Isomorphisms of Operator Systems

M. Argerami
University of Regina
June 18, 2015

Operator Systems

Operator Systems

Operator System: subspace $\mathcal{S} \subset B(H)$, such that $1 \in \mathcal{S}, \mathcal{S}^{*}=\mathcal{S}$.

Operator Systems

Operator System: subspace $\mathcal{S} \subset B(H)$, such that $1 \in \mathcal{S}, \mathcal{S}^{*}=\mathcal{S}$.

Operators systems are considered as a category with unital completely positive maps (ucp) as morphisms.

Operator Systems

Operator System: subspace $\mathcal{S} \subset B(H)$, such that $1 \in \mathcal{S}, \mathcal{S}^{*}=\mathcal{S}$.

Operators systems are considered as a category with unital completely positive maps (ucp) as morphisms.

Isomorphisms are unital completely isometric maps.

C*-algebras generated by operator systems

$$
s_{1}=\operatorname{span}\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\right\}, s_{2}=\operatorname{span}\left\{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\right\}
$$

C*-algebras generated by operator systems

$$
S_{1}=\operatorname{span}\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\right\}, S_{2}=\operatorname{span}\left\{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\right\}
$$

Then $C^{*}\left(S_{1}\right)=\mathbb{C}^{2}, C^{*}\left(S_{2}\right)=\mathbb{C}^{3}$.

C*-algebras generated by operator systems

$S_{1}=\operatorname{span}\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]\right\}, S_{2}=\operatorname{span}\left\{\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]\right\}$
Then $C^{*}\left(S_{1}\right)=\mathbb{C}^{2}, C^{*}\left(S_{2}\right)=\mathbb{C}^{3}$. And $S_{1} \simeq S_{2}$:

C*-algebras generated by operator systems

$$
S_{1}=\operatorname{span}\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\right\}, S_{2}=\operatorname{span}\left\{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\right\}
$$

Then $C^{*}\left(S_{1}\right)=\mathbb{C}^{2}, C^{*}\left(S_{2}\right)=\mathbb{C}^{3}$. And $S_{1} \simeq S_{2}$:

$$
\varphi: S_{2} \rightarrow S_{1}, \varphi(X)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
\varphi^{-1}(Y)= & {\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] Y\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
1 / \sqrt{2} & 0 \\
0 & 0
\end{array}\right] Y\left[\begin{array}{ccc}
0 & 1 / \sqrt{2} & 0 \\
0 & 0 & 0
\end{array}\right] } \\
& +\left[\begin{array}{cc}
0 & 0 \\
0 & 1 / \sqrt{2} \\
0 & 0
\end{array}\right] Y\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 / \sqrt{2} & 0
\end{array}\right]
\end{aligned}
$$

C*-algebras generated by operator systems (cont.)

An operator system can be embedded in many different C^{*}-algebras.

C*-algebras generated by operator systems (cont.)

An operator system can be embedded in many different C^{*}-algebras. A C ${ }^{*}$-envelope for \mathcal{S} is (A, ι), where A is a C^{*}-algebra, $\iota: \mathcal{S} \rightarrow A$ is completely isometric, and for any completely isometric ψ

C*-algebras generated by operator systems (cont.)

An operator system can be embedded in many different C^{*}-algebras. A C ${ }^{*}$-envelope for \mathcal{S} is (A, ι), where A is a C^{*}-algebra, $\iota: \mathcal{S} \rightarrow A$ is completely isometric, and for any completely isometric ψ

C^{*}-algebras generated by operator systems (cont.)

An operator system can be embedded in many different C^{*}-algebras. A C ${ }^{*}$-envelope for \mathcal{S} is (A, ι), where A is a C^{*}-algebra, $\iota: \mathcal{S} \rightarrow A$ is completely isometric, and for any completely isometric ψ

As any two C^{*}-envelopes of \mathcal{S} are (\mathcal{S}-preserving) isomorphic, we write $\mathrm{C}_{\mathrm{e}}^{*}(\mathcal{S})$.

C*-algebras generated by operator systems (cont.)

An operator system can be embedded in many different C^{*}-algebras. A C ${ }^{*}$-envelope for \mathcal{S} is (A, ι), where A is a C^{*}-algebra, $\iota: \mathcal{S} \rightarrow A$ is completely isometric, and for any completely isometric ψ

As any two C^{*}-envelopes of \mathcal{S} are (\mathcal{S}-preserving) isomorphic, we write $\mathrm{C}_{\mathrm{e}}^{*}(\mathcal{S})$. We see it as the "smallest C^{*}-algebra generated by \mathcal{S} ".

C*-algebras generated by operator systems (cont.)

An operator system can be embedded in many different C^{*}-algebras. A C ${ }^{*}$-envelope for \mathcal{S} is (A, ι), where A is a C^{*}-algebra, $\iota: \mathcal{S} \rightarrow A$ is completely isometric, and for any completely isometric ψ

As any two C^{*}-envelopes of \mathcal{S} are (\mathcal{S}-preserving) isomorphic, we write $\mathrm{C}_{\mathrm{e}}^{*}(\mathcal{S})$. We see it as the "smallest C^{*}-algebra generated by \mathcal{S} ".
Existence: Hamana (1979); Dritschel-McCullough (2005),

C*-algebras generated by operator systems (cont.)

An operator system can be embedded in many different C^{*}-algebras. A C ${ }^{*}$-envelope for \mathcal{S} is (A, ι), where A is a C ${ }^{*}$-algebra, $\iota: \mathcal{S} \rightarrow A$ is completely isometric, and for any completely isometric ψ

As any two C^{*}-envelopes of \mathcal{S} are (\mathcal{S}-preserving) isomorphic, we write $\mathrm{C}_{\mathrm{e}}^{*}(\mathcal{S})$. We see it as the "smallest C^{*}-algebra generated by \mathcal{S} ".
Existence: Hamana (1979); Dritschel-McCullough (2005), Arveson (2008, for separable operator systems),

C*-algebras generated by operator systems (cont.)

