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1. Introduction

§1. A historical background. The Lifting Problem for Commuting Subnormals (LPCS) asks for
necessary and sufficient conditions for a pair of commuting subnormal operators on a Hilbert space
to admit commuting normal extensions. This is an old problem in operator theory. The aim of
this paper is to answer a long-standing open problem about the LPCS.

To begin with, let H denote a complex Hilbert space and B(H) denote the set of all bounded
linear operators acting on H. For an operator T ∈ B(H), T ∗ denotes the adjoint of T . An
operator T ∈ B(H) is said to be normal if T ∗T = TT ∗, hyponormal if its self-commutator [T ∗, T ] ≡
T ∗T − TT ∗ is positive semi-definite, and subnormal if there exists a Hilbert space K containing
H and a normal operator N on K such that NH ⊆ H and T = N |H, a restriction of N to H. In
this case, N is called a normal extension of T . In 1950, P.R. Halmos [18] introduced the notion
of a subnormal operator for the purpose of the study of dilations and extensions of operators on a
Hilbert space. Nowadays, the theory of subnormal operators has become an extensive and highly
developed area, which has made significant contributions to a number of problems in functional
analysis, operator theory, mathematical physics, and several other fields.

We recall that if A is a subset of B(H) then the commutant of A, denoted A′, is the set of
operators in B(H) which commute with every operator in A. If T ∈ B(H) is a subnormal operator
and N is a normal extension of T , then we say that an operator A in {T }′ lifts to {N}′ if there
exists an operator B in {N}′ such that B(H) ⊆ H and A = B|H. In 1971, J.A. Deddens [14]
provided an example that not every operator in {T }′ lifts to {N}′. As an interesting inquiry in the
commutant lifting problem, an old problem (LPCS) in operator theory has been brought up: for
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two commuting subnormal operators T1 and T2, find necessary and sufficient conditions for a pair
of T1 and T2 to admit commuting normal extensions. The LPCS has been studied by many authors
including [1], [2], [3], [6], [8], [10], [11], [13], [15], [19], [22], [23], [24], [25], [26], [27], [29], [30], etc.
There are many known examples of commuting pairs of subnormal operators which admit no lifting
(cf. M.B. Abrahamse [1] and A.R. Lubin [22]). Also, many sufficient conditions for the existence
of a lifting have been found. For instance, a commuting pair of subnormal operators T1 and T2
admits a lifting if either T1 or T2 is normal (J. Bram [6]), if either T1 or T2 is cyclic (T. Yoshino
[30]), if either T1 or T2 is an isometry (M. Slocinski [27]), or if the spectrum of either T1 or T2 is
finitely connected and the spectrum of its minimal normal extension is contained in the boundary
of its spectrum. On the other hand, in all of the known examples of the absence of lifting, the
key property missing is the subnormality of T1 + T2. Indeed, in 1978, A.R. Lubin [23] addressed
a concrete problem about the LPCS: if T1 and T2 are commuting subnormal operators, do they
admit commuting normal extensions when p(T1, T2) is subnormal for every 2-variable polynomial
p, or more weakly, when T1 + T2 is subnormal ? In 1994, E. Franks [15] showed that the first
condition gives an affirmative answer; indeed, commuting subnormal operators T1 and T2 admit
commuting normal extensions if p(T1, T2) is subnormal for each 2-variable polynomial p of degree
at most 5. However, the second condition still remains open: that is, if T1 and T2 are commuting
subnormal operators,

does the subnormality of T1 + T2 guarantee commuting normal extensions of T1 and T2 ? (1.1)

What is the reason why 36 years passed while question (1.1) remained unanswered ? The difficulty
of determining the subnormality of T1 + T2 is one explanation for failing to answer question (1.1).
Probably, the most effective way to determine the subnormality of T1 + T2 is Agler’s criterion for
subnormality in [4]. However, in view of Lambert’s Theorem [21], a main ingredient to examine
the subnormality is weighted shifts and Agler’s criterion for the weighted shifts involves quite
intricately combinatorial expressions, which are hard problems to solve. Thus, we had to develop
the theory of 2-variable weighted shifts before the time is ripe for answering question (1.1). In this
paper, we give a negative answer to question (1.1), by using 2-variable weighted shifts together
with the disintegration-of-measure technique and ingenious combinatorial computations.

§2. Joint subnormality. The notion of joint hyponormality for the general case of n-tuples of
operators was first formally introduced by A. Athavale [5]. Joint hyponormality originated from
the LPCS, and it has also been considered with an aim at understanding the gap between hy-
ponormality and subnormality for single operators. In some sense, the birth of joint hyponor-
mality occurred with the Bram-Halmos theorem for subnormality of an operator. The Bram-
Halmos criterion for subnormality (cf. [6], [7]) states that an operator T ∈ B(H) is subnormal if
and only if

∑
i,j(T

ixj , T
jxi) ≥ 0 for all finite collections x0, x1, · · · , xk ∈ H. Given an n-tuple

T ≡ (T1, . . . , Tn) of operators on H, we let [T∗,T] ∈ B(H⊕ · · · ⊕ H) denote the self-commutator
of T, defined by

[T∗,T] :=

⎛
⎜⎜⎜⎝
[T ∗

1 , T1] [T ∗
2 , T1] . . . [T ∗

n , T1]
[T ∗

1 , T2] [T ∗
2 , T2] . . . [T ∗

n , T2]
...

...
. . .

