ON M-HYPONORMAL WEIGHTED SHIFTS

JUNG SOOK HAM, SANG HOON LEE AND WOO YOUNG LEE

Abstract. Let a = {an}22 , be a weight sequence and let W, denote the associated unilateral weighted
shift on #2(Z4). In this paper we prove that if o is eventually increasing, then W, is M-hyponormal
and that if a has exactly two subsequential limits such that the larger one is different from the spectral
radius of W, then W, is not M-hyponormal.

1. INTRODUCTION

Let L£L(H) be the algebra of bounded linear operators on a separable complex Hilbert space H.
An operator T € L(H) is called normal if T*T = TT* and hyponormal if T*T > TT*. An operator
T € L(H) is called M-hyponormal if there exists M > 0 such that

(T — N z|| < M||(T — Nz|| for all A € C and for all z € H.

If M <1 then M-hyponormality implies hyponormality. The notion of an M-hyponormal operator
is due to J. Stampfli (unpublished) (see [11]). The class of M-hyponormal operators has been studied
by many authors (cf.[1-3],[5-12]). However examples of M-hyponormal non-hyponormal operators
seem to be scarce from the literature. The aim of the present article is to give abundant examples
of M-hyponormal non-hyponormal operators. Our strategy involves the unilateral weighted shifts.

2. RESuULTS

Recall that given a bounded sequence of positive numbers « : «ag,aq,--- (called weights), the
(unilateral) weighted shift W, associated with « is the operator on (%(Zy) defined by We, =
anent1 for all n > 0, where {e, }°, is the canonical orthonormal basis for £2. Tt is straightforward
to check that W, can never be normal, and that W, is hyponormal if and only if a,, < ay,41 for
all n > 0, i.e., a is monononically increasing. B. Wadha [11] gave an example of an M-hyponormal
non-hyponormal weighted shift W, of the form:

0
1 0
2 0
10
1 0

On the other hand, M. Radjabalipour [8] showed that the only quasinilpotent M-hyponormal oper-
ator is 0. Thus if W, is a weighted shift with weight sequence {a,,} converging to 0 then W,, is not
M-hyponormal. In this paper we consider the question: Which weighted shifts are M -hyponormal?
Our main theorem now follows:
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Theorem 1. Let T = W, be a weighted shift with weight sequence o = {an 152 . If v is eventually
increasing then T is M -hyponormal.

Proof. For any = ., &ne, € ¢* and for any X € C,

(T — )\)3? = —Axoeo + Z(a"ml - )\xi+1)€i+1

i=0
and
— > —
(T* — /\)33 = Z(O&il‘“_l — )\xi)ei.
i=0
Thus a straightforward calculation shows that
(T = N> = [[(T* = Nzl]® = Mzol® + D Jaiws — Aviga[* = Y Jaawips — Al
i=0 i=0
oo
= laozo* + > _(0F — ai_y) |zl
i=1

Suppose that a = {a,}52, is monotonically increasing for n > k. We now claim that if ¢ :=
min {ag, a1, -+, }, then

(T — MNz|| > (c—|A])]||z|| forany A€ C:

indeed we have that

1

[e’e] 2
(T = Naf| = [| T[] — [A[[]]] = (Za? xﬂ) — AL

=0

> (ZCQ IwiIQ) = [A[l2ll = (e = [AD []]-
=0

Thus we have that
(L1) 1T = Nl| = 5 lal| - for ]3] < 5.

Write J :={j >1: oj < aj_1}. If J =0 then T must be hyponormal. Evidently, J C {1,--- ,k}.
(

Write m := J_). We argue that

-1
AP |22 (5 > 1).

(1.2) (T = N)al]* > [Z <H a?l/\|”> +A

=0 \i=l

Towards (1.2) observe that

o0
1T = N2l = Awo* + Y loias — Aziga]?,

i=0
and so it suffices to show that

-1
(1.3) Mool + ) i — Mz |* > K7 APO D (zP (5> 1),

=0



where
j—1 /-1
K; = <H afwl) + A%
1=0 \i=l
for each j =1,2,--- . We use an induction on j. First, observe that

I)\l‘0|2 + ‘OéoIo — )\x1|2 = ‘)\|2|$0|2 + ag\x0|2 - j\i‘loéoxo — A\x100Tg + |/\‘2|I1|2

2
QoA T1 ad|\?

= /IAP+ad zo — - 1?4 APz

’m 0= ol — Rk Pl
Al 2

> |1 |

SR
/\4

= ‘.KJl |$1|2,

which shows that (1.3) holds for j = 1. We now suppose that (1.3) holds for j = n. Then a
straightforward calculation shows that

n
|Azo|? + Z | — Azig1]?
=0

> K AP |2, 2 4 |, — Az ]?
= (K51|/\|2(”+1) + ai) |20 |? = nZp ATni1 — nTn ATy + (A2 201 ]?

