On spectral number theory

Robin Harte
School of Mathematice, Trinity College Dublin hartere@gmail.com AMS Classification: 11B25; 15B36
Key words: residual quotient, primes, spectrum

Abstract
Elementary number theory can be made to look like spectral theory.

1 Introduction

Masquerading as part of the Langlands program, this jeu d'esprit is really nothing more than an old Littlewood joke. It was sparked, initially, by a rumour that a subtle Japanese attack on Fermat's last theorem involved "square free" integers; then along came the book of "Rosenthal cubed", which proved that a veteran operator theorist could think of turning his hand to number theory. Also Read has demonstrated that "primes" can turn up in unlikely places.

2 Natural numbers

J.E. Littlewood, in his "Miscellany" [5], quotes a nameless savant who maintained that, every once in a while, a scientist should "perform a damfool experiment", such as "playing the trumpet to his tulips". In that spirit, we observe that elementary number theory can be described in language very like spectral theory. Recall

$$
\begin{equation*}
\mathbb{N}=\{1,2,3, \ldots\}=\bigcup_{n=1}^{\infty} \mathbb{N}_{n} \tag{2.1}
\end{equation*}
$$

the natural numbers [7],[9], where

$$
\begin{equation*}
n \in \mathbb{N} \Longrightarrow \mathbb{N}_{n}=\{1,2, \ldots n\} \tag{2.2}
\end{equation*}
$$

is an initial segment. The Principle of Induction says that, if $K \subseteq \mathbb{N}$ is arbitrary, there is implication

$$
\begin{equation*}
(1 \in K \text { and } K+1 \subseteq K) \Longrightarrow \mathbb{N} \subseteq K \tag{2.3}
\end{equation*}
$$

The apparently stronger principle of complete induction says, with

$$
\begin{equation*}
K^{\wedge}=\bigcup_{k \in K} \mathbb{N}_{k} \tag{2.4}
\end{equation*}
$$

that there is also implication, for $K \neq \emptyset$,

$$
\begin{equation*}
K^{\wedge}+1 \subseteq K \Longrightarrow \mathbb{N} \subseteq K \tag{2.5}
\end{equation*}
$$

Now declare $m \in \mathbb{N}$ to be a factor or "divisor" of n, provided

$$
\begin{equation*}
n \in \mathbb{N} m \tag{2.6}
\end{equation*}
$$

Equivalently (Green's relation)

$$
\begin{equation*}
\mathbb{N} n \subseteq \mathbb{N} m \tag{2.7}
\end{equation*}
$$

The traditional notation is $m \mid n$; we shall prefer $m \prec n$, or instead

$$
\begin{equation*}
m \in \mathbb{N}_{-1}\{n\} \tag{2.8}
\end{equation*}
$$

Here, in contrast to residual quotients [3], [6],

$$
\begin{equation*}
K^{-1} H=\{x \in A: K x \subseteq H\} ; H K^{-1}=\{x \in A: x K \subseteq H\} \tag{2.9}
\end{equation*}
$$

we write

$$
\begin{equation*}
K_{-1} H=\{x \in A: H \subseteq K x\} ; H K_{-1}=\{x \in A: H \subseteq x K\} \tag{2.10}
\end{equation*}
$$

Thus

$$
\begin{equation*}
n \in \mathbb{N} m \Longleftrightarrow m \in \mathbb{N}_{-1}\{n\} \tag{2.11}
\end{equation*}
$$

The highest common factor $\operatorname{hcf}(m, n)$ of m and n is defined by setting

$$
\begin{equation*}
k=\operatorname{hcf}(m, n) \Longleftrightarrow \mathbb{N}_{-1}\{k\}=\mathbb{N}_{-1}\{n\} \cap \mathbb{N}_{-1}\{m\} \tag{2.12}
\end{equation*}
$$

It is curious how early in the discussion of the natural numbers, the subtleties of factorization present themselves; as "Uncle Petros" tells [1] his nephew, "addition is natural, but multiplication is artificial":

$$
\begin{equation*}
\mathbb{N}=\left\{1,2,3,2^{2}, 5,2 \cdot 3,7,2^{3}, 3^{2}, 2 \cdot 5,11,2^{2} \cdot 3,13,2 \cdot 7,3 \cdot 5,2^{4}, 17, \ldots\right\} \tag{2.13}
\end{equation*}
$$

