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Operator Systems

Operator System: subspace S ¢ B(H), suchthat1 € S, S*=S.

Operators systems are considered as a category with unital
completely positive maps (ucp) as morphisms.

Isomorphisms are unital completely isometric maps.
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C*-algebras generated by operator systems
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Then C*(Sy) = C2, C*(S;) = C3. And Sy ~ Su:

Argerami (U of R)

Operator Systems

100
010
0 0 1

10
L lo 2
00

KOTAC 2015

3/21



C*-algebras generated by operator systems
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C*-algebras generated by operator systems (cont.)

An operator system can be embedded in many different C*-algebras.
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C*-algebras generated by operator systems (cont.)

An operator system can be embedded in many different C*-algebras.
A C*-envelope for S is (A, ), where Ais a C*-algebra, 1 : S — Ais
completely isometric, and for any completely isometric v
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C*-algebras generated by operator systems (cont.)

An operator system can be embedded in many different C*-algebras.
A C*-envelope for S is (A, ), where Ais a C*-algebra, 1 : S — Ais
completely isometric, and for any completely isometric v
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C*-algebras generated by operator systems (cont.)

An operator system can be embedded in many different C*-algebras.
A C*-envelope for S is (A, ), where Ais a C*-algebra, 1 : S — Ais
completely isometric, and for any completely isometric v

S v . C*(q,ZIJ(S))

\ | w epimorphism
Y

A

As any two C*-envelopes of S are (S-preserving) isomorphic, we write
C:(S).
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C*-algebras generated by operator systems (cont.)

An operator system can be embedded in many different C*-algebras.
A C*-envelope for S is (A, ), where Ais a C*-algebra, 1 : S — Ais
completely isometric, and for any completely isometric v

S—" - C((5))

\ | w epimorphism
Y

A

As any two C*-envelopes of S are (S-preserving) isomorphic, we write
C:(S). We see it as the “smallest C*-algebra generated by S”.
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C*-algebras generated by operator systems (cont.)

An operator system can be embedded in many different C*-algebras.
A C*-envelope for S is (A, ), where Ais a C*-algebra, 1 : S — Ais
completely isometric, and for any completely isometric v

S v . C*(q,ZIJ(S))
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\

A

As any two C*-envelopes of S are (S-preserving) isomorphic, we write
C:(S). We see it as the “smallest C*-algebra generated by S”.

Existence: Hamana (1979); Dritschel-McCullough (2005),
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C*-algebras generated by operator systems (cont.)

An operator system can be embedded in many different C*-algebras.

A C*-envelope for S is (A, ), where Ais a C*-algebra, 1 : S — Ais
completely isometric, and for any completely isometric v

S v . C*(q,ZIJ(S))

\ | 7w epimorphism
‘ Y

A

As any two C*-envelopes of S are (S-preserving) isomorphic, we write

C:(S). We see it as the “smallest C*-algebra generated by S”.

Existence: Hamana (1979); Dritschel-McCullough (2005), Arveson
(2008, for separable operator systems),
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C*-algebras generated by operator systems (cont.)

An operator system can be embedded in many different C*-algebras.

A C*-envelope for S is (A, ), where Ais a C*-algebra, 1 : S — Ais
completely isometric, and for any completely isometric v

S v . C*(q,ZIJ(S))

\ | 7w epimorphism
\

A

As any two C*-envelopes of S are (S-preserving) isomorphic, we write

C:(S). We see it as the “smallest C*-algebra generated by S”.

Existence: Hamana (1979); Dritschel-McCullough (2005), Arveson
(2008, for separable operator systems), Davidson-Kennedy (2013).
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Arveson’s Choquet Theory (continued)

Arveson calls an operator system reduced if it is sitting in its
C*-envelope (equivalently, if the only boundary ideal is 0).
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Arveson calls an operator system reduced if it is sitting in its
C*-envelope (equivalently, if the only boundary ideal is 0).

