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Operator Systems

Operator System: subspace S ⊂ B(H), such that 1 ∈ S, S∗ = S.

Operators systems are considered as a category with unital
completely positive maps (ucp) as morphisms.

Isomorphisms are unital completely isometric maps.
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C∗-algebras generated by operator systems

S1 = span
{[

1 0
0 1

]
,

[
1 0
0 3

]}
, S2 = span


1 0 0

0 1 0
0 0 1

 ,
1 0 0

0 2 0
0 0 3



Then C∗(S1) = C2, C∗(S2) = C3. And S1 ' S2:

ϕ : S2 → S1, ϕ(X ) =

[
1 0 0
0 0 1

]
X

1 0
0 0
0 1

 ,
ϕ−1(Y ) =

1 0
0 0
0 1

Y
[
1 0 0
0 0 1

]
+

 0 0
1/
√

2 0
0 0

Y
[
0 1/

√
2 0

0 0 0

]

+

0 0
0 1/

√
2

0 0

Y
[
0 0 0
0 1/

√
2 0

]

Argerami (U of R) Operator Systems KOTAC 2015 3 / 21



C∗-algebras generated by operator systems

S1 = span
{[

1 0
0 1

]
,

[
1 0
0 3

]}
, S2 = span


1 0 0

0 1 0
0 0 1

 ,
1 0 0

0 2 0
0 0 3


Then C∗(S1) = C2, C∗(S2) = C3.

And S1 ' S2:

ϕ : S2 → S1, ϕ(X ) =

[
1 0 0
0 0 1

]
X

1 0
0 0
0 1

 ,
ϕ−1(Y ) =

1 0
0 0
0 1

Y
[
1 0 0
0 0 1

]
+

 0 0
1/
√

2 0
0 0

Y
[
0 1/

√
2 0

0 0 0

]

+

0 0
0 1/

√
2

0 0

Y
[
0 0 0
0 1/

√
2 0

]

Argerami (U of R) Operator Systems KOTAC 2015 3 / 21



C∗-algebras generated by operator systems

S1 = span
{[

1 0
0 1

]
,

[
1 0
0 3

]}
, S2 = span


1 0 0

0 1 0
0 0 1

 ,
1 0 0

0 2 0
0 0 3


Then C∗(S1) = C2, C∗(S2) = C3. And S1 ' S2:

ϕ : S2 → S1, ϕ(X ) =

[
1 0 0
0 0 1

]
X

1 0
0 0
0 1

 ,
ϕ−1(Y ) =

1 0
0 0
0 1

Y
[
1 0 0
0 0 1

]
+

 0 0
1/
√

2 0
0 0

Y
[
0 1/

√
2 0

0 0 0

]

+

0 0
0 1/

√
2

0 0

Y
[
0 0 0
0 1/

√
2 0

]

Argerami (U of R) Operator Systems KOTAC 2015 3 / 21



C∗-algebras generated by operator systems

S1 = span
{[

1 0
0 1

]
,

[
1 0
0 3

]}
, S2 = span


1 0 0

0 1 0
0 0 1

 ,
1 0 0

0 2 0
0 0 3


Then C∗(S1) = C2, C∗(S2) = C3. And S1 ' S2:

ϕ : S2 → S1, ϕ(X ) =

[
1 0 0
0 0 1

]
X

1 0
0 0
0 1

 ,
ϕ−1(Y ) =

1 0
0 0
0 1

Y
[
1 0 0
0 0 1

]
+

 0 0
1/
√

2 0
0 0

Y
[
0 1/

√
2 0

0 0 0

]

+

0 0
0 1/

√
2

0 0

Y
[
0 0 0
0 1/

√
2 0

]
Argerami (U of R) Operator Systems KOTAC 2015 3 / 21



C∗-algebras generated by operator systems (cont.)

An operator system can be embedded in many different C∗-algebras.

A C∗-envelope for S is (A, ι), where A is a C∗-algebra, ι : S → A is
completely isometric, and for any completely isometric ψ

S ψ //

ι

((

C∗(ψ(S))

A

As any two C∗-envelopes of S are (S-preserving) isomorphic, we write
C∗e (S). We see it as the “smallest C∗-algebra generated by S”.

