necessarily satisfy in order for Tϕ to be a hyponormal
operator.

Theorem 14 (A Necessary Condition for Hyponormality). Suppose that ϕ(z) =∑N
n=−m anzn, where a−m and aN are nonzero. If zm ϕ = aN

∏m+N
j=1 (z − ζj) then

(14.1) Tϕ is hyponormal =⇒
∣∣∣∣∣∣

m+N∑

j=1

(
ζj − 1/ζj

)
∣∣∣∣∣∣
≤ 1∏m+N

j=1 |ζj |
−

m+N∏

j=1

|ζj |.
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Proof. Observe that ζj 6= 0 for every 1 ≤ j ≤ m + N , and that

aN−1

aN
= −

m+N∑

j=1

ζj ;

a−m

aN
= (−1)m+N

m+N∏

j=1

ζj ;

a−m+1

aN
= (−1)m+N−1

m+N∏

j=1

ζj ·
m+N∑

j=1

1
ζj

.

By the recurrence relation (12.1) we have

(14.2) c0 = c1 = · · · = cN−m−1 = 0 and |cN−m| =
∣∣∣∣
a−m

aN

∣∣∣∣ =
m+N∏

j=1

|ζj |,

and if we write aN = eiθaN for some θ ∈ [0, 2π) then

|cN−m+1| =
∣∣∣
(
aN

)−1(
a−m+1 − cN−maN−1

)∣∣∣

=

∣∣∣∣∣e
−iθ a−m+1

aN
− e−iθ a−m

aN

(
aN−1

aN

)∣∣∣∣∣

=

∣∣∣∣∣∣
(−1)m+N−1

m+N∏

j=1

ζj ·
m+N∑

j=1

1
ζj

+ (−1)m+N
m+N∏

j=1

ζj ·
m+N∑

j=1

ζj

∣∣∣∣∣∣
(14.3)

=
m+N∏

j=1

|ζj |
∣∣∣∣∣∣

m+N∑

j=1

(
ζj − 1/ζj

)
∣∣∣∣∣∣
.

By Lemma 13, we also have

Φ0 = · · · = ΦN−m−1 = 0, ΦN−m = cN−m, and ΦN−m+1 =
cN−m+1

1− |ΦN−m|2 .

Therefore if Tϕ is hyponormal then it follows from Lemma 12 that |cN−m+1| ≤ 1−|cN−m|2,
which together with (14.2) and (14.3) implies

∣∣∣∣∣∣

m+N∑

j=1

(
ζj − 1/ζj

)
∣∣∣∣∣∣
≤ 1∏m+N

j=1 |ζj |
−

m+N∏

j=1

|ζj |.

¤

If m = 2 in Theorem 14 then the implication (14.1) is reversible.

Corollary 15. If z2 ϕ =
∏N

j=1(z− ζj), where N ≥ 4 and ζj 6= 0 for every 1 ≤ j ≤ N , then

(15.1) Tϕ is hyponormal ⇐⇒
∣∣∣∣∣∣

N∑

j=1

(
ζj − 1/ζj

)
∣∣∣∣∣∣
≤ 1∏N

j=1 |ζj |
−

N∏

j=1

|ζj |.
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Proof. Write ϕ(z) =
∑N−2

n=−2 anzn. Then

aN−2 = 1, aN−3 = −
N∑

j=1

ζj , a−2 = (−1)N
N∏

j=1

ζj , and a−1 = (−1)N−1
N∏

j=1

ζj ·
N∑

j=1

1
ζj

.

Then by the recurrence relation (12.1),

c0 = c1 = · · · = cN−5 = 0;

cN−4 = a−2 = (−1)N
N∏

j=1

ζj ;

cN−3 = a−1 − cN−4aN−3 = (−1)N−1
N∏

j=1

ζj ·
N∑

j=1

(
1/ζj − ζj

)
.

On the other hand, by Lemma 13,

Φ0 = · · · = ΦN−5 = 0, ΦN−4 = cN−4, and ΦN−3 =
cN−3

1− |ΦN−4|2 .

Since by Lemma 12, Tϕ is hyponormal if and only if |Φn| ≤ 1 for every n = 0, 1, · · · , N − 3,
it follows that

Tϕ is hyponormal ⇐⇒ |cN−4| ≤ 1 and |cN−3| ≤ 1− |cN−4|2,

which gives (15.1). ¤

Example 16. Consider the following trigonometric polynomial:

ϕ(z) = z−2

(
z − 4

5

)(
z − 9

10

)(
z − 101

100

)(
z − 102

100

)(
z − 103

100

)
.

Applying Corollary 15 gives that Tϕ is hyponormal. Thus this example shows that when
ϕ(z) =

∑N
n=−m anzn is such that Tϕ is hyponormal, the number of zeros of zmϕ in D need

not be greater than or equal to the number of zeros of zmϕ outside D.

On the other hand we need not expect that the implication (14.1) is reversible for
arbitrary trigonometric polynomials. For example if

ϕ(z) = z−4(z − 1)5
(

z − 1
2

) (
z − 4

5

)(
z − 10

9

)
,

then by Theorem 5, Tϕ is not hyponormal, while the inequality in (14.1) is satisfied.

Acknowledgments. The authors wish to thank D. Farenick for comments concerning the
subject of this paper.
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