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How do we represent the following sequences?

β(4) :
{
βij
}

= {5,5,14,5,14,50} (0 ≤ i + j ≤ 2)

=⇒ β00 = 2 · (10)(10) + 3 · (10)(40) = 5
=⇒ β10 = 2 · (11)(10) + 3 · (11)(40) = 14
=⇒ β01 = 2 · (10)(11) + 3 · (10)(41) = 5
=⇒ β20 = 2 · (12)(10) + 3 · (12)(40) = 14
=⇒ β11 = 2 · (11)(11) + 3 · (11)(41) = 5
=⇒ β02 = 2 · (10)(12) + 3 · (10)(42) = 50

Thus, we can find a formula:

βij = 2 · (1i)(1j) + 3 · (1i)(4j) =

∫
x iy jdµ,

where µ = 2 δ(1,1) + 3 δ(1,4).
This is an example of a 222-dimensional moment problem.

The coefficients 2 and 3 are densities and the two points (1,2) and
(1,4) are atoms of the representing measure µ.
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Full Moment Problem and a Solution
The full moment problem is to find a representing measure for an
infinite moment sequence β := {βk}k≥0 such that βk =

∫
xk dµ.

According to the location of the support of the measure,

supp µ ⊆ [a,b] (Hausdorff MP) supp µ ⊆ R (Hamburger MP)
supp µ ⊆ [0,∞) (Stieltjes MP) supp µ ⊆ T (Toeplitz MP)

Theorem (Stieltjes, 1924)

∃ rep. meas. µ for {βk}∞k=0 s.t. βk =
∫

xk dµ, supp µ ∈ [0,∞)

⇐⇒


β0 β1 · · · βn
β1 β2 · · · βn+1

β2 · · · · · ·
...

...
...

...
...

βn βn+1 · · · β2n

 ≥ 0,


β1 β2 · · · βn+1
β2 β3 · · · βn+2

β3 · · · · · ·
...

...
...

...
...

βn+1 βn+2 · · · β2n+1

 ≥ 0

for all n ≥ 0.

Roughly speaking, positivity is a solution for FMP but not for TMP.
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Truncated Complex Moment Problems

Given a doubly indexed finite sequence of real numbers, truncated
real moment sequence (of order m), β ≡ β(m) = {β00, β10, β01, · · · ,
βm,0, βm−1,1, · · · , β1,m−1, β0,m} with β00 > 0, the truncated real moment
problem (TRMP) entails seeking necessary and sufficient conditions
for the existence of a positive Borel measure µ supported in the real
plane R2 such that

βij =

∫
x iy j dµ (i , j ∈ Z+, 0 ≤ i + j ≤ m).

We call µ a representing measure for β; if a moment sequence has
such a measure, then we say the problem is soluble and the
necessary and sufficient conditions are referred to as a solution.
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Truncated Real Moment Problems

We may also consider a problem in complex version and it is defined
as follows: given a collection of complex numbers
γ ≡ γ(m) : γ00, γ01, γ10, · · · , γ0,2m, γ1,m−1, · · · , γm−1,1, γm,0, with γ00 > 0
and γji = γ̄ij , the truncated complex moment problem (TCMP)
consists of finding a positive Borel measure µ supported in the
complex plane C such that γij =

∫
z̄ iz j dµ (0 ≤ i + j ≤ m).

It is well-known that TRMP are TCMP are equivalent for an even m,
and hence any techniques developed for a solution to TCMP are
transferable to TRMP. Both problems are simply referred to as the
truncated moment problem (TMP).
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Even Order Moment Problems

When m = 2n, R. Curto and L. Fialkow have made a great contribution
to various moment problems in a series of papers (complete solutions
were found for m = 2,4; see [1, 2, 5].)