Boundary Representation:
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Arveson’s Choquet Theory (continued)

Arveson calls an operator system reduced if it is sitting in its
C*-envelope (equivalently, if the only boundary ideal is 0).

Boundary Representation: p : C*(S) — B(#,), irreducible, and such
that the ucp extension 1 is unique:

Cc*(S)
LT T ~gup=p

~
EN

S

B(H,)

pls
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Arveson’s Choquet Theory (continued)

Arveson calls an operator system reduced if it is sitting in its
C*-envelope (equivalently, if the only boundary ideal is 0).

Boundary Representation: p : C*(S) — B(#,), irreducible, and such
that the ucp extension 1 is unique:

Cc*(S)
LT T ~gup=p

~
EN

S

B(H,)

pls

Arveson’s idea:

c:(S)c*(< P p)(S)).
p boundary
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Examples. Let T= [0 2 0|, S =span{/, T}.
0 0 3
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0 0 3
Irreps: w1, wo, 73.
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Examples of Bou?dgtr% reps

Examples. Let T= [0 2 0|, S =span{/, T}. C*(S) = C3.
0 0 3
Irreps: w1, wo, 73.

Claim: 7, is not boundary.
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Examples of Boundary reps
100

Examples. Let T= [0 2 0|, S =span{/, T}. C*(S) = C3.
0 03

Irreps: w1, wo, 73.

a 0o 0
Claim: 7, is not boundary. We have ( {0 b 0] ) =b.

0 0 ¢
a oo
Letgo [ [0 b 0O =%°.
0 0 ¢

Then ¢» # m on C*(S), but they agree on S:
7T2(I) =1= ¢2(/), and 7T2(T) =2 = d)g(T)
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Examples of Bou?dgr% reps

Examples. Let T= [0 2 0|, S =span{/, T}. C*(S) = C3.
0 0 3
Irreps: w1, wo, 73.

a oo
Claim: 7, is not boundary. We have ( {0 b 0] ) =b.

0 0 ¢
a oo
Letgo [ [0 b 0O :%.
0 0 ¢

Then ¢» # m on C*(S), but they agree on S:
mo(l) =1 =¢a(l), and mo(T) =2 = (7).
This forces w1, w3 to be boundary by dimension considerations, and
Ci(S) = C*((m1 ® m3)(S)) = C*((my ® w3)(T)) = C2.
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We focus on operator systems St = span{/, T, T*} C B(H).
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Singly Generated Operator Systems
We focus on operator systems St = span{/, T, T*} C B(H).
We have either
@ dmSr=1(f T =1,
e dmSr=2(f T=T*T#I),
@ dimSr =38.
Can we classify these operator systems? In the first two cases, yes.
Theorem (A.-Farenick 2013)
If T # | is selfadjoint, then Cz(St) = C?. J
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Singly Generated Operator Systems
We focus on operator systems St = span{/, T, T*} C B(H).
We have either
e dmSr=1(f T =),
e dimSr=2({fT=T*T=#I,
@ dimSr =38.
Can we classify these operator systems? In the first two cases, yes.

Theorem (A.-Farenick 2013)
If T +# | is selfadjoint, then C*(St) = C2.

Corollary

Any two 2-dimensional operator systems are completely order
isomorphic.

v
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Are there that many 3-dimensional operator systems?

How many 3-dimensional vector spaces? One;
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Are there that many 3-dimensional operator systems?

How many 3-dimensional vector spaces? One;
How many 3-dimensional C*-algebras? One.
For t € (0,1], let

10

Wi = |:t 0:| , Si= Span{la Wf: Wt*}

For all t, C*(W;) = M,(C). Simple, so C;(S;) = Ma(C).
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Wf:[t 0

:| ) St= span {Ia Wf: Wt*}
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Are there that many 3-dimensional operator systems?

