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Abstract. “Weyl’s theorem” for an operator on a Hilbert space is a statement that the com-
plement in the spectrum of the “Weyl spectrum” coincides with the isolated eigenvalues of finite
multiplicity. In this paper we consider how Weyl’s theorem survives for polynomials of operators
and under quasinilpotent or compact perturbations. First, we show that if T is reduced by each of
its finite-dimensional eigenspaces then the weyl spectrum obeys the spectral mapping theorem, and
further if T is reduction-isoloid then for every polynomial p, Weyl’s theorem holds for p(T ). The
results on perturbations are as follows. If T is a “finite-isoloid” operator and if K commutes with
T and is either compact or quasinilpotent then Weyl’s theorem is transmitted from T to T +K. As
a non-commutative perturbation theorem, we also show that if the spectrum of T has no holes and
at most finitely many isolated points, and if K is a compact operator then Weyl’s theorem holds
for T +K when it holds for T .

Introduction. H. Weyl [22] examined the spectra of all compact perturbations T +K of
a hermitian operator T and discovered that λ ∈ σ(T + K) for every compact operator K if
and only if λ is not an isolated eigenvalue of finite multiplicity in σ(T ). Today this result is
known as Weyl’s theorem, and it has been extended from hermitian operators to hyponormal
operators and to Toeplitz operators by L. Coburn [7], to several classes of operators including
seminormal operators by S. Berberian [2],[3], and to a few classes of Banach space operators
[15],[17]. Weyl’s theorem may fail for even the square of T when it holds for T (see [18,
Example 1]). In [14], it was shown that Weyl’s theorem holds for polynomials of hyponormal
operators. The first aim of this paper is to extend this result via “Berberian” spectra. On the
other hand, Weyl’s theorem is liable to fail under “small” perturbations if “small” is interpreted
in the sense of compact or quasinilpotent. Recently Weyl’s theorem under small perturbations
has been considered in [11],[12],[13], and [18]. The second aim of this paper is to explore how
Weyl’s theorem survives under quasinilpotent or compact perturbations.

Throughout this paper let H denote an infinite dimensional separable Hilbert space. Let
L(H) denote the algebra of bounded linear operators on H and let K(H) denote the closed
ideal of compact operators on H. If T ∈ L(H) write ρ(T ) for the resolvent set of T ; σ(T ) for
the spectrum of T ; π0(T ) for the set of eigenvalues of T ; π0f (T ) for the eigenvalues of finite
multiplicity; π0i(T ) for the eigenvalues of infinite multiplicity. An operator T ∈ L(H) is said
to be Fredholm if T−1(0) and T (H)⊥ are both finite-dimensional. The index of a Fredholm
operator T ∈ L(H), denoted ind (T ), is given by

ind (T ) = dimT−1(0)− dimT (H)⊥ (= dimT−1(0)− dimT ∗−1(0)).
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An operator T ∈ L(H) is said to be Weyl if it is Fredholm of index zero and Browder if it is
Fredholm “of finite ascent and descent”: equivalently ([9, Theorem 7.9.3]) if T is Fredholm and
T − λI is invertible for sufficiently small λ 6= 0 in C. The essential spectrum σe(T ), the Weyl
spectrum ω(T ) and the Browder spectrum σb(T ) of T ∈ L(H) are defined by

σe(T ) = {λ ∈ C : T − λI is not Fredholm};
ω(T ) = {λ ∈ C : T − λI is not Weyl};
σb(T ) = {λ ∈ C : T − λI is not Browder} :

then (cf. [9])

(0.1) σe(T ) ⊆ ω(T ) ⊆ σb(T ) = σe(T ) ∪ accσ(T ) and ω(T ) ⊆ η σe(T ),

where we write accK and η K for the accumulation points and the polynomially-convex hull,
respectively, of K ⊆ C. If we write isoK = K \ accK, and ∂ K for the topological boundary of
K, and

(0.2) π00(T ) := {λ ∈ isoσ(T ) : 0 < dim (T − λI)−1(0) <∞}

for the isolated eigenvalues of finite multiplicity, and ([9])

(0.3) p00(T ) := σ(T ) \ σb(T )

for the Riesz points of σ(T ), then by the punctured neighborhood theorem, i.e., ∂ σ(T )\σe(T ) ⊆
isoσ(T ) (cf. [9],[10]),

(0.4) isoσ(T ) \ σe(T ) = isoσ(T ) \ ω(T ) = p00(T ) ⊆ π00(T ).