They have introduced an approach based on matrix positivity and
extension, combined with a new “functional calculus” for the columns
of the associated moment matrix. We label the columns in the
moment matrix:

Complex: 1,Z , Z̄ ,Z 2, Z̄Z , Z̄ 2,Z n, Z̄Z n−1, . . . , Z̄ n;

Real: 1,X ,Y ,X 2,XY ,Y 2,X n,X n−1Y , . . . , Ȳ n;
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Moment Matrices

For a moment sequence β(2n) of even order, the moment matrix is
defined as

Complex case: M(n)(γ(2n)) := (γp̂+̂̄q)p,q∈C[Z ,Z̄ ]: deg p,deg q≤n

Real case: M(n)(β(2n)) := (β i+j) i, j∈Z2
+: |i|,|j|≤n.

M(3)(γ) (Block Toeplitz) MR(3) (Block Hankel)
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Odd Order Moment Problems

When m = 2n + 1, a general solution to some cases can be found in
[6] and [8] together with a solution to the truncated matrix moment
problem; a solution to the cubic complex moment problem (when
m = 3) was given in [6]. In this note, we present an alternative solution
to the “nonsingular” cubic complex moment sequence with anticipation
that this work could contribute to pursue higher order problems.
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Another Definition of TRMP

C.Bayer and J. Teichmann proved if a moment sequence admits one or
more representing measures, one of them must be finitely atomic.

Thus, if a real sequence β(2n) = {β00, β10, β01, . . . , β2n,0, . . . , β0,2n} has
a representing measure, then it can be finitely atomic, that is, we may
write

µ :=
∑̀
k=1

ρkδwk ,

where ` ≤ dimP2n (P2n is the set of two variable polynomials whose
degree ≤ 2n.)

We try to find positive numbers ρ1, . . . , . . . , ρk called densities and
points (x1, y1), . . . , (xk , yk ) called atoms of the measure such that

βij = ρ1x i
1y j

1 + · · ·+ ρkx i
ky j

k =

∫
x iy jdµ 0 ≤ i + j ≤ n.
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List of Necessary Conditions

Positivity (positive semidefinite): M(n) ≥ 0
(Use the nested determinant test or eigenvalues)

Recursively Generated:
p,q,pq ∈ Pn, p(X ,Y ) = 0 =⇒ (pq)(X ,Y ) = 0.

Variety Condition: rank M(n) ≤ cardV(M(n))
(Algebraic variety: V ≡ V(M(n)) = ∩p(X ,Y )=0Z(p),
where Z(p) is the zero set of the polynomial p(x , y) = 0.)

Note. In the presence of a measure µ, the following must be true:

supp µ ⊆ V.
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(RG)-property.

Example
Consider a recursively generated M(2) with a column relation X = 1:

1 X Y X 2 XY Y 2

β00 β10 β01 β20 β11 β02
β10 β20 β11 β30 β21 β12
β01 β11 β02 β21 β12 β03
β20 β30 β21 β40 β31 β22
β11 β21 β12 β31 β22 β13
β02 β12 β03 β22 β13 β04


To have a representing measure, M(2) must have additional column
relations:

X 2 = 1, XY = Y .
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Variety Condition r ≤ v
Example. Consider a complex moment matrix M(3)

224 0 0 176i 208 −176i 0 0 0 0
0 208 −176i 0 0 0 196i 236 −196i −92
0 176i 208 0 0 0 −92 196i 236 −196i

−176i 0 0 236 −196i −92 0 0 0 0
208 0 0 196i 236 −196i 0 0 0 0
176i 0 0 −92 196i 236 0 0 0 0

0 −196i −92 0 0 0 277 −227i −97 −61i
0 236 −196i 0 0 0 227i 277 −227i −97
0 196i 236 0 0 0 −97 227i 277 −227i
0 −92 196i 0 0 0 61i −97 227i 277



M(3) is positive semidefinite and has three column relations

q7(z, z̄) = z3−2iz−(5/4)z̄ = 0, qLC(z, z̄) := (z̄+iz) (z̄z − (5/4)) = 0,

and q̄7(z, z̄) = 0. Now solve the system of polynomials Re q7 = 0,
Im q7 = 0, Re qLC = 0, Im qLC = 0; there are 7 zeros to the system.
Thus, we see that rank M(3) = v = 7.
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Main Approaches to TMP

Rank-preserving Positive Moment Matrix Extension;
(Need to define proper higher order moments)

Positive Extension of Riesz Functional;
(Need to define proper higher order moments)

Consistency for Extremal Cases;
(Need to find a representation theorem for certain polynomials)

Rank-one Decomposition.
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Flat Extension Theorem
The extension M(n) of M(n − 1) is said to be flat if rank M(n − 1)
= rank M(n); (this case subsumes all previous results for the
Hamburger, Stieltjes, Hausdorff, and Toeplitz TMP’s.)