3 Primes

The subset $\mathbb{P} \subseteq \mathbb{N}$ of primes is fundamental:

$$
\begin{equation*}
\mathbb{P}=\left\{p \in \mathbb{N}: \mathbb{N}_{-1}\{p\}=\{1, p\}\right\} \backslash\{1\} \tag{3.1}
\end{equation*}
$$

We shall write, for $n \in \mathbb{N}$,

$$
\begin{equation*}
\mathbb{P}_{n}=\mathbb{P} \cap \mathbb{N}_{n} \tag{3.2}
\end{equation*}
$$

It is the fundamental theorem of arithmetic ([9] Theorem 4.1.1) that

$$
\begin{equation*}
\mathbb{N}=\prod \mathbb{P}: \tag{3.3}
\end{equation*}
$$

every natural number is (uniquely) a (finite) product of primes. We get about half way there if we observe ([9] Lemma 1.1.1) every non-trivial natural number has at least one prime factor:

$$
\begin{equation*}
1<n \in \mathbb{N} \Longrightarrow N_{-1}\{n\} \cap \mathbb{P} \neq \emptyset \tag{3.4}
\end{equation*}
$$

now proceed by (complete) induction. It follows that \mathbb{P} is infinite: for if, to the contrary

$$
\mathbb{P} \subseteq \mathbb{N}_{n}
$$

then nowhere in the product $n!+1$ could there be any primes. Thus

$$
\begin{equation*}
\mathbb{P}=\left\{p_{1}, p_{2}, p_{3}, \ldots\right\}=\{2,3,5,7, \ldots\} \subseteq \mathbb{N} \tag{3.5}
\end{equation*}
$$

where, as sequences rather than sets,

$$
\begin{equation*}
\mathbf{p}=\left(p_{1}, p_{2}, p_{3}, \ldots\right)=(2,3,5,7, \ldots) \in \mathbb{N}^{\mathbb{N}} \tag{3.6}
\end{equation*}
$$

recursively (Sieve of Erastothenes)

$$
\begin{equation*}
p_{j+1}=\operatorname{Min}\left(\mathbb{N} \backslash\{1\} \backslash p_{j} \mathbb{N}\right) \tag{3.7}
\end{equation*}
$$

with of course

$$
p_{1}=2=\operatorname{Min}(\mathbb{N} \backslash\{1\})
$$

The fundamental theorem of arithmetic now gives the factorization, for $1<n \in$ \mathbb{N},

$$
\begin{equation*}
\prod\left\{p^{\nu_{n}(p)}: p \in \mathbb{P}\right\}=n=\prod_{j=1}^{\infty} p_{j}^{\nu_{j}(n)} \tag{3.8}
\end{equation*}
$$

where $\nu_{n}: \mathbb{P} \rightarrow \mathbb{P}$ is the multiplicity function, and perversely we write $\nu_{j}(n)=$ $\nu_{n}\left(p_{j}\right)$. Formally, if $1<n \in \mathbb{N}$,

$$
\begin{equation*}
\nu_{n}(p)=\operatorname{Max}\left\{k \in \mathbb{N}: p^{k} \in \mathbb{N}_{-1}\{n\}\right\} . \tag{3.9}
\end{equation*}
$$

There is of course no simple formula for the mapping $n \mapsto p_{n}: \mathbb{N} \rightarrow \mathbb{N}$. If we reflect that the factorial function

$$
\begin{equation*}
n \mapsto n!=1 \cdot 2 \cdot \ldots \cdot n=\prod \mathbb{N}_{n} \tag{3.10}
\end{equation*}
$$

has a significant extension to the complex plane (the Gamma function), we might wonder whether there could be something similar for the inscrutable "prime function" $\mathbf{p}: n \mapsto p_{n}$. It is sometimes difficult to be sure that $n \in \mathbb{N}$ is prime: but if we can find $p \in \mathbb{P}$ for which

$$
\begin{equation*}
p<n<p^{2} \tag{3.11}
\end{equation*}
$$

then we need only search \mathbb{P}_{p} for factors of n; if there are none then $n \in \mathbb{P}$. It is salutary, if you have a digital clock beside your bed, and are finding it difficult to sleep, to lie there and factorize the time; you will get a new problem every sixty seconds, and will be too drowsy to go and look anything up.