We say that Weyl’s theorem holds for T ∈ L(H) if there is equality

(0.5) σ(T ) \ ω(T ) = π00(T ).

If T ∈ L(H), write r(T ) for the spectral radius of T . It is familiar that r(T ) ≤ ||T ||. An
operator T is called normaloid if r(T ) = ||T || and isoloid if isoσ(T ) ⊆ π0(T ). An operator
T is called reduction-isoloid if the restriction of T to any reducing subspace is isoloid. It is
well-known ([21, Theorem 2]) that every hyponormal operator is reduction-isoloid.

In Section 1, we prove that Weyl spectra, Browder spectra, and “Berberian” spectra all
coincide for operators reduced by each of its finite-dimensional eigenspaces. We also use this
result to show that if T is reduced by each of its finite-dimensional eigenspaces then Weyl
spectrum obeys the spectral mapping theorem, and further if T is reduction-isoloid then for
every polynomial p, Weyl’s theorem folds for p(T ).

In Section 2, we show that if T is “finite-isoloid” then Weyl’s theorem is transmitted form
T to T + K when K is either compact or quasinilpotent and commutes with T , and that if
T is a finite-isoloid operator whose spectrum has no holes and at most finitely many isolated
points then Weyl’s theorem is transmitted from T to T +K when K is a compact operator. In
addition we give their applications to p-hyponormal operators, Toeplitz operators, and unilateral
weighted shifts.

1. Berberian Spectra and Weyl’s Theorem. Suppose that T ∈ L(H) is reduced by
each of its finite-dimensional eigenspaces. If

M :=
∨
{(T − λI)−1(0) : λ ∈ π0f (T )},
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then M reduces T . Let T1 := T |M and T2 := T |M⊥. Then we have ([3, Proposition 4.1]) that
(i) T1 is a normal operator with pure point spectrum;

(ii) π0(T1) = π0f (T );
(iii) σ(T1) = clπ0(T1);
(iv) π0(T2) = π0(T ) \ π0f (T ) = π0i(T ).

In this case, Berberian ([3, Definition 5.4]) defined

(1.0.1) τ(T ) := σ(T2) ∪ accπ0f (T ).

We shall call τ(T ) the Berberian spectrum of T . Berberian used the notation τ ′(T ) for the
concept of (1.0.1). Berberian has also shown that τ(T ) is a nonempty compact subset of σ(T ).
We can, however, show that Weyl spectra, Browder spectra, and Berberian spectra all coincide
for operators reduced by each of its finite-dimensional eigenspaces:

Theorem 1.1. If T ∈ L(H) is reduced by each of its finite-dimensional eigenspaces then

(1.1.1) τ(T ) = ω(T ) = σb(T ).

Proof. Let M be the closed linear span of the eigenspaces (T −λI)−1(0) (λ ∈ π0f (T )) and write

T1 := T |M and T2 := T |M⊥.
From the preceding arguments it follows that T1 is normal, π0(T1) = π0f (T ) and π0f (T2) = ∅.
For (1.1.1) it will be shown that

(1.1.2) ω(T ) ⊆ τ(T ) ⊆ σb(T )

and

(1.1.3) σb(T ) ⊆ ω(T ).

For the first inclusion of (1.1.2) suppose λ ∈ σ(T ) \ τ(T ). Then T2 − λI is invertible and
λ ∈ isoπ0(T1). Since also π0(T1) = π0f (T1), we have that λ ∈ π00(T1). But since T1 is normal,
it follows that T1 − λI is Weyl and hence so is T − λI. This proves the first inclusion. For the
second inclusion of (1.1.2) suppose λ ∈ σ(T )\σb(T ). Thus T −λI is Browder but not invertible.
Observe that the following equality holds with no other restriction on either R or S:

(1.1.4) σb(R⊕ S) = σb(R) ∪ σb(S) for each R ∈ L(H1) and S ∈ L(H2).

