On composition operators for which $|C_{\varphi}^2| \geq |C_{\varphi}|^2$

Sungeun Jung (Joint work with Eungil Ko)

Department of Mathematics, Hankuk University of Foreign Studies

2015 KOTAC Chungnam National University, Korea June 19, 2015

Outline

Introduction

- Class A operators
- Composition operators

2 Preliminaries

3

Main results

- General symbols
- Linear fractional symbols
- The adjoints C^*_{φ}
- The commutants

4 References

 $\mathcal H$: a complex Hilbert space

 $\mathcal{L}(\mathcal{H})$: the algebra of all bounded linear operators on \mathcal{H}

 $\sigma(\mathbf{T}) = \{\lambda \in \mathbb{C} : \mathbf{T} - \lambda \mathbf{I} \text{ is not invertible} \}$

 $\sigma_{p}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not one-to-one} \}$

Class A operators

Definition

Class A operators

Definition

An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be

• normal if $T^*T = TT^*$;

- normal if $T^*T = TT^*$;
- **2** subnormal if there are a Hilbert space \mathcal{K} containing \mathcal{H} and a normal operator N on \mathcal{K} such that $N\mathcal{H} \subset \mathcal{H}$ and $T = N|_{\mathcal{H}}$;

- normal if $T^*T = TT^*$;
- **2** subnormal if there are a Hilbert space \mathcal{K} containing \mathcal{H} and a normal operator N on \mathcal{K} such that $N\mathcal{H} \subset \mathcal{H}$ and $T = N|_{\mathcal{H}}$;
- 3 hyponormal if $T^*T \ge TT^*$.

- normal if $T^*T = TT^*$;
- **2** subnormal if there are a Hilbert space \mathcal{K} containing \mathcal{H} and a normal operator N on \mathcal{K} such that $N\mathcal{H} \subset \mathcal{H}$ and $T = N|_{\mathcal{H}}$;
- 3 hyponormal if $T^*T \ge TT^*$.
- normaloid if ||T|| = r(T) where $r(T) = \max\{|\lambda| : \lambda \in \sigma(T)\}$ is the spectral radius of *T*.

Remark

$Normal \Rightarrow Subnormal \Rightarrow Hyponormal \Rightarrow Normaloid.$

Remark

Normal \Rightarrow Subnormal \Rightarrow Hyponormal \Rightarrow Normaloid.

Definition

An operator $T \in \mathcal{L}(\mathcal{H})$ is said to belong to class *A*, denoted by $T \in \mathcal{A}$, if $|T^2| \ge |T|^2$

where $|S| := (S^*S)^{\frac{1}{2}}$.

Does every operator $\mathcal{T}\in\mathcal{L}(\mathcal{H})$ have a nontrivial invariant subspace (n.i.s)?

(i.e., \exists a closed subspace $\mathcal{M} \neq \{0\}, \mathcal{H}$ such that $T\mathcal{M} \subset \mathcal{M}$?)

Does every operator $T \in \mathcal{L}(\mathcal{H})$ have a nontrivial invariant subspace (n.i.s)?

(i.e., \exists a closed subspace $\mathcal{M} \neq \{0\}, \mathcal{H}$ such that $T\mathcal{M} \subset \mathcal{M}$?)

- S. Brown (Int. Eq. Op. Th., 1978)
 - : Subnormal operators have n.i.s.

Does every operator $T \in \mathcal{L}(\mathcal{H})$ have a nontrivial invariant subspace (n.i.s)? (i.e., \exists a closed subspace $\mathcal{M} \neq \{0\}, \mathcal{H}$ such that $T\mathcal{M} \subset \mathcal{M}$?)

- S. Brown (Int. Eq. Op. Th., 1978)
 - : Subnormal operators have n.i.s.
- S. Brown (Ann. of Math., 1987)
 - : Hyponormal operators with thick spectrum have n.i.s.

Does every operator $T \in \mathcal{L}(\mathcal{H})$ have a nontrivial invariant subspace (n.i.s)? (i.e., \exists a closed subspace $\mathcal{M} \neq \{0\}, \mathcal{H}$ such that $T\mathcal{M} \subset \mathcal{M}$?)

