On composition operators for which $\left|C_{\varphi}^{2}\right| \geq\left|C_{\varphi}\right|^{2}$

Sungeun Jung
(Joint work with Eungil Ko)

Department of Mathematics, Hankuk University of Foreign Studies

2015 KOTAC

Chungnam National University, Korea June 19, 2015

Outline

(1) Introduction

- Class A operators
- Composition operators
(2) Preliminaries
(3) Main results
- General symbols
- Linear fractional symbols
- The adjoints C_{φ}^{*}
- The commutants
(4) References
\mathcal{H} : a complex Hilbert space
$\mathcal{L}(\mathcal{H})$: the algebra of all bounded linear operators on \mathcal{H}
$\sigma(T)=\{\lambda \in \mathbb{C}: T-\lambda /$ is not invertible $\}$
$\sigma_{p}(T)=\{\lambda \in \mathbb{C}: T-\lambda /$ is not one-to-one $\}$

Definition

An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be

Definition

An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be
(1) normal if $T^{*} T=T T^{*}$;

Definition

An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be
(1) normal if $T^{*} T=T T^{*}$;
(2) subnormal if there are a Hilbert space \mathcal{K} containing \mathcal{H} and a normal operator N on \mathcal{K} such that $N \mathcal{H} \subset \mathcal{H}$ and $T=\left.N\right|_{\mathcal{H}}$;

Definition

An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be
(1) normal if $T^{*} T=T T^{*}$;
(2) subnormal if there are a Hilbert space \mathcal{K} containing \mathcal{H} and a normal operator N on \mathcal{K} such that $N \mathcal{H} \subset \mathcal{H}$ and $T=\left.N\right|_{\mathcal{H}}$;
(3) hyponormal if $T^{*} T \geq T T^{*}$.

Definition

An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be
(1) normal if $T^{*} T=T T^{*}$;
(2) subnormal if there are a Hilbert space \mathcal{K} containing \mathcal{H} and a normal operator N on \mathcal{K} such that $N \mathcal{H} \subset \mathcal{H}$ and $T=\left.N\right|_{\mathcal{H}}$;
(3) hyponormal if $T^{*} T \geq T T^{*}$.
(4) normaloid if $\|T\|=r(T)$ where $r(T)=\max \{|\lambda|: \lambda \in \sigma(T)\}$ is the spectral radius of T.

Remark

Normal \Rightarrow Subnormal \Rightarrow Hyponormal \Rightarrow Normaloid.

Remark

Normal \Rightarrow Subnormal \Rightarrow Hyponormal \Rightarrow Normaloid.

Definition

An operator $T \in \mathcal{L}(\mathcal{H})$ is said to belong to class A, denoted by $T \in \mathcal{A}$, if

$$
\left|T^{2}\right| \geq|T|^{2}
$$

where $|S|:=\left(S^{*} S\right)^{\frac{1}{2}}$.

The invariant subspace problem (1932, J. von Neumann)

Does every operator $T \in \mathcal{L}(\mathcal{H})$ have a nontrivial invariant subspace (n.i.s)?
(i.e., \exists a closed subspace $\mathcal{M} \neq\{0\}, \mathcal{H}$ such that $T \mathcal{M} \subset \mathcal{M}$?)

The invariant subspace problem (1932, J. von Neumann)

Does every operator $T \in \mathcal{L}(\mathcal{H})$ have a nontrivial invariant subspace (n.i.s)?
(i.e., \exists a closed subspace $\mathcal{M} \neq\{0\}, \mathcal{H}$ such that $T \mathcal{M} \subset \mathcal{M}$?)

- S. Brown (Int. Eq. Op. Th., 1978)
: Subnormal operators have n.i.s.

The invariant subspace problem (1932, J. von Neumann)

Does every operator $T \in \mathcal{L}(\mathcal{H})$ have a nontrivial invariant subspace (n.i.s)?
(i.e., \exists a closed subspace $\mathcal{M} \neq\{0\}, \mathcal{H}$ such that $T \mathcal{M} \subset \mathcal{M}$?)

- S. Brown (Int. Eq. Op. Th., 1978)
: Subnormal operators have n.i.s.
- S. Brown (Ann. of Math., 1987)
: Hyponormal operators with thick spectrum have n.i.s.

