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Abstract. Let α ≡ {αn}∞n=0 be a weight sequence and let Wα denote the associated unilateral weighted

shift on `2(Z+). In this paper we prove that if α is eventually increasing, then Wα is M -hyponormal
and that if α has exactly two subsequential limits such that the larger one is different from the spectral
radius of Wα then Wα is not M -hyponormal.

1. Introduction

Let L(H) be the algebra of bounded linear operators on a separable complex Hilbert space H.
An operator T ∈ L(H) is called normal if T ∗T = TT ∗ and hyponormal if T ∗T ≥ TT ∗. An operator
T ∈ L(H) is called M -hyponormal if there exists M > 0 such that

||(T − λ)∗x|| ≤ M ||(T − λ)x|| for all λ ∈ C and for all x ∈ H.

If M ≤ 1 then M -hyponormality implies hyponormality. The notion of an M -hyponormal operator
is due to J. Stampfli (unpublished) (see [11]). The class of M -hyponormal operators has been studied
by many authors (cf.[1–3],[5–12]). However examples of M -hyponormal non-hyponormal operators
seem to be scarce from the literature. The aim of the present article is to give abundant examples
of M -hyponormal non-hyponormal operators. Our strategy involves the unilateral weighted shifts.

2. Results

Recall that given a bounded sequence of positive numbers α : α0, α1, · · · (called weights), the
(unilateral) weighted shift Wα associated with α is the operator on `2(Z+) defined by Wαen :=
αnen+1 for all n ≥ 0, where {en}∞n=0 is the canonical orthonormal basis for `2. It is straightforward
to check that Wα can never be normal, and that Wα is hyponormal if and only if αn ≤ αn+1 for
all n ≥ 0, i.e., α is monononically increasing. B. Wadha [11] gave an example of an M -hyponormal
non-hyponormal weighted shift Wα of the form:

Wα =




0
1 0

2 0
1 0

1 0
. . . . . .




.

On the other hand, M. Radjabalipour [8] showed that the only quasinilpotent M -hyponormal oper-
ator is 0. Thus if Wα is a weighted shift with weight sequence {αn} converging to 0 then Wα is not
M -hyponormal. In this paper we consider the question: Which weighted shifts are M -hyponormal?
Our main theorem now follows:
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Theorem 1. Let T ≡ Wα be a weighted shift with weight sequence α = {αn}∞n=0. If α is eventually
increasing then T is M -hyponormal.

Proof. For any x =
∑∞

n=0 xnen ∈ `2 and for any λ ∈ C,

(T − λ)x = −λx0e0 +
∞∑

i=0

(αixi − λxi+1)ei+1

and

(T ∗ − λ̄)x =
∞∑

i=0

(αixi+1 − λ̄xi)ei.

Thus a straightforward calculation shows that

||(T − λ)x||2 − ||(T ∗ − λ̄)x||2 = |λx0|2 +
∞∑

i=0

|αixi − λxi+1|2 −
∞∑

i=0

|αixi+1 − λ̄xi|2

= |α0x0|2 +
∞∑

i=1

(α2
i − α2

i−1) |xi|2.

Suppose that α = {αn}∞n=0 is monotonically increasing for n ≥ k. We now claim that if c :=
min {α0, α1, · · · , αk}, then

||(T − λ)x|| ≥ (c− |λ|) ||x|| for any λ ∈ C :

indeed we have that

||(T − λ)x|| ≥ ||Tx|| − |λ| ||x|| =
( ∞∑

i=0

α2
i |xi|2

) 1
2

− |λ| ||x||

≥
( ∞∑

i=0

c2 |xi|2
) 1

2

− |λ| ||x|| = (c− |λ|) ||x||.

Thus we have that

(1.1) ||(T − λ)x|| ≥ c

2
||x|| for |λ| < c

2
.

Write J := {j ≥ 1 : αj < αj−1}. If J = ∅ then T must be hyponormal. Evidently, J ⊆ {1, · · · , k}.
Write m := ](J). We argue that

(1.2) ||(T − λ)x||2 ≥
[

j−1∑

l=0

(
j−1∏

i=l

α2
i |λ|2l

)
+ |λ|2j

]−1

|λ|2(j+1)|xj |2 (j ≥ 1).

