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Locally compact groups and Banach algebras

I (Def) A locally compact (LC) group is a topological group
whose topology is locally compact and Hausdorff.

I Examples of LC groups: (1) Lie groups such as T, R, SU(2),
Heisenberg groups, · · · ) (2) discrete group, i.e. any groups
with discrete topology.

I (Def) A Banach algebra is a Banach space A with a vector
multiplication s.t.

||x · y || ≤ ||x || · ||y ||, x , y ∈ A.
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A Banach algebra from a LC group
I G : Locally compact group
⇒ ∃µ: A (left) Haar measure - (left) translation invariant
measure (a generalization of the Lebesgue measure)

I (Convolution)
L1(G ) = L1(G , µ),

f ∗ g(x) =

∫
G
f (y)g(x−1y)dµ(y), f , g ∈ L1(G ).

I The space (L1(G ), ∗) is a Banach algebra, i.e. we have

||f ∗ g ||1 ≤ ||f ||1 · ||g ||1, f , g ∈ L1(G ).

This algebra is called the convolution algebra on G .
I (Wendel ’52, L1(G ) “determines” G )

L1(G ) ∼= L1(H) isometrically isomorphic
⇔ G ∼= H as topological groups.

I For non-abelian G the algebra (L1(G ), ∗) is non-commutative!
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Another Banach algebra from a LC group

I G = R
FR : L1(R)→ C0(R), f 7→ f̂ , f̂ ∗ g = f̂ · ĝ , f̂ · g = f̂ ∗ ĝ
A(R)

def
= FR(L1(R)), ||f̂ ||A(R)

def
= ||f ||1: a subalgebra of C0(R)

I Note that f ∈ L1 can be written f = f1 · f2 with f1, f2 ∈ L2

with ||f ||1 = ||f1||2 · ||f2||2, then by Plancherel’s thm

A(R) = {f ∗ g : f , g ∈ L2(R)}

I For a general locally compact group we have a limited
understanding of the group Fourier transform, which
requires a heavy group representation theory, so that we take
the last approach to define A(G ).
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Fourier algebra [Krĕın ’49, Stinespring ’59, Eymard ’64]
I We defien the Fourier algebra A(G ) by

A(G )
def
= {f = g ∗ ȟ : g , h ∈ L2(G )},

where ȟ(x) = h(x−1).
I A(G ) is equipped with the norm

||f ||A(G) = inf
f =g∗ȟ

||g ||2||h||2,

and is known to be a subalgebra of C0(G ), so a commutative
Banach algebra with respect to the pointwise multiplication.

I But still A(G ) “in my mind” is the collection of functions
whose “group Fourier transform” is in (non-commutative) L1.

I For abelian G we do have A(G ) ∼= L1(Ĝ ) via group Fourier
transform, where Ĝ is the “dual group” of G . In this sense we
regard A(G ) as the “dual object” of L1(G ).
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Fourier algebra: continued

I (Walters ‘72, A(G ) “determines” G )
A(G ) ∼= A(H) isometrically isomorphic ⇔ G ∼= H.

I The algebra A(G ) has the advantage of being commutative.

I (Def) A: a commutative Banach algebra
SpecA = {ϕ : A → C, non-zero, multiplicative, linear}

I (Eymard ’64, Gelfand spectrum “detects” G )
SpecA(G ) ∼= G as topological spaces.

I The difficulty lies in the calculation of the Fourier algebra
norm.



Fourier algebras on locally compact groups

Extracting information of G from L1(G ): Amenability

I (Def, von Neumann) G is called amenable if there is a
mean ϕ on L∞(G ), i.e. ϕ ∈ (L∞(G ))∗ satisfying (1) (positive)
ϕ(f ) ≥ 0 for f ≥ 0, (2) (unital) ϕ(1) = 1, and (3) (translation
invariant) ϕ(x f ) = f , x ∈ G , where x f (y) = f (x−1y).

I Compact groups, abelian groups are amenable and Fn, n ≥ 2
are non-amenable.

I (Def, Johnson ’72) A Banach algebra A is called amenable
if any bounded derivation D : A → X ∗ for a A-bimodule X is
inner, i.e. ∃ψ ∈ X ∗ s.t. D(a) = a · ψ − ψ · a.

I (Johnson ’72) L1(G ) is amenable ⇔ G is amenable.



Fourier algebras on locally compact groups

Extracting information of G from A(G ): Amenability

I (Question) A(G ) amenable ⇔ G amenable?

I (Johnson ’94) A(SU(2)) is not amenable.

I (Ruan, ’95) A(G ) amenable in the operator space category
⇔ G amenable.

I Canonical operator space structure on A(G ) is quite
informative.

A(G × H) ∼= A(G )⊗̂A(H) � A(G )⊗π A(H),

where ⊗̂ and ⊗π are projective tensor products of operator
spaces and Banach spaces, resp.

I Note that the canonical operator space structure on L1(G ) is
not so new.
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Spectrum of weighted Fourier algebras and
complexification of Lie groups

I (Question) Recall SpecA(G ) ∼= G . Now we make A(G )
weighted and investigate its spectrum. What can we say
about the underlying group G??

