Abrahamse's Theorem for Matrix-Valued Symbols

Woo Young Lee (Seoul National University)

KOTAC 2015 Korea Operator Theory and Its Applications Conference

Chungnam National University, Daejeon, June 19, 2015

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Motivation of the talk

Why Toeplitz operators?

(1) Toeplitz operators are of importance in connection with a variety of problems in physics, probability theory, information and control theory and several other fields.

(2) Toeplitz operators constitute one of the most important classes of non-self adjoint operators and they are a fascinating example of the fruitful interplay between such topics as operator theory, function theory and the theory of Banach algebras.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Motivation of the talk

Why Toeplitz operators?

(1) Toeplitz operators are of importance in connection with a variety of problems in physics, probability theory, information and control theory and several other fields.

(2) Toeplitz operators constitute one of the most important classes of non-self adjoint operators and they are a fascinating example of the fruitful interplay between such topics as operator theory, function theory and the theory of Banach algebras.

Subnormality

In 1950, Paul Halmos introduced the notion of subnormality of operators. Nowadays, the theory of subnormal operators is an extensive and highly developed area.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Subnormality

 $\begin{aligned} \mathcal{H} := & \text{an infinite dimensional separable complex Hilbert space} \\ \mathcal{T} \in \mathcal{B}(\mathcal{H}) := & \text{the set of all bounded linear operators acting on } \mathcal{H} \end{aligned}$

- 1. $[T^*, T] \equiv T^*T TT^* =$ the self-commutator of T.
- 2. *T* is called *normal* if $[T^*, T] = 0$ and *hyponormal* if $[T^*, T] \ge 0$;
- 3. *T* is called *subnormal* if there exists a normal operator *N* acting on some Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ such that $T = N|_{\mathcal{H}}$, i.e.,

 \exists a normal $N = \begin{pmatrix} T & * \\ 0 & * \end{pmatrix}$;

Note. normal \Longrightarrow subnormal \Longrightarrow hyponormal

Subnormality

 $\mathcal{H} :=$ an infinite dimensional separable complex Hilbert space $T \in \mathcal{B}(\mathcal{H}) :=$ the set of all bounded linear operators acting on \mathcal{H}

- 1. $[T^*, T] \equiv T^*T TT^* =$ the self-commutator of *T*.
- 2. *T* is called *normal* if $[T^*, T] = 0$ and *hyponormal* if $[T^*, T] \ge 0$;
- 3. *T* is called *subnormal* if there exists a normal operator *N* acting on some Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ such that $T = N|_{\mathcal{H}}$, i.e.,

 \exists a normal $N = \begin{pmatrix} T \\ 0 \\ * \end{pmatrix}$;

Note. normal \Longrightarrow subnormal \Longrightarrow hyponormal

In order to determine the subnormality by definition, we should find a normal extension of the operator. However, it is not a constructive method to find such an extension.

There are a couple of constructive methods to determine the subnormality. The best one of them is the Bram-Halmos characterization of subnormality.

Bram-Halmos Characterization of Subnormality. An operator $T \in \mathcal{B}(\mathcal{H})$ is subnormal if and only if

 $\begin{pmatrix} I & T^* & \dots & T^{*k} \\ T & T^*T & \dots & T^{*k}T \\ \vdots & \vdots & & \vdots \\ T^k & T^*T^k & \dots & T^{*k}T^k \end{pmatrix} \ge 0 \quad (\text{for all } k \ge 1)$

(日) (日) (日) (日) (日) (日) (日)

Bram-Halmos Characterization of Subnormality. An operator $T \in \mathcal{B}(\mathcal{H})$ is subnormal if and only if

$$\begin{pmatrix} I & T^* & \dots & T^{*k} \\ T & T^*T & \dots & T^{*k}T \\ \vdots & \vdots & & \vdots \\ T^k & T^*T^k & \dots & T^{*k}T^k \end{pmatrix} \ge 0 \quad (\text{for all } k \ge 1)$$

The Bram-Halmos criterion is tractable step by step. But it is also impossible to determine the positivity of the above matrix for *all* positive integers k.