Existence: Hamana (1979); Dritschel-McCullough (2005), Arveson
(2008, for separable operator systems), Davidson-Kennedy (2013).
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Arveson’s Choquet Theory (continued)
Arveson calls an operator system reduced if it is sitting in its
C∗-envelope (equivalently, if the only boundary ideal is 0).

Boundary Representation: ρ : C∗(S)→ B(Hρ), irreducible, and such
that the ucp extension ψ is unique:

C∗(S)
ψ ucp = ρ

((
S

ι

OO

ρ|S
// B(Hρ)

Arveson’s idea:

C∗e (S) = C∗

  ⊕
ρ boundary

ρ

 (S)

 .
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Examples of Boundary reps

Examples. Let T =

1 0 0
0 2 0
0 0 3

, S = span{I,T}. C∗(S) = C3.

Irreps: π1, π2, π3.

Claim: π2 is not boundary. We have π2

a 0 0
0 b 0
0 0 c

 = b.

Let φ2

a 0 0
0 b 0
0 0 c

 =
a + c

2
.

Then φ2 6= π2 on C∗(S), but they agree on S:

π2(I) = 1 = φ2(I), and π2(T ) = 2 = φ2(T ).

This forces π1, π3 to be boundary by dimension considerations, and

C∗e (S) = C∗((π1 ⊕ π3)(S)) = C∗((π1 ⊕ π3)(T )) = C2.
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Singly Generated Operator Systems
We focus on operator systems ST = span {I,T ,T ∗} ⊂ B(H).

We have either
dimST = 1 (if T = I),
dimST = 2 (if T = T ∗, T 6= I),
dimST = 3.

Can we classify these operator systems? In the first two cases, yes.

Theorem (A.-Farenick 2013)

If T 6= I is selfadjoint, then C∗e (ST ) = C2.

Corollary
Any two 2-dimensional operator systems are completely order
isomorphic.

Argerami (U of R) Operator Systems KOTAC 2015 7 / 21



Singly Generated Operator Systems
We focus on operator systems ST = span {I,T ,T ∗} ⊂ B(H).

We have either
dimST = 1 (if T = I),

dimST = 2 (if T = T ∗, T 6= I),
dimST = 3.

Can we classify these operator systems? In the first two cases, yes.

Theorem (A.-Farenick 2013)

If T 6= I is selfadjoint, then C∗e (ST ) = C2.

Corollary
Any two 2-dimensional operator systems are completely order
isomorphic.

Argerami (U of R) Operator Systems KOTAC 2015 7 / 21



Singly Generated Operator Systems
We focus on operator systems ST = span {I,T ,T ∗} ⊂ B(H).

We have either
dimST = 1 (if T = I),
dimST = 2 (if T = T ∗, T 6= I),

dimST = 3.

Can we classify these operator systems? In the first two cases, yes.

Theorem (A.-Farenick 2013)

If T 6= I is selfadjoint, then C∗e (ST ) = C2.

Corollary
Any two 2-dimensional operator systems are completely order
isomorphic.

Argerami (U of R) Operator Systems KOTAC 2015 7 / 21



Singly Generated Operator Systems
We focus on operator systems ST = span {I,T ,T ∗} ⊂ B(H).

We have either
dimST = 1 (if T = I),
dimST = 2 (if T = T ∗, T 6= I),
dimST = 3.

Can we classify these operator systems? In the first two cases, yes.

Theorem (A.-Farenick 2013)

If T 6= I is selfadjoint, then C∗e (ST ) = C2.

Corollary
Any two 2-dimensional operator systems are completely order
isomorphic.

Argerami (U of R) Operator Systems KOTAC 2015 7 / 21



Singly Generated Operator Systems
We focus on operator systems ST = span {I,T ,T ∗} ⊂ B(H).

We have either
dimST = 1 (if T = I),
dimST = 2 (if T = T ∗, T 6= I),
dimST = 3.

Can we classify these operator systems?

In the first two cases, yes.

Theorem (A.-Farenick 2013)

If T 6= I is selfadjoint, then C∗e (ST ) = C2.

Corollary
Any two 2-dimensional operator systems are completely order
isomorphic.