The invariant subspace problem (1932, J. von Neumann)

Does every operator $T \in \mathcal{L}(\mathcal{H})$ have a nontrivial invariant subspace (n.i.s)?
(i.e., \exists a closed subspace $\mathcal{M} \neq\{0\}, \mathcal{H}$ such that $T \mathcal{M} \subset \mathcal{M}$?)

- S. Brown (Int. Eq. Op. Th., 1978)
: Subnormal operators have n.i.s.
- S. Brown (Ann. of Math., 1987)
: Hyponormal operators with thick spectrum have n.i.s.
- Jung-Ko-Lee (Studia Math., 2010)
: Class A operators with thick spectrum have n.i.s.

Theorem

Let T be an operator in \mathcal{A}, which is not a scalar multiple of the identity operator, satisfying one of the following statements:
(1) T has a decomposable quasiaffine transform;
(2) $\lim _{n \rightarrow \infty}\left\|T^{n} h\right\|^{\frac{1}{n}}<\|T\|$ for some nonzero $h \in \mathcal{H}$;
(3) T is weakly or N-supercyclic for some positive integer N;
(4) $\sigma_{T}(x) \varsubsetneqq \sigma(T)$ for some nonzero vector $x \in \mathcal{H}$;
(5) \exists a nonzero vector $x \in \mathcal{H}$ such that $\left\|T^{n} x\right\| \leq C r^{n}$ for all positive integers n, where C and r are constants with $C>0$ and $0<r<\|T\| ;$
(6) $\sigma(T)$ is not the closure of the union of all singleton components of $\sigma(T)$.
Then T has n.i.s.
\mathbb{D} : the open unit disk in the complex plane \mathbb{C}

- $H^{2}=\left\{f:\left.\mathbb{D} \rightarrow \mathbb{C}\left|f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, \sum_{n=0}^{\infty}\right| a_{n}\right|^{2}<\infty\right\}$

The space H^{2} is a Hilbert space, called the Hardy space, endowed with the inner product given by

$$
\left\langle\sum_{n=0}^{\infty} a_{n} z^{n}, \sum_{n=0}^{\infty} b_{n} z^{n}\right\rangle=\sum_{n=0}^{\infty} a_{n} \overline{b_{n}}
$$

\mathbb{D} : the open unit disk in the complex plane \mathbb{C}

- $H^{2}=\left\{f:\left.\mathbb{D} \rightarrow \mathbb{C}\left|f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, \sum_{n=0}^{\infty}\right| a_{n}\right|^{2}<\infty\right\}$

The space H^{2} is a Hilbert space, called the Hardy space, endowed with the inner product given by

$$
\left\langle\sum_{n=0}^{\infty} a_{n} z^{n}, \sum_{n=0}^{\infty} b_{n} z^{n}\right\rangle=\sum_{n=0}^{\infty} a_{n} \overline{b_{n}}
$$

- $H^{\infty}=\{f: \mathbb{D} \rightarrow \mathbb{C} \mid f$ is analytic and bounded on $\mathbb{D}\}$

Definition

For an analytic self-map φ of \mathbb{D}, the operator $C_{\varphi}: H^{2} \rightarrow H^{2}$ defined by

$$
C_{\varphi} h=h \circ \varphi, h \in H^{2}
$$

is said to be a composition operator.

Definition

For an analytic self-map φ of \mathbb{D}, the operator $C_{\varphi}: H^{2} \rightarrow H^{2}$ defined by

$$
C_{\varphi} h=h \circ \varphi, h \in H^{2}
$$

is said to be a composition operator.

Remark

The composition operator C_{φ} is always bounded on H^{2} by Littlewood subordination theorem.

Definition

Definition

(1) For $f \in H^{\infty}$, define the multiplication operator M_{f} on H^{2} by

$$
M_{f} h=f h, h \in H^{2} .
$$

Definition

(1) For $f \in H^{\infty}$, define the multiplication operator M_{f} on H^{2} by

$$
M_{f} h=f h, h \in H^{2} .
$$

(2) For an analytic self-map φ of \mathbb{D} and $f \in H^{\infty}$, the operator $W_{f, \varphi}:=M_{f} C_{\varphi}$ is said to be a weighted composition operator on H^{2}.