How many 3-dimensional vector spaces? One;
How many 3-dimensional C*-algebras? One.
For t € (0,1], let

10

Wi = |:t 0:| , Si= Span{la Wf: W[*}

For all t, C*(W;) = M,(C). Simple, so C;(S;) = Ma(C).

Proposition (A., 2015)
St~ Ssisandonly ift = s.

So {St}te(0,1] are uncountably many reduced non-isomorphic
3-dimensional operator systems in M(C).
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Isomorphisms of small operator systems
For A € C, let

010
Ta= [0 0 0|, Sy=span{l, Ty, T;}.
0 0 A
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Isomorphisms of small operator systems

For A € C, let

010
Ta= [0 0 0|, Sy=span{l, Ty, T;}.
0 0 A

For A\, € C, whenis Sy ~§,,?

Proposition (A., 2015)
TFSAE:

Q S ~S,;

Q either

Q |\ <1/2and|u| <1/2, in which case C;(Sy) = Ci(S,) = Mx(C);
@ |\ > 1/2 and |u| = ||, in which case
C2(8)) = Ci(Sy) = My(C) & C.
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The meaning of classifying.

“Classification”: an explicit way to assign complete invariants to the
objects of your class.
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The meaning of classifying.

“Classification”: an explicit way to assign complete invariants to the
objects of your class.

Examples of Classification:
@ Finite-dimensional vector spaces

{f.d. vector spaces} — {f.d. vector spaces}/ ~ = N.
@ Finitely generated abelian groups. Any such group is isomorphic
to Z" & Zy, @ - - - ® Zg, with ky|ko| - - - |kr. So

{f.9.a. groups} — {f.g.a. groups}/ ~ = {(n,ky,... k) : --- }.
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The meaning of classifying.

“Classification”: an explicit way to assign complete invariants to the
objects of your class.

Examples of Classification:
@ Finite-dimensional vector spaces

{f.d. vector spaces} — {f.d. vector spaces}/ ~ = N.

@ Finitely generated abelian groups. Any such group is isomorphic
to Z" & Zy, @ - - - ® Zg, with ky|ko| - - - |kr. So

{f.9.a. groups} — {f.g.a. groups}/ ~ = {(n,ky,... k) : --- }.

© UHF C*-algebras: | J, My, (C). = sup. number (nq|ny|...).
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Borel reducibility, or how to measure classifications

If E is an eq. rel. on a standard Borel space X, and F on Y, we say
that E is Borel-reducible to F if there exists f : X — Y, Borel-
measurable, such that

xEy < f(x)Ff(y).
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Notation: E <g F (classifying E is no harder than classifying F).

The above are examples of smooth equivalence relations: they are
reducible to equality on a Polish space (equivalently, equality on R).

It follows from ideas by Mackey, Glimm, Effros that the class of
non-smooth Borel equivalence relations has an initial object, Eg.
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Borel reducibility, or how to measure classifications

If E is an eq. rel. on a standard Borel space X, and F on Y, we say
that E is Borel-reducible to F if there exists f : X — Y, Borel-
measurable, such that

XEy < f(x)Ff(y).

Notation: E <g F (classifying E is no harder than classifying F).

The above are examples of smooth equivalence relations: they are
reducible to equality on a Polish space (equivalently, equality on R).

It follows from ideas by Mackey, Glimm, Effros that the class of
non-smooth Borel equivalence relations has an initial object, Eg.
Concretely, it is the tail equality on {0, 1},

Argerami (U of R) Operator Systems KOTAC 2015

11/21



Complexity of Equivalence Relations
Is there a hierarchy?
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Complexity of Equivalence Relations

Is there a hierarchy?

Theorem (Thomas (2000))
If =, is isomorphism of abelian torsion-free rank-n groups, then

=p<B=pi1, =Zpr1EB=n.

Already =4 is bireducible with Ey (Hjorth), so non-smooth.
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Complexity of Equivalence Relations

Is there a hierarchy?

Theorem (Thomas (2000))
If =, is isomorphism of abelian torsion-free rank-n groups, then

=p<B=pi1, =Zpr1EB=n.

