On Kadison's Transitive Algebra Problem: a metric property

Il Bong Jung
(Joint work with C. Foias, E. Ko and C. Pearcy)

2015 KOTAC, Daejeon, Korea, June 18-20, 2015.

CONTENTS

I. INTRODUCTION

II. A NEW METRIC PROPERTY
III. TRANSITIVITY AND PROPERTY (P)
IV. EQUIVALENCE OF TWO NORMS || || AND || $\|_{e}$

I. INTRODUCTION

\mathcal{H} : a separable, infinite dimensional, complex Hilbert space.
$\mathcal{L}(\mathcal{H})$: the algebra of all bounded linear operators on \mathcal{H}.
$\mathbf{K}=\mathbf{K}(\mathcal{H})$: the ideal of all compact operators on \mathcal{H}.
$\pi: \mathcal{L}(\mathcal{H}) \rightarrow \mathcal{L}(\mathcal{H}) / \mathbf{K}$ is the quotent (Calkin) map.
$\sigma(T)\left[\sigma_{e}(T)=\sigma(\pi(T))\right]$: the spectrum [essential spectrum] of T.
\mathbb{A} denotes a unital norm closed, subalgebra of $\mathcal{L}(\mathcal{H})$.
\mathbb{A}^{-W} denotes the closure of \mathbb{A} in WOT (equiv. SOT) in $\mathcal{L}(\mathcal{H})$.
\mathbb{A}^{\prime} denotes the commutant of \mathbb{A}.

DEF. A subalgebra $\mathbb{A} \subset \mathcal{L}(\mathcal{H})$ is transitive if the only invariant subspaces for \mathbb{A} are (0) and \mathcal{H}.

TRANSITIVE ALGEBRA PROBLEM ('55 R. Kadison)
Whether every transitive subalgebra \mathbb{A} of $\mathcal{L}(\mathcal{H})$ satisfies $\overline{\mathbb{A}}^{\mathrm{W}}=\mathcal{L}(\mathcal{H}) ?$

NOTE. An affirmative answer of TAP implies that every nonscalar operator $T \in \mathcal{L}(\mathcal{H})$ have a nontrivial hyperinvariant subspace (n.h.s.).

Burnside's Th (Finite dimensional case). If $\operatorname{dim\mathcal {H}}<\infty$, then the only transitive subalgebra of $\mathcal{L}(\mathcal{H})$ is $\mathcal{L}(\mathcal{H})$.
\square Its direct proof can be found in 1953, Lectures in abstract algebra II, N. Jacobson.

'67 W. Arveson (First partial solutions of TAP)

- If \mathbb{A} is a transitive subalgebra of $\mathcal{L}(\mathcal{H})$ and \mathbb{A} contains a maximal abelian self-adjoint algebra, then $\mathbb{A}^{-W}=\mathcal{L}(\mathcal{H})$.
- If \mathbb{A} is a transitive subalgebra of $\mathcal{L}(\mathcal{H})$ and \mathbb{A} contains a unilateral shift of finite multiplicity, then $\mathbb{A}^{-W}=\mathcal{L}(\mathcal{H})$.
- Several operator theorists have been studied the transitive algebra problem since 1960s, for example, C. Rickart, W. Arveson, C. Foias, C. Pearcy, R. Douglas, H. Radjavi, P. Rosenthal, E. Nordgren,...etc.

■ For more imformation, see "Pearcy(1975), Some recent developements in operator theory" or "Radjavi-Rosenthal(1972), Invariant subspces".

A SHORT HISTORY FOR OUR STUDY

'73 V. Lomonosov Let \mathcal{X} be an infinite dimensional complex Banach space. Let \mathbb{A} be a transitive subalgebra of $\mathcal{L}(\mathcal{X})$ and let $0 \neq K \in \mathbf{K}$. Then there exists $A \in \mathbb{A}$ s.t. $1 \in \sigma_{p}(A K)$.
(Corollary) Let T be any nonscalar operator in $\mathcal{L}(\mathcal{X})$, and suppose that $T K=K T$ for some $K \neq 0$ in \mathbf{K}. Then T has a n.h.s.
(Corollary) If \mathbb{A} is a transitive subalgebra of $\mathcal{L}(\mathcal{H})$ with a nonzero operator of finite rank, then $\mathbb{A}^{-W}=\mathcal{L}(\mathcal{H})$. ('72 B. Barnes)
'74 C. Pearcy If \mathbb{A} is a transitive subalgebra of $\mathcal{L}(\mathcal{H})$ containing a non-zero compact operator, then $\mathbb{A}^{-W}=\mathcal{L}(\mathcal{H})$.
'98 Chevreau-Li-Pearcy They generalized some Lomonosov's theorems by using a "metric property":

