On Generalized criss-cross, near commutativity and common spectral properties

Chafiq Benhida

Université de Lille 1

$$
2015 \text { Kotac }
$$

Suppose \mathcal{X}, \mathcal{Y} are separable Banach spaces; $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ the space of bounded linear operators $T: \mathcal{X} \rightarrow \mathcal{Y}$. Let $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ and $C \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$.

Suppose \mathcal{X}, \mathcal{Y} are separable Banach spaces; $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ the space of bounded linear operators $T: \mathcal{X} \rightarrow \mathcal{Y}$. Let $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ and $C \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$. the following equivalence
$I-A C$ invertible $\Longleftrightarrow I-C A$ invertible

Suppose \mathcal{X}, \mathcal{Y} are separable Banach spaces; $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ the space of bounded linear operators $T: \mathcal{X} \rightarrow \mathcal{Y}$. Let $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ and $C \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$. the following equivalence

$$
\begin{equation*}
I-A C \text { invertible } \Longleftrightarrow I-C A \text { invertible } \tag{1.1}
\end{equation*}
$$

is known as Jacobson's lemma

Suppose \mathcal{X}, \mathcal{Y} are separable Banach spaces; $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ the space of bounded linear operators $T: \mathcal{X} \rightarrow \mathcal{Y}$. Let $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ and $C \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$. the following equivalence

$$
\begin{equation*}
I-A C \text { invertible } \Longleftrightarrow I-C A \text { invertible } \tag{1.1}
\end{equation*}
$$

is known as Jacobson's lemma
Many authors studied its applications and consequences in local and global spectral theory (B. Barnes, P. Aiena, M. Cho, R. Curto, R. Harte, T. Huruya, I.H. Jeon, I.B. Jung, E. Ko, K. Tanahashi, S.

Li, C. Lin, Y. Ruan, Z. Yan, E. Zerouali and C.B., ...)

For example, for global spectral theory, we have:

For example, for global spectral theory, we have:

- $\sigma(A C) \backslash\{0\}=\sigma(C A) \backslash\{0\}$

For example, for global spectral theory, we have:

- $\sigma(A C) \backslash\{0\}=\sigma(C A) \backslash\{0\}$
- $\sigma_{p}(A C) \backslash\{0\}=\sigma_{p}(C A) \backslash\{0\}$
- $\sigma_{a p}(A C) \backslash\{0\}=\sigma_{a p}(C A) \backslash\{0\}$
- $\sigma_{e}(A C) \backslash\{0\}=\sigma_{e}(C A) \backslash\{0\}$
- ...

and for local spectral theory, we have:

and for local spectral theory, we have:

- $\sigma_{\text {svep }}(A C)=\sigma_{\text {svep }}(C A)$
and for local spectral theory, we have:
- $\sigma_{\text {svep }}(A C)=\sigma_{\text {svep }}(C A)$
- $\sigma_{\beta}(A C)=\sigma_{\beta}(C A)$
- $\sigma_{\gamma}(A C)=\sigma_{\gamma}(C A)$
- $\sigma_{\mathrm{dec}}(A C)=\sigma_{\mathrm{dec}}(C A)$
- $\sigma_{\beta_{\epsilon}}(A C)=\sigma_{\beta_{\epsilon}}(C A)$
and for local spectral theory, we have:
- $\sigma_{\text {svep }}(A C)=\sigma_{\text {svep }}(C A)$
- $\sigma_{\beta}(A C)=\sigma_{\beta}(C A)$
- $\sigma_{\gamma}(A C)=\sigma_{\gamma}(C A)$
- $\sigma_{\mathrm{dec}}(A C)=\sigma_{\mathrm{dec}}(C A)$
- $\sigma_{\beta_{\epsilon}}(A C)=\sigma_{\beta_{\epsilon}}(C A)$

We loose "somehow" 0 by passing from local to global spectra.

We emphasize that Jacobson's lemma does not extend, without additional conditions, to more variables.

We emphasize that Jacobson's lemma does not extend, without additional conditions, to more variables. It doesn't extend even to pairs!

