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Abstract
Elementary number theory can be made to look like spectral theory.



1 Introduction

Masquerading as part of the Langlands program, this jeu d’esprit is really noth-
ing more than an old Littlewood joke. It was sparked, initially, by a rumour
that a subtle Japanese attack on Fermat’s last theorem involved “square free”
integers; then along came the book of “Rosenthal cubed”, which proved that
a veteran operator theorist could think of turning his hand to number theory.
Also Read has demonstrated that “primes” can turn up in unlikely places.

2 Natural numbers

J.E. Littlewood, in his “Miscellany” [5], quotes a nameless savant who main-
tained that, every once in a while, a scientist should “perform a damfool exper-
iment”, such as “playing the trumpet to his tulips”. In that spirit, we observe
that elementary number theory can be described in language very like spectral
theory. Recall

N={1,23,..}= DNn (2.1)

n=1

the natural numbers [7],[9], where
neN=N, ={1,2,...n}, (2.2)

is an initial segment. The Principle of Induction says that, if K C N is arbitrary,
there is implication

(le Kand K+1CK)=NCK . (2.3)

The apparently stronger principle of complete induction says, with

K" = U N , (2.4)
keK

that there is also implication, for K # 0,
K'+1CK=NCK. (2.5)
Now declare m € N to be a factor or “divisor” of n, provided
n € Nm . (2.6)
Equivalently (Green’s relation)
Nn C Nm . (2.7)
The traditional notation is m|n; we shall prefer m < n, or instead

m e N_l{n} . (28)



Here, in contrast to residual quotients [3],[6],

K'H={zcA: Kz CH}; HK '={zrc A: 2K C H}, (2.9)
we write
K H={r€A:HCKz}; HK 1 ={x€ A: H CzK}. (2.10)
Thus
n€Nm <<= meN_i{n}. (2.11)

The highest common factor hef(m,n) of m and n is defined by setting
k =hcf(m,n) <= N_1{k} = N_1{n} NN_1{m} . (2.12)

It is curious how early in the discussion of the natural numbers, the subtleties
of factorization present themselves; as “Uncle Petros” tells [1] his nephew, “ad-
dition is natural, but multiplication is artificial”:

N={1,2,3,22,5,2-3,7,2%32,2.5,11,2%-3,13,2-7,3- 5,24 17,...} . (2.13)

3 Primes

The subset P C N of primes is fundamental:

P={peN:N_ifp} = {Lp}}\ {1} . (3.1)

We shall write, for n € N,

P, =PNN, . (3:2)
It is the fundamental theorem of arithmetic ([9] Theorem 4.1.1) that
N=]]P : (3.3)

every natural number is (uniquely) a (finite) product of primes. We get about
half way there if we observe ([9] Lemma 1.1.1) every non-trivial natural number
has at least one prime factor:

l<neN= N_1{n}NP#0; (3.4)

now proceed by (complete) induction. It follows that PP is infinite: for if, to the
contrary
PCN,,

then nowhere in the product n! + 1 could there be any primes. Thus
]P):{pl,pg,pg,...}2{2,375,7,...}QN, (35)
where, as sequences rather than sets,

p:(plaanp?n):(23375777)ENN ; (36)



recursively (Sieve of Erastothenes)

pj+1 = Min(N\ {1} \ p;N) 3.7)

with of course
p1 =2=Min(N\ {1}) .

The fundamental theorem of arithmetic now gives the factorization, for 1 < n €
N,

H{plln(p) ip € [P)} =n = Hp;/](n) , (38)
=1

where v, : P — P is the multiplicity function, and perversely we write v;(n) =
vn(p;). Formally, if 1 <n € N,

Vn(p) = Max{k € N:p* € N_;{n}} . (3.9)

There is of course no simple formula for the mapping n — p, : N = N. If we
reflect that the factorial function

nenl=1-2-....n=][N, (3.10)

has a significant extension to the complex plane (the Gamma function), we
might wonder whether there could be something similar for the inscrutable
“prime function” p : n +— p,. It is sometimes difficult to be sure that n € N is
prime: but if we can find p € P for which

p<n<p?, (3.11)
then we need only search P, for factors of n; if there are none then n € IP. It is
salutary, if you have a digital clock beside your bed, and are finding it difficult
to sleep, to lie there and factorize the time; you will get a new problem every
sixty seconds, and will be too drowsy to go and look anything up.