Let \mathcal{X} be a Banach space and let $\mathcal{C} \subset \mathcal{L}(\mathcal{X})$ be a set.
For $y, y_{0} \in \mathcal{X}^{*}, \delta>0, \alpha>0$, we denote

$$
B\left(y_{0}, \delta\right):=\left\{y \in \mathcal{X}^{*}:\left\|y-y_{0}\right\|<\delta\right\} \subset \mathcal{X}^{*},
$$

$$
\Gamma_{\alpha}^{*}(y):=\left\{C^{*} y: C \in \operatorname{conh}(\mathcal{C}),\|C\|_{e} \leq \alpha\right\} \subset \mathcal{X}^{*}
$$

"Suppose $\exists y_{0} \in \mathcal{X}^{*}$ with $\left\|y_{0}\right\|=2$ and $0<\alpha_{0}<\frac{1}{2}$ such that if $\left\|y-y_{0}\right\| \leq 1$, then $y_{0} \in \Gamma_{\alpha_{0}}^{*}(y)^{-}$." Then $\exists C_{0} \in \operatorname{conh}(\mathcal{C})$ s.t.
(a) $1 \in \sigma_{p}\left(C_{0}\right),\left\|C_{0}\right\|_{e} \leq \alpha_{0}$, and $\left\|C_{0}^{*}\right\|_{e} \leq \alpha_{0}$,
(b) 1 is an isolated pt in $\sigma\left(C_{0}\right)$ and $\sigma\left(C_{0}^{*}\right)$,
(c) the eigen spaces in \mathcal{X} and \mathcal{X}^{*} corresponding to eigenvalue 1 of C_{0} and C_{0}^{*} are finite dimensional.

'98 Chevreau-Li-Pearcy (A New Lomonosov Lemma)

Suppose $\mathbb{A} \subset \mathcal{L}(\mathcal{X})$ is transitive. Let $\left\{B_{\lambda}\right\}_{\lambda \in \Lambda} \subset \mathcal{L}(\mathcal{X})$ such that

$$
\left\|B_{\lambda}\right\|_{e} \longrightarrow 0 \text { and } B_{\lambda}^{* *} \xrightarrow{\mathrm{WOT}} B_{0}^{* *} \neq 0
$$

Then $\exists\left\{A_{j}\right\}_{j=1}^{n} \subset \mathbb{A},\left\{B_{\lambda_{j}}\right\}_{j=1}^{n} \subset\left\{B_{\lambda}\right\}_{\lambda \in \wedge}$ with $C_{0}=\sum_{i=1}^{n} A_{i} B_{\lambda_{i}}$
such that $1 \in \sigma_{p}\left(C_{0}\right)$ and $\left\|C_{0}\right\|_{e}<\frac{1}{2}$. Consequently the same conclusions about C_{0} that are stated in the above result.

- Their results generalized several earlier results which are related to the invariant subspace problem or transitive algebra problem.

MOTIVATION FOR OUR STUDY

In the summer of 2005, as a consequence of '98 Chevreau-Li-Pearcy's construction, the following variant of the Kadison's transitive algebra problem was considered then.

PROB('05 Foias-Pearcy). If there exists a transitive subalgebra \mathbb{A} of $\mathcal{L}(\mathcal{H})$ such that $\mathbb{\mathbb { A }}^{\mathrm{w}} \neq \mathcal{L}(\mathcal{H})$, is it true that $\|\|\cong\|\|_{e}$ (equivalent) on \mathbb{A} ?

The existence of such transitive algebra \mathbb{A} with $\overline{\mathbb{A}}^{\mathrm{W}} \neq \mathcal{L}(\mathcal{H})$ is not known yet. But Problem A is so interesting to us because of the following information.

- It is closely related to the existence of nontrivial invariant subspaces for operators of the form (subnormal)+(compact).
- It gives additional information about the existence of nontrivial invariant subspaces via a new metric property.