Theorem (RC-L. Fialkow, Mem. AMS, 1996)

If β(2n) has a rank M(n)-atomic representing measure if and only if
M(n) ≥ 0 and M(n) admits a flat extension M(n + 1).

To build a flat extension moment matrix

M(n + 1) =

[
M(n) B(n + 1)

B(n + 1)∗ C(n + 1)

]
,

we need to allow new moment βn,0, βn−1,1, . . . , β0,n with keeping
recursiveness and then check if C(n + 1) is Hankel.
For example, if M(1) has a column relation X = 1, then M(2) must
have the column relations X 2 = X and XY = Y ; thus,

[
M(1) B(2)

]
=

 β00 β10 β01 β20 β11 β02
β10 β20 β11 β30 β21 β12
β01 β11 β02 β21 β12 β03


Note that the only new moment is β03.
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How to Find a Measure Explicitly
Positivity of Block Matrices (Tool to find an Extension).

Theorem (Smul’jan, 1959)

Ã :=

(
A B
B∗ C

)
≥ 0 ⇐⇒


A ≥ 0

B = AW
C ≥W ∗AW

.

Moreover, rank Ã =rank A ⇐⇒ C = W ∗AW .

How to Find Densities.
Let r be the rank of M(n) and let V = {(x1, y1), . . . , (xv , yv )} be the
algebraic variety of M(n). Also, denote the Vandermonde matrix V as

V =

1 x1 y1 x2
1 x1y1 y2

1 · · · xn
1 · · · yn

1
...

...
...

...
...

...
...

...
...

...
1 xv yv x2

v xv yv y2
v · · · xn

v · · · yn
v


If M(n) admits a flat extension M(n + 1), then the moment sequence
has r -atomic representing measure and all the points in V serve as
atoms of the measure. If B is the basis for the column space of M(n)
and if VB is the submatrix of V with columns in B. Then we can find the
densities by solving:

V T
B
(
ρ1 ρ2 · · · ρr

)T
=
(
β10 β20 · · · βr0

)T
.
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The Quadratic Moment Problem: M(1)

Recall M(1) =

γ00 γ10 γ01
γ01 γ11 γ20
γ10 γ02 γ11

.

Theorem (RC-L. Fialkow, 1996)
γ : γ00, γ01, γ10, γ02, γ11, γ20; r := rank M(1). Then TFAE:

γ has a rep. meas.;
γ has an r-atomic rep. meas.;
M(1) ≥ 0.

In this case,
• r = 1=⇒∃ a unique rep. meas.;
• r = 2=⇒∃ 2-atomic rep. meas. parameterized by a line;
• r = 3=⇒∃ 3-atomic rep. meas. contain a sub-param. by a circle.
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Example

Example. Revisit the example at the beginning:

β(4) :
{
βij
}

= {5,5,14,5,14,50} =⇒ M(1) =

 5 5 14
5 5 14

14 14 50


Note that M(1) has a column relation X = 1.
To build a flat M(2), we impose on M(2) to have X 2 = 1 and XY = 1:

[
M(1) B(2)

]
=

 5 5 14 5 14 50
5 5 14 5 14 50

14 14 50 14 50 β03


We now find W such that M(1)W = B(2) and get, for k1, k2, k3 ∈ R,

W =

1− k1 −k2 (−7β03 − 27 k3 + 1250)/27
k1 k2 k3
0 1 (5β03 − 700)/54

 .
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Example (Continued)
We then evaluate C(2) = W ∗M(1)W and get