We emphasize that Jacobson's lemma does not extend, without additional conditions, to more variables. It doesn't extend even to pairs!

Obstacle:

If $\mathbf{A}=\left(A_{1}, \cdots, A_{n}\right)$ and $\mathbf{B}=\left(B_{1}, \cdots, B_{n}\right)$ are commuting n-tuples $\left(A_{i} A_{j}=A_{j} A_{i}\right.$ and $B_{i} B_{j}=B_{j} B_{i}$ for every $\left.1 \leq i, j \leq n\right)$

We emphasize that Jacobson's lemma does not extend, without additional conditions, to more variables. It doesn't extend even to pairs!

Obstacle:

If $\mathbf{A}=\left(A_{1}, \cdots, A_{n}\right)$ and $\mathbf{B}=\left(B_{1}, \cdots, B_{n}\right)$ are commuting n-tuples ($A_{i} A_{j}=A_{j} A_{i}$ and $B_{i} B_{j}=B_{j} B_{i}$ for every $1 \leq i, j \leq n$) and if we consider

$$
\mathbf{A B}=:\left(A_{1} B_{1}, \cdots, A_{n} B_{n}\right)
$$

We emphasize that Jacobson's lemma does not extend, without additional conditions, to more variables. It doesn't extend even to pairs!

Obstacle:

If $\mathbf{A}=\left(A_{1}, \cdots, A_{n}\right)$ and $\mathbf{B}=\left(B_{1}, \cdots, B_{n}\right)$ are commuting n-tuples ($A_{i} A_{j}=A_{j} A_{i}$ and $B_{i} B_{j}=B_{j} B_{i}$ for every $1 \leq i, j \leq n$) and if we consider

$$
\mathbf{A B}=:\left(A_{1} B_{1}, \cdots, A_{n} B_{n}\right) .
$$

There is no reason that $\mathbf{A B}$ remains a commuting n-tuple.

We emphasize that Jacobson's lemma does not extend, without additional conditions, to more variables.
It doesn't extend even to pairs!

Obstacle:

If $\mathbf{A}=\left(A_{1}, \cdots, A_{n}\right)$ and $\mathbf{B}=\left(B_{1}, \cdots, B_{n}\right)$ are commuting n-tuples ($A_{i} A_{j}=A_{j} A_{i}$ and $B_{i} B_{j}=B_{j} B_{i}$ for every $1 \leq i, j \leq n$) and if we consider

$$
\mathbf{A B}=:\left(A_{1} B_{1}, \cdots, A_{n} B_{n}\right) .
$$

There is no reason that $\mathbf{A B}$ remains a commuting n-tuple.
Thus, some other conditions are needed to keep at least the commutativity and hopefully to have more.

We emphasize that Jacobson's lemma does not extend, without additional conditions, to more variables.
It doesn't extend even to pairs!

Obstacle:

If $\mathbf{A}=\left(A_{1}, \cdots, A_{n}\right)$ and $\mathbf{B}=\left(B_{1}, \cdots, B_{n}\right)$ are commuting n-tuples ($A_{i} A_{j}=A_{j} A_{i}$ and $B_{i} B_{j}=B_{j} B_{i}$ for every $1 \leq i, j \leq n$) and if we consider

$$
\mathbf{A B}=:\left(A_{1} B_{1}, \cdots, A_{n} B_{n}\right) .
$$

There is no reason that $\mathbf{A B}$ remains a commuting n-tuple.
Thus, some other conditions are needed to keep at least the commutativity and hopefully to have more.
Actually, there are two known possiblities:

A and B are called criss-cross (R. Harte) commuting if

$$
\left\{A_{i} B_{j} A_{k}=A_{k} B_{j} A_{i} \quad \text { for every } 1 \leq i, j, k \leq n\right.
$$