Indeed if λ ∈ isoσ(R⊕ S) then λ is either an isolated point of the spectra of direct summands
or a resolvent element of direct summands, so that if R− λI and S − λI are Fredholm then by
(0.4), λ is either a Riesz point or a resolvent element of direct summands, which implies that
σb(R) ∪ σb(S) ⊆ σb(R ⊕ S), and the reverse inclusion is evident. From this we can see that
T1−λI and T2−λI are both Browder. But since π0f (T2) = ∅, it follows that T2−λI is one-one
and hence invertible. Therefore λ ∈ π00(T1) \ σ(T2), which implies that λ /∈ τ(T ). This proves
the second inclusion of (1.1.2). For (1.1.3) suppose λ ∈ σ(T ) \ ω(T ) and hence T − λI is Weyl
but not invertible. Observe that if H1 is a Hilbert space and if an operator R ∈ L(H1) satisfies
the equality ω(R) = σe(R), then (cf. [11, Theorem 5])

(1.1.5) ω(R⊕ S) = ω(R) ∪ ω(S) for each Hilbert space H2 and S ∈ L(H2).

Since T1 is normal, applying the equality (1.1.5) to T1 in place of R gives that T1 − λI and
T2 − λI are both Weyl. But since π0f (T2) = ∅, we must have that T2 − λI is invertible and
therefore λ ∈ σ(T1) \ ω(T1). Thus from Weyl’s theorem for normal operators we can see that
λ ∈ π00(T1) and hence λ ∈ isoσ(T1) ∩ ρ(T2), which by (0.4), implies that λ /∈ σb(T ). This
proves (1.1.3) and completes the proof. �

As applications of Theorem 1.1 we will give several corollaries below.
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Corollary 1.2. If T ∈ L(H) is reduced by each of its finite-dimensional eigenspaces then
σ(T ) \ ω(T ) ⊆ π00(T ).

Proof. This follows at once from Theorem 1.1. �

Weyl’s theorem is not transmitted to dual operators: for example if T : `2 → `2 is the
unilateral weighted shift defined by

(1.2.1) Ten =
1

n+ 1
en+1 (n ≥ 0),

then σ(T ) = ω(T ) = {0} and π00(T ) = ∅, and therefore Weyl’s theorem holds for T , but fails
for its adjoint T ∗. We however have:

Corollary 1.3. If T ∈ L(H) is reduced by each of its finite-dimensional eigenspaces and
isoσ(T ) = ∅, then Weyl’s theorem holds for T and T ∗. In this case, σ(T ) = ω(T ).

Proof. If isoσ(T ) = ∅, then it follows from Corollary 1.2 that σ(T ) = ω(T ), which says that
Weyl’s theorem holds for T . The assertion that Weyl’s theorem holds for T ∗ follows from noting
that σ(T )∗ =

(
σ(T )

)−, ω(T ∗) =
(
ω(T )

)− and π00(T ∗) =
(
π00(T )

)− = ∅. �

In Corollary 1.3, the condition “isoσ(T ) = ∅” cannot be replaced by the condition “π00(T ) =
∅”: for example consider the operator T defined by (1.2.1).

Corollary 1.4 ([2, Theorem]). If T ∈ L(H) is reduction-isoloid and is reduced by each of its
finite-dimensional eigenspaces then Weyl’s theorem holds for T .

Proof. In view of Corollary 1.2, it suffices to show that π00(T ) ⊆ σ(T ) \ ω(T ). Suppose λ ∈
π00(T ). Then with the preceding notations, λ ∈ π00(T1) ∩

[
isoσ(T2) ∪ ρ(T2)

]
. If λ ∈ isoσ(T2),

then since by assumption T2 is isoloid we have that λ ∈ π0(T2) and hence λ ∈ π0f (T2). But
since π0f (T2) = ∅, we should have that λ /∈ isoσ(T2). Thus λ ∈ π00(T1) ∩ ρ(T2). Since T1 is
normal it follows that T1 − λI is Weyl and so is T − λI; therefore λ ∈ σ(T ) \ ω(T ). �

If the condition “reduction-isoloid” is replaced by “isoloid” then Corollary 1.4 may fail (see
Examples (1) of [2]).

Corollary 1.5. If T ∈ L(H) is reduced by each of its finite-dimensional eigenspaces then

(1.5.1) p(ω(T )) = ω(p(T )) for every polynomial p.

Further if T is reduction-isoloid then for every polynomial p, Weyl’s theorem holds for p(T ).

