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The Fundamental Theorem of Arithmetic says ([3] Corollary 4.1.2) that
every natural number is a product of primes:

n ∈ N =⇒ n =
∏
p∈P
{pνn(p) : n ∈ Np} . (1.1)

where

N = {1, 2, 3, . . .} =

∞⋃
n=1

Nn

with Nn = {1, 2, . . . n} and

P = {2, 3, 5, 7, . . .} = {p ∈ N : p ∈ Nn =⇒ n ∈ {1, p}} \ {1} (1.2)

are the natural numbers and the primes, and

(n, p) ∈ N× P =⇒ νn(p) = max{k ∈ N : n ∈ Npk} . (1.3)

The primes P form the intersection of the sets of prime powers

{pk : p ∈ P}, k ∈ {0} ∪ N

and the square free numbers

{n ∈ N : max{νn(p) : p ∈ P} ≤ 1} .

We remind ourselves here of a sort of “spectrum”, of the natural number n ∈ N,
given by

$(n) = {p ∈ P : n ∈ Np} , (1.4)

which collects the prime factors of n, discarding multiplicity.



We shall find it convenient to work with the sequence, rather than the set,
of primes: thus

n = (1, 2, 3, . . .) ; p = (2, 3, 5, 7, . . .) ∈ NN ;

formally (“Sieve of Eratosthenes”) for each n ∈ N,

pn+1 = min(N \ {1} \ Npn) . (1.5)

The square free numbers also form a sequence:

q = (1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, . . .) (1.6)

where, for each n ∈ N, qn is a sort of “square free root” of n, and indeed
participates in a sort of “polar decomposition” of n:

n = q′nqn , (1.7)

and we shall for no very clear reason refer to q′n = n/qn as the “carapace” of
n ∈ N. If we think of the natural number n as some kind of beetle, then its
square free root consists of its legs, and the carapace rounds them off to fill out
the rest of the insect. We might remark that the square free root qn determines,
and is determined by, the spectrum $(n).

Much of our interest in building a “spectral theory” for natural numbers has
been sparked by the “Readable introduction” [3] of Rosenthal cubed; in their
second edition, they report on an alternative “quadratic decomposition”:

n = r′nrn , (1.8)

where rn is again square free, but now

r′n = n/rn = max{m2 : n ∈ Nm2} (1.9)

is a perfect square; specifically the greatest square among the factors of n ∈ N.
For example, if n is square free then r′n = 1, while if n = m2 then r′n = n . In
effect part of the square free root is transferred to the carapace to square it off.
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This suddenly is serious business: Rosenthal3 are able to deploy it to prove ([3]
Theorem 13.7.8) that ∑

p∈P
1/p =

∞∑
n=1

1/pn =∞ ; (2.1)

the prime reciprocals combine to form a divergent series. Begin with a little
counting: if m ∈ N then

#{r′n : n ∈ Nm} ≤
√
m , (2.2)

since
n ∈ Nm =⇒ (r′n)2 ≤ n ≤ m .

Now with
M(m, p) = Nm ∩ Np ,

observe that
#M(m, p) ≤ m/p . (2.3)

Also with
M ′(m, p) = Nm \ Np ,

write
M ′k(m) =

⋂
k<j

M ′(m, pj) ;

we claim that
#{rn : n ∈M ′k(m)} ≤ 2k .

It follows therefore that
#M ′k(m) ≤ 2k

√
m . (2.4)

Now if, for a contradiction, the series of prime reciprocals were to converge,
then there would have to be k ∈ N for which

∞∑
n=k+1

1/pn < 1/2 . (2.5)

With N(m) = #M ′(m, pk+1) we have successively

m−N(m) ≤ m(1/pk+1 + 1/pk+2 + . . .) < m/2 ,

and hence
m/2 < N(m) ≤ 2k

√
m (2.6)

and so (for arbitrary m ∈ N)

√
m < 2k+1 ! (2.7)
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Much of this can be repeated for monic complex polynomials

p ≡ p(z) ≡ zn + α1z
n−1 + . . .+ αn−1z + αn ∈ Poly1 ⊆ C[z] ⊆ CC ,

with z : C → C the complex coordinate, n ∈ N and α ∈ Cn. The “primes” are
now the polynomials of degree 1, and the “spectrum” given by

$(p) = {z − λ : λ ∈ p−1(0) ⊆ C} , (3.1)

and the fundamental theorem of arithmetic is replaced by the fundamental the-
orem of algebra:

p =
∏
λ∈C

(z − λ)νp(λ) =

n∏
j=1

z − λj . (3.2)

Here νp(λ) is given by the analogue of (1.3), and the first product is over λ for
which νp(λ) 6= 0, and there may be repetitions in the second.

When the degree of a polynomial p is greater than or equal to 5 , it is difficult
to determine the λj : but the test of square free status is that a polynomial and
its derivative are mutually prime, which by the Euclidean axiom will say that

1 ∈ C[z]p+ C[z]dp/dz .

More generally, writing
p ≡ p∨ · p∧ (3.3)

for the “polar decomposition”, with square free root p∧ and carapace p∨, we
claim

p∨ = hcf(p, dp/dz) . (3.4)

To see this suppose
p = q · r

with
hcf(q, r) = 1 ;

then p∨=q∨ · r∨ and $(q) ∩$(r) = ∅, and proceed by induction on #$(p) .
For a rather simple example, if

p ≡ z2(z − 1) ,

with square free root z(z − 1) and carapace z, we have

dp/dz ≡ 3z2 − 2z ,

and hence
3z2 ≡ zdp/dz − 3p ,

and finally, for (3.4),
2z ≡ (3z − 1)dp/dz − 9p .
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