- S. Brown (Int. Eq. Op. Th., 1978)
 - : Subnormal operators have n.i.s.
- S. Brown (Ann. of Math., 1987)
 - : Hyponormal operators with thick spectrum have n.i.s.
- Jung-Ko-Lee (Studia Math., 2010)
 - : Class A operators with thick spectrum have n.i.s.

Class A operators

Theorem

Let T be an operator in A, which is not a scalar multiple of the identity operator, satisfying one of the following statements:

- T has a decomposable quasiaffine transform;
- 2 $\lim_{n\to\infty} \|T^n h\|^{\frac{1}{n}} < \|T\|$ for some nonzero $h \in \mathcal{H}$;
- T is weakly or N-supercyclic for some positive integer N;
- $\sigma_T(x) \subseteq \sigma(T)$ for some nonzero vector $x \in \mathcal{H}$;
- S ∃ a nonzero vector x ∈ H such that ||Tⁿx|| ≤ Crⁿ for all positive integers n, where C and r are constants with C > 0 and 0 < r < ||T||;</p>
- $\sigma(T)$ is not the closure of the union of all singleton components of $\sigma(T)$.

Then T has n.i.s.

Composition operators

 $\mathbb D$: the open unit disk in the complex plane $\mathbb C$

•
$$H^2 = \{f : \mathbb{D} \to \mathbb{C} \mid f(z) = \sum_{n=0}^{\infty} a_n z^n, \sum_{n=0}^{\infty} |a_n|^2 < \infty\}$$

The space H^2 is a Hilbert space, called the Hardy space, endowed with the inner product given by

$$\langle \sum_{n=0}^{\infty} a_n z^n, \sum_{n=0}^{\infty} b_n z^n \rangle = \sum_{n=0}^{\infty} a_n \overline{b_n}.$$

Composition operators

 $\mathbb D$: the open unit disk in the complex plane $\mathbb C$

•
$$H^2 = \{f : \mathbb{D} \to \mathbb{C} \mid f(z) = \sum_{n=0}^{\infty} a_n z^n, \sum_{n=0}^{\infty} |a_n|^2 < \infty\}$$

The space H^2 is a Hilbert space, called the Hardy space, endowed with the inner product given by

$$\langle \sum_{n=0}^{\infty} a_n z^n, \sum_{n=0}^{\infty} b_n z^n \rangle = \sum_{n=0}^{\infty} a_n \overline{b_n}.$$

• $H^{\infty} = \{ f : \mathbb{D} \to \mathbb{C} \mid f \text{ is analytic and bounded on } \mathbb{D} \}$

For an analytic self-map φ of \mathbb{D} , the operator $C_{\varphi}: H^2 \to H^2$ defined by

$$\mathcal{C}_{arphi} h = h \circ arphi, \ h \in H^2$$

is said to be a composition operator.

Composition operators

Definition

For an analytic self-map φ of \mathbb{D} , the operator $C_{\varphi}: H^2 \to H^2$ defined by

$$\mathcal{C}_{arphi} h = h \circ arphi, \ h \in H^2$$

is said to be a composition operator.

Remark

The composition operator C_{φ} is always bounded on H^2 by Littlewood subordination theorem.

Main results

Composition operators

Definition

Composition operators

Definition

() For $f \in H^{\infty}$, define the multiplication operator M_f on H^2 by

$$M_f h = fh, h \in H^2.$$

Composition operators

Definition

() For $f \in H^{\infty}$, define the multiplication operator M_f on H^2 by

$$M_f h = fh, h \in H^2.$$

Por an analytic self-map φ of D and f ∈ H[∞], the operator W_{f,φ} := M_fC_φ is said to be a weighted composition operator on H².

Example

The weighted composition operator $W_{f,\varphi}$ belongs to A where

$$f(z) = \frac{4}{-(1-a)(1+a)(3+a)z+(3+a+a^2-a^3)},$$

and

$$\varphi(z) = \frac{(1-a+3a^2+a^3)z+(1+a)(1-a)^2}{-(1-a)(1+a)(3+a)z+(3+a+a^2-a^3)}$$

with 0 < *a* < 1.

