On Kadison's Transitive Algebra Problem: a metric property

Il Bong Jung (Joint work with C. Foias, E. Ko and C. Pearcy)

2015 KOTAC, Daejeon, Korea, June 18-20, 2015.

Kyungpook National University, Daegu, Republic of Korea

Kadison's Transitive Algebra Problem: a metric property

CONTENTS

I. INTRODUCTION

II. A NEW METRIC PROPERTY

III. TRANSITIVITY AND PROPERTY (P)

IV. EQUIVALENCE OF TWO NORMS $\| \| AND \| \|_e$

I. INTRODUCTION

 \mathcal{H} : a separable, infinite dimensional, complex Hilbert space.

 $\mathcal{L}(\mathcal{H})$: the algebra of all bounded linear operators on \mathcal{H} .

 $\mathbf{K} = \mathbf{K}(\mathcal{H})$: the ideal of all compact operators on \mathcal{H} .

 $\pi : \mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H})/K$ is the quotent (Calkin) map.

 $\sigma(T) \ [\sigma_e(T) = \sigma(\pi(T))]$: the spectrum [essential spectrum] of T.

A denotes a unital norm closed, subalgebra of $\mathcal{L}(\mathcal{H})$.

 \mathbb{A}^{-W} denotes the closure of \mathbb{A} in WOT (equiv. SOT) in $\mathcal{L}(\mathcal{H})$.

 \mathbb{A}' denotes the commutant of \mathbb{A} .

DEF. A subalgebra $\mathbb{A} \subset \mathcal{L}(\mathcal{H})$ is transitive if the only invariant subspaces for \mathbb{A} are (0) and \mathcal{H} .

TRANSITIVE ALGEBRA PROBLEM ('55 R. Kadison) Whether every transitive subalgebra \mathbb{A} of $\mathcal{L}(\mathcal{H})$ satisfies $\overline{\mathbb{A}}^{\mathsf{W}} = \mathcal{L}(\mathcal{H})$?

NOTE. An affirmative answer of TAP implies that every nonscalar operator $T \in \mathcal{L}(\mathcal{H})$ have a nontrivial hyperinvariant subspace (n.h.s.).

Burnside's Th (Finite dimensional case). If dim $\mathcal{H} < \infty$, then the only transitive subalgebra of $\mathcal{L}(\mathcal{H})$ is $\mathcal{L}(\mathcal{H})$.

■ Its direct proof can be found in 1953, Lectures in abstract algebra II, N. Jacobson.

'67 W. Arveson (First partial solutions of TAP)

• If A is a transitive subalgebra of $\mathcal{L}(\mathcal{H})$ and A contains a maximal abelian self-adjoint algebra, then $\mathbb{A}^{-W} = \mathcal{L}(\mathcal{H})$.

• If A is a transitive subalgebra of $\mathcal{L}(\mathcal{H})$ and A contains a unilateral shift of finite multiplicity, then $\mathbb{A}^{-W} = \mathcal{L}(\mathcal{H})$.

Several operator theorists have been studied the transitive algebra problem since 1960s, for example, C. Rickart, W. Arveson,
C. Foias, C. Pearcy, R. Douglas, H. Radjavi, P. Rosenthal, E. Nordgren,...etc.

■ For more imformation, see "Pearcy(1975), Some recent developements in operator theory" or "Radjavi-Rosenthal(1972), Invariant subspces".

A SHORT HISTORY FOR OUR STUDY

'73 V. Lomonosov Let \mathcal{X} be an infinite dimensional complex Banach space. Let \mathbb{A} be a transitive subalgebra of $\mathcal{L}(\mathcal{X})$ and let $0 \neq K \in \mathbb{K}$. Then there exists $A \in \mathbb{A}$ s.t. $1 \in \sigma_p(AK)$.

(Corollary) Let T be any nonscalar operator in $\mathcal{L}(\mathcal{X})$, and suppose that TK = KT for some $K \neq 0$ in K. Then T has a n.h.s.

