Abstracts of KOTAC Volume 10(2008), 25–25

Stable rank for inclusions of C*-algebras

Hiroyuki Osaka

Department of Mathematical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan osaka@se.ritsumei.ac.jp

Let A be a unital C*-algebra. We recall that the *topological stable rank* tsr(A) of A is defined to be the least integer n such that the set $Lg_n(A)$ of all n-tuples $(a_1, a_2 \ldots, a_n) \in$ A^n which generate A as a left ideal is dense in A^n . The topological stable rank of a nonunital C*-algebra is defined to be that of its smallest unitization. Note that tsr(A) = 1is equivalent to density of the set of invertible elements in A. Furthermore, tsr(A) = 1implies that $tsr(A \otimes M_n(\mathbb{C})) = 1$ for all n, and that $tsr(A \otimes K) = 1$, where K is the algebra of compact operators on a separable infinite dimensional Hilbert space.

Blackadar proposed the question whether $\operatorname{tsr}(A \times_{\alpha} G) = 1$ for any unital AF C*-algebra A, a finite group G, and an action α of G on A. We prove that if a unital C*-algebra A has a simple unital C*-subalgebra D of A with common unit such that D has Property (SP) and $\sup_{p \in P(D)} \operatorname{tsr}(pAp) < \infty$, then $\operatorname{tsr}(A) \leq 2$. As an application let A be a simple unital C*-algebra with $\operatorname{tsr}(A) = 1$ and Property (SP), $\{G_k\}_{k=1}^n$ finite groups, α_k actions from G_k to $\operatorname{Aut}((\cdots((A \times_{\alpha_1} G_1) \times_{\alpha_2} G_2) \cdots) \times_{\alpha_{k-1}} G_{k-1})$. $(G_0 = \{1\})$ Then

$$\operatorname{tsr}((\cdots((A\times_{\alpha_1}G_1)\times_{\alpha_2}G_2)\cdots)\times_{\alpha_n}G_n)\leq 2.$$

We also present several examples which are affirmative data to the Blackadar's problem.