4 Spectrum

If in a Littlewood "damfool experiment" we set [4]

$$
\begin{equation*}
\varpi(n)=\left\{p \in \mathbb{P}: p \in \mathbb{N}_{-1}\{n\}\right\} \tag{4.1}
\end{equation*}
$$

then we can think of ϖ as some kind of "spectrum". Evidently

$$
\begin{equation*}
\varpi(n) \subseteq \mathbb{P}_{n} \subseteq \mathbb{N}_{n} \tag{4.2}
\end{equation*}
$$

There is two way implication, for $n \in \mathbb{N}$,

$$
\begin{equation*}
n=1 \Longleftrightarrow \varpi(n)=\emptyset \tag{4.3}
\end{equation*}
$$

If $n \in \mathbb{N}$ and $p \in \mathbb{P}$ then

$$
\begin{equation*}
p<n<p^{2} \Longrightarrow \varpi(n) \subseteq \bigcup \mathbb{P}_{p} \cup\{n\} \tag{4.4}
\end{equation*}
$$

$n \in \mathbb{N}$ is a prime power provided its spectrum is a singleton

$$
\begin{equation*}
\# \varpi(n)=1, \tag{4.5}
\end{equation*}
$$

and square free provided every point of its spectrum has multiplicity one

$$
\begin{equation*}
p \in \varpi(n) \Longrightarrow \nu_{n}(p)=1 \tag{4.6}
\end{equation*}
$$

Thus a square free prime power is itself a prime. The "spectral mapping theorem" here is [4],[8],([9] Corollary 4.1.3, Lemma 7.2.2) another sort of logarithmic law:

$$
\begin{equation*}
\{m, n\} \subseteq \mathbb{N} \Longrightarrow \varpi(m n)=\varpi(m) \cup \varpi(n) \tag{4.7}
\end{equation*}
$$

Fermat's (little) theorem says ([9] Theorem 5.1.1) that

$$
\begin{equation*}
(1<n \in \mathbb{N} \text { and } p \in \mathbb{P}) \Longrightarrow p \in \varpi(n) \cup \varpi\left(n^{p-1}-1\right) \tag{4.8}
\end{equation*}
$$

and Wilson's theorem ([9] Theorem 5.2.1) that

$$
\begin{equation*}
p \in \mathbb{P} \Longrightarrow p \in \varpi(1+(p-1)!) . \tag{4.9}
\end{equation*}
$$

Finally [4],[9], the Euclidean Algorithm demonstrates implication

$$
\begin{equation*}
\varpi(m) \cap \varpi(n)=\emptyset \Longrightarrow 1 \in \mathbb{Z} m+n \mathbb{Z}: \tag{4.10}
\end{equation*}
$$

spectral disjointness appears to imply "splitting exactness". Indeed there is two way implication

$$
\begin{equation*}
\varpi(n) \cap \varpi(m)=\emptyset \Longleftrightarrow \operatorname{hcf}(m, n)=1, \tag{4.11}
\end{equation*}
$$

and generally

$$
\begin{equation*}
\operatorname{hcf}(m, n) \in \mathbb{Z} m+n \mathbb{Z} \tag{4.12}
\end{equation*}
$$

As with linear algebra spectral theory, the spectrum gives only limited information about an element, and "spectral mltiplicity" adds more; indeed here, according to the fundamental theorem of arithmetic, the spectrum $\varpi(n)$ and the multiplicity function ν_{n} together completely determine $n \in \mathbb{N}$.

Our spectrum lies in the complement of the "totatives" of n : with

$$
\begin{equation*}
\operatorname{Tot}(n)=\left\{k \in \mathbb{N}_{n}: \operatorname{hcf}(k, n)=1\right\} \tag{4.13}
\end{equation*}
$$

we have

$$
\begin{equation*}
\varpi(n) \subseteq \mathbb{P}_{n} \backslash \operatorname{Tot}(n), \tag{4.14}
\end{equation*}
$$

and Euler's totient function is defined by the formula

$$
\begin{equation*}
\phi(n)=\# \operatorname{Tot}(n)=\#\left(n \mathbb{Z} /(n \mathbb{Z})^{-1}\right) \tag{4.15}
\end{equation*}
$$

