# On spectral number theory

# Robin Harte

School of Mathematice, Trinity College Dublin hartere@gmail.com

AMS Classification: 11B25; 15B36

Key words: residual quotient, primes, spectrum

#### Abstract

Elementary number theory can be made to look like spectral theory.

#### 1 Introduction

Masquerading as part of the Langlands program, this *jeu d'esprit* is really nothing more than an old Littlewood joke. It was sparked, initially, by a rumour that a subtle Japanese attack on Fermat's last theorem involved "square free" integers; then along came the book of "Rosenthal cubed", which proved that a veteran operator theorist could think of turning his hand to number theory. Also Read has demonstrated that "primes" can turn up in unlikely places.

#### 2 Natural numbers

J.E. Littlewood, in his "Miscellany" [5], quotes a nameless savant who maintained that, every once in a while, a scientist should "perform a damfool experiment", such as "playing the trumpet to his tulips". In that spirit, we observe that elementary number theory can be described in language very like spectral theory. Recall

$$\mathbb{N} = \{1, 2, 3, \ldots\} = \bigcup_{n=1}^{\infty} \mathbb{N}_n$$
 (2.1)

the natural numbers [7],[9], where

$$n \in \mathbb{N} \Longrightarrow \mathbb{N}_n = \{1, 2, \dots n\} ,$$
 (2.2)

is an initial segment. The Principle of Induction says that, if  $K \subseteq \mathbb{N}$  is arbitrary, there is implication

$$(1 \in K \text{ and } K + 1 \subseteq K) \Longrightarrow \mathbb{N} \subseteq K$$
. (2.3)

The apparently stronger principle of complete induction says, with

$$K^{\wedge} = \bigcup_{k \in K} \mathbb{N}_k , \qquad (2.4)$$

that there is also implication, for  $K \neq \emptyset$ ,

$$K^{\wedge} + 1 \subseteq K \Longrightarrow \mathbb{N} \subseteq K . \tag{2.5}$$

Now declare  $m \in \mathbb{N}$  to be a factor or "divisor" of n, provided

$$n \in \mathbb{N}m$$
 . (2.6)

Equivalently (Green's relation)

$$\mathbb{N}n \subseteq \mathbb{N}m \ . \tag{2.7}$$

The traditional notation is m|n; we shall prefer  $m \prec n$ , or instead

$$m \in \mathbb{N}_{-1}\{n\} \ . \tag{2.8}$$

Here, in contrast to residual quotients [3],[6],

$$K^{-1}H = \{x \in A : Kx \subseteq H\} ; HK^{-1} = \{x \in A : xK \subseteq H\} ,$$
 (2.9)

we write

$$K_{-1}H = \{x \in A : H \subseteq Kx\} \; ; \; HK_{-1} = \{x \in A : H \subseteq xK\} \; .$$
 (2.10)

Thus

$$n \in \mathbb{N}m \iff m \in \mathbb{N}_{-1}\{n\}$$
 (2.11)

The highest common factor hcf(m, n) of m and n is defined by setting

$$k = \operatorname{hcf}(m, n) \iff \mathbb{N}_{-1}\{k\} = \mathbb{N}_{-1}\{n\} \cap \mathbb{N}_{-1}\{m\} . \tag{2.12}$$

It is curious how early in the discussion of the natural numbers, the subtleties of factorization present themselves; as "Uncle Petros" tells [1] his nephew, "addition is natural, but multiplication is artificial":

$$\mathbb{N} = \{1, 2, 3, 2^2, 5, 2 \cdot 3, 7, 2^3, 3^2, 2 \cdot 5, 11, 2^2 \cdot 3, 13, 2 \cdot 7, 3 \cdot 5, 2^4, 17, \ldots\} \ . \ (2.13)$$

#### 3 Primes

The subset  $\mathbb{P} \subseteq \mathbb{N}$  of *primes* is fundamental:

$$\mathbb{P} = \{ p \in \mathbb{N} : \mathbb{N}_{-1} \{ p \} = \{ 1, p \} \} \setminus \{ 1 \} . \tag{3.1}$$

We shall write, for  $n \in \mathbb{N}$ ,

$$\mathbb{P}_n = \mathbb{P} \cap \mathbb{N}_n \ . \tag{3.2}$$

It is the fundamental theorem of arithmetic ([9] Theorem 4.1.1) that

$$\mathbb{N} = \prod \mathbb{P} : \tag{3.3}$$

every natural number is (uniquely) a (finite) product of primes. We get about half way there if we observe ([9] Lemma 1.1.1) every non-trivial natural number has at least one prime factor:

$$1 < n \in \mathbb{N} \Longrightarrow N_{-1}\{n\} \cap \mathbb{P} \neq \emptyset ; \tag{3.4}$$

now proceed by (complete) induction. It follows that  $\mathbb P$  is infinite: for if, to the contrary

$$\mathbb{P}\subseteq\mathbb{N}_n\ ,$$

then nowhere in the product n! + 1 could there be any primes. Thus

$$\mathbb{P} = \{p_1, p_2, p_3, \ldots\} = \{2, 3, 5, 7, \ldots\} \subseteq \mathbb{N} , \qquad (3.5)$$

where, as sequences rather than sets,

$$\mathbf{p} = (p_1, p_2, p_3, \dots) = (2, 3, 5, 7, \dots) \in \mathbb{N}^{\mathbb{N}} ; \tag{3.6}$$

recursively (Sieve of Erastothenes)

$$p_{i+1} = \min(\mathbb{N} \setminus \{1\} \setminus p_i \mathbb{N}) \tag{3.7}$$

with of course

$$p_1 = 2 = \operatorname{Min}(\mathbb{N} \setminus \{1\})$$
.