II. A NEW METRIC PROPERTY

Let \mathbb{A} denotes a unital norm closed subalgebra of $\mathcal{L}(\mathcal{H})$.
For $y, y_{0} \in \mathcal{H}, \delta>0$, we denote

$$
\begin{aligned}
& B\left(y_{0}, \delta\right):=\left\{y \in \mathcal{H}:\left\|y-y_{0}\right\|<\delta\right\}, \\
& \Gamma_{\alpha}(y):=\left\{A y: A \in \mathbb{A},\|A\|_{e} \leq \alpha\right\} .
\end{aligned}
$$

DEF. A subalgebra \mathbb{A} of $\mathcal{L}(\mathcal{H})$ has Property (P) if there exists ($y_{0}, \alpha, \delta, \delta_{0}$) (implementing quadruple) such that, $y_{0} \neq 0$ in \mathcal{H},

P1) $0<\alpha<1 / 2,0<\delta<\left\|y_{0}\right\|$, and $0<\delta_{0}<(1-2 \alpha) \delta$,
P2) if $\left\|y_{0}-y\right\| \leq \delta$, then $\Gamma_{\alpha}(y) \cap B\left(y_{0}, \delta_{0}\right)^{-} \neq \varnothing$, that is, if $\left\|y_{0}-y\right\| \leq \delta$, then $\exists A_{y} \in \mathbb{A}$ with $\left\|A_{y}\right\|_{e} \leq \alpha$ s.t. $\left\|A_{y} y-y_{0}\right\| \leq \delta_{0}$,

A_{y} moves y into the smaller cosed ball $B\left(y_{0}, \delta_{0}\right)^{-}$centered at y_{0} with radius $\delta_{0}<\delta$.

PROPERTIES OF $\Gamma_{\alpha}(y)$

1. $\Gamma_{\alpha}(y)$ is absolutely convex, as is $\Gamma_{\alpha}(y)^{-}$.
2. If ($y_{0}, \alpha, \delta, \delta_{0}$) implements (P) for \mathbb{A}, then ($r y_{0}, \alpha, r \delta, r \delta_{0}$), $r>0$, also implements (P) for \mathbb{A}.
3. $\Gamma_{\alpha}(y)=\alpha \Gamma_{1}(y)$.
4. $\lambda y \in \Gamma_{\alpha}(y), \forall \lambda \in \mathbb{C}$ with $|\lambda| \leq \alpha$.

■ Invariant
5. $A\left(\Gamma_{\alpha}(y)\right) \subset \Gamma_{\alpha}(y), \forall A \in \mathbb{A}$ with $\|A\|_{e} \leq 1$.
6. $\mathbb{A}\left(\vee\left\{\Gamma_{\alpha}(y)\right\}\right) \subset \vee\left\{\Gamma_{\alpha}(y)\right\}$.

■ Conditions for $\Gamma_{\alpha}(y)^{-}=\mathcal{H}$
7. If $\Gamma_{\alpha}(y)$ contains any real line, i.e., any set of the form
$\{x+r z: r \in \mathbb{R}\}$ where $x \in \Gamma_{\alpha}(y)$ and $0 \neq z \in \mathcal{H}$, then

- $\mathbb{A} z \subset \Gamma_{\alpha}(y)$,
- $\Gamma_{\alpha}(y)$ contains the line $\mathbb{R} z$ through the origin,
- if z is a cyclic vector for \mathbb{A}, then $\Gamma_{\alpha}(y)^{-}=\mathcal{H}$.

8. If $\Gamma_{\alpha}(y)^{-}$contains some βy with $|\beta|>\alpha$, then

- $\mathbb{A} y \subset \Gamma_{\alpha}(y)^{-}$.
- if y is a cyclic vector for $\mathbb{A}, \Gamma_{\alpha}(y)^{-}=\mathcal{H}$.

9. If $\mathbb{A}=\mathbb{A}^{-W}$, then
$\exists \alpha>0$ such that $\Gamma_{\alpha}(y)=\mathcal{H}(\forall y \neq 0) \Longleftrightarrow \mathbb{A}=\mathcal{L}(\mathcal{H})$.

III. TRANSITIVITY AND (P)

TH A. Every \mathbb{A} with (P) contains a nonzero idempotent of finite rank.

Poof(Sketch). Let ($y_{0}, \alpha, \delta, \delta_{0}$) be an implementing quadruple with respect to (P).