Example

The weighted composition operator $W_{f, \varphi}$ belongs to \mathcal{A} where

$$
f(z)=\frac{4}{-(1-a)(1+a)(3+a) z+\left(3+a+a^{2}-a^{3}\right)},
$$

and

$$
\varphi(z)=\frac{\left(1-a+3 a^{2}+a^{3}\right) z+(1+a)(1-a)^{2}}{-(1-a)(1+a)(3+a) z+\left(3+a+a^{2}-a^{3}\right)}
$$

with $0<a<1$.

Example

The adjoint $W_{g, \psi}^{*}$ belongs to \mathcal{A} where

$$
g(z)=\frac{4}{(1+a)(1-a)^{2} z+\left(3+a+a^{2}-a^{3}\right)}
$$

and

$$
\psi(z)=\frac{\left(1-a+3 a^{2}+a^{3}\right) z+(1+a)(1-a)(3+a)}{(1+a)(1-a)^{2} z+\left(3+a+a^{2}-a^{3}\right)}
$$

with $0<a<1$.

Theorem (Schwartz)

Let φ be an analytic self-map of \mathbb{D}. Then C_{φ} is normal if and only if $\varphi(z)=\lambda z$ with $|\lambda| \leq 1$.

- C. C. Cowen, Linear fractional composition operators on H^{2}, Int. Eq. Op. Th. 11(1988), 151-160.
- C. C. Cowen and T. Kriete, Subnormality and composition operators on H^{2}, J. Funct. Anal. 81(1988), 298-319.
- K. W. Dennis, Co-hyponormality of composition operators on the Hardy space, Acta Sci. Math. (Szeged), 68(2002), 401-411.

Goal

To characterize composition operators C_{φ} in \mathcal{A} and adjoints C_{φ}^{*} in \mathcal{A} !

Definition

Let φ be an analytic self-map of \mathbb{D}. We say that $a \in \overline{\mathbb{D}}$ is a fixed point of φ if $\lim _{r \rightarrow 1^{-}} \varphi(r a)=a$. We write $\varphi^{\prime}(a)=\lim _{r \rightarrow 1^{-}} \varphi^{\prime}(r a)$.

In the above definition, the limit $\lim _{r \rightarrow 1^{-}} \varphi^{\prime}(r a)$ exists if $|a|<1$. Moreover, if $|a|=1$, then this limit exists and $0<\varphi^{\prime}(a) \leq \infty$ by Julia-Carathéodory-Wolff.

An automorphism φ of \mathbb{D} is called elliptic if it has two fixed points such that one is inside $\partial \mathbb{D}$ and another is outside $\partial \mathbb{D}$.

Theorem (Denjoy-Wolff Theorem)

If φ is an analytic self-map of \mathbb{D}, not an elliptic automorphism, then there exists a point a of \mathbb{D} so that the iterates $\left\{\varphi_{n}\right\}$ of φ converges uniformly to a on compact subsets of \mathbb{D}. In addition, a is the unique fixed point of φ in $\overline{\mathbb{D}}$ for which $\left|\varphi^{\prime}(a)\right| \leq 1$.

An automorphism φ of \mathbb{D} is called elliptic if it has two fixed points such that one is inside $\partial \mathbb{D}$ and another is outside $\partial \mathbb{D}$.

Theorem (Denjoy-Wolff Theorem)

If φ is an analytic self-map of \mathbb{D}, not an elliptic automorphism, then there exists a point a of \mathbb{D} so that the iterates $\left\{\varphi_{n}\right\}$ of φ converges uniformly to a on compact subsets of \mathbb{D}. In addition, a is the unique fixed point of φ in $\overline{\mathbb{D}}$ for which $\left|\varphi^{\prime}(a)\right| \leq 1$.

Definition

The unique fixed point a in Denjoy-Wolff Theorem is called the Denjoy-Wolff point of φ.

For an analytic self-map φ of \mathbb{D}, one of the following statements holds:
(1) φ is an elliptic automorphism;

For an analytic self-map φ of \mathbb{D}, one of the following statements holds:
(1) φ is an elliptic automorphism;
(2) φ has Denjoy-Wolff point $a \in \mathbb{D}$;

For an analytic self-map φ of \mathbb{D}, one of the following statements holds:
(1) φ is an elliptic automorphism;
(2) φ has Denjoy-Wolff point $a \in \mathbb{D}$;
(3) φ has Denjoy-Wolff point $a \in \partial \mathbb{D}$ with $0<\varphi^{\prime}(a)<1$;

For an analytic self-map φ of \mathbb{D}, one of the following statements holds:
(1) φ is an elliptic automorphism;
(2) φ has Denjoy-Wolff point $a \in \mathbb{D}$;
(3) φ has Denjoy-Wolff point $a \in \partial \mathbb{D}$ with $0<\varphi^{\prime}(a)<1$;
(4) φ has Denjoy-Wolff point $a \in \partial \mathbb{D}$ with $\varphi^{\prime}(a)=1$.