(Corollary) If A is a transitive subalgebra of $\mathcal{L}(\mathcal{H})$ with a nonzero operator of finite rank, then $\mathbb{A}^{-W} = \mathcal{L}(\mathcal{H})$. ('72 B. Barnes)

'74 C. Pearcy If A is a transitive subalgebra of $\mathcal{L}(\mathcal{H})$ containing a non-zero compact operator, then $\mathbb{A}^{-W} = \mathcal{L}(\mathcal{H})$.

'98 Chevreau-Li-Pearcy They generalized some Lomonosov's theorems by using a "metric property":

Let \mathcal{X} be a Banach space and let $\mathcal{C} \subset \mathcal{L}(\mathcal{X})$ be a set. For $y, y_0 \in \mathcal{X}^*, \delta > 0, \alpha > 0$, we denote

 $B(y_0,\delta) := \{y \in \mathcal{X}^* : \|y - y_0\| < \delta\} \subset \mathcal{X}^*,$

 $\Gamma^*_{\alpha}(y) := \{ C^* y : C \in \operatorname{conh}(\mathcal{C}), \ \|C\|_e \le \alpha \} \subset \mathcal{X}^*.$

"Suppose $\exists y_0 \in \mathcal{X}^*$ with $||y_0|| = 2$ and $0 < \alpha_0 < \frac{1}{2}$ such that if $||y - y_0|| \le 1$, then $y_0 \in \Gamma^*_{\alpha_0}(y)^-$." Then $\exists C_0 \in \operatorname{conh}(\mathcal{C})$ s.t.

(a)
$$1 \in \sigma_p(C_0)$$
, $||C_0||_e \le \alpha_0$, and $||C_0^*||_e \le \alpha_0$,

(b) 1 is an isolated pt in $\sigma(C_0)$ and $\sigma(C_0^*)$,

(c) the eigen spaces in \mathcal{X} and \mathcal{X}^* corresponding to eigenvalue 1 of C_0 and C_0^* are finite dimensional.

'98 Chevreau-Li-Pearcy (A New Lomonosov Lemma)

Suppose $\mathbb{A} \subset \mathcal{L}(\mathcal{X})$ is transitive. Let $\{B_{\lambda}\}_{\lambda \in \Lambda} \subset \mathcal{L}(\mathcal{X})$ such that

$$||B_{\lambda}||_{e} \longrightarrow 0 \text{ and } B_{\lambda}^{**} \xrightarrow{\text{WOT}} B_{0}^{**} \neq 0.$$

Then $\exists \{A_j\}_{j=1}^n \subset \mathbb{A}$, $\{B_{\lambda_j}\}_{j=1}^n \subset \{B_\lambda\}_{\lambda \in \Lambda}$ with $C_0 = \sum_{i=1}^n A_i B_{\lambda_i}$

such that $1 \in \sigma_p(C_0)$ and $||C_0||_e < \frac{1}{2}$. Consequently the same conclusions about C_0 that are stated in the above result.

■ Their results generalized several earlier results which are related to the invariant subspace problem or transitive algebra problem.

MOTIVATION FOR OUR STUDY

In the summer of 2005, as a consequence of '98 Chevreau-Li-Pearcy's construction, the following variant of the Kadison's transitive algebra problem was considered then.

PROB('05 Foias-Pearcy). If there exists a transitive subalgebra \mathbb{A} of $\mathcal{L}(\mathcal{H})$ such that $\overline{\mathbb{A}}^{W} \neq \mathcal{L}(\mathcal{H})$, is it true that $|| || \cong || ||_{e}$ (equivalent) on \mathbb{A} ?

The existence of such transitive algebra \mathbb{A} with $\overline{\mathbb{A}}^{W} \neq \mathcal{L}(\mathcal{H})$ is not known yet. But Problem A is so interesting to us because of the following information.

