Limits of iterations of the Aluthge transformation in 2 by 2 matix algebras

Jun Tomiyama
Emeritus Professor of Tokyo Metropolitan University,Japan
juntomi@med.email.ne.jp

Let T be an n by n matrix and $T=U|T|$ be its polar decomposition. The Aluthge transform for $T, \Delta(T)$, is defined as $\Delta(T)=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$. Write its (n times) iteration by $\Delta^{n}(T)$. Since $\Delta(T)$ is norm decreasing, the map $; T \rightarrow \Delta(T)$ gives an interesting and important dynamical system in the unit ball of the matrix algebra M_{n}, and the system has been studied by many authors. As of now however we know the convergence of iterations only for 2 by 2 matrices by Ando and Yamazaki [1] and the general concrete form of their limits has not been known yet.

This talk concerns with the introduction of recent work [3] by T.Takasaki about such concrete form of limits for 2 by 2 matrices. In fact, in that article, though under the restriction of the spectrum of a matrix Takasaki has shown the precise form of limits of iterations as well as provides an alternative proof of general convergence.

Since $\Delta(\zeta T)=\zeta \Delta(T)$, in the following we often assume that $\operatorname{det}(T)=1$, hence $\operatorname{det} \Delta^{n}(T)=1$.

His first contribution is the following exact form of Aluthge transform. Write the given matrix as $T=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, and put

$$
\alpha=|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}+2|a d-b c|=\operatorname{tr}\left(T^{\star} T\right)+2 \operatorname{det}(T) .
$$

Proposition 1 Assume that $\operatorname{det}(T)=1$. Then we have

$$
\Delta(T)=\frac{(\sqrt{\alpha}+1) \operatorname{tr}(T)+\operatorname{tr}\left(T^{\star}\right)}{(\sqrt{\alpha}+2) \alpha} T^{\star} T+\frac{1}{\sqrt{\alpha}}\left(T-T^{\star}\right)+\frac{(\sqrt{\alpha}+1) \operatorname{tr}\left(T^{\star}\right)+\operatorname{tr}(T)}{(\sqrt{\alpha}+2) \alpha} I
$$

Corollary 1 If $\operatorname{tr}(T)=-\operatorname{tr}\left(T^{\star}\right)$, in particular when $\operatorname{tr}(T)=0, \Delta(T)$ becomes normal, hence

$$
\lim _{n \rightarrow \infty} \Delta^{n}(T)=\Delta(T) .
$$

Let λ and μ be eigenvalues of the matrix T, then Takasaki's main result is the following
Theorem 1 The iterations $\left\{\Delta^{n}(T)\right\}$ converge for any 2 by 2 matrix T. Moreover, when $|\lambda|=|\mu|=1$ and $\operatorname{det}(T)=1$ we have

$$
\lim _{n \rightarrow \infty} \Delta^{n}(T)=\frac{\operatorname{tr}(T)}{2} I+\frac{\sqrt{4-\operatorname{tr}(T)^{2}}}{2 \sqrt{\alpha-\operatorname{tr}(T)^{2}}}\left(T-T^{\star}\right)
$$

Two key lemmas are used to show the converence. Write the number α_{n} for $\Delta^{n}(T)$ corresponding to α for T, and let $r(T)$ be the spectral radius of T. Assume that $\operatorname{det}(T)=1$.

Lemma 1 The sequences $\left\{\operatorname{tr}\left(\Delta^{n}(T)^{\star} \Delta^{n}(T)\right\}\right.$ and $\left\{\alpha_{n}\right\}$ are monotone decreasing. Their limits are

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \operatorname{tr}\left(\Delta^{n}(T)^{\star} \Delta^{n}(T)\right)=r(T)^{2}+\frac{1}{r(T)^{2}} \quad \text { and } \\
\sqrt{\alpha_{\infty}}=\lim _{n \rightarrow \infty} \sqrt{\alpha_{n}}=r(T)+\frac{1}{r(T)}
\end{gathered}
$$

Here when $|\lambda|=|\mu|=1$ we see that $\alpha_{\infty}=4$, which is used to determine the concrete limit form in this case.

Next Lemma is the estimation, which is used to show the convergence.

Lemma 2

$$
\left\|\Delta(T)-\Delta^{2}(T)\right\| \leq \frac{2}{\sqrt{\alpha_{\infty}}}\|T-\Delta(T)\|
$$

Mail address of T.Takasaki: takasaki.toshiyuki@nein.ed.jp

References

[1] T.Ando and T.Yamazaki,The iterated Aluthge transforms of a 2-by-2 matrix converge, Linear Alg. and its Appl.,375(2003) 299-309
[2] H.Huang and T-Y.Tam, On the convergence of Aluthge sequence, Operator and Matrices,1(2007),121-141
[3] T.Takasaki, Basic indexes and Aluthge transformation for 2 by 2 matrices, to appear in Math. Inequal and Appl.
[4] T.Yamazaki, An expression of spectral radius via Aluthge transformation, Proc. Amer. Math. Soc.,130(200),1131-1137