A and B are called criss-cross (R. Harte) commuting if

$$
\begin{cases}A_{i} B_{j} A_{k}=A_{k} B_{j} A_{i} & \text { for every } 1 \leq i, j, k \leq n \\ B_{i} A_{j} B_{k}=B_{k} A_{j} B_{i} & \text { for every } 1 \leq i, j, k \leq n\end{cases}
$$

A and B are called criss-cross (R. Harte) commuting if

$$
\begin{cases}A_{i} B_{j} A_{k}=A_{k} B_{j} A_{i} & \text { for every } 1 \leq i, j, k \leq n \\ B_{i} A_{j} B_{k}=B_{k} A_{j} B_{i} & \text { for every } 1 \leq i, j, k \leq n\end{cases}
$$

It generalizes Jacobson's lemma in the following way

A and B are called criss-cross (R. Harte) commuting if

$$
\begin{cases}A_{i} B_{j} A_{k}=A_{k} B_{j} A_{i} & \text { for every } 1 \leq i, j, k \leq n \\ B_{i} A_{j} B_{k}=B_{k} A_{j} B_{i} & \text { for every } 1 \leq i, j, k \leq n\end{cases}
$$

It generalizes Jacobson's lemma in the following way

$$
\begin{equation*}
\sigma_{\mathbf{T}}(\mathbf{A B}) \backslash\{0\}=\sigma_{\mathbf{T}}(\mathbf{B A}) \backslash\{0\} \tag{3.1}
\end{equation*}
$$

A and B are called criss-cross (R. Harte) commuting if

$$
\begin{cases}A_{i} B_{j} A_{k}=A_{k} B_{j} A_{i} & \text { for every } 1 \leq i, j, k \leq n \\ B_{i} A_{j} B_{k}=B_{k} A_{j} B_{i} & \text { for every } 1 \leq i, j, k \leq n\end{cases}
$$

It generalizes Jacobson's lemma in the following way

$$
\begin{equation*}
\sigma_{\mathbf{T}}(\mathbf{A B}) \backslash\{0\}=\sigma_{\mathbf{T}}(\mathbf{B A}) \backslash\{0\} \tag{3.1}
\end{equation*}
$$

Here $\sigma_{\boldsymbol{T}}$ stands for Taylor spectrum for commuting n-tuples introduced by J. L. Taylor.

A and B are said nearly commuting (C. B. and E. Zerouali) provided that

$$
\begin{equation*}
A_{i} B_{j}=B_{j} A_{i} \quad \text { for every } i \neq j \tag{3.2}
\end{equation*}
$$

A and B are said nearly commuting (C. B. and E. Zerouali) provided that

$$
\begin{equation*}
A_{i} B_{j}=B_{j} A_{i} \quad \text { for every } i \neq j \tag{3.2}
\end{equation*}
$$

Before, going further

$$
\text { Criss - Cross } \neq \text { Near commutativity }
$$

A and B are said nearly commuting (C. B. and E. Zerouali) provided that

$$
\begin{equation*}
A_{i} B_{j}=B_{j} A_{i} \quad \text { for every } i \neq j \tag{3.2}
\end{equation*}
$$

Before, going further

$$
\text { Criss - Cross } \neq \text { Near commutativity }
$$

It generalizes Jacobson's lemma in the following way

A and B are said nearly commuting (C. B. and E. Zerouali) provided that

$$
\begin{equation*}
A_{i} B_{j}=B_{j} A_{i} \quad \text { for every } i \neq j . \tag{3.2}
\end{equation*}
$$

Before, going further

$$
\text { Criss - Cross } \neq \text { Near commutativity }
$$

It generalizes Jacobson's lemma in the following way

$$
\begin{equation*}
\sigma_{\mathbf{T}}(\mathbf{A B}) \backslash[0]=\sigma_{\mathbf{T}}(\mathbf{B A}) \backslash[0], \tag{3.3}
\end{equation*}
$$

A and B are said nearly commuting (C. B. and E. Zerouali) provided that

$$
\begin{equation*}
A_{i} B_{j}=B_{j} A_{i} \quad \text { for every } i \neq j \tag{3.2}
\end{equation*}
$$