An operator system can be embedded in many different C^{*}-algebras. A C ${ }^{*}$-envelope for \mathcal{S} is (A, ι), where A is a C ${ }^{*}$-algebra, $\iota: \mathcal{S} \rightarrow A$ is completely isometric, and for any completely isometric ψ

As any two C^{*}-envelopes of \mathcal{S} are (\mathcal{S}-preserving) isomorphic, we write $\mathrm{C}_{\mathrm{e}}^{*}(\mathcal{S})$. We see it as the "smallest C^{*}-algebra generated by \mathcal{S} ".
Existence: Hamana (1979); Dritschel-McCullough (2005), Arveson (2008, for separable operator systems), Davidson-Kennedy (2013).

Arveson's Choquet Theory (continued)

Arveson calls an operator system reduced if it is sitting in its C^{*}-envelope (equivalently, if the only boundary ideal is 0).

Arveson's Choquet Theory (continued)

Arveson calls an operator system reduced if it is sitting in its C^{*}-envelope (equivalently, if the only boundary ideal is 0).

Boundary Representation:

Arveson's Choquet Theory (continued)

Arveson calls an operator system reduced if it is sitting in its C^{*}-envelope (equivalently, if the only boundary ideal is 0).

Boundary Representation: $\rho: \mathrm{C}^{*}(\mathcal{S}) \rightarrow \mathcal{B}\left(\mathcal{H}_{\rho}\right)$, irreducible, and such that the ucp extension ψ is unique:

Arveson's Choquet Theory (continued)

Arveson calls an operator system reduced if it is sitting in its C^{*}-envelope (equivalently, if the only boundary ideal is 0).

Boundary Representation: $\rho: \mathrm{C}^{*}(\mathcal{S}) \rightarrow \mathcal{B}\left(\mathcal{H}_{\rho}\right)$, irreducible, and such that the ucp extension ψ is unique:

$$
\begin{gathered}
\mathrm{C}^{*}(\mathcal{S}) \\
\stackrel{\uparrow}{\wedge}-\psi \mathrm{ucp}=\rho \\
\mathcal{S} \xrightarrow[\rho \mid \mathcal{S}]{ } \mathcal{B}\left(\mathcal{H}_{\rho}\right)
\end{gathered}
$$

Arveson's idea:

$$
\mathrm{C}_{\mathrm{e}}^{*}(\mathcal{S})=C^{*}\left(\left(\bigoplus_{\rho \text { boundary }} \rho\right)(\mathcal{S})\right)
$$

Examples of Boundary reps

Examples of Boundary reps

Examples. Let $T=\left[\begin{array}{lll}0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right], \mathcal{S}=\operatorname{span}\{I, T\}$.

Examples of Boundary reps
Examples. Let $T=\left[\begin{array}{lll}0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right], \mathcal{S}=\operatorname{span}\{I, T\} . C^{*}(\mathcal{S})=\mathbb{C}^{3}$.
Irreps: $\pi_{1}, \pi_{2}, \pi_{3}$.

Examples of Boundary reps
Examples. Let $T=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right], \mathcal{S}=\operatorname{span}\{I, T\} . C^{*}(\mathcal{S})=\mathbb{C}^{3}$.
Irreps: $\pi_{1}, \pi_{2}, \pi_{3}$.
Claim: π_{2} is not boundary.

Examples of Boundary reps

Examples. Let $T=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right], \mathcal{S}=\operatorname{span}\{I, T\} . C^{*}(\mathcal{S})=\mathbb{C}^{3}$.
Irreps: $\pi_{1}, \pi_{2}, \pi_{3}$.
Claim: π_{2} is not boundary. We have $\pi_{2}\left(\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]\right)=b$.
Let $\phi_{2}\left(\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]\right)=\frac{a+c}{2}$.
Then $\phi_{2} \neq \pi_{2}$ on $\mathcal{C}^{*}(\mathcal{S})$, but they agree on \mathcal{S} :

$$
\pi_{2}(I)=1=\phi_{2}(I), \text { and } \pi_{2}(T)=2=\phi_{2}(T)
$$

Examples of Boundary reps

Examples. Let $T=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right], \mathcal{S}=\operatorname{span}\{I, T\} . C^{*}(\mathcal{S})=\mathbb{C}^{3}$. Irreps: $\pi_{1}, \pi_{2}, \pi_{3}$.
Claim: π_{2} is not boundary. We have $\pi_{2}\left(\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]\right)=b$.
Let $\phi_{2}\left(\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]\right)=\frac{a+c}{2}$.
Then $\phi_{2} \neq \pi_{2}$ on $\mathcal{C}^{*}(\mathcal{S})$, but they agree on \mathcal{S} :

$$
\pi_{2}(I)=1=\phi_{2}(I), \text { and } \pi_{2}(T)=2=\phi_{2}(T)
$$

This forces π_{1}, π_{3} to be boundary by dimension considerations,

Examples of Boundary reps

Examples. Let $T=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right], \mathcal{S}=\operatorname{span}\{I, T\} . C^{*}(\mathcal{S})=\mathbb{C}^{3}$. Irreps: $\pi_{1}, \pi_{2}, \pi_{3}$.
Claim: π_{2} is not boundary. We have $\pi_{2}\left(\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]\right)=b$.
Let $\phi_{2}\left(\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]\right)=\frac{a+c}{2}$.
Then $\phi_{2} \neq \pi_{2}$ on $C^{*}(\mathcal{S})$, but they agree on \mathcal{S} :

$$
\pi_{2}(I)=1=\phi_{2}(I), \text { and } \pi_{2}(T)=2=\phi_{2}(T) .
$$

This forces π_{1}, π_{3} to be boundary by dimension considerations, and

$$
\mathrm{C}_{\mathrm{e}}^{*}(\mathcal{S})=C^{*}\left(\left(\pi_{1} \oplus \pi_{3}\right)(\mathcal{S})\right)=C^{*}\left(\left(\pi_{1} \oplus \pi_{3}\right)(T)\right)=\mathbb{C}^{2}
$$

Singly Generated Operator Systems

We focus on operator systems $\mathcal{S}_{T}=\operatorname{span}\left\{I, T, T^{*}\right\} \subset \mathcal{B}(\mathcal{H})$.