Already =4 is bireducible with Ey (Hjorth), so non-smooth.

Classification of separable C*-algebras, separable operator systems is
non-smooth. How non-smooth?
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Non-smooth relations

Definition
E is classifiable by countable structures if it is Borel reducible to
isomorphism in some class of countable structures.
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Non-smooth relations

Definition
E is classifiable by countable structures if it is Borel reducible to
isomorphism in some class of countable structures.

AF C*-algebras are classifiable by countable structures (Elliott).

Definition
E is classifiable by orbits (or below a group action) if it is Borel

reducible to the orbit equivalence associated with a continuous action
of a Polish group on a Polish space.
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Non-smooth relations (continued)

Theorem (Elliott, Farah, Paulsen, Rosendal, Toms, Térnquist,
2013)

Isomorphism of separable C* algebras, unital complete isometry of
operator systems are classifiable by orbits.
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Theorem (Elliott, Farah, Paulsen, Rosendal, Toms, Térnquist,
2013)

Isomorphism of separable C* algebras, unital complete isometry of
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Isomorphism of separable simple Approximately Interval C*-algebras
is a complete orbit equivalence relation.
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Non-smooth relations (continued)

Theorem (Elliott, Farah, Paulsen, Rosendal, Toms, Térnquist,
2013)

Isomorphism of separable C* algebras, unital complete isometry of
operator systems are classifiable by orbits.

Theorem (Sabok, 2013)

Isomorphism of separable simple Approximately Interval C*-algebras
is a complete orbit equivalence relation.

Isometry of Banach spaces is also maximal among those reducible to
orbit equivalence.
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Non-smooth relations (continued)

Theorem (Elliott, Farah, Paulsen, Rosendal, Toms, Térnquist,
2013)

Isomorphism of separable C* algebras, unital complete isometry of
operator systems are classifiable by orbits.

Theorem (Sabok, 2013)

Isomorphism of separable simple Approximately Interval C*-algebras
is a complete orbit equivalence relation.

Isometry of Banach spaces is also maximal among those reducible to
orbit equivalence.

Isomorphism of Banach spaces is not even below a group action; it is
maximal among analytic equivalence relations.

Argerami (U of R) Operator Systems KOTAC 2015 14 /21
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Some results for operator systems

Theorem (A.-Coskey-Kalantar-Kennedy-Lupini-Sabok, 2014)
Isomorphism of finitely generated operator systems is smooth. J
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Isomorphism of finitely generated operator systems is smooth.

Statements like the above one are proving by finding a suitable Borel
parametrization.
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But... What would a “hands-on” invariant be? We don’t know.

Not obvious even when acting on a finite-dimensional Hilbert space.

Argerami (U of R) Operator Systems KOTAC 2015 15/21



Some results for operator systems

Theorem (A.-Coskey-Kalantar-Kennedy-Lupini-Sabok, 2014)
Isomorphism of finitely generated operator systems is smooth.

Statements like the above one are proving by finding a suitable Borel
parametrization.

But... What would a “hands-on” invariant be? We don’t know.

Not obvious even when acting on a finite-dimensional Hilbert space.
Not obvious even for operator systems with C*-envelope M,(C):

St = span {1, Wy, Wy},  where Wt:[l g}, te(0,1].
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Arveson’s Invariant (2010)

If S C Mn(C), then C*(S) = @4 M (C).
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Arveson’s Invariant (2010)

If S C Ma(C), then C*(S) = T, My,(C).

Arveson showed that the isomorphism class of S is determined by the
numbers d = dimS, m, ky, ..., ky together with maps T : cd — Mkj(C)
that are unital, irreducible, faithful, and strongly separating.
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If S © Mn(C), then C*(S) = @B, My,(C).

Arveson showed that the isomorphism class of S is determined by the
numbers d = dimS, m, ky, ..., ky together with maps T : cY - Mkj(C)
that are unital, irreducible, faithful, and strongly separating.

