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Abstract
Elementary number theory can be made to look like spectral theory.



1 Introduction

Masquerading as part of the Langlands program, this jeu d’esprit is really noth-
ing more than an old Littlewood joke. It was sparked, initially, by a rumour
that a subtle Japanese attack on Fermat’s last theorem involved “square free”
integers; then along came the book of “Rosenthal cubed”, which proved that
a veteran operator theorist could think of turning his hand to number theory.
Also Read has demonstrated that “primes” can turn up in unlikely places.

2 Natural numbers

J.E. Littlewood, in his “Miscellany” [5], quotes a nameless savant who main-
tained that, every once in a while, a scientist should “perform a damfool exper-
iment”, such as “playing the trumpet to his tulips”. In that spirit, we observe
that elementary number theory can be described in language very like spectral
theory. Recall

N = {1, 2, 3, . . .} =

∞⋃
n=1

Nn (2.1)

the natural numbers [7],[9], where

n ∈ N =⇒ Nn = {1, 2, . . . n} , (2.2)

is an initial segment. The Principle of Induction says that, if K ⊆ N is arbitrary,
there is implication (

1 ∈ K and K + 1 ⊆ K
)

=⇒ N ⊆ K . (2.3)

The apparently stronger principle of complete induction says, with

K∧ =
⋃
k∈K

Nk , (2.4)

that there is also implication, for K 6= ∅,

K∧ + 1 ⊆ K =⇒ N ⊆ K . (2.5)

Now declare m ∈ N to be a factor or “divisor” of n, provided

n ∈ Nm . (2.6)

Equivalently (Green’s relation)

Nn ⊆ Nm . (2.7)

The traditional notation is m|n; we shall prefer m ≺ n, or instead

m ∈ N−1{n} . (2.8)

2



Here, in contrast to residual quotients [3],[6],

K−1H = {x ∈ A : Kx ⊆ H} ; HK−1 = {x ∈ A : xK ⊆ H} , (2.9)

we write

K−1H = {x ∈ A : H ⊆ Kx} ; HK−1 = {x ∈ A : H ⊆ xK} . (2.10)

Thus
n ∈ Nm⇐⇒ m ∈ N−1{n} . (2.11)

The highest common factor hcf(m,n) of m and n is defined by setting

k = hcf(m,n)⇐⇒ N−1{k} = N−1{n} ∩ N−1{m} . (2.12)

It is curious how early in the discussion of the natural numbers, the subtleties
of factorization present themselves; as “Uncle Petros” tells [1] his nephew, “ad-
dition is natural, but multiplication is artificial”:

N = {1, 2, 3, 22, 5, 2 · 3, 7, 23, 32, 2 · 5, 11, 22 · 3, 13, 2 · 7, 3 · 5, 24, 17, . . .} . (2.13)

3 Primes

The subset P ⊆ N of primes is fundamental:

P = {p ∈ N : N−1{p} = {1, p}} \ {1} . (3.1)

We shall write, for n ∈ N,
Pn = P ∩ Nn . (3.2)

It is the fundamental theorem of arithmetic ([9] Theorem 4.1.1) that

N =
∏

P : (3.3)

every natural number is (uniquely) a (finite) product of primes. We get about
half way there if we observe ([9] Lemma 1.1.1) every non-trivial natural number
has at least one prime factor:

1 < n ∈ N =⇒ N−1{n} ∩ P 6= ∅ ; (3.4)

now proceed by (complete) induction. It follows that P is infinite: for if, to the
contrary

P ⊆ Nn ,

then nowhere in the product n! + 1 could there be any primes. Thus

P = {p1, p2, p3, . . .} = {2, 3, 5, 7, . . .} ⊆ N , (3.5)

where, as sequences rather than sets,

p = (p1, p2, p3, . . .) = (2, 3, 5, 7, . . .) ∈ NN ; (3.6)
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recursively (Sieve of Erastothenes)

pj+1 = Min(N \ {1} \ pjN) (3.7)

with of course
p1 = 2 = Min(N \ {1}) .

The fundamental theorem of arithmetic now gives the factorization, for 1 < n ∈
N, ∏

{pνn(p) : p ∈ P} = n =

∞∏
j=1

p
νj(n)
j , (3.8)

where νn : P → P is the multiplicity function, and perversely we write νj(n) =
νn(pj). Formally, if 1 < n ∈ N,

νn(p) = Max{k ∈ N : pk ∈ N−1{n}} . (3.9)

There is of course no simple formula for the mapping n 7→ pn : N → N. If we
reflect that the factorial function

n 7→ n! = 1 · 2 · . . . · n =
∏

Nn (3.10)

has a significant extension to the complex plane (the Gamma function), we
might wonder whether there could be something similar for the inscrutable
“prime function” p : n 7→ pn. It is sometimes difficult to be sure that n ∈ N is
prime: but if we can find p ∈ P for which

p < n < p2 , (3.11)

then we need only search Pp for factors of n; if there are none then n ∈ P. It is
salutary, if you have a digital clock beside your bed, and are finding it difficult
to sleep, to lie there and factorize the time; you will get a new problem every
sixty seconds, and will be too drowsy to go and look anything up.