Consequently, it seems to be quite difficult to determine the subnormality of the operator. In fact, we have a very few chance to know the subnormality of the operator.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Bram-Halmos Characterization of Subnormality. An operator $T \in \mathcal{B}(\mathcal{H})$ is subnormal if and only if

$$\begin{pmatrix} I & T^* & \dots & T^{*k} \\ T & T^*T & \dots & T^{*k}T \\ \vdots & \vdots & & \vdots \\ T^k & T^*T^k & \dots & T^{*k}T^k \end{pmatrix} \ge 0 \quad (\text{for all } k \ge 1)$$

The Bram-Halmos criterion is tractable step by step. But it is also impossible to determine the positivity of the above matrix for *all* positive integers k.

Consequently, it seems to be quite difficult to determine the subnormality of the operator. In fact, we have a very few chance to know the subnormality of the operator.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Question. Which operators are subnormal?

Question. Which Toeplitz operators are subnormal?

Bram-Halmos Characterization of Subnormality. An operator $T \in \mathcal{B}(\mathcal{H})$ is subnormal if and only if

$$\begin{pmatrix} I & T^* & \dots & T^{*k} \\ T & T^*T & \dots & T^{*k}T \\ \vdots & \vdots & & \vdots \\ T^k & T^*T^k & \dots & T^{*k}T^k \end{pmatrix} \ge 0 \quad (\text{for all } k \ge 1)$$

The Bram-Halmos criterion is tractable step by step. But it is also impossible to determine the positivity of the above matrix for *all* positive integers k.

Consequently, it seems to be quite difficult to determine the subnormality of the operator. In fact, we have a very few chance to know the subnormality of the operator.

Question. Which operators are subnormal?

Question. Which Toeplitz operators are subnormal?

Halmos's Problem 5 (1970, Bull. AMS) Is every subnormal Toeplitz operator either normal or analytic ?

Toeplitz operators

Definition. The *Toeplitz operator with symbol* $\varphi \in L^{\infty}(\mathbb{T})$ is the operator T_{φ} on $H^{2}(\mathbb{T})$ defined by

 $T_{\varphi}f := P(\varphi f)$ ($f \in H^2$ and P := the projection of L^2 onto H^2)

If $\varphi = \sum_{n=-\infty}^{\infty} a_n z^n$ then

$$T_{\varphi} = \begin{pmatrix} a_0 & a_{-1} & a_{-2} & \dots & \dots \\ a_1 & a_0 & a_{-1} & a_{-2} & \dots \\ a_2 & a_1 & a_0 & a_{-1} & \ddots \\ \vdots & a_2 & a_1 & a_0 & \ddots \\ \vdots & \ddots & \ddots & \ddots \end{pmatrix}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Toeplitz operators

Definition. The *Toeplitz operator with symbol* $\varphi \in L^{\infty}(\mathbb{T})$ is the operator T_{φ} on $H^{2}(\mathbb{T})$ defined by

 $T_{\varphi}f := P(\varphi f)$ ($f \in H^2$ and P := the projection of L^2 onto H^2)

If $\varphi = \sum_{n=-\infty}^{\infty} a_n z^n$ then

$$T_{\varphi} = \begin{pmatrix} a_0 & a_{-1} & a_{-2} & \dots & \dots \\ a_1 & a_0 & a_{-1} & a_{-2} & \dots \\ a_2 & a_1 & a_0 & a_{-1} & \ddots \\ \vdots & a_2 & a_1 & a_0 & \ddots \\ \vdots & & \ddots & \ddots & \ddots \end{pmatrix}$$

Normal Toeplitz operators (1962, A. Brown and P. Halmos) T_{φ} is normal iff $\varphi = \alpha \psi + \beta$, where ψ is real-valued and $\alpha, \beta \in \mathbb{C}$.

