ON M-HYPONORMAL WEIGHTED SHIFTS

Jung Sook Ham, Sang Hoon Lee and Woo Young Lee

Abstract

Let $\alpha \equiv\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ be a weight sequence and let W_{α} denote the associated unilateral weighted shift on $\ell^{2}\left(\mathbb{Z}_{+}\right)$. In this paper we prove that if α is eventually increasing, then W_{α} is M-hyponormal and that if α has exactly two subsequential limits such that the larger one is different from the spectral radius of W_{α} then W_{α} is not M-hyponormal.

1. Introduction

Let $\mathcal{L}(\mathcal{H})$ be the algebra of bounded linear operators on a separable complex Hilbert space \mathcal{H}. An operator $T \in \mathcal{L}(\mathcal{H})$ is called normal if $T^{*} T=T T^{*}$ and hyponormal if $T^{*} T \geq T T^{*}$. An operator $T \in \mathcal{L}(\mathcal{H})$ is called M-hyponormal if there exists $M>0$ such that

$$
\left\|(T-\lambda)^{*} x\right\| \leq M\|(T-\lambda) x\| \quad \text { for all } \lambda \in \mathbb{C} \text { and for all } x \in \mathcal{H}
$$

If $M \leq 1$ then M-hyponormality implies hyponormality. The notion of an M-hyponormal operator is due to J. Stampfli (unpublished) (see [11]). The class of M-hyponormal operators has been studied by many authors (cf.[1-3],[5-12]). However examples of M-hyponormal non-hyponormal operators seem to be scarce from the literature. The aim of the present article is to give abundant examples of M-hyponormal non-hyponormal operators. Our strategy involves the unilateral weighted shifts.

2. Results

Recall that given a bounded sequence of positive numbers $\alpha: \alpha_{0}, \alpha_{1}, \cdots$ (called weights), the (unilateral) weighted shift W_{α} associated with α is the operator on $\ell^{2}\left(\mathbb{Z}_{+}\right)$defined by $W_{\alpha} e_{n}:=$ $\alpha_{n} e_{n+1}$ for all $n \geq 0$, where $\left\{e_{n}\right\}_{n=0}^{\infty}$ is the canonical orthonormal basis for ℓ^{2}. It is straightforward to check that W_{α} can never be normal, and that W_{α} is hyponormal if and only if $\alpha_{n} \leq \alpha_{n+1}$ for all $n \geq 0$, i.e., α is monononically increasing. B. Wadha [11] gave an example of an M-hyponormal non-hyponormal weighted shift W_{α} of the form:

$$
W_{\alpha}=\left(\begin{array}{cccccc}
0 & & & & & \\
1 & 0 & & & & \\
& 2 & 0 & & & \\
& & 1 & 0 & & \\
& & & 1 & 0 & \\
& & & & \ddots & \ddots
\end{array}\right)
$$

On the other hand, M. Radjabalipour [8] showed that the only quasinilpotent M-hyponormal operator is 0 . Thus if W_{α} is a weighted shift with weight sequence $\left\{\alpha_{n}\right\}$ converging to 0 then W_{α} is not M-hyponormal. In this paper we consider the question: Which weighted shifts are M-hyponormal? Our main theorem now follows:

[^0]Theorem 1. Let $T \equiv W_{\alpha}$ be a weighted shift with weight sequence $\alpha=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$. If α is eventually increasing then T is M-hyponormal.

Proof. For any $x=\sum_{n=0}^{\infty} x_{n} e_{n} \in \ell^{2}$ and for any $\lambda \in \mathbb{C}$,

$$
(T-\lambda) x=-\lambda x_{0} e_{0}+\sum_{i=0}^{\infty}\left(\alpha_{i} x_{i}-\lambda x_{i+1}\right) e_{i+1}
$$

and

$$
\left(T^{*}-\bar{\lambda}\right) x=\sum_{i=0}^{\infty}\left(\alpha_{i} x_{i+1}-\bar{\lambda} x_{i}\right) e_{i}
$$