Towards (1.2) observe that

||(T − λ)x||2 = |λx0|2 +
∞∑

i=0

|αixi − λxi+1|2,

and so it suffices to show that

(1.3) |λx0|2 +
j−1∑

i=0

|αixi − λxi+1|2 ≥ K−1
j |λ|2(j+1)|xj |2 (j ≥ 1),
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where

Kj :=
j−1∑

l=0

(
j−1∏

i=l

α2
i |λ|2l

)
+ |λ|2j

for each j = 1, 2, · · · . We use an induction on j. First, observe that

|λx0|2 + |α0x0 − λx1|2 = |λ|2|x0|2 + α2
0|x0|2 − λ̄x̄1α0x0 − λx1α0x̄0 + |λ|2|x1|2

=

∣∣∣∣∣
√
|λ|2 + α2

0 x0 − α0λ x1√
|λ|2 + α2

0

∣∣∣∣∣

2

− α2
0|λ|2

|λ|2 + α2
0

|x1|2 + |λ|2|x1|2

≥ |λ|4
|λ|2 + α2

0

|x1|2

=
|λ|4
K1

|x1|2,

which shows that (1.3) holds for j = 1. We now suppose that (1.3) holds for j = n. Then a
straightforward calculation shows that

|λx0|2 +
n∑

i=0

|αixi − λxi+1|2

≥K−1
n |λ|2(n+1)|xn|2 + |αnxn − λxn+1|2

=
(
K−1

n |λ|2(n+1) + α2
n

)
|xn|2 − αnxnλ̄x̄n+1 − αnx̄nλxn+1 + |λ|2 |xn+1|2

=

∣∣∣∣∣∣

√
K−1

n |λ|2(n+1) + α2
n xn − αnλxn+1√

K−1
n |λ|2(n+1) + α2

n

∣∣∣∣∣∣

2

− α2
n|λ|2

K−1
n |λ|2(n+1) + α2

n

|xn+1|2 + |λ|2|xn+1|2

≥ K−1
n |λ|2(n+1)|λ|2

K−1
n |λ|2(n+1) + α2

n

|xn+1|2

=
|λ|2(n+2)

∑n
l=0 (

∏n
i=l α

2
i |λ|2l) + |λ|2(n+1)

|xn+1|2

= K−1
n+1|λ|2(n+2)|xn+1|2,

which shows that (1.3) holds for j = n + 1. This proves (1.3). On the other hand, for |λ| ≥ c
2 and

for each j ∈ J we can find a constant γj > 0 for which

(1.4)

[
j−1∑

l=0

(
j−1∏

i=l

α2
i |λ|2l

)
+ |λ|2j

]−1

|λ|2(j+1) ≥ γ2
j ,

where γj is independent of λ with |λ| ≥ c
2 .

It thus follows from (1.2) and (1.4) that if |λ| ≥ c
2 then

||(T − λ)x||2 ≥ γ2
j |xj |2 for each j ∈ J.

Thus if |λ| ≥ c
2 then

(1.5) ||(T − λ)x||2 ≥ γ2

m

∑

j∈J

|xj |2, where γ = min
j∈J

γj .
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Write d := maxj∈J

{
α2

j−1 − α2
j

}
and put

M2 := max
{

md

γ2
,

4d

c2

}
+ 1.

Then we claim that

(M2 − 1) ||(T − λ)x||2 ≥ d
∑

j∈J

|xj |2 for all λ ∈ C :

indeed if |λ| ≥ c
2 then by (1.5),

(M2 − 1) ||(T − λ)x||2 ≥ md

γ2
||(T − λ)x||2 ≥ md

γ2
· γ2

m

∑

j∈J

|xj |2 = d
∑

j∈J

|xj |2

and if instead |λ| < c
2 then by (1.1),

(M2 − 1) ||(T − λ)x||2 ≥ 4d

c2
||(T − λ)x||2 ≥ d ||x||2 ≥ d

∑

j∈J

|xj |2.

Therefore we have that

M2 ||(T − λ)x||2 − ||(T ∗ − λ̄)x||2
=(M2 − 1) ||(T − λ)x||2 + ||(T − λ)x||2 − ||(T ∗ − λ̄)x||2

≥ d
∑

j∈J

|xj |2 + |α0x0|2 +
∞∑

i=1

(
α2

i − α2
i−1

) |xi|2

≥ |α0x0|2 +
∑

i∈N\J

(
α2

i − α2
i−1

) |xi|2 ≥ 0.

This completes the proof. ¤

We were unable to decide whether or not the converse of Theorem 1 is true. However we conjecture
that it is:

Conjecture 2. Let Wα be a weighted shift with weight sequence α = {αn}∞n=0. Then Wα is
M -hyponormal if and only if α is eventually increasing.

We now provide evidence for the validity of the conjecture.

