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Subnormality

An operator N in H is said to be normal iff N is closed, densely defined and
NN∗ = N∗N.

An operator A in H is subnormal if A is densely defined and there exists a Hilbert
space K and a normal operator N in K such that H ⊆ K (isometric embedding) and
Ah = Nh for all h ∈ D(S).

An operator A in H is cosubnormal if A is densely defined and A∗ is subnormal.
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Subnormality

I The creation operator of quantum mechanics:

a+ =
1
√

2

(
x −

d
dx

)
.

I Symmetric operators:
S ⊆ S∗.
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Subnormality

I An operator A in H generates Stieltjes moment sequences iff {‖Anf‖2}∞n=0 is a
Stieltjes moment sequence for every f ∈ D∞(A)

I D∞(A) :=
⋂

n∈N D(An)

Theorem (Lambert)
A bounded operator A on H is subnormal iff A generates Stieltjes moment
sequences.

Theorem
If A is a subnormal operator in H, then A generates Stieltjes moment sequences.
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Counterexamples

Theorem (Jabłoński-Jung-Stochel; B.-Jabłoński-Jung-Stochel)
There exist a non-hyponormal operator A which generates Stieltjes moment
sequences and satisfies D∞(A) = H.

Theorem (Naimark)
There exist a symmetric operator A such that D(A2) = {0}.

Theorem (B.-Jabłoński-Jung-Stochel)
There exist a subnormal non-symmetric operator A such that D(A2) = {0}.
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Approaches

I Moment problem approach
I Consistency condition approach
I Inductive limits approach
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Inductive limits

A Hilbert space H is the inductive limit of {Hn}n∈N, a sequence of Hilbert spaces, if
there are isometries

Λk : Hk →H, and Λl
k : Hk →Hl , (k 6 l)

such that
I Λk

k is the identity operator on Hk ,

I Λm
k = Λm

l ◦ Λl
k for all k 6 l 6 m,

I Λk = Λl ◦ Λl
k for all k 6 l ,

I H =
⋃

n∈N ΛnHn.

We write H = LIMHn.
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Inductive limits

H = LIMHn. Let Cn, n ∈ N, be an operator in Hn. Consider the subspace

D∞ =
⋃

k∈N
{Λk f | ∃M > k : Λm

k f ∈ D(Cm) for all m > M}

and define the operator limCn in H by

D(limCn) = {Λk f ∈ D∞ : lim
m→∞

ΛmCmΛm
k f exists}

(limCn)Λk f = lim
m→∞

ΛmCmΛm
k f , Λk f ∈ D(limCn).

We call limCn the inductive limit of {Cn}n∈N.
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Inductive limits

I it is flexible
I it works in bounded and unbounded cases
I the isometricity is optional
I the inclusions Hn ⊆ Hn+1 are not restrictive

I it works two-ways:

I C  {Cn} limCn  C
I {Cn} limCn  C
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Composition operators in L2-spaces

I (X ,A , µ) is a σ-finite measure space,
I φ : X → X is A -measurable,
I µ ◦ φ−1 � µ, where µ ◦ φ−1(∆) := µ

(
φ−1(∆)

)
, ∆ ∈ A .

Define Cφ : L2(µ) ⊇ D(Cφ)→ L2(µ) by

D(Cφ) = {f ∈ L2(µ) :

∫
|f ◦ φ|2dµ <∞},

Cφf = f ◦ φ, f ∈ D(Cφ).
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CO’s with matrical symbols

I κ ∈ N
I φ – an invertible linear transformation of Rκ

I E+ – the set of all entire functions γ of the form

γ(z) =
∞∑

n=0

anzn, z ∈ C,

where an > 0 for all n ∈ Z+ and ak > 0 for some k > 1
I | · | – Hilbert norm on Rκ

I dµγ = γ(‖ · ‖2)dmκ
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CO’s with matrical symbols

Theorem (Stochel)

(i) If γ ∈ E+ is a polynomial, then φ induces bounded composition operator on
L2(µγ) and on L2(µ1/γ).

(ii) If γ ∈ E+ is not a polynomial, then φ induces bounded composition operator on
L2(µγ) (resp. on L2(µ1/γ)) if and only if ‖φ−1‖ 6 1 (resp. ‖φ‖ 6 1).