Argerami (U of R) Operator Systems KOTAC 2015 7 / 21



Singly Generated Operator Systems
We focus on operator systems ST = span {I,T ,T ∗} ⊂ B(H).

We have either
dimST = 1 (if T = I),
dimST = 2 (if T = T ∗, T 6= I),
dimST = 3.

Can we classify these operator systems? In the first two cases, yes.

Theorem (A.-Farenick 2013)

If T 6= I is selfadjoint, then C∗e (ST ) = C2.

Corollary
Any two 2-dimensional operator systems are completely order
isomorphic.

Argerami (U of R) Operator Systems KOTAC 2015 7 / 21



Singly Generated Operator Systems
We focus on operator systems ST = span {I,T ,T ∗} ⊂ B(H).

We have either
dimST = 1 (if T = I),
dimST = 2 (if T = T ∗, T 6= I),
dimST = 3.

Can we classify these operator systems? In the first two cases, yes.

Theorem (A.-Farenick 2013)

If T 6= I is selfadjoint, then C∗e (ST ) = C2.

Corollary
Any two 2-dimensional operator systems are completely order
isomorphic.

Argerami (U of R) Operator Systems KOTAC 2015 7 / 21



Singly Generated Operator Systems
We focus on operator systems ST = span {I,T ,T ∗} ⊂ B(H).

We have either
dimST = 1 (if T = I),
dimST = 2 (if T = T ∗, T 6= I),
dimST = 3.

Can we classify these operator systems? In the first two cases, yes.

Theorem (A.-Farenick 2013)

If T 6= I is selfadjoint, then C∗e (ST ) = C2.

Corollary
Any two 2-dimensional operator systems are completely order
isomorphic.

Argerami (U of R) Operator Systems KOTAC 2015 7 / 21



Are there that many 3-dimensional operator systems?
How many 3-dimensional vector spaces? One;

How many 3-dimensional C∗-algebras? One.
For t ∈ (0,1], let

Wt =

[
1 0
t 0

]
, St = span {I,Wt ,W ∗

t }.

For all t , C∗(Wt ) = M2(C). Simple, so C∗e (St ) = M2(C).

Proposition (A., 2015)
St ' Ss is and only if t = s.

So {St}t∈(0,1] are uncountably many reduced non-isomorphic
3-dimensional operator systems in M2(C).
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Isomorphisms of small operator systems

For λ ∈ C, let

Tλ =

0 1 0
0 0 0
0 0 λ

 , Sλ = span {I,Tλ,T ∗λ}.

For λ, µ ∈ C, when is Sλ ' Sµ?

Proposition (A., 2015)
TFSAE:

1 Sλ ' Sµ;
2 either

1 |λ| ≤ 1/2 and |µ| ≤ 1/2, in which case C∗
e (Sλ) = C∗

e (Sµ) = M2(C);
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The meaning of classifying.
“Classification”: an explicit way to assign complete invariants to the
objects of your class.

Examples of Classification:
1 Finite-dimensional vector spaces

{f.d. vector spaces} → {f.d. vector spaces}/ ∼ � N.

2 Finitely generated abelian groups. Any such group is isomorphic
to Zn ⊕ Zk1 ⊕ · · · ⊕ Zkr with k1|k2| · · · |kr . So

{f.g.a. groups} → {f.g.a. groups}/ ∼ � {(n, k1, . . . , kr ) : · · · }.

3 UHF C∗-algebras:
⋃

k Mnk (C). � sup. number (n1|n2| . . .).

Argerami (U of R) Operator Systems KOTAC 2015 10 / 21



The meaning of classifying.
“Classification”: an explicit way to assign complete invariants to the
objects of your class.

Examples of Classification:

1 Finite-dimensional vector spaces

{f.d. vector spaces} → {f.d. vector spaces}/ ∼ � N.

2 Finitely generated abelian groups. Any such group is isomorphic
to Zn ⊕ Zk1 ⊕ · · · ⊕ Zkr with k1|k2| · · · |kr . So

{f.g.a. groups} → {f.g.a. groups}/ ∼ � {(n, k1, . . . , kr ) : · · · }.

3 UHF C∗-algebras:
⋃

k Mnk (C). � sup. number (n1|n2| . . .).