- It is closely related to the existence of nontrivial invariant subspaces for operators of the form (subnormal)+(compact).
- It gives additional information about the existence of nontrivial invariant subspaces via a new metric property.

II. A NEW METRIC PROPERTY

Let A denotes a unital norm closed subalgebra of $\mathcal{L}(\mathcal{H})$.

For $y, y_0 \in \mathcal{H}, \delta > 0$, we denote

 $B(y_0, \delta) := \{ y \in \mathcal{H} : ||y - y_0|| < \delta \},\$

 $\Gamma_{\alpha}(y) := \{Ay : A \in \mathbb{A}, \|A\|_{e} \le \alpha\}.$

DEF. A subalgebra \mathbb{A} of $\mathcal{L}(\mathcal{H})$ has **Property** (*P*) if there exists $(y_0, \alpha, \delta, \delta_0)$ (implementing quadruple) such that, $y_0 \neq 0$ in \mathcal{H} ,

P1) $0 < \alpha < 1/2, \ 0 < \delta < ||y_0||, \text{ and } 0 < \delta_0 < (1 - 2\alpha)\delta,$

P2) if $||y_0 - y|| \leq \delta$, then $\Gamma_{\alpha}(y) \cap B(y_0, \delta_0)^- \neq \emptyset$, that is,

if $||y_0 - y|| \le \delta$, then $\exists A_y \in \mathbb{A}$ with $||A_y||_e \le \alpha$ s.t. $||A_yy - y_0|| \le \delta_0$,

 A_y moves y into the smaller cosed ball $B(y_0, \delta_0)^-$ centered at y_0 with radius $\delta_0 < \delta$.

PROPERTIES OF $\Gamma_{\alpha}(y)$

- **1.** $\Gamma_{\alpha}(y)$ is absolutely convex, as is $\Gamma_{\alpha}(y)^{-}$.
- **2.** If $(y_0, \alpha, \delta, \delta_0)$ implements (P) for \mathbb{A} , then $(ry_0, \alpha, r\delta, r\delta_0)$, r > 0, also implements (P) for \mathbb{A} .
- **3.** $\Gamma_{\alpha}(y) = \alpha \Gamma_1(y)$.
- **4.** $\lambda y \in \Gamma_{\alpha}(y)$, $\forall \lambda \in \mathbb{C}$ with $|\lambda| \leq \alpha$.

Invariant

5. $A(\Gamma_{\alpha}(y)) \subset \Gamma_{\alpha}(y), \forall A \in \mathbb{A} \text{ with } ||A||_{e} \leq 1.$

6. $\mathbb{A}(\vee\{\Gamma_{\alpha}(y)\}) \subset \vee\{\Gamma_{\alpha}(y)\}.$

Conditions for $\Gamma_{\alpha}(y)^{-} = \mathcal{H}$

7. If $\Gamma_{\alpha}(y)$ contains any real line, i.e., any set of the form $\{x + rz : r \in \mathbb{R}\}$ where $x \in \Gamma_{\alpha}(y)$ and $0 \neq z \in \mathcal{H}$, then

- $\mathbb{A}z \subset \mathsf{\Gamma}_{lpha}(y)$,
- $\Gamma_{\alpha}(y)$ contains the line $\mathbb{R}z$ through the origin,
- if z is a cyclic vector for A, then $\Gamma_{\alpha}(y)^{-} = \mathcal{H}$.
- 8. If $\Gamma_{\alpha}(y)^{-}$ contains some βy with $|\beta| > \alpha$, then
 - $\mathbb{A}y \subset \Gamma_{\alpha}(y)^{-}$.
 - if y is a cyclic vector for \mathbb{A} , $\Gamma_{\alpha}(y)^{-} = \mathcal{H}$.
- **9.** If $\mathbb{A} = \mathbb{A}^{-W}$, then $\exists \alpha > 0$ such that $\Gamma_{\alpha}(y) = \mathcal{H} \ (\forall y \neq 0) \iff \mathbb{A} = \mathcal{L}(\mathcal{H}).$

III. TRANSITIVITY AND (P)

TH A. Every \mathbb{A} with (*P*) contains a nonzero idempotent of finite rank.