Theorem (Stochel)
Let Cφ be bounded on L2(µγ). Then Cφ is subnormal if and only if φ is normal in
(Rκ, | · |).
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CO’s with matrical symbols

I Cφ is densely defined in L2(µγ) and in L2(µ1/γ)

Theorem (B.-Jabłoński-Jung-Stochel; B.-Dymek-Płaneta)
Let γ ∈ E+. If φ is normal in (Rκ, | · |), then

(i) Cφ is subnormal in L2(µγ),

(ii) Cφ is cosubnormal in L2(µ1/γ).
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Sketch of the proof

I γ =
∑∞

k=0 ak zk  γn =
∑n

k=0 ak zk

I
(
Cφ, L2(muγ)

)
 

{(
Cφ, L2(µγn )

)}
I use the characterization of bounded CO’s with matrical symbols
I use the criterion for subnormality of unbounded op-s due to Cichoń, Stochel, and

Szafraniec
I use the eqivalence of Cφ in L2(µγ) and Cφ−1 in L2(µ1/γ)
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CO’s with infinite matrical symbols

I φ : R∞ → R∞ is induced by an infinite matrix

I µ = µG = µG,1 ⊗ µG,1 ⊗ . . ., where dµG,1 = e−
x2
2 dm

Theorem (B.-Płaneta)
Let φ be a transformation of R∞ induced by a matrix (φij )i,j∈N. Let φ(n), n ∈ N, be the
linear transformation of Rn induced by the matrix (φij )

n
i,j=1. If the following conditions

are satisfied:

(i) infn∈N | detφ(n)| > 0,

(ii) for every j ∈ N there is K ∈ N such that φj,k = 0 for all k > K ,

(iii) supn∈N ‖φ(n)‖ 6 1,

then Cφ is bounded on L2(µG). Moreover, Cφ is the limit in the strong operator topology
of {Cφ(n)

⊗ In}n∈N.
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CO’s with infinite matrical symbols

Theorem (B.-Płaneta)
Let φ be a transformation of R∞ induced by a matrix (φij )i,j∈N. Let φ(n), n ∈ N, be the
linear transformation of Rn induced by the matrix (φij )

n
i,j=1. If the following conditions

are satisfied:

(i) for every n ∈ N, φ(n) is invertible,

(ii) for every j ∈ N there is K ∈ N such that φj,k = 0 for all k > K ,

(iii) there exists ε > 0 such that{∣∣ detφ−1
(n)

∣∣ · exp 1
2

(
‖ · ‖2 − ‖φ−1

(n)
(·)‖2

)}
n∈N

is uniformly in L1+ε(µG)

then Cφ is densely defined operator in L2(µG) and Cφ = limCφ(n)
.
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Sketch of the proofs

I L2(µG) = LIM L2(µG,n), with dµG,n = 1
(
√

2π)n exp(− x2
1 +...+x2

n
2 )dmn

I
(
Cφ, L2(µG)

)
 

{(
Cφ(n)

, L2(µG,n)
)}

I limCφ(n)
has “nice” properties

I compare limCφ(n)
with Cφ
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Weighted shifts on directed trees

I T = (V ,E) – directed tree,
I par(u) = {v ∈ V : (v , u) ∈ E} – parent of u ∈ V ,
I Chi(u) = {v ∈ V : (u, v) ∈ E} – children of u ∈ V ,
I root – the root of T (provided it exists),
I V◦ = V \ {root},

4

3

21

I par(2) = 1, par(3) = par(3) = 2,
I Chi(2) = {3, 4}, Chi(3) = Chi(4) = ∅,
I root = 1,
I V◦ = {2, 3, 4},
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WS’s on directed trees

I λ = {λv}v∈V◦

Define Sλ =: `2(V ) ⊆ D(Sλ)→ `2(V ) by

D(Sλ) = {f ∈ `2(V ) : ΛT f ∈ `2(V )},
Sλf = ΛT f , f ∈ D(Sλ),

where

(ΛT f )(v) =

{
λv · f

(
par(v)

)
if v ∈ V◦,

0 if v = root.
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WS’s on directed trees

0 1 2 3 . . .

λ1 λ2 λ3 λ4

Sλek = λk+1ek+1, k ∈ Z+.

If eu ∈ D(Sλ), with eu = χ{u}, then

Sλeu =
∑

v∈Chi(u)

λv ev .
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WS’s on directed trees

Theorem (B.-Jabłoński-Jung-Stochel)
Let Sλ be a weighted shift on a directed tree T = (V ,E) with weights λ = {λv}v∈V◦

such that EV := {ev : v ∈ V} ⊆ D∞(Sλ). If there exist a family {µv}v∈V of Borel
probability measures on R+ and a family {εv}v∈V ⊆ R+ satisfying the consistency
condition:

µu(σ) =
∑

v∈Chi(u)

|λv |2
∫
σ

1
t
µv (dt) + εuδ0(σ), σ ∈ B(R+), u ∈ V ,

then Sλ is subnormal.
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Sketch of the proof

I λ  λ(n)

I Sλ(n)
are bounded and satisfy the consistency condition

I
(
Sλ, `

2(V )
)
 

{(
Sλ(n)

, `2(V )
)}

I use the characterization of bounded subnormal WS’s on directed trees through
the consistency condition

I use the criterion for subnormality due to CIchoń, Stochel, ans Szafraniec
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