Step 1. Fix β with $\alpha<\beta<\left(\delta-\delta_{0}\right) / 2 \delta$. For every $y \in B\left(y_{0}, \delta\right)^{-}$,
$\exists A_{y} \in \mathbb{A}$ s.t. $\left\|A_{y}\right\|_{e} \leq \alpha,\left\|A_{y} y-y_{0}\right\| \leq \delta_{0}$.
We have $A_{y}=T_{y}+K_{y}$ with $\left\|T_{y}\right\|<\beta, K_{y} \in \mathbf{K}$.
Step 2. Put $\delta_{1}:=\delta-\left(\delta_{0}+2 \beta \delta\right)>0$. For every $y \in B\left(y_{0}, \delta\right)^{-}$,
$\mathcal{V}_{y}\left(\delta_{1}\right):=\left\{w \in B\left(y_{0}, \delta\right)^{-}:\left\|K_{y}(w-y)\right\|<\delta_{1}\right\}$ (weakly open).
Then $B\left(y_{0}, \delta\right)^{-} \subset \cup_{y \in B\left(y_{0}, \delta\right)^{-}} \mathcal{V}_{y}\left(\delta_{1}\right)$. So $B\left(y_{0}, \delta\right)^{-} \subset \cup_{j=1}^{n} \mathcal{V}_{y_{j}}\left(\delta_{1}\right)$.
By the partition of unity, $\exists\left\{f_{j}\right\}_{j=1}^{n}$ weakly cont on $B\left(y_{0}, \delta\right)^{-}$such that $\sum_{k=1}^{n} f_{k}(x)=1$ and $\operatorname{supp} f_{j} \subset \mathcal{V}_{y_{j}}\left(\delta_{1}\right)$.

Step 3. Construct a map g defined on $B\left(y_{0}, \delta\right)^{-}$by
$g(w):=\sum_{j=1}^{n} f_{j}(w) A_{y_{j}} w, \quad w \in B\left(y_{0}, \delta\right)^{-}$.
By the construction of g, we see that $g\left(B\left(y_{0}, \delta\right)^{-}\right) \subset B\left(y_{0}, \delta\right)$.

By the Schauder-Tychonoff fixed point theorem,
$\exists w_{0} \in B\left(y_{0}, \delta\right)^{-}$with $w_{0} \neq 0$ such that $g\left(w_{0}\right)=w_{0}$.

Step 4. Define an operator in $\mathcal{L}(\mathcal{H})$ by $A_{0}=\sum_{j=1}^{n} f_{j}\left(w_{0}\right) A_{y_{j}}$.
Then $A_{0} \in \mathbb{A},\left\|A_{0}\right\|_{e} \leq \alpha<1 / 2$, and $A_{0} w_{0}=w_{0}$.
Step 5. Thus $1 \in \sigma_{p}\left(A_{0}\right) \backslash \sigma_{e}\left(A_{0}\right)$, and 1 is an isolated eigenvalue of A_{0} of finite multiplicity.

So the corresponding Riesz idempotent E_{1} belongs to \mathbb{A}.
$\operatorname{COR} B$. If \mathbb{A} is a transitive algebra with (P), then $\overline{\mathbb{A}}^{\mathrm{w}}=\mathcal{L}(\mathcal{H})$.
COR C. (a) If \mathbb{A} has (P), then \mathbb{A}^{\prime} is intransitive.
(b) If \mathbb{A} is transitive, then \mathbb{A}^{\prime} does not have (P).

SOME EXAMPLES

EXA 1. Let \mathbb{A} be the C^{*}-algebra acting on $L^{2}(\mathbb{T})$ generated by $\left\{M_{\varphi}: \varphi \in L^{\infty}(\mathbb{T})\right\}$ and $R_{\alpha} \in \mathcal{L}\left(L^{2}(\mathbb{T})\right)$ (a rotation) defined by $\left(R_{\alpha} f\right)\left(e^{i \theta}\right)=f\left(e^{i(\theta+\alpha)}\right)$, where $\alpha(\bmod 2 \pi)$ is irrational. Then
(a) $\overline{\mathbb{A}}^{\mathrm{w}}=\mathcal{L}(\mathcal{H})$,
(b) \mathbb{A} is transitive,
(c) \mathbb{A} does not have (P).