The fundamental theorem of arithmetic now gives the factorization, for  $1 < n \in \mathbb{N}$ .

$$\prod \{ p^{\nu_n(p)} : p \in \mathbb{P} \} = n = \prod_{j=1}^{\infty} p_j^{\nu_j(n)} , \qquad (3.8)$$

where  $\nu_n : \mathbb{P} \to \mathbb{P}$  is the multiplicity function, and perversely we write  $\nu_j(n) = \nu_n(p_j)$ . Formally, if  $1 < n \in \mathbb{N}$ ,

$$\nu_n(p) = \text{Max}\{k \in \mathbb{N} : p^k \in \mathbb{N}_{-1}\{n\}\} . \tag{3.9}$$

There is of course no simple formula for the mapping  $n \mapsto p_n : \mathbb{N} \to \mathbb{N}$ . If we reflect that the factorial function

$$n \mapsto n! = 1 \cdot 2 \cdot \dots \cdot n = \prod \mathbb{N}_n$$
 (3.10)

has a significant extension to the complex plane (the Gamma function), we might wonder whether there could be something similar for the inscrutable "prime function"  $\mathbf{p}: n \mapsto p_n$ . It is sometimes difficult to be sure that  $n \in \mathbb{N}$  is prime: but if we can find  $p \in \mathbb{P}$  for which

$$p < n < p^2 (3.11)$$

then we need only search  $\mathbb{P}_p$  for factors of n; if there are none then  $n \in \mathbb{P}$ . It is salutary, if you have a digital clock beside your bed, and are finding it difficult to sleep, to lie there and factorize the time; you will get a new problem every sixty seconds, and will be too drowsy to go and look anything up.

# 4 Spectrum

If in a Littlewood "damfool experiment" we set [4]

$$\varpi(n) = \{ p \in \mathbb{P} : p \in \mathbb{N}_{-1}\{n\} \} , \qquad (4.1)$$

then we can think of  $\varpi$  as some kind of "spectrum". Evidently

$$\varpi(n) \subseteq \mathbb{P}_n \subseteq \mathbb{N}_n$$
 (4.2)

There is two way implication, for  $n \in \mathbb{N}$ ,

$$n = 1 \Longleftrightarrow \varpi(n) = \emptyset . \tag{4.3}$$

If  $n \in \mathbb{N}$  and  $p \in \mathbb{P}$  then

$$p < n < p^2 \Longrightarrow \varpi(n) \subseteq \bigcup \mathbb{P}_p \cup \{n\}$$
 (4.4)

 $n \in \mathbb{N}$  is a prime power provided its spectrum is a singleton

$$\#\varpi(n) = 1 \tag{4.5}$$

and square free provided every point of its spectrum has multiplicity one

$$p \in \varpi(n) \Longrightarrow \nu_n(p) = 1$$
 . (4.6)

Thus a square free prime power is itself a prime. The "spectral mapping theorem" here is [4],[8],([9] Corollary 4.1.3, Lemma 7.2.2) another sort of logarithmic law:

$$\{m,n\} \subseteq \mathbb{N} \Longrightarrow \varpi(mn) = \varpi(m) \cup \varpi(n)$$
 (4.7)

Fermat's (little) theorem says ([9] Theorem 5.1.1) that

$$(1 < n \in \mathbb{N} \text{ and } p \in \mathbb{P}) \Longrightarrow p \in \varpi(n) \cup \varpi(n^{p-1} - 1)$$
, (4.8)

and Wilson's theorem ([9] Theorem 5.2.1) that

$$p \in \mathbb{P} \Longrightarrow p \in \varpi(1 + (p-1)!)$$
 (4.9)

Finally [4],[9], the Euclidean Algorithm demonstrates implication

$$\varpi(m) \cap \varpi(n) = \emptyset \Longrightarrow 1 \in \mathbb{Z}m + n\mathbb{Z} :$$
(4.10)

spectral disjointness appears to imply "splitting exactness". Indeed there is two way implication

$$\varpi(n) \cap \varpi(m) = \emptyset \iff \operatorname{hcf}(m, n) = 1,$$
(4.11)

and generally

$$hcf(m,n) \in \mathbb{Z}m + n\mathbb{Z}$$
 (4.12)

As with linear algebra spectral theory, the spectrum gives only limited information about an element, and "spectral mltiplicity" adds more; indeed here, according to the fundamental theorem of arithmetic, the spectrum  $\varpi(n)$  and the multiplicity function  $\nu_n$  together completely determine  $n \in \mathbb{N}$ .