Lemma (Cowen-Kriete)

Let φ be an analytic self-map of \mathbb{D} with Denjoy-Wolff point a. If $0<|a|<1$ or if $|a|=1$ and $\varphi^{\prime}(a)=1$, then C_{φ} is not normaloid.

Theorem

Let φ be an analytic self-map of \mathbb{D}. If $C_{\varphi} \in \mathcal{A}$, then the following statements hold:

Theorem

Let φ be an analytic self-map of \mathbb{D}. If $C_{\varphi} \in \mathcal{A}$, then the following statements hold:
(1) 0 is a fixed point of φ.

Theorem

Let φ be an analytic self-map of \mathbb{D}. If $C_{\varphi} \in \mathcal{A}$, then the following statements hold:
(1) 0 is a fixed point of φ.
(2) $|\varphi(z)| \leq|z|$ for all $z \in \mathbb{D}$ and $\left|\varphi^{\prime}(0)\right| \leq 1$.

Theorem

Let φ be an analytic self-map of \mathbb{D}. If $C_{\varphi} \in \mathcal{A}$, then the following statements hold:
(1) 0 is a fixed point of φ.
(2) $|\varphi(z)| \leq|z|$ for all $z \in \mathbb{D}$ and $\left|\varphi^{\prime}(0)\right| \leq 1$.
(3) If $\left|\varphi\left(z_{0}\right)\right|=\left|z_{0}\right|$ for some $z_{0} \in \mathbb{D} \backslash\{0\}$ or $\left|\varphi^{\prime}(0)\right|=1$, then C_{φ} is unitary.

Example

If $\varphi(z)=s z+t$ with $s, t \neq 0$ and $|s|+|t| \leq 1$, then $C_{\varphi} \notin \mathcal{A}$.

For a subset Δ of \mathbb{C}, let iso(Δ) denote the set of all isolated points in Δ and let $\Delta^{*}=\{\bar{\lambda}: \lambda \in \Delta\}$.

Theorem

Let φ be an analytic self-map of \mathbb{D}. If $C_{\varphi} \in \mathcal{A}$, then

$$
\text { iso }\left(\sigma\left(C_{\varphi}\right)\right) \subset \sigma_{p}\left(C_{\varphi}\right) \subset\left\{\left(\varphi^{\prime}(0)\right)^{n}: n=0,1,2, \cdots\right\} \subset \sigma\left(C_{\varphi}\right)
$$

and

$$
\sigma_{p}\left(C_{\varphi}\right)^{*} \subset\left\{\overline{\left(\varphi^{\prime}(0)\right)^{n}}: n=0,1,2, \cdots\right\} \subset \sigma_{p}\left(C_{\varphi}^{*}\right)
$$

Example

If $\varphi(z)=\frac{z}{2-z}$, then $C_{\varphi} \in \mathcal{A}$ and

$$
\sigma_{p}\left(C_{\varphi}\right) \varsubsetneqq\left\{\left(\varphi^{\prime}(0)\right)^{n}: n=0,1,2, \cdots\right\} .
$$

We say that $T \in \mathcal{L}(\mathcal{H})$ is binormal if $T^{*} T$ commutes with $T T^{*}$.

