Operator Theory: 2020 Virtual Workshop
in honor of the 70th birthday of Muneo Cho
2020/12/19

Positivity of operators discussed by Dragomir

Masatoshi Fujii
mfujii@cc.osaka-kyoiku.ac.jp
Osaka Kyoiku University

Abstract.

This talk is based on the joint work with R. Nakamoto.
Throughout this note, an operator means a bounded linear operator acting on a Hilbert space H. An operator A is positive, denoted by $A \geq 0$, if $(A x, x) \geq 0$ for all $x \in H$. In paticular, we denote $A>0$ if A is positive and invertible. The positivity of operators induces the order $A \geq B$ among selfadjoint operators by $A-B \geq 0$. A continuous function f on an interval I is said to be operator monotone if f is order preserving, i.e., $A \geq B$ for A, B whose spectra are included in I implies $f(A) \geq f(B)$.

Now, motivated by a recent work due to Dragomir, we discuss the positivity of

$$
(B-A)(f(B)-f(A))
$$

for $A, B>0$ and operator monotone function f on $(0, \infty)$.
We note that the simplest numerical arithmetic-geometric mean inequality is $x+\frac{1}{x} \geq 2$ for $x>0$. We pose an operator version of it:

Proposition. For invertible positive operators A and B, if $A B^{-1}+B A^{-1}$ is selfadjoint, then

$$
A B^{-1}+B A^{-1} \geq 2
$$

Now we claim that Proposition implies the following theorem by birtue of the integral representation for operator montone functions.

Theorem. Let f be an operator monotone function on $(0, \infty)$ and $A, B>0$ such that $A(B+s)^{-1}+B(A+s)^{-1}$ is selfadjoint for all $s \geq 0$. Then

$$
(B-A)\{f(B)-f(A)\} \geq 0
$$

References

[1] S. S. Dragomir, Some inequalities for operator monotone functions, RGMIA, V23a57.
[2] S. S. Dragomir, Several inequalities for operator monotone functions on finite intervals, RGMIA, V23a58.