Our spectrum lies in the complement of the "totatives" of n: with

$$Tot(n) = \{k \in \mathbb{N}_n : hcf(k, n) = 1\}, \qquad (4.13)$$

we have

$$\varpi(n) \subseteq \mathbb{P}_n \setminus \text{Tot}(n) ,$$
(4.14)

and Euler's totient function is defined by the formula

$$\phi(n) = \# \text{Tot}(n) = \# (n\mathbb{Z}/(n\mathbb{Z})^{-1})$$
 (4.15)

For example if  $p \in \mathbb{P}$  then  $\phi(p) = p - 1$ . and if  $\{p, q\} \subseteq \mathbb{P}$  are distinct primes then ([9] Theorem 6.1.2)

$$\phi(pq) = (p-1)(q-1) . \tag{4.16}$$

# 5 Polynomials

Complex polynomials in one variable have arithmetic similar to the integers: if

$$p = z^k + \ldots + \alpha_1 z + \alpha_0 \in \text{Poly}_1 \subseteq \mathbb{C}^{\mathbb{C}}$$
 (5.1)

is a "monic" polynomial, then the  $fundamental\ theorem\ of\ algebra\ [7],[9]$  says that

$$p \equiv p(z) = \prod_{j=1}^{k} (z - \lambda_j) = \prod_{\lambda \in \mathbb{C}} (z - \lambda)^{\nu_p(\lambda)} :$$
 (5.2)

here there are possible repetitions among the  $\{\lambda_j : j \in \{1, 2, ..., k\}\}$ , while all but finitely many of the  $\nu_p(\lambda)$  vanish:

$$p \in \text{Poly}_1 \subseteq \mathbb{C}[z] \Longrightarrow \#\{\lambda \in \mathbb{C} : \nu_p(\lambda) \neq 0\} < \infty .$$
 (5.3)

The "primes" among the monic polynomials are  $\{z - \lambda : \lambda \in \mathbb{C}\}$ , and  $p \in \text{Poly}_1$  has both a "vector-valued" spectrum

$$\varpi(p) = \{ z - \lambda_j : j \in \{1, 2, \dots k\} \} = \{ z - \lambda : \nu_p(\lambda) \neq 0 \} , \qquad (5.4)$$

with a multiplicity function  $\nu_p:\mathbb{C}\to\mathbb{N}\cup\{0\}$ , and a numerical spectrum

$$\sigma(1/p) = p^{-1}(0) \subseteq \mathbb{C} . \tag{5.5}$$

The Euclidean algorithm continues to apply: if  $\{q, r\} \subseteq \text{Poly}_1$  then

$$q^{-1}(0) \cap r^{-1}(0) = \emptyset \Longrightarrow 1 \in \mathbb{C}[z]q + r\mathbb{C}[z] . \tag{5.6}$$

This has an application [2] to the "diagonalization" of a matrix  $T \in \mathbb{C}^{k \times k}$ : if

$$p \equiv p(z) = \det(T - zI) \tag{5.7}$$

is the Cayley-Hamilton polynomial and  $\lambda \in p^{-1}(0)$  is an eigenvalue then we can write

$$p = q \cdot r \text{ with } q = (z - \lambda)^{\ell} \text{ and } q^{-1}(0) \cap r^{-1}(0) = \emptyset$$
, (5.8)

and hence

$$(T - \lambda I)^{-1}(0) \subseteq q^{-1}(0) \subseteq r(T)\mathbb{C}^k$$
 : (5.9)

all the eigenvectors  $x \in (T - \lambda I)^{-1}(0)$  will be among the columns of the matrix r(T).

# 6 References

- [1] DOXIADIS, A. Uncle Petros and Goldbach's conjecture Bloomsbury (1992)
- [2] HARTE, R.E. Cayley-Hamilton for eigenvalues *Irish Math. Soc. Bull.* 22 (1989) 66-68
- [3] Harte, R.E. Residual quotients Funct. Anal. Approx. Comp. 7 (2015)
- [4] HARTE, R.E. Spectral dsjointness and the Euclidean algorithm  $\it Math.\ Proc.\ Royal\ Irish\ Acad.\ 118A\ (2018)\ 65-69$
- [5] LITTLEWOOD, J.E. A mathematician's miscellany
- [6] NORTHCOTT, D.G. Ideal theory Cambridge Tracts in Mathematics 42 (1960)
- [7] O Searcoid, M. Elements of Abstract Analysis Springer Undergraduate Texts in Mathematics 515 (2002)
- [8] Read, C.J. All primes have closed range  $\it Bull.\ London\ Math.\ Soc.\ 33$  (2001) 311-346
- [9] ROSENTHAL, D., ROSENTHAL, D. AND ROSENTHAL, P. A readable introduction to real mathematics *Springer Undergraduate Texts in Mathematics* (2014)