2
A Tpi1 a?|\?

\/K771|)\|2(n+1) +a2 Ky AR+

) ‘\/Kglwﬂnﬂ) Fenan s 5 |+ NPl
an
K;1|,\|2<n+1)|)\|2
_K;1|A|2(n+1) + Oé,%
|\|2(n+2) .
o (IT af AP + (A2 |wn1]

= K, L AP

xn+l|2

which shows that (1.3) holds for j = n + 1. This proves (1.3). On the other hand, for |A| > § and
for each j € J we can find a constant ; > 0 for which

-1
IAPUTD > 42,

(1.4) [Z_: (1:[ a§|)\|2l> + [N

=0 \i=l

where «; is independent of A with [A] > §.
It thus follows from (1.2) and (1.4) that if |A\| > § then

(T — Nz|]* > 732 |z;|* for each j € J.

Thus if [A] > § then

2
~y , .
1.5 T—X 2 > — E : wh — .
(15) e Jall” 2 m jeJ|xj| ’ e =
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Write d := max;es {a?_l — a?} and put
4
M? = max{mj, ;l} + 1.
v2 7 ¢
Then we claim that
(M =) [[(T = Na|* > d > |ay|* forall \eC:
jeJ

indeed if [A| > § then by (1.5),

md 72
(M2 = 1) |[(T = Nz |I2>7H(T NP> — - ZI%IQZdZI%\Q
’y ’y jeJ jeJ

and if instead |A| < § then by (1.1),

4d
(M? = 1) [(T = N)z|]? > 2 1T = Nal|? > d||z]]> > d Y fa;].
jeJ

Therefore we have that
M2 (T = Nz|” = [|(T* = Na|”
=(M? = D) [|[(T = N)z[|* + [[(T = N[> = ||(T* = A)z[|?
>dZ|x]\ + |agzol)? Jrz of —ai_y) |zif?
jeJ

>lagzol® + Y (of —af ) |=f* > 0.
1€N\J

This completes the proof. O

We were unable to decide whether or not the converse of Theorem 1 is true. However we conjecture
that it is:
Conjecture 2. Let W, be a weighted shift with weight sequence o = {,}52,. Then W, is
M-hyponormal if and only if « is eventually increasing.

We now provide evidence for the validity of the conjecture.

Theorem 3. Let T = W, be a weighted shift with weight sequence o = {a,}5% . If o has exactly
two subsequential limits such that the larger one is different from the spectral radius r(T) of T, then
T is not M -hyponormal.

Proof. Suppose that there are infinite sets B and C such that N = B U C, where (i) B and C are

disjoint; (i) B, := ay, if n € B and 7, := «,, if n € C; (iil) 8, — B and v, — 7; and (iv) 8 < 4.
Assume to the contrary that 7' is M-hyponormal. Then there exists M > 1 such that

I[(T — X)*z|| < M||(T — Nz|| for all A € C and for all z € £2.

Suppose # = 0. Since v > 0 we can choose ¢ such that ~,, > § > 0 for all n € C. Since 3, — 0, we
can find an N € B such that Gy < %. Since C' is infinite there exists Ny > N such that Ny € B
and Nyg — 1 € C. Thus if we take x = ey,, then

. 5\
M2|[Tal? — T2 = M2a3, — od,_, < M? (M) =0,
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which shows that T is not M-hyponormal. We now suppose 3 > 0. Note that span{ey : k > N} is an
invariant subspace for T" and the restriction of T" to such a subspace still yields a weighted shift. But
since the restriction of an M-hyponormal operator to an invariant subspace is also M-hyponormal
we may assume, without loss of generality, that for sufficiently small € > 0,

a0 =Bo, Bm < B4 —pF%<e and |47 —~% <e foreachm € Band k€ C.