Toeplitz operators

Definition. The *Toeplitz operator with symbol* $\varphi \in L^{\infty}(\mathbb{T})$ is the operator T_{φ} on $H^{2}(\mathbb{T})$ defined by

 $T_{\varphi}f := P(\varphi f)$ ($f \in H^2$ and P := the projection of L^2 onto H^2)

If $\varphi = \sum_{n=-\infty}^{\infty} a_n z^n$ then

$$T_{\varphi} = \begin{pmatrix} a_0 & a_{-1} & a_{-2} & \dots & \dots \\ a_1 & a_0 & a_{-1} & a_{-2} & \dots \\ a_2 & a_1 & a_0 & a_{-1} & \ddots \\ \vdots & a_2 & a_1 & a_0 & \ddots \\ \vdots & & \ddots & \ddots & \ddots \end{pmatrix}$$

Normal Toeplitz operators (1962, A. Brown and P. Halmos) T_{φ} is normal iff $\varphi = \alpha \psi + \beta$, where ψ is real-valued and $\alpha, \beta \in \mathbb{C}$.

Note. If $\varphi \in H^{\infty} \equiv H^2 \cap L^{\infty}$ then $\forall h \in H^2$,

$$T_{\varphi}h = P(\varphi h) = \varphi h = M_{\varphi}h.$$

Thus the multiplication operator M_{φ} on L^2 is a normal extension of T_{φ} ; i.e., T_{φ} is subnormal if $\varphi \in H^{\infty}$.

Consequently, Halmos's Problem 5 is to ask whether or not every non-analytic subnormal Toeplitz operator is exactly normal.

In 1984, Carl Cowen and John Long gave a negative answer to the Halmos's Problem 5.

Cowen and Long's Theorem (1984, Crelle's J) $\exists \psi \in H^{\infty}$ such that $T_{\psi + \alpha \overline{\psi}}$ (0 < α < 1) is subnormal

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

In 1984, Carl Cowen and John Long gave a negative answer to the Halmos's Problem 5.

Cowen and Long's Theorem (1984, Crelle's J) $\exists \psi \in H^{\infty}$ such that $T_{\psi + \alpha \overline{\psi}}$ (0 < α < 1) is subnormal

The essence of Halmos's Problem 5 is to understand the subnormality of Toeplitz operators. In this viewpoint, we would like to reformulate Halmos's Problem 5:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Reformulation of Halmos's Problem 5. Which Toeplitz operators are subnormal ?

In 1984, Carl Cowen and John Long gave a negative answer to the Halmos's Problem 5.

Cowen and Long's Theorem (1984, Crelle's J) $\exists \psi \in H^{\infty}$ such that $T_{\psi + \alpha \overline{\psi}}$ (0 < α < 1) is subnormal

The essence of Halmos's Problem 5 is to understand the subnormality of Toeplitz operators. In this viewpoint, we would like to reformulate Halmos's Problem 5:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Reformulation of Halmos's Problem 5. Which Toeplitz operators are subnormal?

Until now nobody knows the answer.

In 1984, Carl Cowen and John Long gave a negative answer to the Halmos's Problem 5.

Cowen and Long's Theorem (1984, Crelle's J) $\exists \psi \in H^{\infty}$ such that $T_{\psi + \alpha \overline{\psi}}$ (0 < α < 1) is subnormal

The essence of Halmos's Problem 5 is to understand the subnormality of Toeplitz operators. In this viewpoint, we would like to reformulate Halmos's Problem 5:

Reformulation of Halmos's Problem 5. Which Toeplitz operators are subnormal ?

Until now nobody knows the answer.

In light of the original Halmos's Problem 5, we would like to ask:

Problem. Which subnormal Toeplitz operators are either normal or analytic?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

In 1984, Carl Cowen and John Long gave a negative answer to the Halmos's Problem 5.

Cowen and Long's Theorem (1984, Crelle's J) $\exists \psi \in H^{\infty}$ such that $T_{\psi + \alpha \overline{\psi}}$ (0 < α < 1) is subnormal

The essence of Halmos's Problem 5 is to understand the subnormality of Toeplitz operators. In this viewpoint, we would like to reformulate Halmos's Problem 5:

Reformulation of Halmos's Problem 5. Which Toeplitz operators are subnormal?

Until now nobody knows the answer.

In light of the original Halmos's Problem 5, we would like to ask:

Problem. Which subnormal Toeplitz operators are either normal or analytic?

Notation. For $\varphi \in L^{\infty}$, write

$$\varphi_+ := P(\varphi) \in H^2 \text{ and } \varphi_- = \overline{P^{\perp}(\varphi)} \in zH^2.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thus we can write $\varphi = \overline{\varphi_-} + \varphi_+$.