Theorem

Let φ is an analytic self-map of \mathbb{D}. Assume that $C_{\varphi}^{*} C_{\varphi}$ is a diagonal matrix with respect to the basis $\left\{z^{n}\right\}_{n=0}^{\infty}$. If
(1) φ is a polynomial function, or
(2) C_{φ} is binormal and $\varphi^{\prime}(0) \neq 0$,
then

$$
C_{\varphi} \in \mathcal{A} \Longleftrightarrow C_{\varphi} \text { is subnormal. }
$$

Example

Let $\varphi(z)=c z^{k}$ where $k>1$ is an integer and $|c| \leq 1$. Then $C_{\varphi}^{*} C_{\varphi}$ is diagonal with respect to the basis $\left\{z^{n}\right\}_{n=0}^{\infty}$. Therefore, $C_{\varphi} \in \mathcal{A}$ if and only if C_{φ} is subnormal. Indeed,

$$
C_{\varphi} \in \mathcal{A} \Longleftrightarrow|c|=1
$$

Let φ be a linear fractional self-map of \mathbb{D}, namely $\varphi(z)=\frac{a z+b}{c z+d}$ with $a d-b c \neq 0$. If $C_{\varphi} \in \mathcal{A}$, then $b=0$. Thus $\varphi(z)=\frac{z}{u z+v}$ where $u=\frac{c}{a}$ and $v=\frac{d}{a}$.

Theorem

Let $\varphi(z)=\frac{z}{u z+v}$ for some $u, v \in \mathbb{C}$ with $u \neq 0$ and $|v| \geq 1+|u|$. Then the following statements are equivalent.

Let φ be a linear fractional self-map of \mathbb{D}, namely $\varphi(z)=\frac{a z+b}{c z+d}$ with $a d-b c \neq 0$. If $C_{\varphi} \in \mathcal{A}$, then $b=0$. Thus $\varphi(z)=\frac{z}{u z+v}$ where $u=\frac{c}{a}$ and $v=\frac{d}{a}$.

Theorem

Let $\varphi(z)=\frac{z}{u z+v}$ for some $u, v \in \mathbb{C}$ with $u \neq 0$ and $|v| \geq 1+|u|$. Then the following statements are equivalent.
(1) C_{φ} is subnormal.

Let φ be a linear fractional self-map of \mathbb{D}, namely $\varphi(z)=\frac{a z+b}{c z+d}$ with $a d-b c \neq 0$. If $C_{\varphi} \in \mathcal{A}$, then $b=0$. Thus $\varphi(z)=\frac{z}{u z+v}$ where $u=\frac{c}{a}$ and $v=\frac{d}{a}$.

Theorem

Let $\varphi(z)=\frac{z}{u z+v}$ for some $u, v \in \mathbb{C}$ with $u \neq 0$ and $|v| \geq 1+|u|$. Then the following statements are equivalent.
(1) C_{φ} is subnormal.
(2) C_{φ} belongs to class A.

Let φ be a linear fractional self-map of \mathbb{D}, namely $\varphi(z)=\frac{a z+b}{c z+d}$ with $a d-b c \neq 0$. If $C_{\varphi} \in \mathcal{A}$, then $b=0$. Thus $\varphi(z)=\frac{z}{u z+v}$ where $u=\frac{c}{a}$ and $v=\frac{d}{a}$.

Theorem

Let $\varphi(z)=\frac{z}{u z+v}$ for some $u, v \in \mathbb{C}$ with $u \neq 0$ and $|v| \geq 1+|u|$. Then the following statements are equivalent.
(1) C_{φ} is subnormal.
(2) C_{φ} belongs to class A.
(3) C_{φ} is binormal.

Let φ be a linear fractional self-map of \mathbb{D}, namely $\varphi(z)=\frac{a z+b}{c z+d}$ with $a d-b c \neq 0$. If $C_{\varphi} \in \mathcal{A}$, then $b=0$. Thus $\varphi(z)=\frac{z}{u z+v}$ where $u=\frac{c}{a}$ and $v=\frac{d}{a}$.

Theorem

Let $\varphi(z)=\frac{z}{u z+v}$ for some $u, v \in \mathbb{C}$ with $u \neq 0$ and $|v| \geq 1+|u|$. Then the following statements are equivalent.
(1) C_{φ} is subnormal.
(2) C_{φ} belongs to class A.
(3) C_{φ} is binormal.
(9) $v>1$ and $|u|=v-1$.