For example if $p \in \mathbb{P}$ then $\phi(p)=p-1$. and if $\{p, q\} \subseteq \mathbb{P}$ are distinct primes then ([9] Theorem 6.1.2)

$$
\begin{equation*}
\phi(p q)=(p-1)(q-1) . \tag{4.16}
\end{equation*}
$$

5 Polynomials

Complex polynomials in one variable have arithmetic similar to the integers: if

$$
\begin{equation*}
p=z^{k}+\ldots+\alpha_{1} z+\alpha_{0} \in \operatorname{Poly}_{1} \subseteq \mathbb{C}^{\mathbb{C}} \tag{5.1}
\end{equation*}
$$

is a "monic" polynomial, then the fundamental theorem of algebra [7],[9] says that

$$
\begin{equation*}
p \equiv p(z)=\prod_{j=1}^{k}\left(z-\lambda_{j}\right)=\prod_{\lambda \in \mathbb{C}}(z-\lambda)^{\nu_{p}(\lambda)}: \tag{5.2}
\end{equation*}
$$

here there are possible repetitions among the $\left\{\lambda_{j}: j \in\{1,2, \ldots, k\}\right\}$, while all but finitely many of the $\nu_{p}(\lambda)$ vanish:

$$
\begin{equation*}
p \in \operatorname{Poly}_{1} \subseteq \mathbb{C}[z] \Longrightarrow \#\left\{\lambda \in \mathbb{C}: \nu_{p}(\lambda) \neq 0\right\}<\infty \tag{5.3}
\end{equation*}
$$

The "primes" among the monic polynomials are $\{z-\lambda: \lambda \in \mathbb{C}\}$, and $p \in$ Poly $_{1}$ has both a "vector-valued" spectrum

$$
\begin{equation*}
\varpi(p)=\left\{z-\lambda_{j}: j \in\{1,2, \ldots k\}\right\}=\left\{z-\lambda: \nu_{p}(\lambda) \neq 0\right\} \tag{5.4}
\end{equation*}
$$

with a multiplicity function $\nu_{p}: \mathbb{C} \rightarrow \mathbb{N} \cup\{0\}$, and a numerical spectrum

$$
\begin{equation*}
\sigma(1 / p)=p^{-1}(0) \subseteq \mathbb{C} \tag{5.5}
\end{equation*}
$$

The Euclidean algorithm continues to apply: if $\{q, r\} \subseteq$ Poly $_{1}$ then

$$
\begin{equation*}
q^{-1}(0) \cap r^{-1}(0)=\emptyset \Longrightarrow 1 \in \mathbb{C}[z] q+r \mathbb{C}[z] \tag{5.6}
\end{equation*}
$$

This has an application [2] to the "diagonalization" of a matrix $T \in \mathbb{C}^{k \times k}$: if

$$
\begin{equation*}
p \equiv p(z)=\operatorname{det}(T-z I) \tag{5.7}
\end{equation*}
$$

is the Cayley-Hamilton polynomial and $\lambda \in p^{-1}(0)$ is an eigenvalue then we can write

$$
\begin{equation*}
p=q \cdot r \text { with } q=(z-\lambda)^{\ell} \text { and } q^{-1}(0) \cap r^{-1}(0)=\emptyset \tag{5.8}
\end{equation*}
$$

and hence

$$
\begin{equation*}
(T-\lambda I)^{-1}(0) \subseteq q^{-1}(0) \subseteq r(T) \mathbb{C}^{k} \tag{5.9}
\end{equation*}
$$

all the eigenvectors $x \in(T-\lambda I)^{-1}(0)$ will be among the columns of the matrix $r(T)$.

6 References

[1] Doxiadis, A. Uncle Petros and Goldbach's conjecture Bloomsbury (1992)
[2] Harte, R.E. Cayley-Hamilton for eigenvalues Irish Math. Soc. Bull. 22 (1989) 66-68
[3] Harte, R.E. Residual quotients Funct. Anal. Approx. Comp. 7 (2015)
[4] Harte, R.E. Spectral dsjointness and the Euclidean algorithm Math. Proc. Royal Irish Acad. 118A (2018) 65-69
[5] Littlewood, J.E. A mathematician's miscellany
[6] Northcott, D.G. Ideal theory Cambridge Tracts in Mathematics 42 (1960)
[7] O Searcoid, M. Elements of Abstract Analysis Springer Undergraduate Texts in Mathematics 515 (2002)
[8] Read, C.J. All primes have closed range Bull. London Math. Soc. 33 (2001) 311-346
[9] Rosenthal, D., Rosenthal, D. and Rosenthal, P. A readable introduction to real mathematics Springer Undergraduate Texts in Mathematics (2014)

