Abstracts of KOTAC Volume 10(2008), 14–14

Extreme points of the closed convex hull of composition operators on H^{∞}

Takuya Hosokawa

Institute of Basic Science, Andong National University, Korea

turtlemumu@yahoo.co.jp

Let S(D) be the set of all analytic self-maps of the open unit disk D and H^{∞} be the set of all bounded analytic functions on D. Every analytic self-map $\varphi \in S(D)$ induces the composition operator C_{φ} on H^{∞} defined by

$$C_{\varphi}f(z) = f(\varphi(z)),$$

which acts boundedly on H^{∞} . More precisely, we can see that $||C_{\varphi}||_{H^{\infty}} = 1$ for any $\varphi \in S(D)$.

We recall that an element x of a convex set X is called an extreme point of X if the conditions 0 < r < 1, $x_1, x_2 \in X$ and $x = (1 - r)x_1 + rx_2$, implies that $x_1 = x_2 = x$. By de Leeuw-Rudin's Theorem, it was proved that φ is an extreme point of the closed unit ball $U_{H^{\infty}}$ of H^{∞} if and only if

$$\int_0^{2\pi} \log(1 - |\varphi(e^{i\theta})|) d\theta = -\infty.$$

Let $\mathcal{C}(H^{\infty})$ be the collection of all bounded composition operators on H^{∞} , endowed with the operator norm topology. Then $\mathcal{C}(H^{\infty})$ is a semigroup with respect to the products, but is not a linear space. Through the study on the topological structure of $\mathcal{C}(H^{\infty})$, it was proved that C_{φ} is isolated in $\mathcal{C}(H^{\infty})$ if and only if φ is an extreme point of the closed unit ball $U_{H^{\infty}}$ of H^{∞} .

On the other hand, from the fact that $\mathcal{C}(H^{\infty})$ is not a linear space we derive the following problem:

Problem. When the linear combination of composition operators is a composition operator?

It is easy to show that there is no finite linear combination of composition operators which is a composition operator.

In this talk, we consider this problem for the case of the infinite linear combinations. We also consider the relationship between the extremeness of C_{φ} in the closed convex hull of $\mathcal{C}(H^{\infty})$ and the extremeness of φ of $U_{H^{\infty}}$.