Abrahamse's Theorem

Some authors gave interesting sufficient conditions for the answer to the Halmos's Problem 5 to be affirmative. Among them, the Abrahamse's theorem is the most interesting result.

Definition. A function $\varphi \in L^{\infty}$ is said to be *in the Nevanlinna class* N (or bounded type) if

$$arphi=rac{\psi_1}{\psi_2}\qquad (\psi_j\in H^\infty(\mathbb{D}) ext{ for } j=1,2).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Abrahamse's Theorem

Some authors gave interesting sufficient conditions for the answer to the Halmos's Problem 5 to be affirmative. Among them, the Abrahamse's theorem is the most interesting result.

Definition. A function $\varphi \in L^{\infty}$ is said to be *in the Nevanlinna class* N (or bounded type) if

$$arphi=rac{\psi_1}{\psi_2}\qquad (\psi_j\in H^\infty(\mathbb{D}) ext{ for } j=1,2).$$

Fact. If $\varphi \in L^{\infty}$ is in the Nevanlinna class \mathcal{N} , then we can write

$$\varphi_{-} = \theta \overline{a},$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where θ is inner, $a \in H^2$, and θ and a are *coprime*, in the sense that there does not exist a common inner divisor of θ and a.

Abrahamse's Theorem

Some authors gave interesting sufficient conditions for the answer to the Halmos's Problem 5 to be affirmative. Among them, the Abrahamse's theorem is the most interesting result.

Definition. A function $\varphi \in L^{\infty}$ is said to be *in the Nevanlinna class* \mathcal{N} (or bounded type) if

$$arphi=rac{\psi_1}{\psi_2}\qquad (\psi_j\in H^\infty(\mathbb{D}) ext{ for } j=1,2).$$

Fact. If $\varphi \in L^{\infty}$ is in the Nevanlinna class \mathcal{N} , then we can write

$$\varphi_{-} = \theta \overline{a}$$

where θ is inner, $a \in H^2$, and θ and a are *coprime*, in the sense that there does not exist a common inner divisor of θ and a.

Abrahamse's Theorem (1976, Duke Math. J) Let $\varphi, \overline{\varphi} \in \mathcal{N}$. If T_{φ} is subnormal then T_{φ} is normal or analytic.

In other words, the answer to the original Halmos's Problem 5 is affirmative when the symbol is in the Nevanlinna class \mathcal{N} .

(日) (日) (日) (日) (日) (日) (日)

Block Toeplitz operators

Definition.

$$\begin{split} L^2_{\mathbb{C}^n} &\equiv L^2_{\mathbb{C}^n}(\mathbf{T}) = L^2(\mathbf{T}) \otimes \mathbb{C}^n \cong L^2 \oplus \cdots \oplus L^2 \\ H^2_{\mathbb{C}^n} &\equiv H^2_{\mathbb{C}^n}(\mathbf{T}) = H^2(\mathbf{T}) \otimes \mathbb{C}^n \cong H^2 \oplus \cdots \oplus H^2 \\ L^\infty_{M_n} &\equiv L^\infty_{M_n}(\mathbf{T}) = L^\infty(\mathbf{T}) \otimes M_n \end{split}$$

Definition. For a matrix-valued function $\Phi \in L^{\infty}_{M_n} \equiv L^{\infty}_{M_n}(\mathbf{T})$, the (block) Toeplitz operator $T_{\Phi} : H^2_{\mathbb{C}^n} \to H^2_{\mathbb{C}^n}$ with (matrix-valued) symbol Φ is defined by

 $T_{\Phi}(h) = P_n(\Phi h),$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where P_n is the projection of $L^2_{\mathbb{C}^n}$ onto $H^2_{\mathbb{C}^n}$.