Before, going further

$$
\text { Criss - Cross } \neq \text { Near commutativity }
$$

It generalizes Jacobson's lemma in the following way

$$
\begin{equation*}
\sigma_{\mathbf{T}}(\mathbf{A B}) \backslash[0]=\sigma_{\mathbf{T}}(\mathbf{B A}) \backslash[0] \tag{3.3}
\end{equation*}
$$

where

$$
[0]:=\left\{\left(z_{1}, \cdots, z_{n}\right) \in \mathbb{C}^{n}: \prod_{i=1}^{n} z_{i}=0\right\}
$$

In a recent work of G. Corach, B. Duggal and R. Harte '13 (see also Q. Zeng, H. Zhong '14), the equation (1.1) is generalized to the following one

In a recent work of G. Corach, B. Duggal and R. Harte '13 (see also Q. Zeng, H. Zhong '14), the equation (1.1) is generalized to the following one

$$
I-A C \text { invertible } \Longleftrightarrow I-B A \text { invertible }
$$

provided that $A B A=A C A$.

In a recent work of G. Corach, B. Duggal and R. Harte '13 (see also Q. Zeng, H. Zhong '14), the equation (1.1) is generalized to the following one

$$
I-A C \text { invertible } \Longleftrightarrow I-B A \text { invertible }
$$

provided that $A B A=A C A$.
Of course the last condition is obviously true when $B=C$ and in this case we obtain (1.1). Thus, (4.1) could be considered as an extension of Jacobson's lemma.

Our goal is to give the n-tuple version of 4.1. In fact, we give two versions as it was done for Jacobson's lemma.

Definition (Generalized criss-cross)

$$
\left\{\begin{array}{l}
A_{i} B_{j} A_{k}=A_{k} B_{j} A_{i} \text { and } B_{i} A_{j} B_{k}=B_{k} A_{j} B_{i} \quad \forall \quad 1 \leq i, j, k \leq n
\end{array}\right.
$$

Definition (Generalized criss-cross)

$$
\left\{\begin{array}{llll}
A_{i} B_{j} A_{k}=A_{k} B_{j} A_{i} \text { and } B_{i} A_{j} B_{k}=B_{k} A_{j} B_{i} & \forall & 1 \leq i, j, k \leq n & \left(i^{\prime}\right) \\
A_{k} C_{j} A_{i}=A_{i} C_{j} A_{k} \text { and } C_{i} A_{j} C_{k}=C_{k} A_{j} C_{i} & \forall & 1 \leq i, j, k \leq n & \text { (ii') }
\end{array}\right.
$$

Definition (Generalized criss-cross)

$$
\left\{\begin{array}{l}
A_{i} B_{j} A_{k}=A_{k} B_{j} A_{i} \text { and } B_{i} A_{j} B_{k}=B_{k} A_{j} B_{i} \quad \forall \quad 1 \leq i, j, k \leq n \\
A_{k} C_{j} A_{i}=A_{i} C_{j} A_{k} \text { and } C_{i} A_{j} C_{k}=C_{k} A_{j} C_{i} \quad \forall \quad 1 \leq i, j, k \leq n \\
A_{i} B_{i} A_{j}=A_{i} C_{i} A_{j} \text { for every } \quad 1 \leq i, j \leq n
\end{array}\right.
$$

(i')
(ii')
(iii')

Definition (Generalized criss-cross)

$$
\left\{\begin{array}{lll}
A_{i} B_{j} A_{k}=A_{k} B_{j} A_{i} \text { and } B_{i} A_{j} B_{k}=B_{k} A_{j} B_{i} \quad \forall & 1 \leq i, j, k \leq n \\
A_{k} C_{j} A_{i}=A_{i} C_{j} A_{k} \text { and } C_{i} A_{j} C_{k}=C_{k} A_{j} C_{i} \quad \forall \quad 1 \leq i, j, k \leq n \\
A_{i} B_{i} A_{j}=A_{i} C_{i} A_{j} \text { for every } \quad 1 \leq i, j \leq n & \left(i^{\prime}\right) \\
\left(i i^{\prime}\right) \\
\left(i i^{\prime}\right)
\end{array}\right.
$$

Remark:
When $\mathbf{C}=\mathbf{B}$, conditions (ii') and (iii') are empty and we end with the criss-cross definition.