Thus a straightforward calculation shows that

$$
\begin{aligned}
\|(T-\lambda) x\|^{2}-\left\|\left(T^{*}-\bar{\lambda}\right) x\right\|^{2} & =\left|\lambda x_{0}\right|^{2}+\sum_{i=0}^{\infty}\left|\alpha_{i} x_{i}-\lambda x_{i+1}\right|^{2}-\sum_{i=0}^{\infty}\left|\alpha_{i} x_{i+1}-\bar{\lambda} x_{i}\right|^{2} \\
& =\left|\alpha_{0} x_{0}\right|^{2}+\sum_{i=1}^{\infty}\left(\alpha_{i}^{2}-\alpha_{i-1}^{2}\right)\left|x_{i}\right|^{2}
\end{aligned}
$$

Suppose that $\alpha=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ is monotonically increasing for $n \geq k$. We now claim that if $c:=$ $\min \left\{\alpha_{0}, \alpha_{1}, \cdots, \alpha_{k}\right\}$, then

$$
\|(T-\lambda) x\| \geq(c-|\lambda|)\|x\| \quad \text { for any } \lambda \in \mathbb{C}:
$$

indeed we have that

$$
\begin{aligned}
\|(T-\lambda) x\| & \geq\|T x\|-|\lambda|\left\|x| |=\left(\sum_{i=0}^{\infty} \alpha_{i}^{2}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}-|\lambda|\right\| x| | \\
& \geq\left(\sum_{i=0}^{\infty} c^{2}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}-|\lambda|\|x\|=(c-|\lambda|)\|x\|
\end{aligned}
$$

Thus we have that

$$
\begin{equation*}
\|(T-\lambda) x\| \geq \frac{c}{2}\|x\| \quad \text { for }|\lambda|<\frac{c}{2} \tag{1.1}
\end{equation*}
$$

Write $J:=\left\{j \geq 1: \alpha_{j}<\alpha_{j-1}\right\}$. If $J=\emptyset$ then T must be hyponormal. Evidently, $J \subseteq\{1, \cdots, k\}$. Write $m:=\sharp(J)$. We argue that

$$
\begin{equation*}
\|(T-\lambda) x\|^{2} \geq\left[\sum_{l=0}^{j-1}\left(\prod_{i=l}^{j-1} \alpha_{i}^{2}|\lambda|^{2 l}\right)+|\lambda|^{2 j}\right]^{-1}|\lambda|^{2(j+1)}\left|x_{j}\right|^{2} \quad(j \geq 1) \tag{1.2}
\end{equation*}
$$

Towards (1.2) observe that

$$
\|(T-\lambda) x\|^{2}=\left|\lambda x_{0}\right|^{2}+\sum_{i=0}^{\infty}\left|\alpha_{i} x_{i}-\lambda x_{i+1}\right|^{2}
$$

and so it suffices to show that

$$
\begin{equation*}
\left|\lambda x_{0}\right|^{2}+\sum_{i=0}^{j-1}\left|\alpha_{i} x_{i}-\lambda x_{i+1}\right|^{2} \geq K_{j}^{-1}|\lambda|^{2(j+1)}\left|x_{j}\right|^{2} \quad(j \geq 1) \tag{1.3}
\end{equation*}
$$

where

$$
K_{j}:=\sum_{l=0}^{j-1}\left(\prod_{i=l}^{j-1} \alpha_{i}^{2}|\lambda|^{2 l}\right)+|\lambda|^{2 j}
$$

for each $j=1,2, \cdots$. We use an induction on j. First, observe that

$$
\begin{aligned}
\left|\lambda x_{0}\right|^{2}+\left|\alpha_{0} x_{0}-\lambda x_{1}\right|^{2} & =|\lambda|^{2}\left|x_{0}\right|^{2}+\alpha_{0}^{2}\left|x_{0}\right|^{2}-\bar{\lambda} \bar{x}_{1} \alpha_{0} x_{0}-\lambda x_{1} \alpha_{0} \bar{x}_{0}+|\lambda|^{2}\left|x_{1}\right|^{2} \\
& =\left|\sqrt{|\lambda|^{2}+\alpha_{0}^{2}} x_{0}-\frac{\alpha_{0} \lambda x_{1}}{\sqrt{|\lambda|^{2}+\alpha_{0}^{2}}}\right|^{2}-\frac{\alpha_{0}^{2}|\lambda|^{2}}{|\lambda|^{2}+\alpha_{0}^{2}}\left|x_{1}\right|^{2}+|\lambda|^{2}\left|x_{1}\right|^{2} \\
& \geq \frac{|\lambda|^{4}}{|\lambda|^{2}+\alpha_{0}^{2}}\left|x_{1}\right|^{2} \\
& =\frac{|\lambda|^{4}}{K_{1}}\left|x_{1}\right|^{2},
\end{aligned}
$$