Proof. We first claim that if T is reduced by each of its finite-dimensional eigenspaces then so
is p(T ) for any polynomial p: indeed if we write T = T1 ⊕ T2 as in the proof of Theorem 1.1,
then p(T ) = p(T1)⊕ p(T2) shows that p(T1) is normal and π0f (p(T2)) ⊆ p(π0f (T2)) = p(∅) = ∅,
which implies that p(T ) is reduced by each of its finite-dimensional eigenspaces because any
normal operator is reduced by each of its finite-dimensional eigenspaces. Therefore the first
assertion follows from Theorem 1.1 together with the fact that the Browder spectrum obeys the
spectral mapping theorem. The second assertion follows from Theorem 1 of [18] and Corollary
1.4. �

An operator T ∈ L(H) is said to be p-hyponormal if (T ∗T )p − (TT ∗)p ≥ 0 (cf. [1],[4]). If
p = 1, T is hyponormal and if p = 1

2 , T is semi-hyponormal. In [14, Theorem 2], it was shown
that if T is hyponormal then for every polynomial p, Weyl’s theorem holds for p(T ). We can
prove more:
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Corollary 1.6. If T ∈ L(H) is p-hyponormal then for every polynomial p, Weyl’s theorem
holds for p(T ).

Proof. This follows from Corollary 1.5 and the fact that every p-hyponormal operator is isoloid
([6, Theorem 1]) and is reduced by each of its eigenspaces ([5, Theorem 4]). �

L. Coburn [7, Corollary 3.2] has shown that if T ∈ L(H) is hyponormal and π00(T ) = ∅,
then T is extremally noncompact, in the sense that

||T || = ||π(T )||,

where π is the canonical map of L(H) onto the Calkin algebra L(H)/K(H). His proof relies
upon the fact that Weyl’s theorem holds for hyponormal operators, and hence σ(T ) = ω(T )
since π00(T ) = ∅. Now we can strengthen the Coburn’s argument slightly:

Corollary 1.7. If T ∈ L(H) is normaloid and π00(T ) = ∅, then T is extremally noncompact.

Proof. Since σ(T ) ⊆ η ω(T )∪ p00(T ) for any T ∈ L(H), we have that η σ(T ) \ η ω(T ) ⊆ π00(T ).
Thus by our assumption, η σ(T ) = η ω(T ). Therefore we can argue that for each compact
operator K ∈ L(H),

||T || = r(T ) = rω(T ) = rω(T +K) ≤ r(T +K) ≤ ||T +K||,

where rω(T ) denotes the “Weyl spectral radius”. This completes the proof. �

Note that if T ∈ L(H) is normaloid and π00(T ) = ∅, then Weyl’s theorem may fail for T ; for
example take H = `2 ⊕ `2 and T = U ⊕ U∗, where U is the unilateral shift.

2. Weyl’s Theorem Under Small Perturbations. In general Weyl’s theorem for
T ∈ L(H) is not sufficient for Weyl’s theorem for T + K with compact (even finite rank)
K ∈ L(H) commuting with T (cf. [13, Example 2.3]). But if T ∈ L(H) is isoloid then Weyl’s
theorem is transmitted from T to T + K for commuting finite rank operators K ∈ L(H) (cf.
[13, Theorem 2.2]). But this may fail if “finite rank” is replaced by “compact”. In fact Weyl’s
theorem may fail even if K is both compact and quasinilpotent: for example, take T = 0 and
K the operator on `2 defined by K(x1, x2, · · · ) = (x2

2 ,
x3
3 ,

x4
4 , · · · ). We will however show that if

“isoloid” condition is strengthened slightly then Weyl’s theorem is transmitted from T to T +K
if K is either a compact or a quasinilpotent operator commuting with T . We begin with:

Proposition 2.1. If K ∈ L(H) is a compact operator commuting with T ∈ L(H) then

π00(T +K) ⊆ isoσ(T ) ∪ ρ(T ).

Proof. Suppose λ ∈ π00(T + K). Assume to the contrary that λ ∈ accσ(T ). Observe that
σ(T ) = σb(T )∪ p00(T ) for every T ∈ L(H). Since the Browder spectrum is invariant under the
commuting compact perturbations ([9, Theorem 7.7.5]), it follows that the difference between
σ(T ) and σ(T + K) consists of the difference between p00(T ) and p00(T + K). Since by our
assumption, λ ∈ isoσ(T + K) ∩ accσ(T ), we can find a sequence {λn} of distinct numbers in
p00(T ) \ p00(T +K) satisfying

(i) limn λn = λ;
(ii) σ := {λn}∞n=1 ∪ {λ} is an isolated part of σ(T ).