Corollary

If φ is an automorphism of \mathbb{D} (i.e., C_{φ} is invertible), then

$$
C_{\varphi} \in \mathcal{A} \Longleftrightarrow C_{\varphi} \text { is unitary. }
$$

Corollary

Let φ be a linear fractional self-map of \mathbb{D} such that $C_{\varphi}^{*} C_{\varphi}$ has a diagonal matrix with respect to the standard basis $\left\{z^{n}\right\}_{n=0}^{\infty}$. Then

$$
C_{\varphi} \in \mathcal{A} \Longleftrightarrow C_{\varphi} \text { is normal. }
$$

Theorem

Let φ be an analytic self-map of \mathbb{D} with Denjoy-Wolff point a. If $C_{\varphi}^{*} \in \mathcal{A}$, then either $|a|=1$ and $0<\varphi^{\prime}(a)<1$ or else C_{φ} is normal.

Example

If $\varphi(z)=\frac{z}{u z+v}$ with $u \neq 0$ and $|v| \geq 1+|u|$, then $\varphi(0)=0$ and thus $C_{\varphi}^{*} \notin \mathcal{A}$.

Example

If $\varphi(z)=\frac{z}{u z+v}$ with $u \neq 0$ and $|v| \geq 1+|u|$, then $\varphi(0)=0$ and thus $C_{\varphi}^{*} \notin \mathcal{A}$.

Example

If $\varphi(z)=\frac{(2-t) z+t}{-t z+(2+t)}$ for some complex number t with $\operatorname{Re}(t) \geq 0$, then $\varphi(1)=1$ and $\varphi^{\prime}(1)=1$. Hence $C_{\varphi}^{*} \notin \mathcal{A}$.

Corollary

Let φ be an analytic self-map of \mathbb{D}. Then
$C_{\varphi}, C_{\varphi}^{*} \in \mathcal{A} \Longleftrightarrow C_{\varphi}$ is normal.

Theorem

Let φ be a nonconstant analytic self-map of \mathbb{D}. If $C_{\varphi}^{*} \in \mathcal{A}$ is injective, then φ is univalent.

Theorem

Let $\varphi(z)=s z+t$ where $s \neq 0$ and $|s|+|t| \leq 1$. Then $C_{\varphi}^{*} \in \mathcal{A} \Longleftrightarrow C_{\varphi}^{*}$ is subnormal.

Theorem

For $0<s<1$ and $|r| \leq 1$, let $\varphi(z)=\frac{(r+s) z+(1-s)}{r(1-s) z+(1+r s)}$ be a linear fractional self-map of \mathbb{D} with Denjoy-Wolff point 1 and $0<\varphi^{\prime}(1)=s<1$. If $C_{\varphi}^{*} \in \mathcal{A}$, then

$$
\left|r-\frac{1}{3}\right| \leq \frac{2}{3}
$$

For $0<s<1$ and $-1 \leq r \leq 1$, let $\varphi(z)=\frac{(r+s) z+(1-s)}{r(1-s) z+(1+r s)}$ is a linear fractional self-map of \mathbb{D} with Denjoy-Wolff point 1 and $0<\varphi^{\prime}(1)=s<1$.
(c) $C_{\varphi}^{*} \in \mathcal{A} \Longrightarrow-\frac{1}{3} \leq r \leq 1$.
(3) C_{φ}^{*} is hyponormal $\Longrightarrow 2-\sqrt{5} \leq r \leq 1$ by Dennis.
(3) C_{φ}^{*} is subnormal $\Longleftrightarrow 0 \leq r \leq 1$ by Cowen.

We expect that there maybe exist
(1) $r \in\left[-\frac{1}{3}, 2-\sqrt{5}\right)$ such that C_{φ}^{*} is a non-hyponormal operator in \mathcal{A}.
(2) $r \in[2-\sqrt{5}, 0)$ such that C_{φ}^{*} is hyponormal but not subnormal.

For an operator $T \in \mathcal{L}(\mathcal{H})$, define the commutant $\{T\}^{\prime}$ of T as to be the collection of all operators in $\mathcal{L}(\mathcal{H})$ commuting with T.

Proposition

Let φ be an analytic self-map of \mathbb{D} such that C_{φ} is a non-normal operator in \mathcal{A}. For $f \in H^{\infty}$,

$$
M_{f} \in\left\{C_{\varphi}\right\}^{\prime} \Longleftrightarrow f \text { is constant on } \mathbb{D} .
$$

Theorem

Suppose that φ is an analytic self-map of \mathbb{D} such that $C_{\varphi} \in \mathcal{A}$. If ψ is an analytic self-map of \mathbb{D} such that $\boldsymbol{C}_{\psi} \in\left\{\boldsymbol{C}_{\varphi}\right\}^{\prime}$, then zH^{2} is a nontrivial invariant subspace for \boldsymbol{C}_{ψ}.