Singly Generated Operator Systems

We focus on operator systems $\mathcal{S}_{T}=\operatorname{span}\left\{I, T, T^{*}\right\} \subset \mathcal{B}(\mathcal{H})$.
We have either

- $\operatorname{dim} \mathcal{S}_{T}=1$ (if $T=I$),

Singly Generated Operator Systems

We focus on operator systems $\mathcal{S}_{T}=\operatorname{span}\left\{I, T, T^{*}\right\} \subset \mathcal{B}(\mathcal{H})$.
We have either

- $\operatorname{dim} \mathcal{S}_{T}=1$ (if $T=I$),
- $\operatorname{dim} \mathcal{S}_{T}=2$ (if $T=T^{*}, T \neq I$),

Singly Generated Operator Systems

We focus on operator systems $\mathcal{S}_{T}=\operatorname{span}\left\{I, T, T^{*}\right\} \subset \mathcal{B}(\mathcal{H})$.
We have either

- $\operatorname{dim} \mathcal{S}_{T}=1$ (if $T=I$),
- $\operatorname{dim} \mathcal{S}_{T}=2$ (if $T=T^{*}, T \neq I$),
- $\operatorname{dim} \mathcal{S}_{T}=3$.

Singly Generated Operator Systems

We focus on operator systems $\mathcal{S}_{T}=\operatorname{span}\left\{I, T, T^{*}\right\} \subset \mathcal{B}(\mathcal{H})$.
We have either

- $\operatorname{dim} \mathcal{S}_{T}=1$ (if $T=I$),
- $\operatorname{dim} \mathcal{S}_{T}=2$ (if $T=T^{*}, T \neq I$),
- $\operatorname{dim} \mathcal{S}_{T}=3$.

Can we classify these operator systems?

Singly Generated Operator Systems

We focus on operator systems $\mathcal{S}_{T}=\operatorname{span}\left\{I, T, T^{*}\right\} \subset \mathcal{B}(\mathcal{H})$.
We have either

- $\operatorname{dim} \mathcal{S}_{T}=1$ (if $T=I$),
- $\operatorname{dim} \mathcal{S}_{T}=2$ (if $T=T^{*}, T \neq I$),
- $\operatorname{dim} \mathcal{S}_{T}=3$.

Can we classify these operator systems? In the first two cases, yes.

Singly Generated Operator Systems

We focus on operator systems $\mathcal{S}_{T}=\operatorname{span}\left\{I, T, T^{*}\right\} \subset \mathcal{B}(\mathcal{H})$.
We have either

- $\operatorname{dim} \mathcal{S}_{T}=1$ (if $T=I$),
- $\operatorname{dim} \mathcal{S}_{T}=2$ (if $T=T^{*}, T \neq I$),
- $\operatorname{dim} \mathcal{S}_{T}=3$.

Can we classify these operator systems? In the first two cases, yes.
Theorem (A.-Farenick 2013)
If $T \neq I$ is selfadjoint, then $\mathrm{C}_{\mathrm{e}}^{*}\left(\mathcal{S}_{T}\right)=\mathbb{C}^{2}$.

Singly Generated Operator Systems

We focus on operator systems $\mathcal{S}_{T}=\operatorname{span}\left\{I, T, T^{*}\right\} \subset \mathcal{B}(\mathcal{H})$.
We have either

- $\operatorname{dim} \mathcal{S}_{T}=1$ (if $T=I$),
- $\operatorname{dim} \mathcal{S}_{T}=2$ (if $T=T^{*}, T \neq 1$),
- $\operatorname{dim} \mathcal{S}_{T}=3$.

Can we classify these operator systems? In the first two cases, yes.
Theorem (A.-Farenick 2013)
If $T \neq \mathrm{l}$ is selfadjoint, then $\mathrm{C}_{\mathrm{e}}^{*}\left(\mathcal{S}_{T}\right)=\mathbb{C}^{2}$.

Corollary

Any two 2-dimensional operator systems are completely order isomorphic.

Are there that many 3-dimensional operator systems?

 How many 3-dimensional vector spaces? One;
Are there that many 3-dimensional operator systems?

How many 3-dimensional vector spaces? One; How many 3-dimensional C*-algebras? One.

Are there that many 3-dimensional operator systems?

How many 3-dimensional vector spaces? One; How many 3-dimensional C*-algebras? One.
For $t \in(0,1]$, let

$$
W_{t}=\left[\begin{array}{ll}
1 & 0 \\
t & 0
\end{array}\right], \quad \mathcal{S}_{t}=\operatorname{span}\left\{I, W_{t}, W_{t}^{*}\right\}
$$

For all $t, C^{*}\left(W_{t}\right)=M_{2}(\mathbb{C})$. Simple, so $\mathrm{C}_{\mathrm{e}}^{*}\left(\mathcal{S}_{t}\right)=M_{2}(\mathbb{C})$.

Are there that many 3-dimensional operator systems?

 How many 3-dimensional vector spaces? One; How many 3-dimensional C*-algebras? One.For $t \in(0,1]$, let

$$
W_{t}=\left[\begin{array}{ll}
1 & 0 \\
t & 0
\end{array}\right], \quad \mathcal{S}_{t}=\operatorname{span}\left\{I, W_{t}, W_{t}^{*}\right\}
$$

For all $t, C^{*}\left(W_{t}\right)=M_{2}(\mathbb{C})$. Simple, so $\mathrm{C}_{\mathrm{e}}^{*}\left(\mathcal{S}_{t}\right)=M_{2}(\mathbb{C})$.