Poof(Sketch). Let $(y_0, \alpha, \delta, \delta_0)$ be an implementing quadruple with respect to (P).

Step 1. Fix β with $\alpha < \beta < (\delta - \delta_0)/2\delta$. For every $y \in B(y_0, \delta)^-$,

 $\exists A_y \in \mathbb{A} \text{ s.t. } \|A_y\|_e \leq \alpha, \|A_yy - y_0\| \leq \delta_0.$

We have $A_y = T_y + K_y$ with $||T_y|| < \beta$, $K_y \in \mathbf{K}$.

Step 2. Put $\delta_1 := \delta - (\delta_0 + 2\beta\delta) > 0$. For every $y \in B(y_0, \delta)^-$,

$$\mathcal{V}_y(\delta_1) := \{ w \in B(y_0, \delta)^- : \| K_y(w - y) \| < \delta_1 \}$$
 (weakly open).

Then
$$B(y_0, \delta)^- \subset \cup_{y \in B(y_0, \delta)^-} \mathcal{V}_y(\delta_1)$$
. So $B(y_0, \delta)^- \subset \cup_{j=1}^n \mathcal{V}_{y_j}(\delta_1)$.

By the partition of unity, $\exists \{f_j\}_{j=1}^n$ weakly cont on $B(y_0, \delta)^-$ such that $\sum_{k=1}^n f_k(x) = 1$ and $\operatorname{supp} f_j \subset \mathcal{V}_{y_j}(\delta_1)$.

Step 3. Construct a map g defined on $B(y_0, \delta)^-$ by

$$g(w) := \sum_{j=1}^{n} f_j(w) A_{y_j} w, \ w \in B(y_0, \delta)^{-1}$$

By the construction of g, we see that $g(B(y_0, \delta)^-) \subset B(y_0, \delta)$.

By the Schauder-Tychonoff fixed point theorem, $\exists w_0 \in B(y_0, \delta)^-$ with $w_0 \neq 0$ such that $g(w_0) = w_0$. **Step 4.** Define an operator in $\mathcal{L}(\mathcal{H})$ by $A_0 = \sum_{j=1}^n f_j(w_0) A_{y_j}$.

Then $A_0 \in \mathbb{A}$, $||A_0||_e \le \alpha < 1/2$, and $A_0w_0 = w_0$.

Step 5. Thus $1 \in \sigma_p(A_0) \setminus \sigma_e(A_0)$, and 1 is an isolated eigenvalue of A_0 of finite multiplicity.

So the corresponding Riesz idempotent E_1 belongs to A.

COR B. If \mathbb{A} is a transitive algebra with (*P*), then $\overline{\mathbb{A}}^{W} = \mathcal{L}(\mathcal{H})$.

COR C. (a) If \mathbb{A} has (P), then \mathbb{A}' is intransitive. (b) If \mathbb{A} is transitive, then \mathbb{A}' does not have (P).

SOME EXAMPLES

EXA 1. Let A be the C^* -algebra acting on $L^2(\mathbb{T})$ generated by $\{M_{\varphi} : \varphi \in L^{\infty}(\mathbb{T})\}$ and $R_{\alpha} \in \mathcal{L}(L^2(\mathbb{T}))$ (a rotation) defined by $(R_{\alpha}f)(e^{i\theta}) = f(e^{i(\theta+\alpha)})$, where $\alpha \pmod{2\pi}$ is irrational. Then (a) $\overline{\mathbb{A}}^{\mathsf{W}} = \mathcal{L}(\mathcal{H})$, (b) A is transitive, (c) A does not have (P).

NOTE. The reverse implication of Corollary C is not always true.