Theorem

et $\mathbf{A}=\left(A_{1}, \cdots, A_{n}\right) \in \mathcal{L}(X)^{n}, \mathbf{B}=\left(B_{1}, \cdots, B_{n}\right) \in \mathcal{L}(X)^{n}$ and
$\mathbf{C}=\left(C_{1}, \cdots, C_{n}\right) \in \mathcal{L}(X)^{n}$ be commuting n-tuples that are generalized criss-cross. We have

$$
\Sigma(\mathbf{A B}) \backslash\{0\}=\Sigma(\mathbf{C A}) \backslash\{0\}
$$

for any $\Sigma \in\left\{\sigma, \sigma_{e}, \sigma^{\pi, k}, \sigma_{e}^{\pi, k}, \sigma^{\delta, k}, \sigma_{e}^{\delta, k}\right\}$ and $0 \leq k \leq n$.

Definition

Let $\mathbf{A}=\left(A_{1}, \cdots, A_{n}\right) \in \mathcal{L}(X)^{n}, \mathbf{B}=\left(B_{1}, \cdots, B_{n}\right) \in \mathcal{L}(X)^{n}$ and $\mathbf{C}=\left(C_{1}, \cdots, C_{n}\right) \in \mathcal{L}(X)^{n}$ be commuting n-tuples. We'll say that \mathbf{A}, \mathbf{B} and \mathbf{C} are generalized nearly commuting if

$$
\begin{cases}A_{i} B_{j}=B_{j} A_{i} \quad \text { for every } \quad 1 \leq i \neq j \leq n \tag{i}\\ \end{cases}
$$

Definition

Let $\mathbf{A}=\left(A_{1}, \cdots, A_{n}\right) \in \mathcal{L}(X)^{n}, \mathbf{B}=\left(B_{1}, \cdots, B_{n}\right) \in \mathcal{L}(X)^{n}$ and $\mathbf{C}=\left(C_{1}, \cdots, C_{n}\right) \in \mathcal{L}(X)^{n}$ be commuting n-tuples. We'll say that \mathbf{A}, \mathbf{B} and \mathbf{C} are generalized nearly commuting if

$$
\left\{\begin{array}{llr}
A_{i} B_{j}=B_{j} A_{i} & \text { for every } & 1 \leq i \neq j \leq n \\
A_{i} C_{j}=C_{j} A_{i} & \text { for every } & 1 \leq i \neq j \leq n \\
\text { (ii) }
\end{array}\right.
$$

Definition

Let $\mathbf{A}=\left(A_{1}, \cdots, A_{n}\right) \in \mathcal{L}(X)^{n}, \mathbf{B}=\left(B_{1}, \cdots, B_{n}\right) \in \mathcal{L}(X)^{n}$ and $\mathbf{C}=\left(C_{1}, \cdots, C_{n}\right) \in \mathcal{L}(X)^{n}$ be commuting n-tuples. We'll say that \mathbf{A}, \mathbf{B} and \mathbf{C} are generalized nearly commuting if

$$
\left\{\begin{array}{llc}
A_{i} B_{j}=B_{j} A_{i} & \text { for every } & 1 \leq i \neq j \leq n \tag{i}\\
A_{i} C_{j}=C_{j} A_{i} & \text { for every } & 1 \leq i \neq j \leq n \\
A_{i} B_{i} A_{i}=A_{i} C_{i} A_{i} & \text { for every } & 1 \leq i \leq n
\end{array}\right.
$$