Proposition (A., 2015)
$\mathcal{S}_{t} \simeq \mathcal{S}_{s}$ is and only if $t=s$.

Are there that many 3-dimensional operator systems?

How many 3-dimensional vector spaces? One; How many 3-dimensional C*-algebras? One.
For $t \in(0,1]$, let

$$
W_{t}=\left[\begin{array}{ll}
1 & 0 \\
t & 0
\end{array}\right], \quad \mathcal{S}_{t}=\operatorname{span}\left\{I, W_{t}, W_{t}^{*}\right\}
$$

For all $t, C^{*}\left(W_{t}\right)=M_{2}(\mathbb{C})$. Simple, so $\mathrm{C}_{\mathrm{e}}^{*}\left(\mathcal{S}_{t}\right)=M_{2}(\mathbb{C})$.

Proposition (A., 2015)

$\mathcal{S}_{t} \simeq \mathcal{S}_{s}$ is and only if $t=s$.

So $\left\{\mathcal{S}_{t}\right\}_{t \in(0,1]}$ are uncountably many reduced non-isomorphic 3-dimensional operator systems in $M_{2}(\mathbb{C})$.

Isomorphisms of small operator systems

For $\lambda \in \mathbb{C}$, let

$$
T_{\lambda}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & \lambda
\end{array}\right], \quad \mathcal{S}_{\lambda}=\operatorname{span}\left\{I, T_{\lambda}, T_{\lambda}^{*}\right\}
$$

Isomorphisms of small operator systems

For $\lambda \in \mathbb{C}$, let

$$
T_{\lambda}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & \lambda
\end{array}\right], \quad \mathcal{S}_{\lambda}=\operatorname{span}\left\{I, T_{\lambda}, T_{\lambda}^{*}\right\}
$$

For $\lambda, \mu \in \mathbb{C}$, when is $\mathcal{S}_{\lambda} \simeq \mathcal{S}_{\mu}$?

Isomorphisms of small operator systems

For $\lambda \in \mathbb{C}$, let

$$
T_{\lambda}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & \lambda
\end{array}\right], \mathcal{S}_{\lambda}=\operatorname{span}\left\{I, T_{\lambda}, T_{\lambda}^{*}\right\}
$$

For $\lambda, \mu \in \mathbb{C}$, when is $\mathcal{S}_{\lambda} \simeq \mathcal{S}_{\mu}$?
Proposition (A., 2015)
TFSAE:
(1) $\mathcal{S}_{\lambda} \simeq \mathcal{S}_{\mu}$;
(2) either
(1) $|\lambda| \leq 1 / 2$ and $|\mu| \leq 1 / 2$, in which case $\mathrm{C}_{\mathrm{e}}^{*}\left(\mathcal{S}_{\lambda}\right)=\mathrm{C}_{\mathrm{e}}^{*}\left(\mathcal{S}_{\mu}\right)=M_{2}(\mathbb{C})$;
(2) $|\lambda|>1 / 2$ and $|\mu|=|\lambda|$, in which case

$$
\mathrm{C}_{\mathrm{e}}^{*}\left(\mathcal{S}_{\lambda}\right)=\mathrm{C}_{\mathrm{e}}^{*}\left(\mathcal{S}_{\mu}\right)=M_{2}(\mathbb{C}) \oplus \mathbb{C} .
$$

The meaning of classifying.

"Classification": an explicit way to assign complete invariants to the objects of your class.

The meaning of classifying.

"Classification": an explicit way to assign complete invariants to the objects of your class.

Examples of Classification:

The meaning of classifying.

"Classification": an explicit way to assign complete invariants to the objects of your class.

Examples of Classification:

(1) Finite-dimensional vector spaces
$\{$ f.d. vector spaces $\} \rightarrow\{$ f.d. vector spaces $\} / \sim \rightleftarrows \mathbb{N}$.

The meaning of classifying.

"Classification": an explicit way to assign complete invariants to the objects of your class.

Examples of Classification:

(1) Finite-dimensional vector spaces
$\{$ f.d. vector spaces $\} \rightarrow$ \{f.d. vector spaces $\} / \sim \rightleftarrows \mathbb{N}$.
(2) Finitely generated abelian groups. Any such group is isomorphic to $\mathbb{Z}^{n} \oplus \mathbb{Z}_{k_{1}} \oplus \cdots \oplus \mathbb{Z}_{k_{r}}$ with $k_{1}\left|k_{2}\right| \cdots \mid k_{r}$. So

$$
\{\text { f.g.a. groups }\} \rightarrow\{\text { f.g.a. groups }\} / \sim \rightleftarrows\left\{\left(n, k_{1}, \ldots, k_{r}\right): \cdots\right\} .
$$

The meaning of classifying.

"Classification": an explicit way to assign complete invariants to the objects of your class.

Examples of Classification:

(1) Finite-dimensional vector spaces
$\{$ f.d. vector spaces $\} \rightarrow$ \{f.d. vector spaces $\} / \sim \rightleftarrows \mathbb{N}$.
(2) Finitely generated abelian groups. Any such group is isomorphic to $\mathbb{Z}^{n} \oplus \mathbb{Z}_{k_{1}} \oplus \cdots \oplus \mathbb{Z}_{k_{r}}$ with $k_{1}\left|k_{2}\right| \cdots \mid k_{r}$. So

$$
\{\text { f.g.a. groups }\} \rightarrow\{\text { f.g.a. groups }\} / \sim \rightleftarrows\left\{\left(n, k_{1}, \ldots, k_{r}\right): \cdots\right\} .
$$

(0) UHF C*-algebras: $\overline{\bigcup_{k} M_{n_{k}}(\mathbb{C})}$. \rightleftarrows sup. number $\left(n_{1}\left|n_{2}\right| \ldots\right)$.