6

If N is a neighborhood of σ which contains no other points of σ(T ), then by using the spectral
projection P = 1

2π i

∫
∂N (λI − T )−1dλ corresponding to σ, we can write T as

T =
(
T1 0
0 T2

)
,

where σ(T1) = σ and σ(T2) = σ(T ) \ σ. Since TK = KT and σ(T1) ∩ σ(T2) = ∅, it follows
from a corollary of Rosenblum’s Theorem (cf. [19, Corollary 0.14]) that K admits a matrix
representation

K =
(
K1 0
0 K2

)
with TiKi = KiTi (i = 1, 2).

Since λ ∈ π00(T + K) we can suppose that dim (T + K − λI)−1(0) := m < ∞ and hence
dim (T1 + K1 − λI)−1(0) ≤ m. Observe that σb(T1 + K1) = σb(T1) = {λ}. But since λ ∈
isoσ(T1 +K1), it follows that σ(T1 +K1) \ {λ} consists of finitely many elements which are its
Riesz points. Thus σ(T1 +K1) = p00(T1 +K1) ∪ {λ}. Write

s :=
∑

z∈p00(T1+K1)

dim (T1 +K1 − z I)−1(0).

Then evidently s <∞. On the other hand, since λn ∈ p00(T ) for every n = 1, 2, · · · , using the
spectral projections corresponding to the set {λj} for j = 1, · · · , s+m+ 1, we can write T1 as

T1 =


T11

T12 0
. . .

0
. . .

T1,s+m+1

⊕ T3,

where σ(T1j) = {λj} for j = 1, · · · , s + m + 1, and σ(T3) = {λn}∞n=s+m+2 ∪ {λ}. Note that
σb(T1j) = ∅ for j = 1, · · · , s + m + 1. Therefore each T1j (j = 1, · · · , s + m + 1) is a finite
dimensional operator because σb(S) 6= ∅ for every bounded linear operator S on an infinite
dimensional Hilbert space. Since T1K1 = K1T1 and the λj (j = 1, · · · , s+m+ 1) are mutually
distinct, it again follows from [19, Corollary 0.14] that K1 can be written as the form

K1 =


K11

K12 0
. . .

0
. . .

K1,s+m+1

⊕ K3.

Observe that T1j + K1j is a finite dimensional operator for every j = 1, · · · , s + m + 1 and
σ(T1j +K1j) ⊆ σ(T1 +K1) = p00(T1 +K1) ∪ {λ} for every j = 1, · · · , s+m+ 1. But since

s+m+1∑
j=1

∑
z∈σ(T1j+K1j)

dim (T1j +K1j − zI)−1(0) ≥ s+m+ 1,

it follows that λ ∈ σ(T1j + K1j) for at least (m + 1) j’s, which implies that dim (T1 + K1 −
λI)−1(0) ≥ m+ 1, a contradiction. This completes the proof. �

An operator T ∈ L(H) will be said to be finite-isoloid if isoσ(T ) ⊆ π0f (T ). Evidently finite-
isoloid ⇒ isoloid. The converse is not true in general: for example, take T = 0. In particular if
σ(T ) has no isolated points then T is finite-isoloid. We now have:
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Theorem 2.2. Suppose T ∈ L(H) is finite-isoloid. If Weyl’s theorem holds for T then Weyl’s
theorem holds for T +K if K ∈ L(H) commutes with T and is either compact or quasinilpotent.

Proof. First we assume that K is a compact operator commuting with T . Suppose Weyl’s
theorem holds for T . We first claim that with no restriction on T ,

(2.2.1) σ(T +K) \ ω(T +K) ⊆ π00(T +K).

