Limits of iterations of the Aluthge transformation in 2 by 2 matix algebras

Jun Tomiyama Emeritus Professor of Tokyo Metropolitan University,Japan juntomi@med.email.ne.jp

Let T be an n by n matrix and T = U|T| be its polar decomposition. The Aluthge transform for T, $\Delta(T)$, is defined as $\Delta(T) = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$. Write its (n times) iteration by $\Delta^n(T)$. Since $\Delta(T)$ is norm decreasing, the map; $T \to \Delta(T)$ gives an interesting and important dynamical system in the unit ball of the matrix algebra M_n , and the system has been studied by many authors. As of now however we know the convergence of iterations only for 2 by 2 matrices by Ando and Yamazaki [1] and the general concrete form of their limits has not been known yet.

This talk concerns with the introduction of recent work [3] by T.Takasaki about such concrete form of limits for 2 by 2 matrices. In fact, in that article, though under the restriction of the spectrum of a matrix Takasaki has shown the precise form of limits of iterations as well as provides an alternative proof of general convergence.

Since $\Delta(\zeta T) = \zeta \Delta(T)$, in the following we often assume that $\det(T) = 1$, hence $\det \Delta^n(T) = 1$.

His first contribution is the following exact form of Aluthge transform. Write the given matrix as $T = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, and put

 $\alpha = |a|^2 + |b|^2 + |c|^2 + |d|^2 + 2|ad - bc| = tr(T^{\star}T) + 2\det(T).$

Proposition 1 Assume that det(T) = 1. Then we have

$$\Delta(T) = \frac{(\sqrt{\alpha}+1)tr(T) + tr(T^{\star})}{(\sqrt{\alpha}+2)\alpha}T^{\star}T + \frac{1}{\sqrt{\alpha}}(T-T^{\star}) + \frac{(\sqrt{\alpha}+1)tr(T^{\star}) + tr(T)}{(\sqrt{\alpha}+2)\alpha}I$$

Corollary 1 If $tr(T) = -tr(T^*)$, in particular when tr(T) = 0, $\Delta(T)$ becomes normal, hence

$$\lim_{n\to\infty}\Delta^n(T)=\Delta(T).$$

Let λ and μ be eigenvalues of the matrix T, then Takasaki's main result is the following

Theorem 1 The iterations $\{\Delta^n(T)\}$ converge for any 2 by 2 matrix T. Moreover, when $|\lambda| = |\mu| = 1$ and $\det(T) = 1$ we have

$$\lim_{n \to \infty} \Delta^n(T) = \frac{tr(T)}{2}I + \frac{\sqrt{4 - tr(T)^2}}{2\sqrt{\alpha - tr(T)^2}}(T - T^*)$$

Two key lemmas are used to show the converence. Write the number α_n for $\Delta^n(T)$ corresponding to α for T, and let r(T) be the spectral radius of T. Assume that $\det(T) = 1$.

Lemma 1 The sequences $\{tr(\Delta^n(T)^*\Delta^n(T))\}$ and $\{\alpha_n\}$ are monotone decreasing. Their limits are

$$\lim_{n \to \infty} tr(\Delta^n(T)^* \Delta^n(T)) = r(T)^2 + \frac{1}{r(T)^2} \quad and$$
$$\sqrt{\alpha_\infty} = \lim_{n \to \infty} \sqrt{\alpha_n} = r(T) + \frac{1}{r(T)}.$$

Here when $|\lambda| = |\mu| = 1$ we see that $\alpha_{\infty} = 4$, which is used to determine the concrete limit form in this case.

Next Lemma is the estimation, which is used to show the convergence.

Lemma 2

$$\|\Delta(T) - \Delta^2(T)\| \le \frac{2}{\sqrt{\alpha_{\infty}}} \|T - \Delta(T)\|.$$

Mail address of T.Takasaki: takasaki.toshiyuki@nein.ed.jp

References

- T.Ando and T.Yamazaki, The iterated Aluthge transforms of a 2-by-2 matrix converge, Linear Alg. and its Appl., 375(2003) 299-309
- [2] H.Huang and T-Y.Tam, On the convergence of Aluthge sequence, Operator and Matrices,1(2007),121-141
- [3] T.Takasaki, Basic indexes and Aluthge transformation for 2 by 2 matrices, to appear in Math. Inequal and Appl.
- [4] T.Yamazaki, An expression of spectral radius via Aluthge transformation, Proc. Amer. Math. Soc., 130(200), 1131-1137