Borel reducibility, or how to measure classifications

If E is an eq. rel. on a standard Borel space X, and F on Y, we say that E is Borel-reducible to F if there exists $f: X \rightarrow Y$, Borelmeasurable, such that

$$
x E y \Longleftrightarrow f(x) F f(y)
$$

Borel reducibility, or how to measure classifications

If E is an eq. rel. on a standard Borel space X, and F on Y, we say that E is Borel-reducible to F if there exists $f: X \rightarrow Y$, Borelmeasurable, such that

$$
x E y \Longleftrightarrow f(x) F f(y)
$$

Notation: $E \leq_{B} F$ (classifying E is no harder than classifying F).

Borel reducibility, or how to measure classifications

If E is an eq. rel. on a standard Borel space X, and F on Y, we say that E is Borel-reducible to F if there exists $f: X \rightarrow Y$, Borelmeasurable, such that

$$
x E y \Longleftrightarrow f(x) F f(y)
$$

Notation: $E \leq_{B} F$ (classifying E is no harder than classifying F).
The above are examples of smooth equivalence relations: they are reducible to equality on a Polish space (equivalently, equality on \mathbb{R}).

Borel reducibility, or how to measure classifications

If E is an eq. rel. on a standard Borel space X, and F on Y, we say that E is Borel-reducible to F if there exists $f: X \rightarrow Y$, Borelmeasurable, such that

$$
x E y \Longleftrightarrow f(x) F f(y)
$$

Notation: $E \leq_{B} F$ (classifying E is no harder than classifying F).
The above are examples of smooth equivalence relations: they are reducible to equality on a Polish space (equivalently, equality on \mathbb{R}).

It follows from ideas by Mackey, Glimm, Effros that the class of non-smooth Borel equivalence relations has an initial object, E_{0}.

Borel reducibility, or how to measure classifications

If E is an eq. rel. on a standard Borel space X, and F on Y, we say that E is Borel-reducible to F if there exists $f: X \rightarrow Y$, Borelmeasurable, such that

$$
x E y \Longleftrightarrow f(x) F f(y)
$$

Notation: $E \leq_{B} F$ (classifying E is no harder than classifying F).
The above are examples of smooth equivalence relations: they are reducible to equality on a Polish space (equivalently, equality on \mathbb{R}).

It follows from ideas by Mackey, Glimm, Effros that the class of non-smooth Borel equivalence relations has an initial object, E_{0}. Concretely, it is the tail equality on $\{0,1\}^{\mathbb{N}}$.

Complexity of Equivalence Relations

Is there a hierarchy?

Complexity of Equivalence Relations

Is there a hierarchy?

Theorem (Thomas (2000))
If \cong_{n} is isomorphism of abelian torsion-free rank-n groups, then

$$
\cong_{n} \leq_{B} \cong_{n+1}, \quad \cong_{n+1} \not \not_{B} \cong_{n} .
$$

Already \cong_{1} is bireducible with E_{0} (Hjorth), so non-smooth.

Complexity of Equivalence Relations

Is there a hierarchy?

Theorem (Thomas (2000))
If \cong_{n} is isomorphism of abelian torsion-free rank-n groups, then

$$
\cong_{n} \leq_{B} \cong_{n+1}, \quad \cong_{n+1} \not \not_{B} \cong_{n} .
$$

Already \cong_{1} is bireducible with E_{0} (Hjorth), so non-smooth.

Classification of separable C*-algebras, separable operator systems is non-smooth. How non-smooth?

Non-smooth relations

Definition

E is classifiable by countable structures if it is Borel reducible to isomorphism in some class of countable structures.

Non-smooth relations

Definition

E is classifiable by countable structures if it is Borel reducible to isomorphism in some class of countable structures.

AF C*-algebras are classifiable by countable structures (Elliott).

Non-smooth relations

Definition

E is classifiable by countable structures if it is Borel reducible to isomorphism in some class of countable structures.

AF C*-algebras are classifiable by countable structures (Elliott).

Definition

E is classifiable by orbits (or below a group action) if it is Borel reducible to the orbit equivalence associated with a continuous action of a Polish group on a Polish space.

Non-smooth relations (continued)

Non-smooth relations (continued)

Theorem (Elliott, Farah, Paulsen, Rosendal, Toms, Törnquist, 2013)

Isomorphism of separable C* algebras, unital complete isometry of operator systems are classifiable by orbits.

Non-smooth relations (continued)

Theorem (Elliott, Farah, Paulsen, Rosendal, Toms, Törnquist, 2013)

Isomorphism of separable C* algebras, unital complete isometry of operator systems are classifiable by orbits.

Theorem (Sabok, 2013) Isomorphism of separable simple Approximately Interval C^{*}-algebras is a complete orbit equivalence relation.

Non-smooth relations (continued)

Theorem (Elliott, Farah, Paulsen, Rosendal, Toms, Törnquist, 2013)
 Isomorphism of separable C* algebras, unital complete isometry of operator systems are classifiable by orbits.

Theorem (Sabok, 2013)
Isomorphism of separable simple Approximately Interval C^{*}-algebras is a complete orbit equivalence relation.

Isometry of Banach spaces is also maximal among those reducible to orbit equivalence.

Non-smooth relations (continued)

Theorem (Elliott, Farah, Paulsen, Rosendal, Toms, Törnquist, 2013)
 Isomorphism of separable C* algebras, unital complete isometry of operator systems are classifiable by orbits.

Theorem (Sabok, 2013)
Isomorphism of separable simple Approximately Interval C^{*}-algebras is a complete orbit equivalence relation.

Isometry of Banach spaces is also maximal among those reducible to orbit equivalence.

Isomorphism of Banach spaces is not even below a group action; it is maximal among analytic equivalence relations.

Some results for operator systems

Some results for operator systems

Theorem (A.-Coskey-Kalantar-Kennedy-Lupini-Sabok, 2014) Isomorphism of finitely generated operator systems is smooth.