NOTE. The reverse implication of Corollary C is not always true.

EXA 2. Supose $\operatorname{dim} \mathcal{H}<\aleph_{0}$. Then $\mathcal{L}(\mathcal{H})$ has Property (P).
EXA 3. If $\mathbb{A} \subset \mathcal{L}(\mathcal{H})$ is transitive, then
\mathbb{A} has $(P) \Longleftrightarrow \mathbb{A}$ contains a nonzero idempotent E of finite rank.
EXA 4. If \mathbb{A} is abelian and transitive, then \mathbb{A} does not have (P).

IV. EQUIVALENCE OF TWO NORMS

NOTATION. For $T \in \mathcal{L}(\mathcal{H})$, we denote
$\mathbb{A}_{T_{p}}=\{p(T): p \in \mathbb{C}[z]\}^{-\| \|} \|, \mathbb{A}_{T_{r}}=\{r(T): r \in \mathcal{R}(\sigma(T))\}^{-\| \|}$, where $\mathbb{C}[z]$ is the set of complex polynomials and $\mathcal{R}(\sigma(T))$ is the set of rational functions with poles off $\sigma(T)$.
Define \mathbb{A}_{T} as either $\mathbb{A}_{T_{r}}$ or $\mathbb{A}_{T_{p}}$.
TH D. If $\|\|e \cong\|\|$ on \mathbb{A}_{T} and $\sigma_{e}(T)$ is a K-spectral set for $\pi(T)$ for some $K \geq 1$, then \mathbb{A}_{T} has a n.i.s.

COR E. Suppose $T \in \mathcal{L}(\mathcal{H})$ is invertible and $\sigma_{e}(T)$ is a K-spectral set for $\pi(T)$. If $\left\|\left\|_{e} \cong\right\|\right\|$ on $\mathbb{A}_{T_{r}}$, then T and T^{-1} have a common n.i.s.
$\sigma(T)$ is a K-spectral set for T if $\exists K \geq 1$ s.t. $\|r(T)\| \leq K \sup _{\delta \in \sigma(T)}|r(\zeta)|, \forall r \in \mathcal{R}(\sigma(T))$,

COR F. Let $T=S+K \in \mathcal{L}(\mathcal{H})$, where S is subnormal and $K \in \mathbf{K}$. If $\left\|\left\|_{e} \cong\right\|\right\|$ on \mathbb{A}_{T}, then \mathbb{A}_{T} is n.i.s.

TH G. Let $\mathbb{A} \subset \mathcal{L}(\mathcal{H})$ be as above and $\alpha>0$ fixed. Then $\Gamma_{\alpha}(y)$ is bounded, $\forall y \in \mathcal{H} \Longleftrightarrow\left\|\left\|_{e} \cong\right\|\right\|$ on \mathbb{A}.

TH H. Suppose $\mathbb{A} \subset \mathcal{L}(\mathcal{H}), \alpha>0, \Gamma_{\alpha}(y)^{-}$is bounded for some $y \in \mathcal{H}$, and $\left(\Gamma_{\alpha}(y)^{-}\right)^{\circ} \neq \emptyset$. Then,
(a) $\left\|\left\|_{e} \cong\right\|\right\|$ on \mathbb{A},
(b) $\left\{\Gamma_{\alpha}(y)^{-}: y \in B(0,1)^{-}\right\}$is uniformly bounded,
(c) y is a strictly cyclic vector for $\overline{\mathbb{A}}^{\mathrm{w}}$, i.e., $\overline{\mathbb{A}}^{\mathrm{w}} y=\mathcal{H}$,
(d) if $\mathbb{A}=\mathbb{A}^{w}$, then \mathbb{A} has a n.i.s.

EXA 4. Let $D \in \mathcal{L}(\mathcal{H})$ be any Donoghue shift operator and let \mathbb{A}_{D} be the (unital, norm-closed) subalgebra of $\mathcal{L}(\mathcal{H})$ generated by D. Then
(a) $\Gamma_{\alpha}\left(e_{0}\right)=\left\{\sum_{n \in \mathbb{N}_{0}} \zeta_{n} e_{n} \in \mathcal{H}:\left|\zeta_{0}\right| \leq \alpha\right\}$ is a closed set, $\forall \alpha>0$,
(b) $\Gamma_{\alpha}\left(e_{0}\right)$ contains the ball $B(0, \alpha)^{-}$and is unbounded.
(Note that e_{0} is a strictly cyclic vector for \mathbb{A}_{D}.)