EXA 2. Suppose dim $\mathcal{H} < \aleph_0$. Then $\mathcal{L}(\mathcal{H})$ has Property (*P*).

EXA 3. If $\mathbb{A} \subset \mathcal{L}(\mathcal{H})$ is transitive, then \mathbb{A} has $(P) \iff \mathbb{A}$ contains a nonzero idempotent E of finite rank.

EXA 4. If \mathbb{A} is abelian and transitive, then \mathbb{A} does not have (P).

IV. EQUIVALENCE OF TWO NORMS

NOTATION. For $T \in \mathcal{L}(\mathcal{H})$, we denote

$$\mathbb{A}_{T_p} = \{p(T) : p \in \mathbb{C} [z]\}^{-\parallel \parallel}, \ \mathbb{A}_{T_r} = \{r(T) : r \in \mathcal{R}(\sigma(T))\}^{-\parallel \parallel},$$

where $\mathbb{C}[z]$ is the set of complex polynomials and $\mathcal{R}(\sigma(T))$ is the set of rational functions with poles off $\sigma(T)$. Define \mathbb{A}_T as either \mathbb{A}_{T_r} or \mathbb{A}_{T_n} .

TH D. If $|| ||_e \cong || ||$ on \mathbb{A}_T and $\sigma_e(T)$ is a *K*-spectral set for $\pi(T)$ for some $K \ge 1$, then \mathbb{A}_T has a n.i.s.

COR E. Suppose $T \in \mathcal{L}(\mathcal{H})$ is invertible and $\sigma_e(T)$ is a *K*-spectral set for $\pi(T)$. If $|| ||_e \cong || ||$ on \mathbb{A}_{T_r} , then *T* and T^{-1} have a common n.i.s.

 $\sigma(T)$ is a *K*-spectral set for *T* if $\exists K \geq 1$ s.t. $\|r(T)\| \leq K \sup_{\delta \in \sigma(T)} |r(\zeta)|, \forall r \in \mathcal{R}(\sigma(T)),$

COR F. Let $T = S + K \in \mathcal{L}(\mathcal{H})$, where S is subnormal and $K \in \mathbf{K}$. If $\| \|_e \cong \| \|$ on \mathbb{A}_T , then \mathbb{A}_T is n.i.s.

TH G. Let $\mathbb{A} \subset \mathcal{L}(\mathcal{H})$ be as above and $\alpha > 0$ fixed. Then $\Gamma_{\alpha}(y)$ is bounded, $\forall y \in \mathcal{H} \iff || ||_{e} \cong || ||$ on \mathbb{A} .

TH H. Suppose $\mathbb{A} \subset \mathcal{L}(\mathcal{H})$, $\alpha > 0$, $\Gamma_{\alpha}(y)^{-}$ is bounded for some $y \in \mathcal{H}$, and $(\Gamma_{\alpha}(y)^{-})^{\circ} \neq \emptyset$. Then,

(a) $\| \|_e \cong \| \|$ on \mathbb{A} ,

(b) $\{\Gamma_{\alpha}(y)^{-}: y \in B(0,1)^{-}\}$ is uniformly bounded,

(c) y is a strictly cyclic vector for $\overline{\mathbb{A}}^{W}$, i.e., $\overline{\mathbb{A}}^{W}y = \mathcal{H}$,

(d) if $\mathbb{A} = \overline{\mathbb{A}}^{W}$, then \mathbb{A} has a n.i.s.

EXA 4. Let $D \in \mathcal{L}(\mathcal{H})$ be any Donoghue shift operator and let \mathbb{A}_D be the (unital, norm-closed) subalgebra of $\mathcal{L}(\mathcal{H})$ generated by D. Then

(a) $\Gamma_{\alpha}(e_0) = \{\sum_{n \in \mathbb{N}_0} \zeta_n e_n \in \mathcal{H} : |\zeta_0| \leq \alpha\}$ is a closed set, $\forall \alpha > 0$, (b) $\Gamma_{\alpha}(e_0)$ contains the ball $B(0, \alpha)^-$ and is unbounded. (Note that e_0 is a strictly cyclic vector for \mathbb{A}_D .)