which shows that (1.3) holds for $j=1$. We now suppose that (1.3) holds for $j=n$. Then a straightforward calculation shows that

$$
\begin{aligned}
& \left|\lambda x_{0}\right|^{2}+\sum_{i=0}^{n}\left|\alpha_{i} x_{i}-\lambda x_{i+1}\right|^{2} \\
\geq & K_{n}^{-1}|\lambda|^{2(n+1)}\left|x_{n}\right|^{2}+\left|\alpha_{n} x_{n}-\lambda x_{n+1}\right|^{2} \\
= & \left(K_{n}^{-1}|\lambda|^{2(n+1)}+\alpha_{n}^{2}\right)\left|x_{n}\right|^{2}-\alpha_{n} x_{n} \bar{\lambda} \bar{x}_{n+1}-\alpha_{n} \bar{x}_{n} \lambda x_{n+1}+|\lambda|^{2}\left|x_{n+1}\right|^{2} \\
= & \left|\sqrt{K_{n}^{-1}|\lambda|^{2(n+1)}+\alpha_{n}^{2}} x_{n}-\frac{\alpha_{n} \lambda x_{n+1}}{\sqrt{K_{n}^{-1}|\lambda|^{2(n+1)}+\alpha_{n}^{2}}}\right|^{2}-\frac{\alpha_{n}^{2}|\lambda|^{2}}{K_{n}^{-1}|\lambda|^{2(n+1)}+\alpha_{n}^{2}}\left|x_{n+1}\right|^{2}+|\lambda|^{2}\left|x_{n+1}\right|^{2} \\
\geq & \frac{K_{n}^{-1}|\lambda|^{2(n+1)}|\lambda|^{2}}{K_{n}^{-1}|\lambda|^{2(n+1)}+\alpha_{n}^{2}}\left|x_{n+1}\right|^{2} \\
= & \frac{|\lambda|^{2(n+2)}}{\sum_{l=0}^{n}\left(\prod_{i=l}^{n} \alpha_{i}^{2}|\lambda|^{2 l}\right)+|\lambda|^{2(n+1)}}\left|x_{n+1}\right|^{2} \\
& =K_{n+1}^{-1}|\lambda|^{2(n+2)}\left|x_{n+1}\right|^{2},
\end{aligned}
$$

which shows that (1.3) holds for $j=n+1$. This proves (1.3). On the other hand, for $|\lambda| \geq \frac{c}{2}$ and for each $j \in J$ we can find a constant $\gamma_{j}>0$ for which

$$
\begin{equation*}
\left[\sum_{l=0}^{j-1}\left(\prod_{i=l}^{j-1} \alpha_{i}^{2}|\lambda|^{2 l}\right)+|\lambda|^{2 j}\right]^{-1}|\lambda|^{2(j+1)} \geq \gamma_{j}^{2} \tag{1.4}
\end{equation*}
$$

where γ_{j} is independent of λ with $|\lambda| \geq \frac{c}{2}$.
It thus follows from (1.2) and (1.4) that if $|\lambda| \geq \frac{c}{2}$ then

$$
\|(T-\lambda) x\|^{2} \geq \gamma_{j}^{2}\left|x_{j}\right|^{2} \quad \text { for each } j \in J
$$

Thus if $|\lambda| \geq \frac{c}{2}$ then

$$
\begin{equation*}
\|(T-\lambda) x\|^{2} \geq \frac{\gamma^{2}}{m} \sum_{j \in J}\left|x_{j}\right|^{2}, \quad \text { where } \gamma=\min _{j \in J} \gamma_{j} \tag{1.5}
\end{equation*}
$$