Example

The adjoint $W^*_{g,\psi}$ belongs to $\mathcal A$ where

$$g(z) = \frac{4}{(1+a)(1-a)^2 z + (3+a+a^2-a^3)}$$

and

$$\psi(z) = \frac{(1-a+3a^2+a^3)z + (1+a)(1-a)(3+a)}{(1+a)(1-a)^2z + (3+a+a^2-a^3)}$$

with 0 < *a* < 1.

Theorem (Schwartz)

Let φ be an analytic self-map of \mathbb{D} . Then C_{φ} is normal if and only if $\varphi(z) = \lambda z$ with $|\lambda| \leq 1$.

- C. C. Cowen, Linear fractional composition operators on H², Int. Eq. Op. Th. **11**(1988), 151-160.
- C. C. Cowen and T. Kriete, *Subnormality and composition operators on H*², J. Funct. Anal. **81**(1988), 298-319.
- K. W. Dennis, Co-hyponormality of composition operators on the Hardy space, Acta Sci. Math. (Szeged), 68(2002), 401-411.

Composition operators

Goal

To characterize composition operators C_{φ} in \mathcal{A} and adjoints C_{φ}^{*} in \mathcal{A} !

Let φ be an analytic self-map of \mathbb{D} . We say that $a \in \overline{\mathbb{D}}$ is a fixed point of φ if $\lim_{r \to 1^-} \varphi(ra) = a$. We write $\varphi'(a) = \lim_{r \to 1^-} \varphi'(ra)$.

In the above definition, the limit $\lim_{r\to 1^-} \varphi'(ra)$ exists if |a| < 1. Moreover, if |a| = 1, then this limit exists and $0 < \varphi'(a) \le \infty$ by Julia-Carathéodory-Wolff. An automorphism φ of \mathbb{D} is called <u>elliptic</u> if it has two fixed points such that one is inside $\partial \mathbb{D}$ and another is outside $\partial \mathbb{D}$.

Theorem (Denjoy-Wolff Theorem)

If φ is an analytic self-map of \mathbb{D} , not an elliptic automorphism, then there exists a point *a* of $\overline{\mathbb{D}}$ so that the iterates $\{\varphi_n\}$ of φ converges uniformly to *a* on compact subsets of \mathbb{D} . In addition, *a* is the unique fixed point of φ in $\overline{\mathbb{D}}$ for which $|\varphi'(a)| \leq 1$.

An automorphism φ of \mathbb{D} is called <u>elliptic</u> if it has two fixed points such that one is inside $\partial \mathbb{D}$ and another is outside $\partial \mathbb{D}$.

Theorem (Denjoy-Wolff Theorem)

If φ is an analytic self-map of \mathbb{D} , not an elliptic automorphism, then there exists a point *a* of $\overline{\mathbb{D}}$ so that the iterates $\{\varphi_n\}$ of φ converges uniformly to *a* on compact subsets of \mathbb{D} . In addition, *a* is the unique fixed point of φ in $\overline{\mathbb{D}}$ for which $|\varphi'(a)| \leq 1$.

Definition

The unique fixed point *a* in Denjoy-Wolff Theorem is called the Denjoy-Wolff point of φ .

• φ is an elliptic automorphism;

- φ is an elliptic automorphism;
- 2 φ has Denjoy-Wolff point $a \in \mathbb{D}$;

- φ is an elliptic automorphism;
- 2 φ has Denjoy-Wolff point $a \in \mathbb{D}$;
- **③** φ has Denjoy-Wolff point $a \in \partial \mathbb{D}$ with $0 < \varphi'(a) < 1$;

- φ is an elliptic automorphism;
- 2 φ has Denjoy-Wolff point $a \in \mathbb{D}$;
- **③** φ has Denjoy-Wolff point $a \in \partial \mathbb{D}$ with $0 < \varphi'(a) < 1$;
- φ has Denjoy-Wolff point $a \in \partial \mathbb{D}$ with $\varphi'(a) = 1$.

Lemma (Cowen-Kriete)

Let φ be an analytic self-map of \mathbb{D} with Denjoy-Wolff point *a*. If 0 < |a| < 1 or if |a| = 1 and $\varphi'(a) = 1$, then C_{φ} is not normaloid.

Theorem

Let φ be an analytic self-map of \mathbb{D} . If $C_{\varphi} \in \mathcal{A}$, then the following statements hold:

Theorem

Let φ be an analytic self-map of \mathbb{D} . If $C_{\varphi} \in \mathcal{A}$, then the following statements hold:

• 0 is a fixed point of φ .