I (Answer) We can say something about the complexification
of G !

I (1) Weighted A(G )? (2) complexification of G?
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Simplest case G = R

I Recall A(R) ∼= L1(R̂). We call w : R̂ ∼= R→ (0,∞) a weight
if it is sub-multiplicative. Then, A(R,w) := L1(R̂,w) is still a
Banach algebra w.r.t. convolution (we call this a weighted
convolution algebra or a Beurling algebra).

I Examples of weights:
(1) wα(t) = (1 + |t|)α, t ∈ R, α ≥ 0
(2) wβ(t) = β|t|, t ∈ R, β ≥ 1.

I SpecA(R,wβ) ∼= {c ∈ C : |Imc | ≤ log β}
I The proof uses Cc(R̂) ⊆ A(R,wβ) and solve a Cauchy

functional equation to get the conclusion.
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Another simple case G = T

I Recall A(T) ∼= L1(Z). We call w : Z ∼= R→ (0,∞) a weight
if it is sub-multiplicative. Then, A(T,w) := L1(Z,w) is still a
Banach algebra w.r.t. convolution.

I Examples of weights:
(1) wα(n) = (1 + |n|)α, n ∈ Z, α ≥ 0
(2) wβ(n) = β|n|, n ∈ Z, β ≥ 1.

I SpecA(T,wβ) ∼= {c ∈ C : 1
log β ≤ |c| ≤ log β}

I The proof uses Trig(T) ⊆ A(T,wβ) and note that Trig(T) is
singly generated to get the conclusion.
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The case of a general Lie group G

I (Weighted A(G )?) There is a natural way of constructing
“sub-multiplicative” weights on the “dual of G” extending the
ones from the commutative Lie subgroups of G (or from the
Lie derivative directions).

I (Complexification of G?) G has its Lie algebra g, which can
be easily complexified gC. If there is a “canonical” Lie group
whose Lie algebra is gC, then we call it the complexification of
G with the notation GC. For example, RC = C, TC = C\{0},
SU(2)C = SL(2,C).

I (Conjecture) SpecA(G ,w) ⊆ GC and it reflects the structure
of GC in a various way (e.g. translation, automorphism).

I The conjecture is somehow true for compact (Lie) groups and
for some non-compact Lie groups (Heisenberg group,
Euclidean motion group).
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The case of Heisenberg group H1

I Heisenberg group H1 =


1 x z

0 1 y
0 0 1

 : x , y , z ∈ R

 ∼= R3.

I (The complexification of H1)

(H1)C =

(x , y , z) =

1 x z
1 y

1

 : x , y , z ∈ C

 ∼= C3.

I (L./Spronk, preprint) Let wβ be the exponential weight
extended from the subgroup Y = {(0, y , 0) : y ∈ R}, then

SpecA(H1,wβ) ∼= {(x , y , z) ∈ (H1)|C ∼= C3

: Imx = Imz = 0, |Imy | ≤ log β}.

Other subgroups have similar results.
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The case of Heisenberg group H1: ingredients

I Ĥ1: irreducible unitary representations on H1.

I Very careful choice of a subalgebra (or a subspace) of
A(H1,wβ) replacing Cc(H1)!

I Solving Cauchy functional equation for distributions!
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Group Fourier transform of H1

I For any r ∈ R\{0} we have the Schrödinger representation

πr (x , y , z)ξ(w) = e2πir(−wy+z)ξ(−x + w), ξ ∈ L2(R).

I For f ∈ L1(H1) and r ∈ R\{0} we define f̂ H1 by

f̂ H1(r) :=

∫
H1

f (x , y , z)πr (x , y , z)dµ(x , y , z) ∈ B(L2(R)).

I We have

A(H1) ∼= L1(R\{0}, |r |dr ;S1(L2(R))),

where S1(H) is the trace class on H.
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The case of E (2), the Euclidean motion group
I The group E (2) and its complexification E (2)C are

E (2) =

{[
e iα z
0 1

]
: α ∈ [0, 2π], z ∈ C

}
= {(α, z1, z2) : α ∈ [0, 2π], z1, z2 ∈ R} ∼= T× R2.

E (2)C = {(α, z1, z2) : α, z1, z2 ∈ C} ∼= C3.

I For a > 0 we consider the representation
πa(α, z)F (θ) = e ia(z1 cos θ+z2 sin θ)F (θ − α), F ∈ L2[0, 2π].

I (Group Fourier transform on E (2))
For f ∈ L1(E (2)) and a > 0 we define

f̂ E(2)(a) =

∫
E(2)

f (α, z)πa(α, z)dµ(α, z).

I A(E (2)) ∼= L1(R+, ada; S1(L2[0, 2π])).
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The case of E (2): Results

I (L./Spronk, preprint) Let wβ is the exponential weight
coming from the subgroup {(α, 0) : α ∈ [0, 2π]}, then we have

SpecA(G ;wβ) ∼=
{(α, z1, z2) ∈ GC : Imz1 = Imz2 = 0, |Imα| ≤ log β}.
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Thank you for your attention!