Write $d:=\max _{j \in J}\left\{\alpha_{j-1}^{2}-\alpha_{j}^{2}\right\}$ and put

$$
M^{2}:=\max \left\{\frac{m d}{\gamma^{2}}, \frac{4 d}{c^{2}}\right\}+1
$$

Then we claim that

$$
\left(M^{2}-1\right)\|(T-\lambda) x\|^{2} \geq d \sum_{j \in J}\left|x_{j}\right|^{2} \quad \text { for all } \lambda \in \mathbb{C}:
$$

indeed if $|\lambda| \geq \frac{c}{2}$ then by (1.5),

$$
\left(M^{2}-1\right)\|(T-\lambda) x\|^{2} \geq \frac{m d}{\gamma^{2}}\|(T-\lambda) x\|^{2} \geq \frac{m d}{\gamma^{2}} \cdot \frac{\gamma^{2}}{m} \sum_{j \in J}\left|x_{j}\right|^{2}=d \sum_{j \in J}\left|x_{j}\right|^{2}
$$

and if instead $|\lambda|<\frac{c}{2}$ then by (1.1),

$$
\left(M^{2}-1\right)\|(T-\lambda) x\|^{2} \geq \frac{4 d}{c^{2}}\|(T-\lambda) x\|^{2} \geq d\|x\|^{2} \geq d \sum_{j \in J}\left|x_{j}\right|^{2}
$$

Therefore we have that

$$
\begin{aligned}
& M^{2}\|(T-\lambda) x\|^{2}-\left\|\left(T^{*}-\bar{\lambda}\right) x\right\|^{2} \\
= & \left(M^{2}-1\right)\|(T-\lambda) x\|^{2}+\|(T-\lambda) x\|^{2}-\left\|\left(T^{*}-\bar{\lambda}\right) x\right\|^{2} \\
\geq & d \sum_{j \in J}\left|x_{j}\right|^{2}+\left|\alpha_{0} x_{0}\right|^{2}+\sum_{i=1}^{\infty}\left(\alpha_{i}^{2}-\alpha_{i-1}^{2}\right)\left|x_{i}\right|^{2} \\
\geq & \left|\alpha_{0} x_{0}\right|^{2}+\sum_{i \in \mathbb{N} \backslash J}\left(\alpha_{i}^{2}-\alpha_{i-1}^{2}\right)\left|x_{i}\right|^{2} \geq 0 .
\end{aligned}
$$

This completes the proof.

We were unable to decide whether or not the converse of Theorem 1 is true. However we conjecture that it is:
Conjecture 2. Let W_{α} be a weighted shift with weight sequence $\alpha=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$. Then W_{α} is M-hyponormal if and only if α is eventually increasing.

We now provide evidence for the validity of the conjecture.
Theorem 3. Let $T \equiv W_{\alpha}$ be a weighted shift with weight sequence $\alpha=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$. If α has exactly two subsequential limits such that the larger one is different from the spectral radius $r(T)$ of T, then T is not M-hyponormal.

Proof. Suppose that there are infinite sets B and C such that $\mathbb{N}=B \cup C$, where (i) B and C are disjoint; (ii) $\beta_{n}:=\alpha_{n}$ if $n \in B$ and $\gamma_{n}:=\alpha_{n}$ if $n \in C$; (iii) $\beta_{n} \rightarrow \beta$ and $\gamma_{n} \rightarrow \gamma$; and (iv) $\beta<\gamma$.

Assume to the contrary that T is M-hyponormal. Then there exists $M \geq 1$ such that

$$
\left\|(T-\lambda)^{*} x\right\| \leq M\|(T-\lambda) x\| \quad \text { for all } \lambda \in \mathbb{C} \text { and for all } x \in \ell^{2}
$$

Suppose $\beta=0$. Since $\gamma>0$ we can choose δ such that $\gamma_{n} \geq \delta>0$ for all $n \in C$. Since $\beta_{n} \rightarrow 0$, we can find an $N \in B$ such that $\beta_{N}<\frac{\delta}{M}$. Since C is infinite there exists $N_{0}>N$ such that $N_{0} \in B$ and $N_{0}-1 \in C$. Thus if we take $x=e_{N_{0}}$, then

$$
M^{2}\|T x\|^{2}-\left\|T^{*} x\right\|^{2}=M^{2} \alpha_{N_{0}}^{2}-\alpha_{N_{0}-1}^{2}<M^{2}\left(\frac{\delta}{M}\right)^{2}-\delta^{2}=0
$$