Let $\left\{e_{n}\right\}_{n=0}^{\infty}$ be an orthonormal basis for \mathcal{H}, and let D be defined by $D e_{n}=\alpha_{n} e_{n+1}$, $n=0,1, \ldots$, where $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ is a strictly decreasing sequence of positive numbers such that $\left\{\alpha_{n}\right\}_{n=0}^{\infty} \in l^{p}$ for $1 \leq p<\infty$. Then D is called Donoghue shift operator.

EXA 5. If $V \in \mathcal{L}\left(L^{2}([0,1])\right)$ is the Volterra integral operator defined by $(V f)(x)=\int_{0}^{x} f(t) d t, x \in[0,1], f \in L^{2}([0,1])$.
Then $\Gamma_{\alpha}\left(f_{0}\right)^{-}=\mathcal{H}, \forall \alpha>0$.
(Note that $f_{0} \equiv 1$ is a cyclic vector for \mathbb{A}_{V}.)

A REMARK ON INVARIANT SUBSPACE PROBLEM

TH I (Lomonosov). Suppose $\mathbb{A}=\overline{\mathbb{A}}^{\mathrm{W}} \neq \mathcal{L}(\mathcal{H})$ and \mathbb{A} contains $\left\{A_{\lambda}\right\}$ s.t. $A_{\lambda} \xrightarrow{\mathrm{WOT}} A_{0} \neq 0$ and $\left\|A_{\lambda}\right\|_{e} \rightarrow 0$. Then \mathbb{A} has a n.i.s.

PROOF. Suppose that \mathbb{A} is transitive.

Claim. \mathbb{A} has (P) with some $\left(y_{0}, \alpha, \delta, \delta_{0}\right)$.

By a well-known fact in the convexity, we can obtain a net $\left\{A_{\mu}\right\}$ s.t. $A_{\mu} \xrightarrow{\mathrm{SOT}} A_{0}$ and $\left\|A_{\mu}\right\|_{e} \rightarrow 0$. Let $y_{0} \in \mathcal{H}$ with $A_{0} y_{0} \neq 0$.

Choose $0<\delta<\frac{\left\|A_{0} y_{0}\right\|}{2\left\|A_{0}\right\|}, 0<\alpha<1 / 2,0<\delta_{0}<(1-2 \alpha) \delta$.
Let $y \in B\left(y_{0}, \delta\right)$. Observe $\left\|A_{0} y\right\|>\left\|A_{0} y_{0}\right\| / 2>0$.

By transitivity, $\exists A_{1} \in \mathbb{A}$ such that $\left\|A_{1}\left(A_{0} y\right)-y_{0}\right\|<\delta_{0}$.
Then $\left\|A_{1} A_{\mu_{0}} y-y_{0}\right\|<\delta_{0}$ and $\left\|A_{1} A_{\mu_{0}}\right\|_{e}<\alpha$ for suff far μ_{0}.
So $\Gamma_{\alpha}(y) \cap B\left(y_{0}, \delta_{0}\right)^{-} \neq \emptyset$. Thus \mathbb{A} has (P).
By Cor $\mathrm{B}, \mathbb{A}^{-W}=\mathcal{L}(\mathcal{H})$. Contradiction!.
(Recall) Suppose $\mathcal{C} \subset \mathcal{L}(\mathcal{X})$ is a convex set and there exists $\left\{A_{\lambda}\right\}$ in \mathcal{C} s.t. $A_{\lambda} \xrightarrow{\text { WOT }} A_{0} \neq 0$ and $\left\|A_{\lambda}\right\|_{e} \rightarrow 0$, then there exists another net $\left\{A_{\mu}\right\}$ in \mathcal{C} s.t. $A_{\mu} \xrightarrow{\mathrm{WO}^{\top}} A_{0} \neq 0$ and $\left\|A_{\mu}\right\|_{e} \rightarrow 0$.

BOUNDED $\Gamma_{\alpha}(y)$ 'S
(Recall) If $\varnothing \neq \mathcal{K} \subset \mathcal{H}$ absolutely convex and norm-closed in \mathcal{H}, then for every $x \in \mathcal{H}, \exists w_{x}$ such that $\left\|x-w_{x}\right\|=\min \{\|z-x\|: z \in \mathcal{K}\}$.