Some results for operator systems

Theorem (A.-Coskey-Kalantar-Kennedy-Lupini-Sabok, 2014) Isomorphism of finitely generated operator systems is smooth.

Statements like the above one are proving by finding a suitable Borel parametrization.

Some results for operator systems

Theorem (A.-Coskey-Kalantar-Kennedy-Lupini-Sabok, 2014) Isomorphism of finitely generated operator systems is smooth.

Statements like the above one are proving by finding a suitable Borel parametrization.

But... What would a "hands-on" invariant be?

Some results for operator systems

Theorem (A.-Coskey-Kalantar-Kennedy-Lupini-Sabok, 2014) Isomorphism of finitely generated operator systems is smooth.

Statements like the above one are proving by finding a suitable Borel parametrization.

But... What would a "hands-on" invariant be? We don't know.

Some results for operator systems

Theorem (A.-Coskey-Kalantar-Kennedy-Lupini-Sabok, 2014) Isomorphism of finitely generated operator systems is smooth.

Statements like the above one are proving by finding a suitable Borel parametrization.

But... What would a "hands-on" invariant be? We don't know.
Not obvious even when acting on a finite-dimensional Hilbert space.

Some results for operator systems

Theorem (A.-Coskey-Kalantar-Kennedy-Lupini-Sabok, 2014) Isomorphism of finitely generated operator systems is smooth.

Statements like the above one are proving by finding a suitable Borel parametrization.

But... What would a "hands-on" invariant be? We don't know.
Not obvious even when acting on a finite-dimensional Hilbert space. Not obvious even for operator systems with C^{*}-envelope $\mathrm{M}_{2}(\mathbb{C})$:

$$
\mathcal{S}_{t}=\operatorname{span}\left\{I, W_{t}, W_{t}^{*}\right\}, \quad \text { where } W_{t}=\left[\begin{array}{ll}
1 & 0 \\
t & 0
\end{array}\right], \quad t \in(0,1] .
$$

Arveson's Invariant (2010)

If $\mathcal{S} \subset M_{n}(\mathbb{C})$, then $C^{*}(\mathcal{S})=\bigoplus_{j=1}^{m} M_{k_{j}}(\mathbb{C})$.

Arveson’s Invariant (2010)

If $\mathcal{S} \subset M_{n}(\mathbb{C})$, then $C^{*}(\mathcal{S})=\bigoplus_{j=1}^{m} M_{k_{j}}(\mathbb{C})$.
Arveson showed that the isomorphism class of \mathcal{S} is determined by the numbers $d=\operatorname{dim} \mathcal{S}, m, k_{1}, \ldots, k_{m}$ together with maps $\Gamma_{j}: \mathbb{C}^{d} \rightarrow M_{k_{j}}(\mathbb{C})$ that are unital, irreducible, faithful, and strongly separating.

Arveson's Invariant (2010)

$$
\text { If } \mathcal{S} \subset M_{n}(\mathbb{C}) \text {, then } C^{*}(\mathcal{S})=\bigoplus_{j=1}^{m} M_{k_{j}}(\mathbb{C}) \text {. }
$$

Arveson showed that the isomorphism class of \mathcal{S} is determined by the numbers $d=\operatorname{dim} \mathcal{S}, m, k_{1}, \ldots, k_{m}$ together with maps $\Gamma_{j}: \mathbb{C}^{d} \rightarrow M_{k_{j}}(\mathbb{C})$ that are unital, irreducible, faithful, and strongly separating.

This classification is good in that it paints a picture of what operator systems acting on finite-dimensional Hilbert spaces look like, in terms of their boundary representations.

Arveson's Invariant (2010)

$$
\text { If } \mathcal{S} \subset M_{n}(\mathbb{C}) \text {, then } C^{*}(\mathcal{S})=\bigoplus_{j=1}^{m} M_{k_{j}}(\mathbb{C}) \text {. }
$$

Arveson showed that the isomorphism class of \mathcal{S} is determined by the numbers $d=\operatorname{dim} \mathcal{S}, m, k_{1}, \ldots, k_{m}$ together with maps $\Gamma_{j}: \mathbb{C}^{d} \rightarrow M_{k_{j}}(\mathbb{C})$ that are unital, irreducible, faithful, and strongly separating.

This classification is good in that it paints a picture of what operator systems acting on finite-dimensional Hilbert spaces look like, in terms of their boundary representations. But it is not really explicit!

Arveson's Invariant

With the W_{t} above: $d=3, m=1, k_{1}=2$, and for example

$$
\Gamma_{1}(\alpha, \beta, \gamma)=\left[\begin{array}{cc}
\alpha & \frac{\alpha t}{2}+\frac{t}{4}((-1+i) \beta-(1+i) \gamma) \\
\frac{\alpha t}{2}+\frac{t}{4}(-(1+i) \beta+(-1+i) \gamma) & \frac{\beta+\gamma}{2}
\end{array}\right]
$$

to get $\Gamma_{1}(1,1,1)=I, \Gamma_{1}(1, i,-i)=W_{t}, \Gamma_{1}(1,-i, i)=W_{t}^{*}$.