which shows that T is not M-hyponormal. We now suppose $\beta>0$. Note that $\operatorname{span}\left\{e_{k}: k \geq N\right\}$ is an invariant subspace for T and the restriction of T to such a subspace still yields a weighted shift. But since the restriction of an M-hyponormal operator to an invariant subspace is also M-hyponormal we may assume, without loss of generality, that for sufficiently small $\epsilon>0$,

$$
\alpha_{0}=\beta_{0}, \quad \beta_{m}<\gamma_{k}, \quad\left|\beta_{m}^{2}-\beta^{2}\right|<\epsilon \quad \text { and } \quad\left|\gamma_{k}^{2}-\gamma^{2}\right|<\epsilon \quad \text { for each } m \in B \text { and } k \in C
$$

If $\left\{\gamma_{n}\right\}$ occurs infinitely often, in arbitrary long blocks, then γ must be in the approximate point spectrum of T : indeed if $\left\{\alpha_{n}\right\}$ has the consecutive terms such as $\gamma_{m+1}, \gamma_{m+2}, \cdots, \gamma_{m+k}$ and if f_{k} is a unit vector such as $f_{k}=\frac{1}{\sqrt{k}} \sum_{j=1}^{k} e_{m+j}$ then

$$
\left\|(T-\gamma) f_{k}\right\|=\frac{1}{\sqrt{k}}\left(\gamma^{2}+\left(\gamma_{m+1}-\gamma\right)^{2}+\cdots+\left(\gamma_{m+k-1}-\gamma\right)^{2}+\gamma_{m+k}^{2}\right)^{\frac{1}{2}} \leq \sqrt{\epsilon}+\sqrt{\frac{2}{k}} \gamma \longrightarrow 0 \text { as } k \rightarrow \infty
$$

But since (cf. [4, Solution 91])

$$
r(T)=\lim _{k} \sup _{n}\left|\prod_{i=0}^{k-1} \alpha_{n+i}\right|^{\frac{1}{k}} \leq \gamma
$$

it follows that $r(T)=\gamma$, which contradicts to our assumption. Thus $\left\{\gamma_{n}\right\}$ occurs infinitely often, in at most finite length of blocks. Suppose h is the largest number of such the lengths. Let $\lambda>\beta$ be a positive number and choose a sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ defined by

$$
x_{0}=1 \quad \text { and } \quad x_{n}=\frac{1}{\lambda^{n}} \prod_{j=0}^{n-1} \alpha_{j} \quad(n=1,2, \cdots)
$$

Consider $\sum c_{n} z^{n}$, where $c_{0}:=1$ and $c_{n}:=\prod_{j=0}^{n-1} \alpha_{j}(n=1,2, \cdots)$. If ρ is the radius of convergence of this power series, then $\sum_{n=0}^{\infty} x_{n}^{2}$ will converge whenever $\frac{1}{\lambda}<\rho$, or $\lambda>\frac{1}{\rho}=: R$. Thus $x=$ $\sum_{n=0}^{\infty} x_{n} e_{n} \in \ell_{2}$ for $\lambda>R$. Observe that if $x=\sum_{n=0}^{\infty} x_{n} e_{n} \in \ell^{2}$ then

$$
\begin{aligned}
& M^{2}\|(T-\lambda) x\|^{2}-\left\|(T-\lambda)^{*} x\right\|^{2} \\
= & M^{2}\left(\left|\lambda x_{0}\right|^{2}+\sum_{n=0}^{\infty}\left|\alpha_{n} x_{n}-\lambda x_{n+1}\right|^{2}\right)-\sum_{n=0}^{\infty}\left|\alpha_{n} x_{n+1}-\bar{\lambda} x_{n}\right|^{2} \\
= & \left(M^{2}-1\right) \sum_{n=0}^{\infty}\left|\alpha_{n} x_{n}-\lambda x_{n+1}\right|^{2}+\alpha_{0}^{2}\left|x_{0}\right|^{2}+\left(M^{2}-1\right)\left|\lambda x_{0}\right|^{2}+\sum_{n=1}^{\infty}\left(\alpha_{n}^{2}-\alpha_{n-1}^{2}\right)\left|x_{n}\right|^{2} .
\end{aligned}
$$