5 5 14 5 14 50
5 5 14 5 14 50

14 14 50 14 50 β03
5 5 14 5 14 50

14 14 50 14 50 β03
50 50 β03 50 β03 5(s032 − 280β03 + 25000)/54


The column relations in M(2) are X = 1,X 2 = 1,XY = Y , and

Y 2 =
−7β03 − 27k + 1250

27
1 + kX +

(5β03 − 700)

54
Y

for some k ∈ R. If we take β03 = 194, then the algebraic variety
V = {(1,1), (1,4)}.
If we take β03 = 194, then the algebraic variety V = {(1,1), (1,4)}.
To find the densities, solve the Vandermonde equation:[

1 1
y1 y2

] [
ρ1
ρ2

]
=

[
β00
β01

]
=⇒

[
1 1
1 4

] [
ρ1
ρ2

]
=

[
5
14

]
.

Thus, we get ρ1 = 2 and ρ2 = 3 and a representing measure is
µ = 2 δ(1,1) + 3 δ(1,4).
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Invariance under a Degree-one Transformation
For a,b, c,d ,e, f ∈ R with bf 6= ce, let
Ψ(x , y) ≡ (Ψ1(x , y),Ψ2(x , y)) := (a + bx + cy ,d + ex + fy) for x , y ∈ R.
We now can build a new equivalent moment sequence β̃(2n) :

{
β̃ij

}
with the definition β̃ij := Lβ(Ψi

1Ψj
2) (0 ≤ i + j ≤ 2n). We can

immediately check that Lβ̃(p) = Lβ(p ◦Ψ) for every p ∈ Pn.

Proposition
[2, cf. Proposition 1.7] (Invariance under degree-one transformations.)
LetM(n) and M̃(n) be the moment matrices associated with γ and β̃,
and let Jp̂ := p̂ ◦Ψ (p ∈ Pn). Then the following are true:

(i) M̃(n) = J∗M(n)J;
(ii) M̃(n) ≥ 0 ⇐⇒ M(n) ≥ 0;
(iii) rank M̃(n) = rank M(n);
(iv) M (n) admits a flat extension if and only if M̃ (n) admits a flat

extension.
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Singular Quartic Moment Problem

Consider a quartic moment sequence γ : γ00, γ01, . . . , γ04, . . . , γ40.
Note that if a singular M(2)(γ) with a conic column relation p(Z , Z̄ ) = 0
has a measure µ, then supp µ ⊆ Z(p).
Via the equivalence of TMP under degree-one transformations, one
can reduce the study to cases corresponding to the following four real
conics:

(a)W̄ 2 = −2iW + 2iW̄ −W 2 − 2W̄W parabola: y = x2

(b)W̄ 2 = −4i1 + W 2 hyperbola: yx = 1
(c)W̄ 2 = W 2 pair of intersect. lines: yx = 0
(d)W̄W = 1 unit circle: x2 + y2 = 1;
(e)(W + W̄ )(W + W̄ − 2) = 0 pair of parallel lines: x(x − 1) = 0.

Using the Flat Extension Theorem, we know all the cases except (c)
have a flat extension M(3), and so admit a rank M(2)-atomic
(5-atomic) measure.
However, (c) may allow a 6-atomic measure.
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Nonsingular Quartic Moment Problem: M(2)

Theorem (L. Fialkow-J. Nie, JFA, 2009)
If M(2)(β) > 0, then β has a representing measure.

Proof. Based on convex analysis of a positive linear functional.

Theorem (R. Curto-S. Yoo, cond. to appear in PAMS)
If M(2)(β) > 0, then β has a 6-atomic representing measure.

Proof. Based on Rank-one decomposition.
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More General Solutions to TMP

(i) The column Z̄ is a linear combination of the columns 1 and Z ;
(ii) For some k ≤ [n/2] + 1, the analytic column Z k is a linear

combination of columns corresponding to monomials of lower
degree;

(iii) The analytic columns of M(n) are linearly dependent and span
CM(n), the column space of M(n);

(iv) M(n) is extremal (rank M(n) = card V, where V is the algebraic
variety of the moment sequence) and consistent;

(v) M(n) is recursively determinate, that is, if M(n) has only column
dependence relations of the form

X n = p(X ,Y ) (p ∈ Pn−1);

Y m = q(X ,Y ) (q ∈ Pm, q has no ym term, m ≤ n),

where Pk denotes the subspace of polynomials in R[x , y ] whose
degree is less than or equal to k .
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NormalizedM(1)
We need to have a “normalized”M(2), that is, whoseM(1) is the
identity matrix. Without loss of generality, we may assume β00 = 1. Let
di denote the leading principal minors ofM(2). In particular,

d2 = −β2
10 + β20

d3 = −β02β
2
10 + 2β01β10β11 − β2

11 − β2
01β20 + β02β20.