Theorem

Suppose that φ is an analytic self-map of \mathbb{D} such that $C_{\varphi} \in \mathcal{A}$. If ψ is an analytic self-map of \mathbb{D} such that $p\left(C_{\psi}\right) \in\left\{C_{\varphi}\right\}^{\prime}$ for some polynomial p of degree 2 , then at least one of the following statements holds:

Theorem

Suppose that φ is an analytic self-map of \mathbb{D} such that $C_{\varphi} \in \mathcal{A}$. If ψ is an analytic self-map of \mathbb{D} such that $p\left(C_{\psi}\right) \in\left\{C_{\varphi}\right\}^{\prime}$ for some polynomial p of degree 2 , then at least one of the following statements holds:
(1) $z \mathrm{H}^{2}$ is a nontrivial invariant subspace for C_{ψ} or C_{ψ}^{2};

Theorem

Suppose that φ is an analytic self-map of \mathbb{D} such that $C_{\varphi} \in \mathcal{A}$. If ψ is an analytic self-map of \mathbb{D} such that $p\left(C_{\psi}\right) \in\left\{C_{\varphi}\right\}^{\prime}$ for some polynomial p of degree 2 , then at least one of the following statements holds:
(1) $z \mathrm{H}^{2}$ is a nontrivial invariant subspace for C_{ψ} or C_{ψ}^{2};
(2) $\left\{f \in H^{2}: f(\psi(0))=0\right\}=\left\{K_{\psi(0)}\right\}^{\perp}$ is a nontrivial invariant subspace for C_{ψ};

Theorem

Suppose that φ is an analytic self-map of \mathbb{D} such that $C_{\varphi} \in \mathcal{A}$. If ψ is an analytic self-map of \mathbb{D} such that $p\left(C_{\psi}\right) \in\left\{C_{\varphi}\right\}^{\prime}$ for some polynomial p of degree 2 , then at least one of the following statements holds:
(1) zH^{2} is a nontrivial invariant subspace for C_{ψ} or C_{ψ}^{2};
(2) $\left\{f \in H^{2}: f(\psi(0))=0\right\}=\left\{K_{\psi(0)}\right\}^{\perp}$ is a nontrivial invariant subspace for C_{ψ};
(3) $\varphi(\psi(0)) \neq(\varphi \circ \psi)(\psi(0))$.

Remark

Suppose that φ is an analytic self-map of \mathbb{D} such that $C_{\varphi} \in \mathcal{A}$. Let ψ be an analytic self-map of \mathbb{D} such that $p\left(C_{\psi}\right) \in\left\{C_{\varphi}\right\}^{\prime}$ for some polynomial p of degree 2. If $\varphi=\varphi \circ \psi$, i.e., C_{ψ} has φ as an eigenfunction corresponding to the eigenvalue 1 , then C_{ψ} or C_{ψ}^{2} has a nontrivial invariant subspace.

References

[An] T. Ando, Operators with a norm condition, Acta Sci. Math. 33(1972), 169-178.
[CI] B. A. Cload, Composition operators: hyperinvariant subspaces, quasi-normals and isometries, Proc. Amer. Math. Soc. 127(1999), 1697-1703.
[Co1] C. C. Cowen, Composition operators on H^{2}, J. Operator Theory 9(1983), 77-106.
[Co2] C. C. Cowen, Linear fractional composition operators on H^{2}, Int. Eq. Op. Th. 11(1988), 151-160.
[CK] C. C. Cowen and T. Kriete, Subnormality and composition operators on H^{2}, J. Funct. Anal. 81(1988), 298-319.
[CM] C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, CRC Press, 1995.

References

[De] K. W. Dennis, Co-hyponormality of composition operators on the Hardy space, Acta Sci. Math. (Szeged), 68(2002), 401-411.
[Fu] T. Furuta, Invitation to linear operators, Taylor and Francis, 2001.
[JKK2] J. Sung, Y. Kim, and E. Ko, Characterizations of binormal composition operators on H^{2}, Applied Math. Comput. 261(2015), 252-263.
[JKL] J. Sung, E. Ko, and M. Lee, On Class A operators, Studia Math. 198(2010), 249-260.

Thank you for your attention!!