Block Toeplitz operators

Definition.

$$\begin{split} L^2_{\mathbb{C}^n} &\equiv L^2_{\mathbb{C}^n}(\mathbf{T}) = L^2(\mathbf{T}) \otimes \mathbb{C}^n \cong L^2 \oplus \cdots \oplus L^2 \\ H^2_{\mathbb{C}^n} &\equiv H^2_{\mathbb{C}^n}(\mathbf{T}) = H^2(\mathbf{T}) \otimes \mathbb{C}^n \cong H^2 \oplus \cdots \oplus H^2 \\ L^\infty_{M_n} &\equiv L^\infty_{M_n}(\mathbf{T}) = L^\infty(\mathbf{T}) \otimes M_n \end{split}$$

Definition. For a matrix-valued function $\Phi \in L^{\infty}_{M_n} \equiv L^{\infty}_{M_n}(\mathbf{T})$, the (block) Toeplitz operator $T_{\Phi} : H^2_{\mathbb{C}^n} \to H^2_{\mathbb{C}^n}$ with (matrix-valued) symbol Φ is defined by

 $T_{\Phi}(h) = P_n(\Phi h),$

where P_n is the projection of $L^2_{\mathbb{C}^n}$ onto $H^2_{\mathbb{C}^n}$. If $\Phi \in L^{\infty}_{M_n}$ then we can write

$$\Phi = \begin{pmatrix} \varphi_{11} & \dots & \varphi_{1n} \\ \vdots & \\ \varphi_{n1} & \dots & \varphi_{nn} \end{pmatrix} \qquad (\varphi_{ij} \in L^{\infty})$$

and

$$T_{\Phi} = \begin{pmatrix} T_{\varphi_{11}} & \dots & T_{\varphi_{1n}} \\ \vdots \\ T_{\varphi_{n1}} & \dots & T_{\varphi_{nn}} \end{pmatrix}$$

For $\Phi \equiv [\varphi_{ij}] \in L^{\infty}_{M_0}$, we say that Φ is in the Nevanlinna class \mathcal{N} [*rational*] if each entry φ_{ij} is in \mathcal{N} [rational].

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

In light of the original Halmos's Problem 5 on scalar-valued Toeplitz operators, we would like to ask the following question:

Problem. Which subnormal Toeplitz operators with matrix-valued symbols are either normal or analytic ?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

In light of the original Halmos's Problem 5 on scalar-valued Toeplitz operators, we would like to ask the following question:

Problem. Which subnormal Toeplitz operators with matrix-valued symbols are either normal or analytic ?

As you can imagine, the first goal of our work is to get a matrix-valued version of Abrahamse's Theorem, i.e., we would like to ask:

Question. Is every subnormal Toeplitz operator with matrix-valued Navanlinna class symbol either normal or analytic?

In light of the original Halmos's Problem 5 on scalar-valued Toeplitz operators, we would like to ask the following question:

Problem. Which subnormal Toeplitz operators with matrix-valued symbols are either normal or analytic ?

As you can imagine, the first goal of our work is to get a matrix-valued version of Abrahamse's Theorem, i.e., we would like to ask:

Question. Is every subnormal Toeplitz operator with matrix-valued Navanlinna class symbol either normal or analytic?

However, Abrahamse's Theorem is liable to fail for matrix-valued symbols (even for matrix-valued trigonometric polynomial symbols). For instance, take

$$\Phi \equiv \begin{pmatrix} \overline{z} + z & 0 \\ 0 & z \end{pmatrix} \,.$$

Then

 $T_{\Phi} \equiv \begin{pmatrix} U^* + U & 0 \\ 0 & U \end{pmatrix}$ (where *U* is the unilateral shift)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

is neither normal nor analytic although T_{Φ} is subnormal.

In light of the original Halmos's Problem 5 on scalar-valued Toeplitz operators, we would like to ask the following question:

Problem. Which subnormal Toeplitz operators with matrix-valued symbols are either normal or analytic ?

As you can imagine, the first goal of our work is to get a matrix-valued version of Abrahamse's Theorem, i.e., we would like to ask:

Question. Is every subnormal Toeplitz operator with matrix-valued Navanlinna class symbol either normal or analytic?

However, Abrahamse's Theorem is liable to fail for matrix-valued symbols (even for matrix-valued trigonometric polynomial symbols). For instance, take

$$\Phi \equiv \begin{pmatrix} \overline{z} + z & 0 \\ 0 & z \end{pmatrix} \,.$$

Then

 $T_{\Phi} \equiv \begin{pmatrix} U^* + U & 0 \\ 0 & U \end{pmatrix}$ (where *U* is the unilateral shift)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

is neither normal nor analytic although T_{Φ} is subnormal.

