Abstracts of KOTAC Volume 10(2008), 8–8

Totally hereditarily normaloid operators, Bishop's property (β) and an elementary operator

B. P. Duggal

Northfield Avenue, 8 Redwood Grove, Ealing, London W5 4SZ, United Kingdom bpduggal@yahoo.co.uk

A Banach space operator T is totally hereditarily normaloid, $T \in (\mathcal{THN})$, if every part, and the inverse of every invertible part, of T is normaloid. (\mathcal{THN}) Hilbert space operators satisfy Bishop's property (β). If $A, B^* \in B(\mathcal{H})$ are (\mathcal{THN}) Hilbert space operators, and $d_{AB} \in B(B(\mathcal{H}))$ stands for either of the elementary operators $\delta_{AB}(X) = AX - XB$ and $\Delta_{AB}(X) = AXB - X$, then $f(d_{AB})$ satisfies Weyl's theorem and $f(d_{AB})^*$ satisfies *a*-Weyl's theorem for every function f which is analytic on a neighbourhood of $\sigma(d_{AB})$. Perturbations of d_{AB} by quasinilpotent and algebraic operators are considered.