For (2.2.1), it suffices to show that if λ ∈ σ(T +K) \ω(T +K) then λ ∈ isoσ(T +K). Assume
to the contrary that λ ∈ accσ(T + K). Then we have that λ ∈ σb(T + K) = σb(T ), so that
λ ∈ σe(T ) or λ ∈ accσ(T ). Remember that the essential spectrum and the Weyl spectrum are
invariant under compact perturbations. Thus if λ ∈ σe(T ) then λ ∈ σe(T +K) ⊆ ω(T +K), a
contradiction. Therefore we should have that λ ∈ accσ(T ). But since Weyl’s theorem holds for
T and λ /∈ ω(T + K) = ω(T ), it follows that λ ∈ π00(T ), a contradiction. This proves (2.2.1).
For the reverse inclusion suppose λ ∈ π00(T +K). Then by Proposition 2.1, either λ ∈ isoσ(T )
or λ ∈ ρ(T ). If λ ∈ ρ(T ) then evidently T + K − λI is Weyl, i.e., λ /∈ ω(T + K). If instead
λ ∈ isoσ(T ) then λ ∈ π00(T ) whenever T is finite-isoloid. Since Weyl’s theorem holds for T , it
follows that λ /∈ ω(T ) and hence λ /∈ ω(T +K). Therefore Weyl’s theorem holds for T +K.

Next we assume that K is a quasinilpotent operator commuting with T . Then it is known
([18, Lemma 2]) that $(T ) = $(T +Q) with $ = σ, ω. Suppose Weyl’s theorem holds for T .
Then

σ(T +K) \ ω(T +K) = σ(T ) \ ω(T ) = π00(T ) ⊆ isoσ(T ) = isoσ(T +K),

which implies that σ(T +K)\ω(T +K) ⊆ π00(T +K). Conversely, suppose λ ∈ π00(T +K). If
T is finite-isoloid then λ ∈ isoσ(T +K) = isoσ(T ) ⊆ π0f (T ). Thus λ ∈ π00(T ) = σ(T )\ω(T ) =
σ(T +K) \ ω(T +K). This completes the proof. �

Corollary 2.3. Suppose T ∈ L(H) is p-hyponormal. If T satisfies one of the following:
(i) isoσ(T ) = ∅;

(ii) T has finite-dimensional eigenspaces,
then Weyl’s theorem holds for T + K if K ∈ L(H) is either compact or quasinilpotent and
commutes with T .

Proof. Observe that each of the conditions (i) and (ii) forces p-hyponormal operators to be
finite-isoloid. Since Weyl’s theorem holds for p-hyponormal operators ([6]), the result follows
at once from Theorem 2.2. �

It is known ([18, Theorem 3]) that Weyl’s theorem is transmitted from T ∈ L(H) to T +K
for commuting nilpotent operators K ∈ L(H). This however does not extend to commuting
quasinilpotent operators (see the remark above Proposition 2.1). But if K is an injective
quasinilpotent operator commuting with T then Weyl’s theorem is transmitted from T to T+K.

Theorem 2.4. If Weyl’s theorem holds for T ∈ L(H) then Weyl’s theorem holds for T +K if
K ∈ L(H) is an injective quasinilpotent operator commuting with T .

Proof. First of all we prove that if there exists an injective quasinilpotent operator commuting
with T , then

(2.4.1) T Weyl =⇒ T injective.

To show this suppose K is an injective quasinilpotent operator commuting with T . Assume to
the contrary that T is Weyl but not injective. Then there exists a nonzero vector x ∈ H such that
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Tx = 0. Then by the commutativity assumption, TKnx = KnTx = 0 for every n = 0, 1, 2, · · · ,
so that Knx ∈ T−1(0) for every n = 0, 1, 2, · · · . We now claim that {Knx}∞n=0 is a sequence of
linearly independent vectors in H. To see this suppose c0x+ c1Kx+ · · ·+ cnK

nx = 0. We may
then write cn(K − λ1I) · · · (K − λnI)x = 0. Since K is an injective quasinilpotent operator it
follows that (K − λ1I) · · · (K − λnI) is injective. But since x 6= 0 we have that cn = 0. By an
induction we also have that cn−1 = · · · = c1 = c0 = 0. This shows that {Knx}∞n=0 is a sequence
of linearly independent vectors in H. From this we can see T−1(0) is infinite-dimensional, which
contradicts to the fact that T is Weyl. This proves (2.4.1). From (2.4.1) we can see that if
Weyl’s theorem holds for T then π00(T ) = ∅. We now claim that π00(T + K) = ∅. Indeed if
λ ∈ π00(T + K), then 0 < dim (T + K − λI)−1(0) < ∞, so that there exists a nonzero vector
x ∈ H such that (T + K − λI)x = 0. But since K commutes with T + K − λI, the same
argument as in the proof of (2.4.1) with T +K−λI in place of T shows that (T +K−λI)−1(0)
is infinite-dimensional, a contradiction. Therefore π00(T + K) = ∅ and hence Weyl’s theorem
holds for T +K because $(T ) = $(T +K) with $ = σ, ω. �

In Theorem 2.4, “quasinilpotent” cannot be replaced by “compact”. For example consider
the following operators on `2 ⊕ `2:

T =


0

1
2 0

1
3

0 1
4

. . .