Choose a degree one transformation:

Ψ(x , y) = (a + bx + cy ,d + ex + fy) ,

where a = β01β20−β10β11√
d2d3

, b = β11−β01β10√
d2d3

, c = −
√

d2
d3

, d = − β10√
d2

,

e = 1√
d2

, and f = 0. Note that bf − ce = −
√

1
d3
6= 0. Through this

transformation, any positive semidefiniteM(2) with a nonsingular
M(1) can be translated to

1 0 0 β̃20 β̃11 β̃02
0 1 0 β̃30 β̃21 β̃12
0 0 1 β̃21 β̃12 β̃03
β̃20 β̃30 β̃21 β̃40 β̃31 β̃22
β̃11 β̃21 β̃12 β̃31 β̃22 β̃13
β̃02 β̃12 β̃03 β̃22 β̃13 β̃04


.
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Recursively Determinate Moment Problems.

M(n) is recursively determinate, that is, ifM(n) has only column
dependence relations of the form

X n = p(X ,Y ) (p ∈ Pn−1);

Y m = q(X ,Y ) (q ∈ Pm, q has no ym term, m ≤ n),

where Pk denotes the subspace of polynomials in R[x , y ] whose
degree is less than or equal to k . We may summarize the main results
in [3] as follows:

M(n) admits an flat extensionM(n + 1)
⇐⇒ M(n) is positive and recursively determinate for an
even n; additionally, it is required to check simply whether
M(n + 1) is positive or not for an odd n.
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Cubic Moment Problem

We may assume that β ≡ β(3) : {1,0,0,1,0,1,a1,a2,a3,a4} and we
may write an extension as

M(2) :=



1 0 0 1 0 1
0 1 0 a1 a2 a3
0 0 1 a2 a3 a4
1 a1 a2 β40 β31 β22
0 a2 a3 β31 β22 β13
1 a3 a4 β22 β13 β04

 , (1)

where β40, β31, β22, β13, and β04 are undetermined new moments. We
refer β(3) with an invertibleM(1) as a nonsingular cubic moment
sequence. Our strategy is to show that an extended sequence β(4) of
β(3) admits a flat extension so that both sequences has a 4-atomic
representing measure.
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Cubic Moment Problem (Part 1)

Using the Smul’jan’s Theorem, we compute whenM(2) is flat. Indeed,
if we take W := B(2), then C(2) = W TM(1)W is 1 + a2

1 + a2
2 a1a2 + a2a3 1 + a1a3 + a2a4

a1a2 + a2a3 a2
2 + a2

3 a2a3 + a3a4
1 + a1a3 + a2a4 a2a3 + a3a4 1 + a2

3 + a2
4

 (2)

Consequently,M(2) is a flat extension ofM(1) if and only if
1 + a1a3 + a2a4 − a2

2 − a2
3 = 0, which is equivalent to the commutativity

of the matrices defined in [7]. If it is the case, then sinceM(2) has a
unique 3-atomic representing measure, β(3) has a minimal 3-atomic
measure. For the coming references, let k := 1 + a1a3 + a2a4−a2

2−a2
3.

We proved the following theorem just now:

Theorem
IfM(1) of β(3) : {1,0,0,1,0,1,a1,a2,a3,a4} is positive definite and
k = 0, then β(3) admits a 3-atomic representing measure.
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Part 2

Theorem
IfM(1) of β(3) : {1,0,0,1,0,1,a1,a2,a3,a4} is positive definite and
k 6= 0, then β(3) admits a 4-atomic representing measure.