Argerami (U of R) Operator Systems KOTAC 2015 10 / 21



The meaning of classifying.
“Classification”: an explicit way to assign complete invariants to the
objects of your class.

Examples of Classification:
1 Finite-dimensional vector spaces

{f.d. vector spaces} → {f.d. vector spaces}/ ∼ � N.

2 Finitely generated abelian groups. Any such group is isomorphic
to Zn ⊕ Zk1 ⊕ · · · ⊕ Zkr with k1|k2| · · · |kr . So

{f.g.a. groups} → {f.g.a. groups}/ ∼ � {(n, k1, . . . , kr ) : · · · }.

3 UHF C∗-algebras:
⋃

k Mnk (C). � sup. number (n1|n2| . . .).

Argerami (U of R) Operator Systems KOTAC 2015 10 / 21



The meaning of classifying.
“Classification”: an explicit way to assign complete invariants to the
objects of your class.

Examples of Classification:
1 Finite-dimensional vector spaces

{f.d. vector spaces} → {f.d. vector spaces}/ ∼ � N.

2 Finitely generated abelian groups. Any such group is isomorphic
to Zn ⊕ Zk1 ⊕ · · · ⊕ Zkr with k1|k2| · · · |kr . So

{f.g.a. groups} → {f.g.a. groups}/ ∼ � {(n, k1, . . . , kr ) : · · · }.

3 UHF C∗-algebras:
⋃

k Mnk (C). � sup. number (n1|n2| . . .).

Argerami (U of R) Operator Systems KOTAC 2015 10 / 21



The meaning of classifying.
“Classification”: an explicit way to assign complete invariants to the
objects of your class.

Examples of Classification:
1 Finite-dimensional vector spaces

{f.d. vector spaces} → {f.d. vector spaces}/ ∼ � N.

2 Finitely generated abelian groups. Any such group is isomorphic
to Zn ⊕ Zk1 ⊕ · · · ⊕ Zkr with k1|k2| · · · |kr . So

{f.g.a. groups} → {f.g.a. groups}/ ∼ � {(n, k1, . . . , kr ) : · · · }.

3 UHF C∗-algebras:
⋃

k Mnk (C). � sup. number (n1|n2| . . .).

Argerami (U of R) Operator Systems KOTAC 2015 10 / 21



Borel reducibility, or how to measure classifications

If E is an eq. rel. on a standard Borel space X , and F on Y , we say
that E is Borel-reducible to F if there exists f : X → Y , Borel-
measurable, such that

x E y ⇐⇒ f (x) F f (y).

Notation: E ≤B F (classifying E is no harder than classifying F ).

The above are examples of smooth equivalence relations: they are
reducible to equality on a Polish space (equivalently, equality on R).

It follows from ideas by Mackey, Glimm, Effros that the class of
non-smooth Borel equivalence relations has an initial object, E0.
Concretely, it is the tail equality on {0,1}N.
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Complexity of Equivalence Relations

Is there a hierarchy?

Theorem (Thomas (2000))
If ∼=n is isomorphism of abelian torsion-free rank-n groups, then

∼=n≤B
∼=n+1, ∼=n+1 6≤B

∼=n .

Already ∼=1 is bireducible with E0 (Hjorth), so non-smooth.

Classification of separable C∗-algebras, separable operator systems is
non-smooth. How non-smooth?
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Non-smooth relations

Definition
E is classifiable by countable structures if it is Borel reducible to
isomorphism in some class of countable structures.

AF C∗-algebras are classifiable by countable structures (Elliott).

Definition
E is classifiable by orbits (or below a group action) if it is Borel
reducible to the orbit equivalence associated with a continuous action
of a Polish group on a Polish space.
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Non-smooth relations (continued)

Theorem (Elliott, Farah, Paulsen, Rosendal, Toms, Törnquist,
2013)
Isomorphism of separable C∗ algebras, unital complete isometry of
operator systems are classifiable by orbits.

Theorem (Sabok, 2013)
Isomorphism of separable simple Approximately Interval C∗-algebras
is a complete orbit equivalence relation.

Isometry of Banach spaces is also maximal among those reducible to
orbit equivalence.