Let $\{e_n\}_{n=0}^{\infty}$ be an orthonormal basis for \mathcal{H} , and let D be defined by $De_n = \alpha_n e_{n+1}$, n = 0, 1, ..., where $\{\alpha_n\}_{n=0}^{\infty}$ is a strictly decreasing sequence of positive numbers such that $\{\alpha_n\}_{n=0}^{\infty} \in l^p$ for $1 \le p < \infty$. Then D is called Donoghue shift operator.

EXA 5. If $V \in \mathcal{L}(L^2([0,1]))$ is the Volterra integral operator defined by $(Vf)(x) = \int_0^x f(t) dt$, $x \in [0,1]$, $f \in L^2([0,1])$. Then $\Gamma_{\alpha}(f_0)^- = \mathcal{H}$, $\forall \alpha > 0$. (Note that $f_0 \equiv 1$ is a cyclic vector for \mathbb{A}_V .)

A REMARK ON INVARIANT SUBSPACE PROBLEM

TH I (Lomonosov). Suppose $\mathbb{A} = \overline{\mathbb{A}}^{W} \neq \mathcal{L}(\mathcal{H})$ and \mathbb{A} contains $\{A_{\lambda}\}$ s.t. $A_{\lambda} \stackrel{WOT}{\rightarrow} A_{0} \neq 0$ and $\|A_{\lambda}\|_{e} \rightarrow 0$. Then \mathbb{A} has a n.i.s.

PROOF. Suppose that \mathbb{A} is transitive.

Claim. A has (P) with some $(y_0, \alpha, \delta, \delta_0)$.

By a well-known fact in the convexity, we can obtain a net $\{A_{\mu}\}$ s.t. $A_{\mu} \xrightarrow{\text{SOT}} A_0$ and $||A_{\mu}||_e \to 0$. Let $y_0 \in \mathcal{H}$ with $A_0 y_0 \neq 0$.

Choose
$$0 < \delta < \frac{\|A_0 y_0\|}{2\|A_0\|}$$
, $0 < \alpha < 1/2$, $0 < \delta_0 < (1 - 2\alpha)\delta$.

Let $y \in B(y_0, \delta)$. Observe $||A_0y|| > ||A_0y_0|| / 2 > 0$.

By transitivity, $\exists A_1 \in \mathbb{A}$ such that $||A_1(A_0y) - y_0|| < \delta_0$.

Then $||A_1A_{\mu_0}y - y_0|| < \delta_0$ and $||A_1A_{\mu_0}||_e < \alpha$ for suff far μ_0 .

So $\Gamma_{\alpha}(y) \cap B(y_0, \delta_0)^- \neq \emptyset$. Thus \mathbb{A} has (P).

By Cor B, $\mathbb{A}^{-W} = \mathcal{L}(\mathcal{H})$. Contradiction!.

(**Recall**) Suppose $C \subset \mathcal{L}(\mathcal{X})$ is a convex set and there exists $\{A_{\lambda}\}$ in C s.t. $A_{\lambda} \stackrel{\text{WOT}}{\to} A_0 \neq 0$ and $\|A_{\lambda}\|_e \to 0$, then there exists another net $\{A_{\mu}\}$ in C s.t. $A_{\mu} \stackrel{\text{WOT}}{\to} A_0 \neq 0$ and $\|A_{\mu}\|_e \to 0$.

BOUNDED $\Gamma_{\alpha}(y)$ 'S

(Recall) If $\emptyset \neq \mathcal{K} \subset \mathcal{H}$ absolutely convex and norm-closed in \mathcal{H} , then for every $x \in \mathcal{H}, \exists w_x$ such that $||x - w_x|| = \min \{||z - x|| : z \in \mathcal{K}\}$.