A straightforward calculation shows that

$$
\begin{aligned}
M^{2}\|(T-\lambda) x\|^{2} & -\left\|(T-\lambda)^{*} x\right\|^{2}=\left(M^{2}-1\right) \lambda^{2}+\beta_{0}^{2}+\sum_{k^{\prime}=1}^{\infty}\left(\beta_{m_{k^{\prime}}}^{2}-\beta_{m_{k^{\prime}}-1}^{2}\right) x_{m_{k^{\prime}}}^{2} \\
& +\sum_{k^{\prime \prime}=1}^{\infty}\left(\gamma_{n_{k^{\prime \prime}}}^{2}-\gamma_{n_{k^{\prime \prime}}-1}^{2}\right) x_{n_{k^{\prime \prime}}}^{2}+\sum_{k=1}^{\infty}\left(\gamma_{p_{k}}^{2}-\beta_{p_{k}-1}^{2}\right) x_{p_{k}}^{2}+\sum_{k=1}^{\infty}\left(\beta_{q_{k}}^{2}-\gamma_{q_{k}-1}^{2}\right) x_{q_{k}}^{2},
\end{aligned}
$$

where $\sum_{k^{\prime}=1}^{\infty} x_{m_{k^{\prime}}}^{2}+\sum_{k^{\prime \prime}=1}^{\infty} x_{n_{k^{\prime \prime}}}^{2}+\sum_{k=1}^{\infty}\left(x_{p_{k}}^{2}+x_{q_{k}}^{2}\right)=\sum_{n=1}^{\infty} x_{n}^{2}$ and

$$
\begin{equation*}
x_{q_{k}}^{2}=\left(\frac{\gamma_{v_{k}} \cdots \gamma_{v_{k}+e_{k}-1}}{\lambda^{e_{k}}}\right)^{2} x_{p_{k}}^{2} \quad \text { and } \quad x_{p_{k}+1}^{2}=\left(\frac{\beta_{w_{k}} \cdots \beta_{w_{k}+f_{k}-1}}{\lambda^{f_{k}}}\right)^{2} x_{q_{k}}^{2} \tag{3.1}
\end{equation*}
$$

for some $v_{k}, w_{k}, e_{k}, f_{k}$. Note that if $\lambda<\gamma+\epsilon$ then

$$
x_{m_{k^{\prime}}}^{2}=\left(\frac{\beta_{t_{k}} \cdots \beta_{t_{k}+c_{k}-1}}{\lambda^{c_{k}}}\right)^{2} x_{q_{k}}^{2} \leq\left(\frac{\beta+\epsilon}{\lambda}\right)^{2 c_{k}} x_{q_{k}}^{2}
$$

and

$$
x_{n_{k^{\prime \prime}}}^{2}=\left(\frac{\gamma_{u_{k}} \cdots \gamma_{u_{k}+d_{k}-1}}{\lambda^{d_{k}}}\right)^{2} x_{p_{k}}^{2} \leq\left(\frac{(\gamma+\epsilon)^{h}}{\lambda^{h}}\right)^{2} x_{p_{k}}^{2} \quad\left(\text { since } d_{k} \leq h\right)
$$

for some $t_{k}, u_{k}, c_{k}, d_{k}$. Thus if $\beta+\epsilon<\lambda<\gamma+\epsilon$, then

$$
\begin{equation*}
\sum_{k^{\prime}=1}^{\infty} x_{m_{k^{\prime}}}^{2} \leq \sum_{k=0}^{\infty} \sum_{j=1}^{c_{k}}\left(\frac{\beta+\epsilon}{\lambda}\right)^{2 j} x_{q_{k}}^{2} \leq \sum_{k=0}^{\infty} \sum_{j=1}^{\infty}\left(\frac{\beta+\epsilon}{\lambda}\right)^{2 j} x_{q_{k}}^{2} \leq \frac{(\beta+\epsilon)^{2}}{\lambda^{2}-(\beta+\epsilon)^{2}} \sum_{k=0}^{\infty} x_{q_{k}}^{2} \tag{3.2}
\end{equation*}
$$

where $x_{q_{0}}=x_{0}=1$ and

$$
\begin{equation*}
\sum_{k^{\prime \prime}=1}^{\infty} x_{n_{k^{\prime \prime}}}^{2} \leq h\left(\frac{(\gamma+\epsilon)^{h}}{\lambda^{h}}\right)^{2} \sum_{k=1}^{\infty} x_{p_{k}}^{2} \tag{3.3}
\end{equation*}
$$