Theorem 3. Let T ≡ Wα be a weighted shift with weight sequence α = {αn}∞n=0. If α has exactly
two subsequential limits such that the larger one is different from the spectral radius r(T ) of T , then
T is not M -hyponormal.

Proof. Suppose that there are infinite sets B and C such that N = B ∪ C, where (i) B and C are
disjoint; (ii) βn := αn if n ∈ B and γn := αn if n ∈ C; (iii) βn → β and γn → γ; and (iv) β < γ.

Assume to the contrary that T is M -hyponormal. Then there exists M ≥ 1 such that

||(T − λ)∗x|| ≤ M ||(T − λ)x|| for all λ ∈ C and for all x ∈ `2.

Suppose β = 0. Since γ > 0 we can choose δ such that γn ≥ δ > 0 for all n ∈ C. Since βn → 0, we
can find an N ∈ B such that βN < δ

M . Since C is infinite there exists N0 > N such that N0 ∈ B
and N0 − 1 ∈ C. Thus if we take x = eN0 , then

M2 ||Tx||2 − ||T ∗x||2 = M2α2
N0
− α2

N0−1 < M2

(
δ

M

)2

− δ2 = 0,
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which shows that T is not M -hyponormal. We now suppose β > 0. Note that span{ek : k ≥ N} is an
invariant subspace for T and the restriction of T to such a subspace still yields a weighted shift. But
since the restriction of an M -hyponormal operator to an invariant subspace is also M -hyponormal
we may assume, without loss of generality, that for sufficiently small ε > 0,

α0 = β0, βm < γk, |β2
m − β2| < ε and |γ2

k − γ2| < ε for each m ∈ B and k ∈ C.

If {γn} occurs infinitely often, in arbitrary long blocks, then γ must be in the approximate point
spectrum of T : indeed if {αn} has the consecutive terms such as γm+1, γm+2, · · · , γm+k and if fk is
a unit vector such as fk = 1√

k

∑k
j=1 em+j then

||(T −γ)fk|| = 1√
k

(
γ2 +(γm+1−γ)2 + · · ·+(γm+k−1−γ)2 +γ2

m+k

) 1
2

≤ √
ε+

√
2
k

γ −→ 0 as k →∞.

But since (cf. [4, Solution 91])

r(T ) = lim
k

sup
n

∣∣∣∣∣
k−1∏

i=0

αn+i

∣∣∣∣∣

1
k

≤ γ,

it follows that r(T ) = γ, which contradicts to our assumption. Thus {γn} occurs infinitely often, in
at most finite length of blocks. Suppose h is the largest number of such the lengths. Let λ > β be
a positive number and choose a sequence {xn}∞n=0 defined by

x0 = 1 and xn =
1
λn

n−1∏

j=0

αj (n = 1, 2, · · · ).

Consider
∑

cnzn, where c0 := 1 and cn :=
∏n−1

j=0 αj (n = 1, 2, · · · ). If ρ is the radius of convergence
of this power series, then

∑∞
n=0 x2

n will converge whenever 1
λ < ρ, or λ > 1

ρ =: R. Thus x =∑∞
n=0 xnen ∈ `2 for λ > R. Observe that if x =

∑∞
n=0 xnen ∈ `2 then

M2 ||(T − λ)x||2 − ||(T − λ)∗x||2

=M2

(
|λx0|2 +

∞∑
n=0

|αnxn − λxn+1|2
)
−

∞∑
n=0

|αnxn+1 − λ̄xn|2

=(M2 − 1)
∞∑

n=0

|αnxn − λxn+1|2 + α2
0|x0|2 + (M2 − 1)|λx0|2 +

∞∑
n=1

(
α2

n − α2
n−1

) |xn|2.

A straightforward calculation shows that

M2||(T − λ)x||2 − ||(T − λ)∗x||2 = (M2 − 1)λ2 + β2
0 +

∞∑

k′=1

(β2
mk′

− β2
mk′−1)x

2
mk′

+
∞∑

k′′=1

(γ2
nk′′

− γ2
nk′′−1)x

2
nk′′

+
∞∑

k=1

(γ2
pk
− β2

pk−1)x
2
pk

+
∞∑

k=1

(β2
qk
− γ2

qk−1)x
2
qk

,

where
∑∞

k′=1 x2
mk′

+
∑∞

k′′=1 x2
nk′′

+
∑∞

k=1(x
2
pk

+ x2
qk

) =
∑∞

n=1 x2
n and

(3.1) x2
qk

=
(γvk

· · · γvk+ek−1

λek

)2

x2
pk

and x2
pk+1 =

(
βwk

· · ·βwk+fk−1

λfk

)2

x2
qk



6

for some vk, wk, ek, fk. Note that if λ < γ + ε then

x2
mk′

=
(

βtk
· · ·βtk+ck−1

λck

)2

x2
qk
≤

(
β + ε

λ

)2ck

x2
qk

and

x2
nk′′

=
(γuk

· · · γuk+dk−1

λdk

)2

x2
pk
≤

(
(γ + ε)h

λh

)2

x2
pk

(since dk ≤ h)