Proof. Our strategy is to show β(3) can be extended to a β(4) whose
M(2) admits a flat extension.
Case 1. k > 0
The calculation of C(2) in (2) promotes us to select

β40 := 1 + a2
1 + a2

2, β31 := a1a2 + a2a3,

β22 := 1 + a1a3 + a2a4, β13 := a2a3 + a3a4,

β04 := 1 + a2
3 + a2

4.

For positivity ofM(2), we need β22 to be positive, which follows from

k > 0 =⇒ 1 + a1a3 + a2a4 > a2
2 + a2

3 ≥ 0. (3)

=⇒ rank M(2) = 4 with X 2 = 1 + a1X + a2Y and Y 2 = 1 + a3X + a4Y .
=⇒ Nested determinants of the compression ofM(2): 1,1,1, and k .
=⇒M(2) is positive semidefinite and recursively determinate.
=⇒M(2) has a 4-atomic measure, so does β(3).
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Proof (Continued)
Case 2. k < 0
With a similar reason, let

β31 := a1a2 + a2a3, β22 := a2
2 + a2

3, β13 := a2a3 + a3a4.

In order for positivity ofM(2) and to have rank M(2) = 4, set

β40 := 2 + a2
1 + a2

2

β04 := 2 + a4
2 + 2a1a3 + a2

1a2
3 + 2a2

2a2
3 + a4

3 + 2a2a4 + 2a1a2a3a4 + a2
4 + a2

2a2
4

−2a2
2 − 2a1a2

2a3 − a2
3 − 2a1a3

3 − 2a3
2a4 − 2a2a2

3a4

so that the two columns XY and Y 2 inM(2) are linearly dependent.
Claim. β04 > 0 forM(2) ≥ 0.
Note that if a function f ∈ P2d is a sum of squares if and only if
f = zT Qz for some Q ≥ 0, where z is a vector of monomials of degree
less than or equal to d . The semidefinite program for β04 has a
following solution:

β04 = zT



2 0 0 −1 −1 1 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
−1 0 0 1 1 −1 −1
−1 0 0 1 1 −1 −1
1 0 0 −1 −1 1 1
1 0 0 −1 −1 1 1


z (4)

where z = (1,a3,a4,a2
2,a

2
3,a1a3,a2a4)T . Due to positivity of the matrix

in the above, we know that β04 > 0.
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Proof (Continued)
Since all the nested determinants of the compression ofM(2) are 1
and both β40 and β04 are positive, it follows thatM(2) ≥ 0.
Approach 1. Show: card V(M(2)) = 4. Very difficult!
Approach 2. Translate the problem into the complex version and to
apply a previous result: Let

L :=


1 0 0 0 0 0
0 1 1 0 0 0
0 i −i 0 0 0
0 0 0 1 1 1
0 0 0 2i 0 −2i
0 0 0 −1 1 −1

 and M(2) = L∗M(2)L. (5)

Then we know rank M(2) = 4 with on column relation
Z̄Z = 21 + A(a1,a2,a3,a4)Z + B(a1,a2,a3,a4) + (k − 1)/(−k − 1)Z 2,
where A and B are some polynomials in a1,a2,a3, and a4 with complex
coefficients.
Note that the determinant of the compression of M(2) is 4(−k − 1)2,
which means −k − 1 6= 0. Since k < 0, k − 1 < 0; we know
(k − 1)/(−k − 1) 6= 0. By Theorem 3.1 in [2], M(2) has a 4-atomic
measure if and only if there is a new moment γ32 satisfying

γ32 ≡ γ̄23 = 2γ21 + Aγ22 + Bγ31 +
k − 1
−k − 1

γ23. (6)

A calculation shows this equation has a solution, and thus the proof is
complete.
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Future Study

Future Study.

Solve quintic moment problems;

Solve sextic moment problems with a single cubic column relation;

Solve nonsingular sextic moment problems;

Find more connections between the moment problem and
operator theory focusing on, e.g., subnormal completion problem
for 2-variable weighted shifts and the study of quadratic
hyponormality for unilateral weighted shifts;
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