Abstracts of KOTAC Volume 10(2008), 16–17

On backward extensions of operators

Il Bong Jung Kyungpook National University, Korea ibjung@knu.ac.kr

There is a description of subnormality for an abstract operator T in terms of weighted shifts; namely T is subnormal if and only if for each $h \neq 0$ in \mathcal{H} , the weighted shift with weight sequence $\alpha_h := \{ \|T^{n+1}h\| / \|T^nh\| \}$ is subnormal ([Lam],[St]). We define W_h to be the weighted shift on l^2_+ with the weight sequence α_h . Then by C. Berger's theorem, for each $h \neq 0$ there is a Borel probability measure μ_h over $[0, \|W_h\|^2]$ such that, for all $n \in \mathbb{N} \cup \{0\}, \|T^nh\|^2 / \|h\|^2 = \int t^n d\mu_h$. A nonzero vector $h \in \mathcal{H}$ is called a *k*-step backward extension vector for T if $1/t^k \in L^1(\mu_h)$. We write \mathcal{E}_T for the set of all *k*-step backward extension vectors for T. If $\mathcal{E}_T = \mathcal{H}$, then we say that T has *k*-step full backward extension. If this holds for all integers $k \geq 1$, then we say that T has ∞ -step full backward extension. Suppose that $N \in \mathcal{L}(\mathcal{K})$ is its minimal normal extension. Then we have the following theorem.

Theorem A. If $k \ge 1$ is integer, then the following assertions are equivalent: (i) T has k-step full backward extension;

- (ii) $\mathcal{H} = \mathcal{H} \cap N^k(\mathcal{K});$
- (iii) $\operatorname{ran} T^k$ is closed and $\ker T^{*k}$ is contained in $\operatorname{ran} N^k$;
- (iv) for every $h \in \mathcal{H}$, there exists a positive real constant c_h such that

$$\left\| \left(\sum_{i=0}^{n} T^{*i} h_i, h \right) \right\|^2 \le c_h \sum_{i,j=0}^{n} \left(T^{j+k} h_i, T^{i+k} h_j \right), \quad h_0, \cdots, h_n \in \mathcal{H}, \quad n \ge 0.$$

Corollary B. Suppose T has one-step full backward extension and dense range. Then T has ∞ -step full backward extension.

In particular, if T is cyclic, then T is unitarily equivalent to a multiplication operator S_{ν} on $H^2(\nu)$, with normal extension N_{ν} on $L^2(\nu)$, where the subscript ν indicates multiplication by the independent variable z on $H^2(\nu)$ or $L^2(\nu)$. For nonzero h in $H^2(\nu)$, let $d\nu_h = |h|^2 d\nu$. Then we have the following proposition.

Proposition C. Let T be a cyclic subnormal operator on \mathcal{H} with associated measure ν . Then T has full backward extension if and only if $\int_{\mathbb{D}} |h(z)/z|^2 d\nu < \infty$ for all $h \in H^2(\nu)$.

Corollary D. Suppose S_{ν} has full backward extension and dense range. Then $R^2(\nu) = H^2(\nu)$, where $R^2(\nu) := H^2(\nu) \lor \{\frac{1}{z^k} : k \ge 1\}$.

Proposition E. Let T be a quasinormal operator on \mathcal{H} . Then T has ∞ -step backward extension.

Remark F. The above works on backward extensions also can be extended to completely hyperexpansive operators in $\mathcal{L}(\mathcal{H})$ (cf. [JJS]). This talk is based on [HJL], [JJS], and [JLS]. In addition, we will discuss further research on this area.

References

- [HJL] T. Hoover, I. Jung, A. Lambert, Moment sequences and backward extensions of subnormal weighted shifts, J. Aust. Math. Soc. 73(2002), 27-36.
- [JJS] Z. Jablonski, I. Jung, J. Stochel, Backward extensions of hyperexpansive operators, Studia Math. 173(2006), 233-257.
- [JLS] I. Jung, A. Lambert, J. Stochel, Backward extensions of subnormal operators, Proc. Amer. Math. Soc. 132(2004), 2291-2302.
- [Lam] A. Lambert, Subnormality and weighted shifts, J. London Math. Soc. 14(1976), 476-480.
- [St] J. Stochel, Seminormality of operators from their tensor product, Proc. Amer. Math. Soc. 124(1996), 135-140.