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Subnormality

An operator N in # is said to be normal iff N is closed, densely defined and
NN* = N*N.

An operator Ain H is subnormal if A is densely defined and there exists a Hilbert
space K and a normal operator N in K such that H C K (isometric embedding) and
Ah = Nhfor all h € D(S).

An operator Ain H is cosubnormal if A is densely defined and A* is subnormal.
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Subnormality

> The creation operator of quantum mechanics:

wm (-2

> Symmetric operators:
SC s
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Subnormality

> An operator A in H generates Stielties moment sequences iff {||A"f||?}°° . is a
Stieltjes moment sequence for every f € D>°(A)

> D(A) = Nhen D(AT)

Theorem (Lambert)

A bounded operator A on H is subnormal iff A generates Stielties moment
sequences.

Theorem
If Ais a subnormal operator in #, then A generates Stieltjes moment sequences.
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Counterexamples

Theorem (Jabtonski-Jung-Stochel; B.-Jabtonski-Jung-Stochel)
There exist a non-hyponormal operator A which generates Stieltjes moment
sequences and satisfies D> (A) = H.

Theorem (Naimark)
There exist a symmetric operator A such that D(A2) = {0}.

Theorem (B.-Jabtonski-Jung-Stochel)
There exist a subnormal non-symmetric operator A such that D(A2) = {0}.
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Approaches

» Moment problem approach
» Consistency condition approach
> Inductive limits approach
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Inductive limits

A Hilbert space # is the inductive limit of {#,},cn, a sequence of Hilbert spaces, if
there are isometries

Ae:Hg = H, and AL :He—H, (k<))

such that
> AKis the identity operator on Hy,
> AT =AMoA, forall k < /< m,
> Ax=NoAl forallk <1,
> H =Upen Mt

We write H = LIM #Hp.
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Inductive limits

H = LIMHn. Let Cp, n € N, be an operator in H,. Consider the subspace

Doo = | J{Mf | 3M > k: ATf € D(Cm) for all m > M}
keN

and define the operator 1im Cp, in H by
D(1imCp) = {Akf € Doo: lim AmCmAR'f exists}

(1im Co)ef = lm AmCmATf,  Axf € D(1in Ca).

We call 1im Cp the inductive limit of {Cp}nen.
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Inductive limits

vV VVYyVYYyYy

it is flexible

it works in bounded and unbounded cases
the isometricity is optional

the inclusions Hn C Hp1 are not restrictive

it works two-ways:
» C~{Cp} ~ 1imCy~ C
» {Cy} ~ 1imCy~ C
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Composition operators in L2-spaces

> (X, o, ) is a o-finite measure space,
> ¢: X — Xis o/-measurable,
> poop~! < u, where poo=1(A) = H(¢*1(A)), Aed.

Define C,: L2(u) D D(Cy) — L2(p) by

D(Co) = {F € L5 [ If ool < o),
Cof=fop, feD(Cy)
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CO'’s with matrical symbols

> kreN
¢ — an invertible linear transformation of R*
> &, —the set of all entire functions  of the form

v

=9
’Y(Z) = Zanzn7 ze (cu
n=0

where ap, > 0forall n € Z; and a, > 0 for some k > 1
»> | .| —Hilbert norm on R*
> duy = (|| |%)dms
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CO'’s with matrical symbols

Theorem (Stochel)

(i) If v € &4 is a polynomial, then ¢ induces bounded composition operator on
L?(py) and on L3(pq /).

(i) If v € & is not a polynomial, then ¢ induces bounded composition operator on
L2(1) (resp. on [2(py ) if and only if =] < 1 (resp. ||| < 1).