for some tk, uk, ck, dk. Thus if β + ε < λ < γ + ε, then

(3.2)
∞∑

k′=1

x2
mk′

≤
∞∑

k=0

ck∑

j=1

(
β + ε

λ

)2j

x2
qk
≤

∞∑

k=0

∞∑

j=1

(
β + ε

λ

)2j

x2
qk
≤ (β + ε)2

λ2 − (β + ε)2

∞∑

k=0

x2
qk

,

where xq0 = x0 = 1 and

(3.3)
∞∑

k′′=1

x2
nk′′

≤ h

(
(γ + ε)h

λh

)2 ∞∑

k=1

x2
pk

.

Also we have that

M2||(T − λ)x||2 − ||(T − λ)∗x||2

≤ (M2 − 1)λ2 + β2
0 + 2ε

( ∞∑

k′=1

x2
mk′

+
∞∑

k′′=1

x2
nk′′

)
+

(
(γ2 + ε)− (β2 − ε)

) ∞∑

k=1

x2
pk

+
(

(β2 + ε)− (γ2 − ε)
) ∞∑

k=1

x2
qk

,

(3.4)

≤ (M2 − 1)λ2 + β2
1 + 2ε

∞∑
n=1

x2
n + (γ2 − β2)

( ∞∑

k=1

x2
pk
−

∞∑

k=1

x2
qk

)
.

If R1 and R2 are the radii of convergence of
∑∞

k=1 x2
pk

and
∑∞

k=1 x2
qk

, respectively then by (3.1),
(3.2) and (3.3),

β ≤ R1 ≤ R2 = R ≤ γ.

If R1 < R, take λ ↓ R. Then
∑∞

k=1 x2
pk

converges and
∑∞

k=1 x2
qk
→ ∞. Since ε was arbitrary it

follows from (3.4) that M2||(T − λ)x||2 − ||(T − λ)∗x||2 < 0 for λ(> R) sufficiently close to R, a
contradiction. If R1 = R then there are two cases to consider.

Case 1 (R < γ): In this case, take λ so that R < λ < γv1 , and hence γv1
λ > 1. Then we have

(γ2 − β2)

( ∞∑

k=1

x2
pk
−

∞∑

k=1

x2
qk

)
≤ (γ2 − β2)

( ∞∑

k=1

x2
pk
−

∞∑

k=1

x2
pk

(γv1

λ

))

≤ (γ2 − β2)
(
1− γv1

λ

) ∞∑

k=1

x2
pk

.

If we take λ ↓ R then
∑∞

k=1 x2
pk
→∞. Since ε was arbitrary it follows that M2||(T −λ)x||2− ||(T −

λ)∗x||2 < 0 for λ(> R) sufficiently close to R, a contradiction.
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Case 2 (R = γ): In this case, take λ so that λ > R and hence βs1
λ < 1. Then we have

(γ2 − β2)

( ∞∑

k=1

x2
pk
−

∞∑

k=1

x2
qk

)
= (γ2 − β2)x2

p1
+ (γ2 − β2)

( ∞∑

k=2

x2
pk
−

∞∑

k=1

x2
qk

)

≤ (γ2 − β2)x2
p1

+ (γ2 − β2)

( ∞∑

k=1

x2
qk

(
βs1

λ

)
−

∞∑

k=1

x2
qk

)

≤ (γ2 − β2)x2
p1

+ (γ2 − β2)
(

βs1

λ
− 1

) ∞∑

k=1

x2
qk

.

If we take λ ↓ R then
∑∞

k=1 x2
qk
→∞. Since ε was arbitrary it follows that M2||(T −λ)x||2− ||(T −

λ)∗x||2 < 0 for λ(> R) sufficiently close to R, a contradiction. This completes the proof. ¤

Example 4. Let

Wα :=




0
β 0

γ 0
β 0

γ 0
. . . . . .




: `2 → `2.

Then Wα is M -hyponormal if and only if β = γ.

Proof. Since r(Wα) =
√

βγ, this follows at once from Theorem 3. ¤
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