Also we have that

$$
\begin{align*}
& M^{2}\|(T-\lambda) x\|^{2}-\left\|(T-\lambda)^{*} x\right\|^{2} \\
& \leq\left(M^{2}-1\right) \lambda^{2}+\beta_{0}^{2}+2 \epsilon\left(\sum_{k^{\prime}=1}^{\infty} x_{m_{k^{\prime}}}^{2}+\sum_{k^{\prime \prime}=1}^{\infty} x_{n_{k^{\prime \prime}}}^{2}\right)+\left(\left(\gamma^{2}+\epsilon\right)-\left(\beta^{2}-\epsilon\right)\right) \sum_{k=1}^{\infty} x_{p_{k}}^{2} \\
& \quad+\left(\left(\beta^{2}+\epsilon\right)-\left(\gamma^{2}-\epsilon\right)\right) \sum_{k=1}^{\infty} x_{q_{k}}^{2} \tag{3.4}\\
& \leq\left(M^{2}-1\right) \lambda^{2}+\beta_{1}^{2}+2 \epsilon \sum_{n=1}^{\infty} x_{n}^{2}+\left(\gamma^{2}-\beta^{2}\right)\left(\sum_{k=1}^{\infty} x_{p_{k}}^{2}-\sum_{k=1}^{\infty} x_{q_{k}}^{2}\right)
\end{align*}
$$

If R_{1} and R_{2} are the radii of convergence of $\sum_{k=1}^{\infty} x_{p_{k}}^{2}$ and $\sum_{k=1}^{\infty} x_{q_{k}}^{2}$, respectively then by (3.1), (3.2) and (3.3),

$$
\beta \leq R_{1} \leq R_{2}=R \leq \gamma
$$

If $R_{1}<R$, take $\lambda \downarrow R$. Then $\sum_{k=1}^{\infty} x_{p_{k}}^{2}$ converges and $\sum_{k=1}^{\infty} x_{q_{k}}^{2} \rightarrow \infty$. Since ϵ was arbitrary it follows from (3.4) that $M^{2}\|(T-\lambda) x\|^{2}-\left\|(T-\lambda)^{*} x\right\|^{2}<0$ for $\lambda(>R)$ sufficiently close to R, a contradiction. If $R_{1}=R$ then there are two cases to consider.

Case $1(R<\gamma)$: In this case, take λ so that $R<\lambda<\gamma_{v_{1}}$, and hence $\frac{\gamma_{v_{1}}}{\lambda}>1$. Then we have

$$
\begin{aligned}
\left(\gamma^{2}-\beta^{2}\right)\left(\sum_{k=1}^{\infty} x_{p_{k}}^{2}-\sum_{k=1}^{\infty} x_{q_{k}}^{2}\right) & \leq\left(\gamma^{2}-\beta^{2}\right)\left(\sum_{k=1}^{\infty} x_{p_{k}}^{2}-\sum_{k=1}^{\infty} x_{p_{k}}^{2}\left(\frac{\gamma_{v_{1}}}{\lambda}\right)\right) \\
& \leq\left(\gamma^{2}-\beta^{2}\right)\left(1-\frac{\gamma_{v_{1}}}{\lambda}\right) \sum_{k=1}^{\infty} x_{p_{k}}^{2}
\end{aligned}
$$

If we take $\lambda \downarrow R$ then $\sum_{k=1}^{\infty} x_{p_{k}}^{2} \rightarrow \infty$. Since ϵ was arbitrary it follows that $M^{2}\|(T-\lambda) x\|^{2}-\|(T-$ $\lambda)^{*} x \|^{2}<0$ for $\lambda(>R)$ sufficiently close to R, a contradiction.