⊕ I and K =


1
− 1

2 0
− 1

3
0 − 1

4

. . .

⊕Q,
where Q is an injective compact quasinilpotent operator on `2. Observe that Weyl’s theorem
holds for T , K is an injective compact operator, and TK = KT . But

σ(T +K) = {0, 1} = ω(T +K) and π00(T +K) = {1},

which says that Weyl’s theorem does not hold for T +K.

In the perturbation theory the “commutative” condition looks so rigid. Without the commu-
tativity, the spectrum can however undergo a large change under even rank one perturbations.
In spite of it, Weyl’s theorem may hold for (non-commutative) compact perturbations of “good”
operators. We now give such a perturbation theorem. To do this we need:

Lemma 2.5. If N ∈ L(H) is a quasinilpotent operator commuting with T ∈ L(H) modulo
compact operators (i.e., TN −NT ∈ K(H)) then σe(T +N) = σe(T ) and ω(T +N) = ω(T ).

Proof. Straightforward from [18, Lemma 2]. �

Theorem 2.6. Suppose T ∈ L(H) satisfies the following:
(i) T is finite-isoloid;

(ii) σ(T ) has no “holes” (bounded components of the complement), i.e., σ(T ) = η σ(T );
(iii) σ(T ) has at most finitely many isolated points;
(iv) Weyl’s theorem holds for T .

If K ∈ L(H) is either compact or quasinilpotent and commutes with T modulo compact operators
then Weyl’s theorem holds for T +K.

Proof. By Lemma 2.5, we have that σe(T +K) = σe(T ) and ω(T +K) = ω(T ). Suppose Weyl’s
theorem holds for T and λ ∈ σ(T + K) \ ω(T + K). We now claim that λ ∈ isoσ(T + K).
Assume to the contrary that λ ∈ accσ(T + K). Since λ /∈ ω(T + K) = ω(T ), it follows from
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the punctured neighborhood theorem that λ /∈ ∂ σ(T + K). Also since the set of all Weyl
operators forms an open subset of L(H), we have that λ ∈ int

(
σ(T + K) \ ω(T + K)

)
. Then

there exists ε > 0 such that {µ ∈ C : |µ − λ| < ε} ⊆ int
(
σ(T + K) \ ω(T + K)

)
, and hence

{µ ∈ C : |µ− λ| < ε} ∩ ω(T ) = ∅. But since

∂ σ(T +K) \ isoσ(T +K) ⊆ σe(T +K) = σe(T ),

it follows from our assumption that

{µ ∈ C : |µ− λ| < ε} ⊆ int
(
σ(T +K) \ ω(T +K)

)
⊆ η

(
∂ σ(T +K) \ isoσ(T +K)

)
⊆ η σe(T ) ⊆ η σ(T ) = σ(T ),

which implies that {µ ∈ C : |µ−λ| < ε} ⊆ σ(T ) \ω(T ). This contradicts to Weyl’s theorem for
T . Therefore λ ∈ isoσ(T +K) and hence σ(T +K) \ ω(T +K) ⊆ π00(T +K). For the reverse
inclusion suppose λ ∈ π00(T + K). Assume to the contrary that λ ∈ ω(T + K) and hence
λ ∈ ω(T ). Then we claim λ /∈ ∂ σ(T ). Indeed if λ ∈ isoσ(T ) then by assumption λ ∈ π00(T ),
which contradicts to Weyl’s theorem for T . If instead λ ∈ accσ(T )∩ ∂ σ(T ) then since isoσ(T )
is finite it follows that

λ ∈ acc
(
∂ σ(T )

)
⊆ accσe(T ) = accσe(T +K),

which contradicts to the fact that λ ∈ isoσ(T + K). Therefore λ /∈ ∂ σ(T ). Also since λ ∈
isoσ(T +K), there exists ε > 0 such that

{µ ∈ C : 0 < |µ− λ| < ε} ⊆ σ(T ) ∩ ρ(T +K),

so that {µ ∈ C : 0 < |µ− λ| < ε} ∩ ω(T ) = ∅, which contradicts to Weyl’s theorem for T . Thus
λ ∈ σ(T +K) \ ω(T +K) and therefore Weyl’s theorem holds for T +K. �

If, in Theorem 2.6, the condition “σ(T ) has no holes” is dropped then Theorem 2.6 may fail
even though T is normal. For example, if on `2 ⊕ `2

T =
(
U I−UU∗

0 U∗

)
and K =

(
0 I−UU∗

0 0

)
,

where U is the unilateral shift on `2, then T is unitary (essentially the bilateral shift) with
σ(T ) = T, K is a rank one nilpotent, and Weyl’s theorem does not hold for T −K.