Isomorphism of Banach spaces is not even below a group action; it is
maximal among analytic equivalence relations.
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Some results for operator systems

Theorem (A.-Coskey-Kalantar-Kennedy-Lupini-Sabok, 2014)
Isomorphism of finitely generated operator systems is smooth.

Statements like the above one are proving by finding a suitable Borel
parametrization.

But... What would a “hands-on” invariant be? We don’t know.

Not obvious even when acting on a finite-dimensional Hilbert space.
Not obvious even for operator systems with C∗-envelope M2(C):

St = span {I,Wt ,W ∗
t }, where Wt =

[
1 0
t 0

]
, t ∈ (0,1].
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Arveson’s Invariant (2010)

If S ⊂ Mn(C), then C∗(S) =
⊕m

j=1 Mkj (C).

Arveson showed that the isomorphism class of S is determined by the
numbers d = dimS, m, k1, . . . , km together with maps Γj : Cd → Mkj (C)
that are unital, irreducible, faithful, and strongly separating.

This classification is good in that it paints a picture of what operator
systems acting on finite-dimensional Hilbert spaces look like, in terms
of their boundary representations. But it is not really explicit!
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Arveson’s Invariant

With the Wt above: d = 3, m = 1, k1 = 2, and for example

Γ1(α, β, γ) =

[
α αt

2 + t
4 ((−1+i)β−(1+i)γ)

αt
2 + t

4 (−(1+i)β+(−1+i)γ)
β+γ

2

]
to get Γ1(1,1,1) = I, Γ1(1, i ,−i) = Wt , Γ1(1,−i , i) = W ∗

t .

This, to describe the operator system

OSy (Wt ) = span {I,Wt ,W ∗
t } =

{[
α γt
βt α

]
: α, β, γ ∈ C

}
.

Is there a better, explicit invariant? We still don’t know.
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Operator Systems Generated by Unitaries
Consider unitaries U ∈ B(H1),V ∈ B(H2). When is
OSy (U) ' OSy (V )?

OSy (U) ⊂ C∗(U) ' C(σ(U)).

But U being a unitary makes every irrep a boundary representation.
Indeed, if π : C∗(U)→ C is an irrep and ψ : C∗(U)→ C is ucp with
ψ(U) = π(U), then

I = π(U)∗π(U) = ψ(U)∗ψ(U) ≤ ψ(U∗U) = ψ(I) = I.

So U is in the multiplicative domain of ψ, and ψ = π on C∗(U), and So
C∗e (U) = C∗(U) = C(σ(U)).

Now, OSy (U) ' OSy (V ) =⇒ C∗e (U) ' C∗e (V ) =⇒ σ(U) ' σ(V ).

Is this condition sufficient?
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Isomorphism of Operator Systems generated by
unitaries

Theorem (A.-Coskey-Kalantar-Kennedy-Lupini-Sabok, 2014)
Let U,V be unitaries with |σ(U)| = |σ(V )| ≤ 3. Then
OSy (U) ' OSy (V ).

Theorem (A.-Coskey-Kalantar-Kennedy-Lupini-Sabok, 2014)
Let U,V be unitaries with |σ(U)| = |σ(V )| ≥ 5. TFSAE:

1 OSy (U) ' OSy (V )

2 σ(U) and σ(V ) are homeomorphic via a rigid motion of the circle.

So for unitaries with finite spectrum of at least 5 points, the distance
between eigenvalues is an invariant of the corresponding operator
systems.
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Unitaries with 4-point spectrum
What about |σ(U)| = 4?

Let

U =


1 0 0 0
0 −1 0 0
0 0 i 0
0 0 0 −i

 , V =


1 0 0 0
0 1+i√

2
0 0

0 0 i 0
0 0 0 −1

 , W =
1
2

U +i
√

3
2

U∗.

Then C∗e (U) = C∗e (V ) = C∗e (W ) = C4.

More rigidity than the case of |σ(U)| ≤ 3, but less than |σ(U)| ≥ 5:

Proposition (ACKKLS 2014, A. 2015)
1 OSy (U) 6' OSy (V ).
2 OSy (U) = OSy (W ), but σ(W ) is not a rigid deformation of σ(U).
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Thank you!
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