Case 2 $(R=\gamma)$: In this case, take λ so that $\lambda>R$ and hence $\frac{\beta_{s_{1}}}{\lambda}<1$. Then we have

$$
\begin{aligned}
\left(\gamma^{2}-\beta^{2}\right)\left(\sum_{k=1}^{\infty} x_{p_{k}}^{2}-\sum_{k=1}^{\infty} x_{q_{k}}^{2}\right) & =\left(\gamma^{2}-\beta^{2}\right) x_{p_{1}}^{2}+\left(\gamma^{2}-\beta^{2}\right)\left(\sum_{k=2}^{\infty} x_{p_{k}}^{2}-\sum_{k=1}^{\infty} x_{q_{k}}^{2}\right) \\
& \leq\left(\gamma^{2}-\beta^{2}\right) x_{p_{1}}^{2}+\left(\gamma^{2}-\beta^{2}\right)\left(\sum_{k=1}^{\infty} x_{q_{k}}^{2}\left(\frac{\beta_{s_{1}}}{\lambda}\right)-\sum_{k=1}^{\infty} x_{q_{k}}^{2}\right) \\
& \leq\left(\gamma^{2}-\beta^{2}\right) x_{p_{1}}^{2}+\left(\gamma^{2}-\beta^{2}\right)\left(\frac{\beta_{s_{1}}}{\lambda}-1\right) \sum_{k=1}^{\infty} x_{q_{k}}^{2} .
\end{aligned}
$$

If we take $\lambda \downarrow R$ then $\sum_{k=1}^{\infty} x_{q_{k}}^{2} \rightarrow \infty$. Since ϵ was arbitrary it follows that $M^{2}\|(T-\lambda) x\|^{2}-\|(T-$ $\lambda)^{*} x \|^{2}<0$ for $\lambda(>R)$ sufficiently close to R, a contradiction. This completes the proof.

Example 4. Let

$$
W_{\alpha}:=\left(\begin{array}{cccccc}
0 & & & & & \\
\beta & 0 & & & & \\
& \gamma & 0 & & & \\
& & \beta & 0 & & \\
& & & & \gamma & 0 \\
& & & & \ddots & \ddots .
\end{array}\right): \ell^{2} \rightarrow \ell^{2} .
$$

Then W_{α} is M-hyponormal if and only if $\beta=\gamma$.
Proof. Since $r\left(W_{\alpha}\right)=\sqrt{\beta \gamma}$, this follows at once from Theorem 3 .

Acknowledgements. The authors would like to thank the referee for the helpful suggestions.

References

1. S.C. Arora and R. Kumar, M-hyponormal operators, Yokohama Math. J. 28 (1980), 41-44.
2. B. P. Duggal, On dominant operators, Arch. Math. (Basel) 46 (1986), 353-359.
3. C. K. Fong, On M-hyponormal operators, Studia Math. 65(1) (1979), 1-5.
4. P.R. Halmos, A Hilbert Space Problem Book, Springer, New York, 1982.
5. I. H. Jeon, E. Ko, and H. Y. Lee, Weyl's theorem for $f(T)$ when T is a dominant operator, Glasg. Math. J. 43 (2001), 359-363.
6. S. K. Li and X. M. Chen, M-hyponormal operators, J. Fudan Univ. Natur. Sci. 28 (1989), 141-147.
7. R.L. Moore, D.D. Rogers and T.T. Trent, A note on intertwining M-hyponormal operators, Proc. Amer. Math. Soc. 83 (1981), 514-516.
8. M. Radjabalipour, On majorization and normality of operators, Proc. Amer. Math. Soc. 62 (1977), 105-110.
9. J.G. Stampfli and B.L. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana Univ. Math. J. 25 (1976), 359-365.
10. A. Uchiyama and T. Yoshino, Weyl's theorem for p-hyponormal or M-hyponormal operators, Glasg. Math. J. 43 (2001), 375-381.
11. B.L. Wadhwa, M-hyponormal operators, Duke Math. J. 41 (1974), 655-660.
12. Y. Yang, Some results on dominant operators, Internat. J. Math. Math. Sci. 21 (1998), 217-220.

Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea
E-mail address: jsham@math.skku.ac.kr

Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea
E-mail address: shlee@math.skku.ac.kr

Department of Mathematics, Seoul National University, Seoul 151-742, Korea
E-mail address: wylee@math.snu.ac.kr

[^0]: 1991 Mathematics Subject Classification. 47B20, 47B37.
 Key words and phrases. M-hyponormal operators, unilateral weighted shifts.
 This work was partially supported by the KOSEF research project No. R01-2000-00003.