Arveson's Invariant

With the W_{t} above: $d=3, m=1, k_{1}=2$, and for example

$$
\Gamma_{1}(\alpha, \beta, \gamma)=\left[\begin{array}{cc}
\alpha & \frac{\alpha t}{2}+\frac{t}{4}((-1+i) \beta-(1+i) \gamma) \\
\frac{\alpha t}{2}+\frac{t}{4}(-(1+i) \beta+(-1+i) \gamma) & \frac{\beta+\gamma}{2}
\end{array}\right]
$$

to get $\Gamma_{1}(1,1,1)=I, \Gamma_{1}(1, i,-i)=W_{t}, \Gamma_{1}(1,-i, i)=W_{t}^{*}$.
This, to describe the operator system

$$
\mathcal{O} \mathcal{S}_{y}\left(W_{t}\right)=\operatorname{span}\left\{I, W_{t}, W_{t}^{*}\right\}=\left\{\left[\begin{array}{cc}
\alpha & \gamma t \\
\beta t & \alpha
\end{array}\right]: \alpha, \beta, \gamma \in \mathbb{C}\right\}
$$

Arveson's Invariant

With the W_{t} above: $d=3, m=1, k_{1}=2$, and for example

$$
\Gamma_{1}(\alpha, \beta, \gamma)=\left[\begin{array}{cc}
\alpha & \frac{\alpha t}{2}+\frac{t}{4}((-1+i) \beta-(1+i) \gamma) \\
\frac{\alpha t}{2}+\frac{t}{4}(-(1+i) \beta+(-1+i) \gamma) & \frac{\beta+\gamma}{2}
\end{array}\right]
$$

to get $\Gamma_{1}(1,1,1)=I, \Gamma_{1}(1, i,-i)=W_{t}, \Gamma_{1}(1,-i, i)=W_{t}^{*}$.
This, to describe the operator system

$$
\mathcal{O} \mathcal{S}_{y}\left(W_{t}\right)=\operatorname{span}\left\{I, W_{t}, W_{t}^{*}\right\}=\left\{\left[\begin{array}{cc}
\alpha & \gamma t \\
\beta t & \alpha
\end{array}\right]: \alpha, \beta, \gamma \in \mathbb{C}\right\}
$$

Is there a better, explicit invariant?

Arveson's Invariant

With the W_{t} above: $d=3, m=1, k_{1}=2$, and for example

$$
\Gamma_{1}(\alpha, \beta, \gamma)=\left[\begin{array}{cc}
\alpha & \frac{\alpha t}{2}+\frac{t}{4}((-1+i) \beta-(1+i) \gamma) \\
\frac{\alpha t}{2}+\frac{t}{4}(-(1+i) \beta+(-1+i) \gamma) & \frac{\beta+\gamma}{2}
\end{array}\right]
$$

to get $\Gamma_{1}(1,1,1)=I, \Gamma_{1}(1, i,-i)=W_{t}, \Gamma_{1}(1,-i, i)=W_{t}^{*}$.
This, to describe the operator system

$$
\mathcal{O} \mathcal{S}_{y}\left(W_{t}\right)=\operatorname{span}\left\{I, W_{t}, W_{t}^{*}\right\}=\left\{\left[\begin{array}{cc}
\alpha & \gamma t \\
\beta t & \alpha
\end{array}\right]: \alpha, \beta, \gamma \in \mathbb{C}\right\}
$$

Is there a better, explicit invariant? We still don't know.

Operator Systems Generated by Unitaries

 Consider unitaries $U \in B\left(H_{1}\right), V \in B\left(H_{2}\right)$. When is $\mathcal{O} \mathcal{S}_{y}(U) \simeq \mathcal{O} \mathcal{S}_{y}(V)$?
Operator Systems Generated by Unitaries

 Consider unitaries $U \in B\left(H_{1}\right), V \in B\left(H_{2}\right)$. When is $\mathcal{O} \mathcal{S}_{y}(U) \simeq \mathcal{O} \mathcal{S}_{y}(V)$?$$
\mathcal{O} \mathcal{S}_{y}(U) \subset C^{*}(U) \simeq C(\sigma(U)) .
$$

Operator Systems Generated by Unitaries

 Consider unitaries $U \in B\left(H_{1}\right), V \in B\left(H_{2}\right)$. When is $\mathcal{O} \mathcal{S}_{y}(U) \simeq \mathcal{O} \mathcal{S}_{y}(V)$?$$
\mathcal{O} \mathcal{S}_{y}(U) \subset C^{*}(U) \simeq C(\sigma(U)) .
$$

But U being a unitary makes every irrep a boundary representation.

Operator Systems Generated by Unitaries

Consider unitaries $U \in B\left(H_{1}\right), V \in B\left(H_{2}\right)$. When is
$\mathcal{O} \mathcal{S}_{y}(U) \simeq \mathcal{O} \mathcal{S}_{y}(V)$?

$$
\mathcal{O} \mathcal{S}_{y}(U) \subset C^{*}(U) \simeq C(\sigma(U))
$$

But U being a unitary makes every irrep a boundary representation. Indeed, if $\pi: C^{*}(U) \rightarrow \mathbb{C}$ is an irrep and $\psi: C^{*}(U) \rightarrow \mathbb{C}$ is ucp with $\psi(U)=\pi(U)$, then

$$
I=\pi(U)^{*} \pi(U)=\psi(U)^{*} \psi(U) \leq \psi\left(U^{*} U\right)=\psi(I)=I .
$$

So U is in the multiplicative domain of ψ, and $\psi=\pi$ on $C^{*}(U)$, and So $\mathrm{C}_{\mathrm{e}}^{*}(U)=C^{*}(U)=C(\sigma(U))$.

Operator Systems Generated by Unitaries

Consider unitaries $U \in B\left(H_{1}\right), V \in B\left(H_{2}\right)$. When is
$\mathcal{O} \mathcal{S}_{y}(U) \simeq \mathcal{O} \mathcal{S}_{y}(V)$?

$$
\mathcal{O} \mathcal{S}_{y}(U) \subset C^{*}(U) \simeq C(\sigma(U))
$$

But U being a unitary makes every irrep a boundary representation. Indeed, if $\pi: C^{*}(U) \rightarrow \mathbb{C}$ is an irrep and $\psi: C^{*}(U) \rightarrow \mathbb{C}$ is ucp with $\psi(U)=\pi(U)$, then

$$
I=\pi(U)^{*} \pi(U)=\psi(U)^{*} \psi(U) \leq \psi\left(U^{*} U\right)=\psi(I)=I .
$$

So U is in the multiplicative domain of ψ, and $\psi=\pi$ on $C^{*}(U)$, and So $\mathrm{C}_{\mathrm{e}}^{*}(U)=C^{*}(U)=C(\sigma(U))$.