Question. What causes this fail for matrix-valued cases ?

In light of the original Halmos's Problem 5 on scalar-valued Toeplitz operators, we would like to ask the following question:

Problem. Which subnormal Toeplitz operators with matrix-valued symbols are either normal or analytic ?

As you can imagine, the first goal of our work is to get a matrix-valued version of Abrahamse's Theorem, i.e., we would like to ask:

Question. Is every subnormal Toeplitz operator with matrix-valued Navanlinna class symbol either normal or analytic?

However, Abrahamse's Theorem is liable to fail for matrix-valued symbols (even for matrix-valued trigonometric polynomial symbols). For instance, take

$$\Phi \equiv \begin{pmatrix} \overline{z} + z & 0 \\ 0 & z \end{pmatrix} \,.$$

Then

 $T_{\Phi} \equiv \begin{pmatrix} U^* + U & 0 \\ 0 & U \end{pmatrix}$ (where *U* is the unilateral shift)

(日) (日) (日) (日) (日) (日) (日)

is neither normal nor analytic although T_{Φ} is subnormal.

Question. What causes this fail for matrix-valued cases ?

It seems to be so hard to recognize the core of this phenomenon. To overcome this example, we should get a new idea.

Question. How to define a singularity of a matrix-valued Nevanlinna class function $\Phi=(\varphi_{ij})\in L^\infty_{M_0}$?

Question. How to define a singularity of a matrix-valued Nevanlinna class function $\Phi = (\varphi_{ij}) \in L^{\infty}_{Ma}$?

If $\varphi \in L^{\infty}$ is in the Nevanlinna class \mathcal{N} , then we can write

 $\varphi_{-} = \omega \overline{a}$ (ω inner; ω and a are coprime)

Since $\varphi = \frac{a}{\omega} + \varphi_+$, the singularities of φ come from ω . Thus we have

 φ has a singularity $\iff \exists$ an inner θ such that θ is an inner divisor of ω $\iff \omega H^2 \subset \theta H^2$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 \iff ker $H_{\omega} \subset \theta H^2$.

Question. How to define a singularity of a matrix-valued Nevanlinna class function $\Phi = (\varphi_{ij}) \in L^{\infty}_{M_n}$?

If $\varphi \in L^{\infty}$ is in the Nevanlinna class \mathcal{N} , then we can write

 $\varphi_{-} = \omega \overline{a}$ (ω inner; ω and a are coprime)

Since $\varphi = \frac{a}{\omega} + \varphi_+$, the singularities of φ come from ω . Thus we have

 φ has a singularity $\iff \exists$ an inner θ such that θ is an inner divisor of ω $\iff \omega H^2 \subset \theta H^2$ $\iff \ker H_{\varphi} \subset \theta H^2.$

Definition. Let $\Phi \in L_{M_n}^{\infty}$ be in the Nevanlinna class \mathcal{N} . Then Φ is said to have a *matrix singularity* if

 \exists a nonconstant inner function θ such that ker $H_{\Phi} \subset \theta H_{\mathbb{C}^n}^2$.

Question. How to define a singularity of a matrix-valued Nevanlinna class function $\Phi = (\varphi_{ij}) \in L^{\infty}_{M_n}$?

If $\varphi \in L^{\infty}$ is in the Nevanlinna class \mathcal{N} , then we can write

 $\varphi_{-} = \omega \overline{a}$ (ω inner; ω and a are coprime)

Since $\varphi = \frac{a}{\omega} + \varphi_+$, the singularities of φ come from ω . Thus we have

 φ has a singularity $\iff \exists$ an inner θ such that θ is an inner divisor of ω $\iff \omega H^2 \subset \theta H^2$ $\iff \ker H_{\varphi} \subset \theta H^2.$

Definition. Let $\Phi \in L_{M_n}^{\infty}$ be in the Nevanlinna class \mathcal{N} . Then Φ is said to have a *matrix singularity* if

 \exists a nonconstant inner function θ such that ker $H_{\Phi} \subset \theta H_{\mathbb{C}^n}^2$.