Theorem

Let φ be an analytic self-map of \mathbb{D} . If $C_{\varphi} \in \mathcal{A}$, then the following statements hold:

- 0 is a fixed point of φ .
- **2** $|\varphi(z)| \le |z|$ for all $z \in \mathbb{D}$ and $|\varphi'(0)| \le 1$.

Theorem

Let φ be an analytic self-map of \mathbb{D} . If $C_{\varphi} \in \mathcal{A}$, then the following statements hold:

- 0 is a fixed point of φ .
- **2** $|\varphi(z)| \leq |z|$ for all $z \in \mathbb{D}$ and $|\varphi'(0)| \leq 1$.
- 3 If $|\varphi(z_0)| = |z_0|$ for some $z_0 \in \mathbb{D} \setminus \{0\}$ or $|\varphi'(0)| = 1$, then C_{φ} is unitary.

Example

If
$$\varphi(z) = sz + t$$
 with $s, t \neq 0$ and $|s| + |t| \leq 1$, then $C_{\varphi} \notin A$.

For a subset Δ of \mathbb{C} , let $iso(\Delta)$ denote the set of all isolated points in Δ and let $\Delta^* = \{\overline{\lambda} : \lambda \in \Delta\}$.

Theorem

Let φ be an analytic self-map of \mathbb{D} . If $C_{\varphi} \in \mathcal{A}$, then

$$\mathsf{iso}(\sigma(\mathcal{C}_{\varphi})) \subset \sigma_{\mathcal{P}}(\mathcal{C}_{\varphi}) \subset \{(\varphi'(0))^n : n = 0, 1, 2, \cdots\} \subset \sigma(\mathcal{C}_{\varphi}),$$

and

$$\sigma_{\rho}(\mathcal{C}_{\varphi})^* \subset \{\overline{(\varphi'(\mathbf{0}))^n} : n = 0, 1, 2, \cdots\} \subset \sigma_{\rho}(\mathcal{C}_{\varphi}^*).$$

Example

If
$$\varphi(z) = \frac{z}{2-z}$$
, then $C_{\varphi} \in \mathcal{A}$ and
 $\sigma_{p}(C_{\varphi}) \subsetneq \{(\varphi'(0))^{n} : n = 0, 1, 2, \cdots\}.$

We say that $T \in \mathcal{L}(\mathcal{H})$ is binormal if T^*T commutes with TT^* .

Theorem

Let φ is an analytic self-map of \mathbb{D} . Assume that $C^*_{\varphi}C_{\varphi}$ is a diagonal matrix with respect to the basis $\{z^n\}_{n=0}^{\infty}$. If

• φ is a polynomial function, or

2
$$C_{\varphi}$$
 is binormal and $\varphi'(0) \neq 0$,

then

$$C_{\varphi} \in \mathcal{A} \iff C_{\varphi}$$
 is subnormal.

Example

Let $\varphi(z) = cz^k$ where k > 1 is an integer and $|c| \le 1$. Then $C_{\varphi}^* C_{\varphi}$ is diagonal with respect to the basis $\{z^n\}_{n=0}^{\infty}$. Therefore, $C_{\varphi} \in \mathcal{A}$ if and only if C_{φ} is subnormal. Indeed,

$$C_{\varphi} \in \mathcal{A} \iff |c| = 1.$$

Theorem

Theorem

Let $\varphi(z) = \frac{z}{uz+v}$ for some $u, v \in \mathbb{C}$ with $u \neq 0$ and $|v| \ge 1 + |u|$. Then the following statements are equivalent.

• C_{φ} is subnormal.

Theorem

- C_{φ} is subnormal.
- **2** C_{φ} belongs to class *A*.

Theorem

- C_{φ} is subnormal.
- **2** C_{φ} belongs to class *A*.
- 3 C_{φ} is binormal.

Theorem

- C_{φ} is subnormal.
- **2** C_{φ} belongs to class *A*.
- **3** C_{φ} is binormal.
- v > 1 and |u| = v 1.

Linear fractional symbols

Corollary

If φ is an automorphism of \mathbb{D} (i.e., C_{φ} is invertible), then

$$C_{\varphi} \in \mathcal{A} \iff C_{\varphi}$$
 is unitary.