Also in Theorem 2.6, the condition “isoσ(T ) is finite” is essential in the cases where K is
compact. For example, if on `2

T (x1, x2, · · · ) = (x1,
x2

2
,
x3

3
, · · · ) and Q(x1, x2, · · · ) = (

x2

2
,
x3

3
,
x4

4
, · · · ),

we define K := −(T +Q). Then we have that (i) T is finite-isoloid; (ii) σ(T ) has no holes; (iii)
Weyl’s theorem holds for T ; (iv) isoσ(T ) is infinite; (v) K is compact because T and Q are
both compact; (vi) Weyl’s theorem does not hold for T +K (= −Q).
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Corollary 2.7. If σ(T ) has no holes and at most finitely many isolated points and if K is a
compact operator then Weyl’s theorem is transmitted from T to T +K.

Proof. Straightforward from Theorem 2.6. �

Corollary 2.7 shows that if Weyl’s theorem holds for T whose spectrum has no holes and at
most finitely many isolated points then for every compact operator K, the passage from σ(T )
to σ(T + K) is putting at most countably many isolated points outside σ(T ) which are Riesz
points of σ(T +K). Here we should note that this holds even if T is quasinilpotent because for
every quasinilpotent operator T (more generally, “Riesz operators”), we have

σ(T +K) ⊆ η σe(T +K) ∪ p00(T +K) = η σe(T ) ∪ p00(T +K) = {0} ∪ p00(T +K).

Corollary 2.7 can easily be applied for Toeplitz operators and unilateral weighted shifts.
In the below we give two corollaries on those operators. Let H2(T) denote the Hardy space
of the unit circle T = ∂D in the complex plane. Recall ([16]) that given ϕ ∈ L∞(T), the
Toeplitz operator with symbol ϕ is the operator Tϕ on H2(T) defined by Tϕf = P (ϕ · f), where
f ∈ H2(T) and P denotes the projection that maps L2(T) onto H2(T). For example if ϕ(z) = z
then Tϕ represents the unilateral shift on `2. Write C(T) for the algebra of all continuous
complex-valued functions on T.

Corollary 2.8. Suppose Tϕ is a Toeplitz operator with nonconstant continuous symbols ϕ ∈
C(T) whose winding number of ϕ with respect to each hole of ϕ(T) is nonzero. If K ∈ L(H2)
is a compact operator then Weyl’s theorem holds for Tϕ + K. Hence, in particular, if U is
the unilateral shift on `2 then Weyl’s theorem holds for U + K with every compact operator
K ∈ L(`2).

Proof. Remember ([7]) that Weyl’s theorem holds for every Toeplitz operator and σ(Tϕ) has
no isolated points for nonconstant symbols ϕ. The spectral theory for Toeplitz operators with
continuous symbols shows that our assumption implies σ(Tϕ) has no holes (cf. [16]). Therefore
the result follows at once from Corollary 2.7. The second assertion is immediate from the first.
�

Corollary 2.9. If T is a unilateral weighted shift with positive weights and is not quasinilpotent,
and if K ∈ L(`2) is a compact operator then Weyl’s theorem holds for T +K.

Proof. If T is a unilateral weighted shift which is not quasinilpotent then σ(T ) is a non-
degenerated disk ([20, Theorem 4]). Moreover since weights are positive it follows that π0(T ) =
∅, and hence σ(T ) = ω(T ), which implies that Weyl’s theorem holds for T . Therefore the result
follows at once from Corollary 2.7. �

Corollary 2.9 may fail if T is quasinilpotent: for example consider the operators T and K
defined by T (x1, x2, · · · ) = (0, x1,

x2
2 ,

x3
3 , · · · ) and K(x1, x2, · · · ) = (0,−x1, 0, 0, · · · ).
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