This classification is good in that it paints a picture of what operator
systems acting on finite-dimensional Hilbert spaces look like, in terms
of their boundary representations.
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If S © Mn(C), then C*(S) = @B, My,(C).

Arveson showed that the isomorphism class of S is determined by the
numbers d = dimS, m, ky, ..., ky together with maps T : cY - Mkj(C)
that are unital, irreducible, faithful, and strongly separating.

This classification is good in that it paints a picture of what operator
systems acting on finite-dimensional Hilbert spaces look like, in terms
of their boundary representations. But it is not really explicit!
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Arveson’s Invariant

With the W; above: d =3, m=1, k; = 2, and for example

at t i j
B o S+ 7 (—1+)B—(1+i)y)
M(o, B,7) = %t + g(_(1+;)a+(_1+im Bzﬂ

toget I'1(1,1,1):/, I'1(1,i,—i): Wt, F1(1,—i,i): Wt*
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Arveson’s Invariant

With the W; above: d =3, m=1, k; = 2, and for example

at t ; ;
B o at L b (1i)s—(1+i))
M. 8.7) = ol L L (144 (—1+i)) £ ]

to get F1(1,1,1) =1, I'1(1,i,—i) = Wt, F1(1,—i,i) = Wt*
This, to describe the operator system

OSy(W;) = span {I, W;, Wi} = { [[(;t Fg] Ca, 8,7 € C} .
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With the W; above: d =3, m=1, k; = 2, and for example

at t ; ;
B o at L b (1i)s—(1+i))
M. 8.7) = ol L L (144 (—1+i)) £ ]

to get F1(1,1,1) =1, I'1(1,i,—i) = Wt, F1(1,—i,i) = Wt*
This, to describe the operator system

OSy(W;) = span {I, W;, Wi} = { [gt Fg] Ca, 8,7 € C} .

Is there a better, explicit invariant?

Argerami (U of R) Operator Systems KOTAC 2015

17/21



Arveson’s Invariant

With the W; above: d =3, m=1, k; = 2, and for example

(0 ) = a ¥ +4 ((—1+i)5—(1+i)7)]

ol L L (144 (—1+i)) bty
to get F1(1,1,1) =, I'1(1,i,—i) = W4, F1(1,—i,i) = Wt*
This, to describe the operator system

08, (W) —spun (L wewi) = { |5 1] s e

Is there a better, explicit invariant? We still don’t know.
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Operator Systems Generated by Unitaries
Consider unitaries U € B(H;), V € B(Hz). When is
0S8, (U) ~ 08, (V)?
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Operator Systems Generated by Unitaries
Consider unitaries U € B(H;), V € B(Hz). When is
0S8, (U) ~ 08, (V)?

08,(U) € C*(U) ~ C(a(U)).
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Operator Systems Generated by Unitaries
Consider unitaries U € B(Hy), V € B(H>). When is
0S8, (U) ~ 08, (V)?

08,(U) ¢ C*(U) ~ C(a(U)).

But U being a unitary makes every irrep a boundary representation.
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Operator Systems Generated by Unitaries
Consider unitaries U € B(Hy), V € B(H>). When is
08,(U) ~ 08,(V)?

08,(U) c C*(U) ~ C(a(U)).

But U being a unitary makes every irrep a boundary representation.
Indeed, if 7 : C*(U) — Cis anirrep and ¢ : C*(U) — C is ucp with
Y(U) = w(U), then

I = w(U)*n(U) = w(U) (V) < $(U"U) = o()) = I

So U is in the multiplicative domain of ¢, and ¢» = = on C*(U), and So
C:(U) = C*(U) = C(a(V)).
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Operator Systems Generated by Unitaries
Consider unitaries U € B(Hy), V € B(H>). When is
08,(U) ~ 08,(V)?

08,(U) c C*(U) ~ C(a(U)).