Define $\Phi_{\mathcal{K}}: \mathcal{H} \rightarrow \mathcal{H}$ by $\Phi_{\mathcal{K}}(x)=x-w_{x}$. Then

- $\left\|\Phi_{\mathcal{K}}\left(x_{1}\right)-\Phi_{\mathcal{K}}\left(x_{2}\right)\right\| \leq\left\|x_{1}-x_{2}\right\|, \quad \forall x_{1}, x_{2} \in \mathcal{H}$, (Lipschitz)
- $\left\langle\Phi_{\mathcal{K}}\left(x_{1}\right)-\Phi_{\mathcal{K}}\left(x_{2}\right), x_{1}-x_{2}\right\rangle \geq 0, \quad \forall x_{1}, x_{2} \in \mathcal{H}$, (monotonicity) (cf. '68 G. Minty)

PROP J. With \mathcal{K} and $\Phi_{\mathcal{K}}$ as above, if $\lim _{\|x\| \rightarrow \infty}\left\|x-w_{x}\right\|=\infty$, then $\Phi_{\mathcal{K}}(\mathcal{H})=\mathcal{H}$.

Since $\Gamma_{\alpha}(y)^{-}$is absolutely convex, we may consider $\mathcal{K}=\Gamma_{\alpha}(y)^{-}$.
REMARK. Let $\mathbb{A} \subset \mathcal{L}(\mathcal{H}), y \in \mathcal{H} \backslash(0)$ and $\alpha>0$. Then
$\Gamma_{\alpha}(y)^{-}$is bounded $\Longleftrightarrow \lim _{\|x\| \rightarrow \infty}\left\|x-w_{x}\right\|=\infty$.
PROP L. Let $\mathbb{A} \subset \mathcal{L}(\mathcal{H}), y \in \mathcal{H} \backslash(0)$ and $\alpha>0$. Then TFAE
(a) $\Gamma_{\alpha}(y)^{-}$is bounded
(b) there exists a hyperplane \mathcal{M} (i.e., a translation of a subspace of codimension 1) such that $\lim _{\substack{\|x\| \rightarrow \infty \\ x \in \mathcal{M}}}\left\|x-w_{x}\right\|=\infty$. $x \in \mathcal{M}$ (In fact, $\mathcal{M}=2 y+\left\{y-w_{y}\right\}^{\perp}$.)
In this case, $\Phi_{\mathcal{K}}(\mathcal{H})=\mathcal{H}$.

CONNECTION: $\left\|A_{n}\right\|_{e} \rightarrow 0$ AND $A_{n} \rightarrow 0$ (WOT)

TH M. Let $\mathbb{A} \subset \mathcal{L}(\mathcal{H})$. Suppose there exist $y \in \mathcal{H} \backslash(0)$ and $\alpha>0$ such that $\Gamma_{\alpha}(y)^{-}$is bounded. Let $\left\{A_{n}\right\} \subset \mathbb{A}$ s.t. $\left\|A_{n}\right\|_{e} \rightarrow 0$. Then
(a) if y is a cyclic vector for \mathbb{A} and $\sup _{n}\left\|A_{n}\right\|<\infty, A_{n} \xrightarrow{\text { WOT }} 0$, (b) if y is a strictly cyclic vector for \mathbb{A}, then $A_{n} \xrightarrow{W^{\top}}{ }^{\top} 0$.

TH N. Let $\mathbb{A} \subset \mathcal{L}(\mathcal{H})$ be transitive. Suppose there exist $y \in$ $\mathcal{H} \backslash(0)$ and $\alpha>0$ such that $\Gamma_{\alpha}(y)^{-} \neq \mathcal{H}$. If $\left\{A_{n}\right\} \subset \mathbb{A}$ with $\left\|A_{n}\right\|_{e} \rightarrow 0$ and $\sup _{n}\left\|A_{n}\right\|<\infty$, then $A_{n} \xrightarrow{\text { WOT }} 0$.

REMARK. There are some results in our paper about the following:

- more properties of (P),
- Property (P) in the finite dimensional case.

This talk is based on the paper, Transitivity and structure of operator algebras with a metric property, Indagationes Mathematicae 25 (2014), 1-23 (with C. Foias, E. Ko, C. Pearcy).
Thank You