Theorem (Stochel)

Let C, be bounded on L?(y). Then C, is subnormal if and only if ¢ is normal in
R, 1 1)
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CO'’s with matrical symbols

> C, is densely defined in L2(11) and in L2(q,.,)

Theorem (B.-Jabtonski-Jung-Stochel; B.-Dymek-Ptaneta)
Lety € &4. If ¢ is normal in (R, | - |), then

(i) C, is subnormalin L2(u-),

(i) Cg is cosubnormal in L2(pq,.,).
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Sketch of the proof

vVvy VY

v

7=z~ =k o azt
(CorL2(muy)) = {(Cos L2(1n) }
use the characterization of bounded CO’s with matrical symbols

use the criterion for subnormality of unbounded op-s due to Cichon, Stochel, and
Szafraniec

use the eqivalence of Cy, in L?(u,) and Cy,—1 in L?(u1/,)
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CO’s with infinite matrical symbols

> ¢: R — R is induced by an infinite matrix
2
X
> = pe = g @ pet @ ..., where dug y =e” 2dm

Theorem (B.-Ptaneta)
Let ¢ be a transformation of R induced by a matrix (¢;); jen. Let é(n)> N € N, be the
linear transformation of R" induced by the matrix (qﬁ,-j-),f’j:1. If the following conditions
are satisfied:

(i) infpen | det ¢(n)‘ >0,

(ii) foreveryj € Nthereis K € N suchthat ¢; x = 0 forall k > K,

(iil) suppe llémll < 1,
then C, is bounded on L?(ug). Moreover, C, is the limit in the strong operator topology
of {Cs,) ® In}nen-
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CO’s with infinite matrical symbols

Theorem (B.-Ptaneta)

Let ¢ be a transformation of R induced by a matrix (¢;); jen- Let én)> N € N, be the
linear transformation of R" induced by the matrix (¢;) If the following conditions
are satisfied:

n
=1

(i) forevery ne N, ¢ is invertible,
(ii) foreveryj € Nthereis K € N such that ¢; x = 0 forall k > K,
(iii) there exists € > 0 such that

detg 1| exp 5 (1 - 112 — _1~2}
{leetail-em 2 (112 1ogy01) |

is uniformly in L'+€ (1)

then C, is densely defined operator in L?(c) and Cy = 1im Comy-
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Sketch of the proofs

> [%(uc) = LIML%(uc,n), With dug,n = (\/217,, exp(— X1+ 5L 2)dmn
> (CorlP(ue)  ~  {(Copys L2lucm)

> lim C%) has “nice” properties

>

compare Lim Cy , with Cy

P. Budzynski Subnormality of unbounded operators via i



Weighted shifts on directed trees

7 = (V, E) —directed tree,

par(u) ={v e V: (v,u) € E} —parentof u € V,
Chi(u) ={v e V: (u,v) € E} —childrenof u € V,
root — the root of 7 (provided it exists),

Ve = V\ {root},

vyVvyvYyVvyy

> par(2) =1, par(3) = par(3) = 2,

> Chi(2) = {3,4}, Chi(3) = Chi(4) = 2,
> root=1,

> Ve ={(23,4},
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WS'’s on directed trees

> A={M}veve

Define Sy =: £2(V) C D(SA) — £2(V) by

D(Sx) = {f € P(V): Az fe P(V)},
S)J:/lgf7 fED(S)\),

where

(Ao h)(v) = {3 Hpart)) v Ve,
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WS'’s on directed trees

A A2 A3 A4

Saek = Akr16k1, KEZy.

If ey € D(Sx), with ey = x4y, then

Sxeu= > Avev.
veChi(u)
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WS'’s on directed trees

Theorem (B.-Jabtonski-Jung-Stochel)

Let Sy be a weighted shift on a directed tree .7 = (V, E) with weights A = {A\v},cvo
such that &y := {ev: v € V} C D>°(S,). If there exist a family {yv },cy of Borel
probability measures on R and a family {ev},cv C R4 satisfying the consistency
condition:

]
plo)= > |)\V|2/ chv(dt) +eudo(o), o € B(Ry), UEV,
veChi(u) c

then S, is subnormal.
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Sketch of the proof

v

A A
S;w are bounded and satisfy the consistency condition

(S, (V) ~ {(SNH),ZZ(V))}

use the characterization of bounded subnormal WS’s on directed trees through
the consistency condition

» use the criterion for subnormality due to Clchon, Stochel, ans Szafraniec

v

v

v
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