But U being a unitary makes every irrep a boundary representation.
Indeed, if 7 : C*(U) — Cis anirrep and ¢ : C*(U) — C is ucp with
Y(U) = w(U), then

I =m(U)w(U) = ¢(U)"y(U) <p(UU) = () = 1.
So U is in the multiplicative domain of ¢, and ¢» = = on C*(U), and So
Ce(U) = C*(U) = C(a(V)).
Now, OS,(U) ~ OS,(V) = C;(U) ~Ci(V) = o(U) ~ (V).
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Operator Systems Generated by Unitaries
Consider unitaries U € B(Hy), V € B(H>). When is
08,(U) ~ 08,(V)?

08,(U) c C*(U) ~ C(a(U)).

But U being a unitary makes every irrep a boundary representation.
Indeed, if 7 : C*(U) — Cis anirrep and ¢ : C*(U) — C is ucp with
Y(U) = w(U), then

I =m(U)w(U) = ¢(U)"y(U) <p(UU) = () = 1.
So U is in the multiplicative domain of ¢, and ¢» = = on C*(U), and So
Ce(U) = C*(U) = C(a(V)).
Now, OS,(U) ~ OS,(V) = C;(U) ~Ci(V) = o(U) ~ (V).

Is this condition sufficient?
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Isomorphism of Operator Systems generated by
unitaries

Theorem (A.-Coskey-Kalantar-Kennedy-Lupini-Sabok, 2014)

Let U, V be unitaries with |oc(U)| = |o(V)| < 3. Then
OSy(U) =~ OS,(V).
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Isomorphism of Operator Systems generated by
unitaries

Theorem (A.-Coskey-Kalantar-Kennedy-Lupini-Sabok, 2014)

Let U, V be unitaries with |oc(U)| = |o(V)| < 3. Then
OSy(U) =~ OS,(V).

Theorem (A.-Coskey-Kalantar-Kennedy-Lupini-Sabok, 2014)
Let U, V be unitaries with |oc(U)| = |o(V)| > 5. TFSAE:
Q 0Sy(U)~08,(V)

@ o(U) and o(V) are homeomorphic via a rigid motion of the circle.
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Isomorphism of Operator Systems generated by
unitaries

Theorem (A.-Coskey-Kalantar-Kennedy-Lupini-Sabok, 2014)

Let U, V be unitaries with |oc(U)| = |o(V)| < 3. Then
OSy(U) =~ OS,(V).

Theorem (A.-Coskey-Kalantar-Kennedy-Lupini-Sabok, 2014)
Let U, V be unitaries with |oc(U)| = |o(V)| > 5. TFSAE:

Q 0Sy(U)~08,(V)

@ o(U) and o(V) are homeomorphic via a rigid motion of the circle.

v

So for unitaries with finite spectrum of at least 5 points, the distance
between eigenvalues is an invariant of the corresponding operator
systems.
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Unitaries with 4-point spectrum
What about |o(U)| = 47
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Unitaries with 4-point spectrum
What about |o(U)| = 47

Let
i1 0 0 O 10 0 O
0 -1 0 0 0 % 0 0 1., .V3
U: . V: \/§ = — —*.
00 i 0] 0o 0 i ol WUtz U
0 0 0 —i 0 0 0 —1

Then C:(U) = C3(V) = C:(W) = C*.
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Unitaries with 4-point spectrum
What about |o(U)| = 47

Let
1 0 0 O 10 0 O
0 -1 0 0 0 % 0 0 1., .V3
= — \/é J— = I*
0 0 0 —i 0 0 0 —1

Then C:(U) = Cx(V) = Cx(W) = C*.

More rigidity than the case of |o(U)| < 3, but less than |o(U)| > 5:
Proposition (ACKKLS 2014, A. 2015)

Q@ 05, (U) # 0S,(V).

Q 0S,(U) =08, (W), but (W) is not a rigid deformation of o(U).
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Argerami (U of R)

Thank you!
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