Lemma. Let $\Phi \in L^{\infty}_{M_{\bullet}}$ be in the Navanlinna class \mathcal{N} . Thus we may write

 $\Phi = A\Theta^*$ (right coprime factorization).

Then the following are equivalent:

- 1. Φ has a matrix singularity;
- 2. Θ has a nonconstant diagonal-constant inner divisor.

Main Theorem

Main Theorem (Curto, Hwang, and Lee, 2015)

Let $\Phi \in L^{\infty}_{M_n}$ be such that $\Phi, \Phi^* \in \mathcal{N}$. Assume that Φ has a matrix singularity. If T_{Φ} is sunnormal then T_{Φ} is normal or analytic.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Main Theorem

Main Theorem (Curto, Hwang, and Lee, 2015)

Let $\Phi \in L^{\infty}_{M_n}$ be such that $\Phi, \Phi^* \in \mathcal{N}$. Assume that Φ has a matrix singularity. If T_{Φ} is sunnormal then T_{Φ} is normal or analytic.

Note.

(1) If n = 1, then $\Theta = \theta \in H^{\infty}$ is vacuously diagonal-constant, so that our main theorem reduces to the original Abrahamse's Theorem.

Main Theorem

Main Theorem (Curto, Hwang, and Lee, 2015)

Let $\Phi \in L^{\infty}_{M_n}$ be such that $\Phi, \Phi^* \in \mathcal{N}$. Assume that Φ has a matrix singularity. If T_{Φ} is sunnormal then T_{Φ} is normal or analytic.

Note.

(1) If n = 1, then $\Theta = \theta \in H^{\infty}$ is vacuously diagonal-constant, so that our main theorem reduces to the original Abrahamse's Theorem.

(2) The assumption " Φ has a matrix singularity" is essential in the main theorem. Let

$$\Phi := \begin{pmatrix} \overline{z} + z & 0 \\ 0 & z \end{pmatrix}.$$

Then T_{Φ} is neither normal nor analytic. Observe that

$$\ker H_{\Phi} = \ker H_{\left(\begin{smallmatrix} \overline{z} & 0 \\ 0 & 0 \end{smallmatrix}\right)} = \begin{pmatrix} z & 0 \\ 0 & 1 \end{pmatrix} H_{\mathbb{C}^n}^2,$$

which shows that $\Theta \equiv \begin{pmatrix} z & 0 \\ 0 & 1 \end{pmatrix}$ does not have any diagonal-constant inner divisor, so that Φ does not have a matrix singularity.

References

- 1. (1970) P.R. Halmos, *Ten problems in Hilbert space*, Bull. Amer. Math. Soc. 76.
- (1976) M.B. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke Math. J. 43.
- (2001) R.E. Curto and W.Y. Lee, *Joint hyponormality of Toeplitz pairs*, Memoirs Amer. Math. Soc. (vol 712).
- (2012) R.E. Curto, I.S. Hwang and W.Y. Lee, *Hyponormality and subnormality of block Toeplitz operators*, Adv. Math. 230.
- 5. (2012) R.E. Curto, I.S. Hwang and W.Y. Lee, *Which subnormal Toeplitz* operators are either normal or analytic ?, J. Funct. Anal. 263.
- (2014) R.E. Curto, I.S. Hwang, D. Kang and W.Y. Lee, Subnormal and quasinormal Toeplitz operators with matrix-valued rational symbols, Adv. Math. 255.
- (2015) R.E. Curto, I.S. Hwang and W.Y. Lee, Abrahamse's Theorem for matrix-valued symbols (preprint).

A D F A 同 F A E F A E F A Q A

Thank you for your attention

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Appendix

Note.

We may define the matrix singularity for $\Phi \in L^{\infty}_{M_n}$ by the singularity of some entry of Φ : in other words, we say that Φ has a singularity at $\alpha \in \mathbb{D}$ if some entry of Φ has a singularity at $z = \alpha$. This is not equivalent to our definition.

Example.

Let

$$\Phi := \begin{pmatrix} \frac{1}{z} + z & 0 \\ 0 & z \end{pmatrix}.$$

As we saw in the preceding, Φ does not have any matrix singularity. However the entry $\frac{1}{z} + z$ of Φ has a pole at z = 0.