If {7, } occurs infinitely often, in arbitrary long blocks, then v must be in the approximate point
spectrum of T": indeed if {a,,} has the consecutive terms such as Y41, Ym+2,** » Ymtr and if fi is

. k
a unit vector such as f = % Zj:l €m+; then

1 1
||(T—’Y)fk||=\/E<72+(7m+1—7)2+-~-+(’Ym+k—1—7)2+%2n+k> <\[+\/>7—>Oask—>oo

But since (cf. [4, Solution 91])

1
k—1 k

[T

=0

r(T) = hm Sup < 7,

it follows that r(T') = «, which contradicts to our assumption. Thus {7, } occurs infinitely often, in
at most finite length of blocks. Suppose h is the largest number of such the lengths. Let A > (8 be
a positive number and choose a sequence {z,}52 , defined by

n—1
To=1 and l'n:iHaj (n:1,2,)

An
Jj=0

Consider Y ¢, 2™, where ¢ := 1 and ¢, := H”fol a; (n=1,2,---). If p is the radius of convergence

of this power series, then Zn Ozn will converge whenever % < p, or A > % =: R. Thus z =

ZZOZO Tpen € £y for A > R. Observe that if z = ano Znen € 02 then

M [T = Nzl = [[(T = A)"]|?

oo oo
2 <|/\x0|2 + Z |ty — )\xn+12> - Z | @1 — Ap)?
n=0

n=0

:(M2 - 1) Z lon @y, — )‘xn-&-l‘Q + agleIQ + (M2 - l)l/\x0|2 + Z (0‘721 - ai—l) |xn‘2
n=0 _

A straightforward calculation shows that

M2||(T = Nzl = [|(T = N> = (M2 = 1)A? + 62 + Z s~ B 1),
k'=1
2 2 2
+ Z (/Ynku - ’ynk//fl ’nk// + Z ’ka pk 1 pk + Z ’qu 1 quﬂ
k=1 k=1

where > p7_, zfnk, + > z%k” + ch;l(zfak + xgk) =3 22 and

2
2 (v Yogter—1 2, 2 By, -+ Bwk+fk—1 2
(3.1) Taw = ( Nex ) Ty, and @, 40 = ( NG Lk
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for some v, wg, ek, fr. Note that if A <+ € then
2 2k
2 _ 6tk'.'ﬁtk+ck—1 2 < 6"’6 * 2
mmk/ - e qu — A qu

2 ny 2
2, = (L detdot)? g(”*d ) 22 (since dy, < h)

and

Ny t1 )\dk Pk )\h Pk
for some tg, uk, ck,dp. Thus if 5+ € < A <+ ¢, then
oo

o0 Ck + 27 0o o0 + 27 + 2 oS}
(3:2) zxfwszz("’;) xikSZZ(ﬁke) xikSMZwiw

k=1 k=0j=1 k=0j=1

where x4, = 29 = 1 and

oo 2 oo
2 (y+e" 2
(3.3) E z,., <h ( 0 E T, .
Also we have that

MP(|(T = N2 = [[(T = N)*a|?

< (M?% = )N+ 32 + 26 (i ag, + i xik> + ((72 +e)— (32— e)) ixf,k

k=1 k=1 k=1
(3.4)
e ra-02-a) Y,
k=1
< (M2—1)N2 4B +2e ) 2l + (72 /6’2)(Zl’§k - Z%)
n=1 k=1 k=1

If Ry and R, are the radii of convergence of Y ;2 22 and Y ;2 a2

2v» Tespectively then by (3.1),
(3.2) and (3.3),

B<RI <Ry=R<n.

If Ry < R, take A\ | R. Then Y/ 2 converges and ) ,° x2 — oco. Since e was arbitrary it

follows from (3.4) that M?||(T — N)z||> — ||(T — X\)*z||* < 0 for A(> R) sufficiently close to R, a
contradiction. If Ry = R then there are two cases to consider.

Case 1 (R < 7): In this case, take A so that R < A < ~,,, and hence 7% > 1. Then we have

ot (S-S ) st (S-S (3)

If we take A | R then ) ;7 x2 — oc. Since € was arbitrary it follows that M?||(T — X)z||* —||(T —
A)*z||? < 0 for A(> R) sufficiently close to R, a contradiction.



Case 2 (R = +v): In this case, take A so that A > R and hence B‘;\l < 1. Then we have

P =) (D2 =Dk | = (2=l + (P -8 [ Doa? - e
k=2 k=1

L RACER] DA C S B o)
k=1

k=1

< (7=, 0t (G 1) o
k=1

If we take X | R then ) 7 x2 — oo. Since e was arbitrary it follows that M?[[(T — X)x||* — [|(T —
A)*z||? < 0 for A\(> R) sufficiently close to R, a contradiction. This completes the proof. O

Example 4. Let

0
6 0
v 0
Wy = B 0 02 2
v 0
Then Wy, is M -hyponormal if and only if 3 = .
Proof. Since r(W,,) = /B, this follows at once from Theorem 3. O
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