Now, $\mathcal{O} \mathcal{S}_{y}(U) \simeq \mathcal{O} \mathcal{S}_{y}(V) \Longrightarrow \mathrm{C}_{\mathrm{e}}^{*}(U) \simeq \mathrm{C}_{\mathrm{e}}^{*}(V) \Longrightarrow \sigma(U) \simeq \sigma(V)$.

Operator Systems Generated by Unitaries

Consider unitaries $U \in B\left(H_{1}\right), V \in B\left(H_{2}\right)$. When is
$\mathcal{O} \mathcal{S}_{y}(U) \simeq \mathcal{O} \mathcal{S}_{y}(V)$?

$$
\mathcal{O} \mathcal{S}_{y}(U) \subset C^{*}(U) \simeq C(\sigma(U))
$$

But U being a unitary makes every irrep a boundary representation. Indeed, if $\pi: C^{*}(U) \rightarrow \mathbb{C}$ is an irrep and $\psi: C^{*}(U) \rightarrow \mathbb{C}$ is ucp with $\psi(U)=\pi(U)$, then

$$
I=\pi(U)^{*} \pi(U)=\psi(U)^{*} \psi(U) \leq \psi\left(U^{*} U\right)=\psi(I)=I .
$$

So U is in the multiplicative domain of ψ, and $\psi=\pi$ on $C^{*}(U)$, and So $\mathrm{C}_{\mathrm{e}}^{*}(U)=C^{*}(U)=C(\sigma(U))$.

Now, $\mathcal{O} \mathcal{S}_{y}(U) \simeq \mathcal{O} \mathcal{S}_{y}(V) \Longrightarrow \mathrm{C}_{\mathrm{e}}^{*}(U) \simeq \mathrm{C}_{\mathrm{e}}^{*}(V) \Longrightarrow \sigma(U) \simeq \sigma(V)$.
Is this condition sufficient?

Isomorphism of Operator Systems generated by unitaries

Theorem (A.-Coskey-Kalantar-Kennedy-Lupini-Sabok, 2014)
Let U, V be unitaries with $|\sigma(U)|=|\sigma(V)| \leq 3$. Then $\mathcal{O S}_{y}(U) \simeq \mathcal{O} \mathcal{S}_{y}(V)$.

Isomorphism of Operator Systems generated by unitaries

Theorem (A.-Coskey-Kalantar-Kennedy-Lupini-Sabok, 2014)
Let U, V be unitaries with $|\sigma(U)|=|\sigma(V)| \leq 3$. Then $\mathcal{O S}_{y}(U) \simeq \mathcal{O} \mathcal{S}_{y}(V)$.

Theorem (A.-Coskey-Kalantar-Kennedy-Lupini-Sabok, 2014) Let U, V be unitaries with $|\sigma(U)|=|\sigma(V)| \geq 5$. TFSAE:
(1) $\mathcal{O} \mathcal{S}_{y}(U) \simeq \mathcal{O} \mathcal{S}_{y}(V)$
(2) $\sigma(U)$ and $\sigma(V)$ are homeomorphic via a rigid motion of the circle.

Isomorphism of Operator Systems generated by unitaries

Theorem (A.-Coskey-Kalantar-Kennedy-Lupini-Sabok, 2014) Let U, V be unitaries with $|\sigma(U)|=|\sigma(V)| \leq 3$. Then $\mathcal{O} \mathcal{S}_{y}(U) \simeq \mathcal{O} \mathcal{S}_{y}(V)$.

Theorem (A.-Coskey-Kalantar-Kennedy-Lupini-Sabok, 2014) Let U, V be unitaries with $|\sigma(U)|=|\sigma(V)| \geq 5$. TFSAE:
(1) $\mathcal{O S}_{y}(U) \simeq \mathcal{O} \mathcal{S}_{y}(V)$
(2) $\sigma(U)$ and $\sigma(V)$ are homeomorphic via a rigid motion of the circle.

So for unitaries with finite spectrum of at least 5 points, the distance between eigenvalues is an invariant of the corresponding operator systems.

Unitaries with 4-point spectrum

 What about $|\sigma(U)|=4$?
Unitaries with 4-point spectrum

What about $|\sigma(U)|=4$?
Let
$U=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & -i\end{array}\right], \quad V=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \frac{1+i}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & -1\end{array}\right], \quad W=\frac{1}{2} U+i \frac{\sqrt{3}}{2} U^{*}$.
Then $\mathrm{C}_{\mathrm{e}}^{*}(U)=\mathrm{C}_{\mathrm{e}}^{*}(V)=\mathrm{C}_{\mathrm{e}}^{*}(W)=\mathbb{C}^{4}$.

Unitaries with 4-point spectrum

What about $|\sigma(U)|=4$?
Let
$U=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & -i\end{array}\right], \quad V=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \frac{1+i}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & -1\end{array}\right], \quad W=\frac{1}{2} U+i \frac{\sqrt{3}}{2} U^{*}$.
Then $\mathrm{C}_{\mathrm{e}}^{*}(U)=\mathrm{C}_{\mathrm{e}}^{*}(V)=\mathrm{C}_{\mathrm{e}}^{*}(W)=\mathbb{C}^{4}$.
More rigidity than the case of $|\sigma(U)| \leq 3$, but less than $|\sigma(U)| \geq 5$:
Proposition (ACKKLS 2014, A. 2015)
(1) $\mathcal{O S}_{y}(U) \nsucceq \mathcal{O} \mathcal{S}_{y}(V)$.
(2) $\mathcal{O S} \mathcal{S}_{y}(U)=\mathcal{O} \mathcal{S}_{y}(W)$, but $\sigma(W)$ is not a rigid deformation of $\sigma(U)$.

Thank you!