Define $\Phi_{\mathcal{K}} : \mathcal{H} \to \mathcal{H}$ by $\Phi_{\mathcal{K}}(x) = x - w_x$. Then

- $\|\Phi_{\mathcal{K}}(x_1) \Phi_{\mathcal{K}}(x_2)\| \le \|x_1 x_2\|, \quad \forall x_1, x_2 \in \mathcal{H},$ (Lipschitz)
- $\langle \Phi_{\mathcal{K}}(x_1) \Phi_{\mathcal{K}}(x_2), x_1 x_2 \rangle \ge 0, \quad \forall x_1, x_2 \in \mathcal{H}, \text{ (monotonicity)}$ (cf. '68 G. Minty)

PROP J. With \mathcal{K} and $\Phi_{\mathcal{K}}$ as above, if $\lim_{\|x\|\to\infty} \|x - w_x\| = \infty$, then $\Phi_{\mathcal{K}}(\mathcal{H}) = \mathcal{H}$.

Since $\Gamma_{\alpha}(y)^{-}$ is absolutely convex, we may consider $\mathcal{K} = \Gamma_{\alpha}(y)^{-}$.

REMARK. Let $\mathbb{A} \subset \mathcal{L}(\mathcal{H})$, $y \in \mathcal{H} \setminus (0)$ and $\alpha > 0$. Then $\Gamma_{\alpha}(y)^{-}$ is bounded $\iff \lim_{\|x\|\to\infty} \|x - w_x\| = \infty$.

PROP L. Let $\mathbb{A} \subset \mathcal{L}(\mathcal{H})$, $y \in \mathcal{H} \setminus (0)$ and $\alpha > 0$. Then TFAE (a) $\Gamma_{\alpha}(y)^{-}$ is bounded (b) there exists a hyperplane \mathcal{M} (i.e., a translation of a subspace of codimension 1) such that $\lim_{\substack{\|x\|\to\infty\\x\in\mathcal{M}}} \|x-w_x\| = \infty$. (In fact, $\mathcal{M} = 2y + \{y - w_y\}^{\perp}$.) In this case, $\Phi_{\mathcal{K}}(\mathcal{H}) = \mathcal{H}$.

CONNECTION: $||A_n||_e \rightarrow 0$ AND $A_n \rightarrow 0$ (WOT)

TH M. Let $\mathbb{A} \subset \mathcal{L}(\mathcal{H})$. Suppose there exist $y \in \mathcal{H} \setminus (0)$ and $\alpha > 0$ such that $\Gamma_{\alpha}(y)^{-}$ is bounded. Let $\{A_n\} \subset \mathbb{A}$ s.t. $\|A_n\|_e \to 0$. Then (a) if y is a cyclic vector for \mathbb{A} and $\sup_n \|A_n\| < \infty$, $A_n \stackrel{\text{WOT}}{\to} 0$, (b) if y is a strictly cyclic vector for \mathbb{A} , then $A_n \stackrel{\text{WOT}}{\to} 0$.

TH N. Let $\mathbb{A} \subset \mathcal{L}(\mathcal{H})$ be transitive. Suppose there exist $y \in \mathcal{H} \setminus (0)$ and $\alpha > 0$ such that $\Gamma_{\alpha}(y)^{-} \neq \mathcal{H}$. If $\{A_n\} \subset \mathbb{A}$ with $\|A_n\|_e \to 0$ and $\sup_n \|A_n\| < \infty$, then $A_n \stackrel{\text{WOT}}{\to} 0$.

REMARK. There are some results in our paper about the following:

- more properties of (P),
- Property (P) in the finite dimensional case.

This talk is based on the paper, Transitivity and structure of operator algebras with a metric property, Indagationes Mathematicae 25 (2014), 1-23 (with C. Foias, E. Ko, C. Pearcy).