4 Spectrum

If in a Littlewood “damfool experiment” we set [4]

$(n) = {p ∈ P : p ∈ N−1{n}} , (4.1)

then we can think of $ as some kind of “spectrum”. Evidently

$(n) ⊆ Pn ⊆ Nn . (4.2)

There is two way implication, for n ∈ N,

n = 1⇐⇒ $(n) = ∅ . (4.3)
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If n ∈ N and p ∈ P then

p < n < p2 =⇒ $(n) ⊆
⋃

Pp ∪ {n} . (4.4)

n ∈ N is a prime power provided its spectrum is a singleton

#$(n) = 1 , (4.5)

and square free provided every point of its spectrum has multiplicity one

p ∈ $(n) =⇒ νn(p) = 1 . (4.6)

Thus a square free prime power is itself a prime. The “spectral mapping theo-
rem” here is [4],[8],([9] Corollary 4.1.3 , Lemma 7.2.2) another sort of logarithmic
law:

{m,n} ⊆ N =⇒ $(mn) = $(m) ∪$(n) . (4.7)

Fermat’s (little) theorem says ([9] Theorem 5.1.1) that

(1 < n ∈ N and p ∈ P) =⇒ p ∈ $(n) ∪$(np−1 − 1) , (4.8)

and Wilson’s theorem ([9] Theorem 5.2.1) that

p ∈ P =⇒ p ∈ $(1 + (p− 1)!) . (4.9)

Finally [4],[9], the Euclidean Algorithm demonstrates implication

$(m) ∩$(n) = ∅ =⇒ 1 ∈ Zm+ nZ : (4.10)

spectral disjointness appears to imply “splitting exactness”. Indeed there is two
way implication

$(n) ∩$(m) = ∅ ⇐⇒ hcf(m,n) = 1 , (4.11)

and generally
hcf(m,n) ∈ Zm+ nZ . (4.12)

As with linear algebra spectral theory, the spectrum gives only limited in-
formation about an element, and “spectral mltiplicity” adds more; indeed here,
according to the fundamental theorem of arithmetic, the spectrum $(n) and
the multiplicity function νn together completely determine n ∈ N.

Our spectrum lies in the complement of the “totatives” of n: with

Tot(n) = {k ∈ Nn : hcf(k, n) = 1} , (4.13)

we have
$(n) ⊆ Pn \ Tot(n) , (4.14)

and Euler’s totient function is defined by the formula

φ(n) = #Tot(n) = #
(
nZ/(nZ)−1

)
. (4.15)

For example if p ∈ P then φ(p) = p − 1. and if {p, q} ⊆ P are distinct primes
then ([9] Theorem 6.1.2)

φ(pq) = (p− 1)(q − 1) . (4.16)
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5 Polynomials

Complex polynomials in one variable have arithmetic similar to the integers: if

p = zk + . . .+ α1z + α0 ∈ Poly1 ⊆ CC (5.1)

is a “monic” polynomial, then the fundamental theorem of algebra [7],[9] says
that

p ≡ p(z) =

k∏
j=1

(z − λj) =
∏
λ∈C

(z − λ)νp(λ) : (5.2)

here there are possible repetitions among the {λj : j ∈ {1, 2, . . . , k}}, while all
but finitely many of the νp(λ) vanish:

p ∈ Poly1 ⊆ C[z] =⇒ #{λ ∈ C : νp(λ) 6= 0} <∞ . (5.3)

The “primes” among the monic polynomials are {z− λ : λ ∈ C}, and p ∈ Poly1

has both a “vector-valued” spectrum

$(p) = {z − λj : j ∈ {1, 2, . . . k}} = {z − λ : νp(λ) 6= 0} , (5.4)

with a multiplicity function νp : C→ N ∪ {0}, and a numerical spectrum

σ(1/p) = p−1(0) ⊆ C . (5.5)

The Euclidean algorithm continues to apply: if {q, r} ⊆ Poly1 then

q−1(0) ∩ r−1(0) = ∅ =⇒ 1 ∈ C[z]q + rC[z] . (5.6)

This has an application [2] to the “diagonalization” of a matrix T ∈ Ck×k: if

p ≡ p(z) = det(T − zI) (5.7)

is the Cayley-Hamilton polynomial and λ ∈ p−1(0) is an eigenvalue then we can
write

p = q · r with q = (z − λ)` and q−1(0) ∩ r−1(0) = ∅ , (5.8)

and hence
(T − λI)−1(0) ⊆ q−1(0) ⊆ r(T )Ck : (5.9)

all the eigenvectors x ∈ (T −λI)−1(0) will be among the columns of the matrix
r(T ).
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