4 Spectrum
If in a Littlewood “damfool experiment” we set [4]
w(n)={peP:peN_i{n}}, (4.1)
then we can think of w as some kind of “spectrum”. Evidently
w(n) CP, CN, . (4.2)
There is two way implication, for n € N,

n=1<+<=wn)=0. (4.3)



If n € N and p € P then
p<n<p2:>w(n)§U]P’pU{n}. (4.4)
n € N is a prime power provided its spectrum is a singleton
#w((n) =1, (4.5)
and square free provided every point of its spectrum has multiplicity one
pEw(n) = vy(p)=1. (4.6)

Thus a square free prime power is itself a prime. The “spectral mapping theo-
rem” here is [4],[8],([9] Corollary 4.1.3 , Lemma 7.2.2) another sort of logarithmic
law:
{m,n} CN = w(mn) = w(m)Jw(n) . (4.7
t

Fermat’s (little) theorem says ([9] Theorem 5.1.1) that
(1<neNandpeP)=pcwhn)Uwn~'-1), (4.8)
and Wilson’s theorem ([9] Theorem 5.2.1) that
peEP=pew(l+(p-1. (4.9)
Finally [4],[9], the Euclidean Algorithm demonstrates implication
w(m)Nw(n)=0=1€Zm+nZ : (4.10)

spectral disjointness appears to imply “splitting exactness”. Indeed there is two
way implication
w(n) Nw(m) =0 < hef(m,n) =1, (4.11)

and generally
hef(m,n) € Zm + nZ . (4.12)

As with linear algebra spectral theory, the spectrum gives only limited in-
formation about an element, and “spectral mltiplicity” adds more; indeed here,
according to the fundamental theorem of arithmetic, the spectrum w(n) and
the multiplicity function v, together completely determine n € N.

Our spectrum lies in the complement of the “totatives” of n: with

Tot(n) = {k € N,, : hef(k,n) =1}, (4.13)
we have
w(n) C P, \ Tot(n) , (4.14)
and Euler’s totient function is defined by the formula
¢(n) = #Tot(n) = #(nZ/(nZ)™") . (4.15)

For example if p € P then ¢(p) = p — 1. and if {p,q} C P are distinct primes
then ([9] Theorem 6.1.2)

d(pg) = (p—1)(g—1) . (4.16)



5 Polynomials

Complex polynomials in one variable have arithmetic similar to the integers: if
p=2F+... +a1z+ay € Poly, CC® (5.1)

is a “monic” polynomial, then the fundamental theorem of algebra [7],[9] says
that

k
p=p(z)=[[G-N)=T[G-2"™ (5.2)
j=1 AeC
here there are possible repetitions among the {\; : j € {1,2,...,k}}, while all
but finitely many of the v,(\) vanish:
p€Poly; CClz] = #{X € C:y,(\) #0} < . (5.3)

The “primes” among the monic polynomials are {z— X : A € C}, and p € Poly,
has both a “vector-valued” spectrum

o) = {z= N e {12k = {— A A0}, (5.4)
with a multiplicity function v, : C — N U {0}, and a numerical spectrum
o(1/p)=p~1(0)CC. (5.5)

The Euclidean algorithm continues to apply: if {¢g,r} C Poly; then
¢ H0)Nr~1(0) =0 =1 € Clz]qg +rCl2] . (5.6)
This has an application [2] to the “diagonalization” of a matrix 7" € C*F**: if
p =p(z) =det(T — 21) (5.7)

is the Cayley-Hamilton polynomial and XA € p~1(0) is an eigenvalue then we can
write

p=q-rwithg=(z— N and ¢ 1 (0)Nr 1 (0) =0, (5.8)

and hence
(T — XI)~*(0) C ¢ *(0) C r(T)CF : (5.9)

all the eigenvectors x € (T — AI)~!(0) will be among the columns of the matrix
r(T).
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