Definition

Let $\mathbf{A}=\left(A_{1}, \cdots, A_{n}\right) \in \mathcal{L}(X)^{n}, \mathbf{B}=\left(B_{1}, \cdots, B_{n}\right) \in \mathcal{L}(X)^{n}$ and $\mathbf{C}=\left(C_{1}, \cdots, C_{n}\right) \in \mathcal{L}(X)^{n}$ be commuting n-tuples. We'll say that \mathbf{A}, \mathbf{B} and \mathbf{C} are generalized nearly commuting if

$$
\left\{\begin{array}{lll}
A_{i} B_{j}=B_{j} A_{i} & \text { for every } & 1 \leq i \neq j \leq n \tag{i}\\
A_{i} C_{j}=C_{j} A_{i} & \text { for every } & 1 \leq i \neq j \leq n \\
A_{i} B_{i} A_{i}=A_{i} C_{i} A_{i} & \text { for every } & 1 \leq i \leq n
\end{array}\right.
$$

Remark:
Notice that if $\mathbf{C}=\mathbf{B}$, conditions (ii) and (iii) are empty. Thus, we overhaul near commutativity.

Let \mathcal{I} be a subset of $\{1, \cdots, n\}$ and denote

$$
(\mathbf{C A})_{\mathcal{I}}=\left(\left(C_{1} A_{1}\right)_{\mathcal{I}}, \cdots,\left(C_{n} A_{n}\right)_{\mathcal{I}}\right)
$$

with $\left(C_{i} A_{i}\right)_{\mathcal{I}}=A_{i} B_{i}$ if $i \in \mathcal{I}$ and $\left(C_{i} A_{i}\right)_{\mathcal{I}}=C_{i} A_{i}$ otherwise. Clearly $(\mathbf{C A})_{\emptyset}=\mathbf{C A}$ and $(\mathbf{C A})_{\{1, \cdots, n\}}=\mathbf{A B}$.
We also write

$$
[0]^{\mathcal{I}}=\left\{\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \mathbb{C}^{n}: \prod_{i \in \mathcal{I}} \lambda_{i}=0\right\}
$$

Theorem

Let $\mathbf{A}=\left(A_{1}, \cdots, A_{n}\right) \in \mathcal{L}(X)^{n}, \mathbf{B}=\left(B_{1}, \cdots, B_{n}\right) \in \mathcal{L}(X)^{n}$ and
$\mathbf{C}=\left(C_{1}, \cdots, C_{n}\right) \in \mathcal{L}(X)^{n}$ be commuting n-tuples that are generalized near-commuting

- For $\mathcal{I}, \mathcal{J} \subset\{1, \cdots, n\}$, We have

$$
\Sigma\left((\mathbf{C A})_{\mathcal{I}}\right) \backslash[0]^{\mathcal{I} \cup \mathcal{J}}=\Sigma\left((\mathbf{C A})_{\mathcal{J}}\right) \backslash[0]^{\mathcal{I} \cup \mathcal{J}}
$$

Theorem

Let $\mathbf{A}=\left(A_{1}, \cdots, A_{n}\right) \in \mathcal{L}(X)^{n}, \mathbf{B}=\left(B_{1}, \cdots, B_{n}\right) \in \mathcal{L}(X)^{n}$ and
$\mathbf{C}=\left(C_{1}, \cdots, C_{n}\right) \in \mathcal{L}(X)^{n}$ be commuting n-tuples that are generalized near-commuting

- For $\mathcal{I}, \mathcal{J} \subset\{1, \cdots, n\}$, We have

$$
\Sigma\left((\mathbf{C A})_{\mathcal{I}}\right) \backslash[0]^{\mathcal{I} \cup \mathcal{J}}=\Sigma\left((\mathbf{C A})_{\mathcal{J}}\right) \backslash[0]^{\mathcal{I} \cup \mathcal{J}}
$$

- In particular

$$
\Sigma(\mathbf{C A}) \backslash[0]=\Sigma(\mathbf{A B}) \backslash[0]
$$

$$
\text { for } \Sigma \in\left\{\sigma, \sigma_{e}, \sigma^{\pi, k}, \sigma_{e}^{\pi, k}, \sigma^{\delta, k}, \sigma_{e}^{\delta, k}\right\} \text {. }
$$