Linear fractional symbols

Corollary

Let φ be a linear fractional self-map of \mathbb{D} such that $C_{\varphi}^* C_{\varphi}$ has a diagonal matrix with respect to the standard basis $\{z^n\}_{n=0}^{\infty}$. Then

 $C_{\varphi} \in \mathcal{A} \iff C_{\varphi}$ is normal.

Theorem

Let φ be an analytic self-map of \mathbb{D} with Denjoy-Wolff point a. If $C_{\varphi}^* \in \mathcal{A}$, then either |a| = 1 and $0 < \varphi'(a) < 1$ or else C_{φ} is normal.

Example

If $\varphi(z) = \frac{z}{uz+v}$ with $u \neq 0$ and $|v| \ge 1 + |u|$, then $\varphi(0) = 0$ and thus $C_{\varphi}^* \notin A$.

Example

If $\varphi(z) = \frac{z}{uz+v}$ with $u \neq 0$ and $|v| \ge 1 + |u|$, then $\varphi(0) = 0$ and thus $C_{\varphi}^* \notin A$.

Example

If $\varphi(z) = \frac{(2-t)z+t}{-tz+(2+t)}$ for some complex number *t* with $\operatorname{Re}(t) \ge 0$, then $\varphi(1) = 1$ and $\varphi'(1) = 1$. Hence $C_{\varphi}^* \notin A$.

The adjoints C_{ω}^*

Corollary

Let φ be an analytic self-map of \mathbb{D} . Then

$$C_{\varphi}, C_{\varphi}^* \in \mathcal{A} \iff C_{\varphi} \text{ is normal.}$$

Theorem

Let φ be a nonconstant analytic self-map of \mathbb{D} . If $C_{\varphi}^* \in \mathcal{A}$ is injective, then φ is univalent.

Main results

The adjoints C_{α}^*

Theorem

Let $\varphi(z) = sz + t$ where $s \neq 0$ and $|s| + |t| \leq 1$. Then $C^*_{\varphi} \in \mathcal{A} \iff C^*_{\varphi}$ is subnormal.

Theorem

For 0 < s < 1 and $|r| \le 1$, let $\varphi(z) = \frac{(r+s)z+(1-s)}{r(1-s)z+(1+rs)}$ be a linear fractional self-map of \mathbb{D} with Denjoy-Wolff point 1 and $0 < \varphi'(1) = s < 1$. If $C_{\varphi}^* \in \mathcal{A}$, then $|r - \frac{1}{3}| \le \frac{2}{3}$.

For 0 < s < 1 and $-1 \le r \le 1$, let $\varphi(z) = \frac{(r+s)z+(1-s)}{r(1-s)z+(1+rs)}$ is a linear fractional self-map of \mathbb{D} with Denjoy-Wolff point 1 and $0 < \varphi'(1) = s < 1$.

$$C_{\varphi}^* \in \mathcal{A} \Longrightarrow -\frac{1}{3} \leq r \leq 1.$$

3 C_{φ}^* is hyponormal $\Longrightarrow 2 - \sqrt{5} \le r \le 1$ by Dennis.

• C^*_{φ} is subnormal $\iff 0 \le r \le 1$ by Cowen.

We expect that there maybe exist

- $r \in \left[-\frac{1}{3}, 2 \sqrt{5}\right)$ such that C_{φ}^* is a non-hyponormal operator in \mathcal{A} .
- *r* ∈ [2 − $\sqrt{5}$, 0) such that *C*^{*}_φ is hyponormal but not subnormal.

For an operator $T \in \mathcal{L}(\mathcal{H})$, define the commutant $\{T\}'$ of T as to be the collection of all operators in $\mathcal{L}(\mathcal{H})$ commuting with T.

Proposition

Let φ be an analytic self-map of \mathbb{D} such that C_{φ} is a non-normal operator in \mathcal{A} . For $f \in H^{\infty}$,

 $M_f \in \{C_{\varphi}\}' \iff f \text{ is constant on } \mathbb{D}.$

Main results

The commutants

Theorem

Suppose that φ is an analytic self-map of \mathbb{D} such that $C_{\varphi} \in \mathcal{A}$. If ψ is an analytic self-map of \mathbb{D} such that $C_{\psi} \in \{C_{\varphi}\}'$, then zH^2 is a nontrivial invariant subspace for C_{ψ} .

Suppose that φ is an analytic self-map of \mathbb{D} such that $C_{\varphi} \in \mathcal{A}$. If ψ is an analytic self-map of \mathbb{D} such that $p(C_{\psi}) \in \{C_{\varphi}\}'$ for some polynomial p of degree 2, then at least one of the following statements holds:

Suppose that φ is an analytic self-map of \mathbb{D} such that $C_{\varphi} \in \mathcal{A}$. If ψ is an analytic self-map of \mathbb{D} such that $p(C_{\psi}) \in \{C_{\varphi}\}'$ for some polynomial p of degree 2, then at least one of the following statements holds:

• zH^2 is a nontrivial invariant subspace for C_{ψ} or C_{ψ}^2 ;

Suppose that φ is an analytic self-map of \mathbb{D} such that $C_{\varphi} \in \mathcal{A}$. If ψ is an analytic self-map of \mathbb{D} such that $p(C_{\psi}) \in \{C_{\varphi}\}'$ for some polynomial p of degree 2, then at least one of the following statements holds:

• zH^2 is a nontrivial invariant subspace for C_{ψ} or C_{ψ}^2 ;

② { $f \in H^2 : f(\psi(0)) = 0$ } = { $K_{\psi(0)}$ }[⊥] is a nontrivial invariant subspace for C_{ψ} ;

Suppose that φ is an analytic self-map of \mathbb{D} such that $C_{\varphi} \in \mathcal{A}$. If ψ is an analytic self-map of \mathbb{D} such that $p(C_{\psi}) \in \{C_{\varphi}\}'$ for some polynomial p of degree 2, then at least one of the following statements holds:

• zH^2 is a nontrivial invariant subspace for C_{ψ} or C_{ψ}^2 ;

② { $f \in H^2 : f(\psi(0)) = 0$ } = { $K_{\psi(0)}$ }[⊥] is a nontrivial invariant subspace for C_{ψ} ;

3
$$\varphi(\psi(0)) \neq (\varphi \circ \psi)(\psi(0)).$$

The commutants

Remark

Suppose that φ is an analytic self-map of \mathbb{D} such that $C_{\varphi} \in \mathcal{A}$. Let ψ be an analytic self-map of \mathbb{D} such that $p(C_{\psi}) \in \{C_{\varphi}\}'$ for some polynomial p of degree 2. If $\varphi = \varphi \circ \psi$, i.e., C_{ψ} has φ as an eigenfunction corresponding to the eigenvalue 1, then C_{ψ} or C_{ψ}^2 has a nontrivial invariant subspace.

Introduction 00000000000	Preliminaries	Main results ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	References
References			

[An] T. Ando, *Operators with a norm condition*, Acta Sci. Math. **33**(1972), 169-178.

[CI] B. A. Cload, *Composition operators: hyperinvariant subspaces, quasi-normals and isometries*, Proc. Amer. Math. Soc. **127**(1999), 1697-1703.

[Co1] C. C. Cowen, *Composition operators on H* 2 , J. Operator Theory **9**(1983), 77-106.

[Co2] C. C. Cowen, *Linear fractional composition operators on* H^2 , Int. Eq. Op. Th. **11**(1988), 151-160.

[CK] C. C. Cowen and T. Kriete, *Subnormality and composition operators on H*², J. Funct. Anal. **81**(1988), 298-319.

[CM] C. C. Cowen and B. D. MacCluer, *Composition operators on spaces of analytic functions*, CRC Press, 1995.

Introduction 00000000000	Preliminaries	Main results	References
References			

[De] K. W. Dennis, *Co-hyponormality of composition operators on the Hardy space*, Acta Sci. Math. (Szeged), **68**(2002), 401-411.

[Fu] T. Furuta, *Invitation to linear operators*, Taylor and Francis, 2001.

[JKK2] J. Sung, Y. Kim, and E. Ko, *Characterizations of binormal composition operators on H*², Applied Math. Comput. **261**(2015), 252-263.

[JKL] J. Sung, E. Ko, and M. Lee, *On Class A operators*, Studia Math. **198**(2010), 249-260.

Thank you for your attention!!