...
[T ∗

1 , Tn] [T ∗
2 , Tn] . . . [T ∗

n , Tn]

⎞
⎟⎟⎟⎠ ,

where [S, T ] := ST − TS for S, T ∈ B(H). By analogy with the case n = 1, we shall say ([5],
[12]) that T is jointly hyponormal (or simply, hyponormal) if [T∗,T] is a positive operator on
H ⊕ · · · ⊕ H. Thus, the Bram-Halmos criterion can be restated as: T ∈ B(H) is subnormal if
and only if (T, T 2, · · · , T k) is hyponormal for every k ∈ Z+. The n-tuple T ≡ (T1, . . . , Tn) is
said to be (jointly) normal if T is commuting and every Ti is a normal operator and is said to be
(jointly) subnormal if T is the restriction of a normal n-tuple to a common invariant subspace,
i.e., T admits commuting normal extensions. Thus the LPCS can be restated as:

LPCS: Find necessary and sufficient conditions for a commuting pair of subnormal operators to be
subnormal.
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§3. A main ingredient of the paper - two variable weighted shifts. To answer question (1.1), we
exploit 2-variable weighted shifts as a main tool. It is well known that the subnormality of an
arbitrary operator can be ascertained by examining the subnormality of an associated family of
weighted shifts [21]. Thus, single and multivariable weighted shifts have played an important role
in the study of the LPCS. They have also played a significant role in the study of cyclicity and
reflexivity, in the study of C∗-algebras generated by multiplication operators on Bergman spaces,
as fertile ground to test new hypotheses, and as canonical models for theories of dilation and
positivity. We review the definition and basic properties of 2-variable weighted shifts.

Recall that given a bounded sequence of positive numbers α : α0, α1, · · · (called weights or a
weight sequence), the (unilateral) weighted shiftWα associated with the sequence α is the operator
on �2(Z+) defined by Wαen := αnen+1 for all n ≥ 0, where {en}∞n=0 is the canonical orthonormal
basis for �2(Z+). We shall often write shift(α0, α1, · · · ) to denote the weighted shift Wα with a
weight sequence α ≡ {αn}∞n=0. The moments of α are defined by

γk ≡ γk(α) := α2
0 · · ·α2

k−1 (k ≥ 1)

and γ0 := 1. There is a well-known criterion of subnormality of weighted shifts, due to C. Berger
(cf. [7, III.8.16]) and independently established by R. Gellar and L.J. Wallen [16]:Wα is subnormal
if and only if there exists a probability measure ξα supported in [0, ||Wα||2] (called the Berger
measure of Wα) such that γk(α) =

∫
skdξα(s) (k ≥ 1). If Wα is subnormal with Berger measure

ξα and i ≥ 1, and if we let Li :=
∨{en : n ≥ i} denote the invariant subspace obtained by removing

the first i vectors in the canonical orthonormal basis of �2(Z+), then

the Berger measure of Wα|Li is si

γi(α)
dξα(s), (1.2)

where Wα|Li denotes the restriction of Wα to Li.

We now consider two bounded double-indexed sequences α ≡ {αk}, β ≡ {βk} ∈ �∞(Z2
+),

k ≡ (k1, k2) ∈ Z
2
+ := Z+ × Z+ and let �2(Z2

+) be the Hilbert space of square-summable com-
plex sequences indexed by Z

2
+. (Note that �2(Z2

+) is canonically isometrically isomorphic to
�2(Z+)

⊗
�2(Z+).) We define a 2-variable weighted shift W(α,β) ≡ (T1, T2), a pair of T1 and

T2 on �2(Z2
+), by T1ek := αkek+ε1 and T2ek := βkek+ε2 , where ε1 := (1, 0), ε2 := (0, 1), and

{ek}k∈Z
2
+
denotes the canonical orthonormal basis of �2(Z2

+) (see Figure 1(i)). Clearly,

T1T2 = T2T1 ⇐⇒ βk+ε1αk = αk+ε2βk (all k ∈ Z
2
+). (1.3)

In the sequel, we assume that all 2-variable weighted shifts W(α,β) are commuting, i.e., it satisfies

the condition (1.3). Given k ≡ (k1, k2) ∈ Z
2
+, the moment of order k for a pair (α, β) satisfying

(1.3) is defined by

γk ≡ γk(α, β) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if k1 = 0 and k2 = 0;

α2
(0,0) · · ·α2

(k1−1,0) if k1 ≥ 1 and k2 = 0;

β2
(0,0) · · ·β2

(0,k2−1) if k1 = 0 and k2 ≥ 1;

α2
(0,0) · · ·α2

(k1−1,0)β
2
(k1,0)

· · ·β2
(k1,k2−1) if k1 ≥ 1 and k2 ≥ 1.

We note that, due to the commutativity condition (1.3), γk can be computed using any nonde-
creasing path from (0, 0) to k. We recall that there is a 2-variable Berger’s Theorem, due to N.
Jewell and A.R. Lubin [20]: a 2-variable weighted shiftW(α,β) ≡ (T1, T2) is subnormal if and only if
there exists a probability measure μ (called Berger measure ofW(α,β)) defined on the 2-dimensional

rectangle R = [0, ||T1||2]× [0, ||T2||2] such that

γk(α, β) =

∫∫
R

sk1tk2dμ(s, t) for all k ≡ (k1, k2) ∈ Z
2
+ (called Berger’s Theorem).
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(0, 0) (1, 0) (2, 0) (3, 0)

α(0,0) α(1,0) α(2,0) · · ·

α(0,1) α(1,1) α(2,1) · · ·

α(0,2) α(1,2) α(2,2) · · ·

· · · · · · · · · · · ·

T1

T2

(0, 1)

(0, 2)

(0, 3)

β(0,0)

β(0,1)

β(0,2)

...

β(1,0)

β(1,1)

β(1,2)

...

β(2,0)

β(2,1)

β(2,2)

...

(i) (ii)
T1

T2

(0, 0) (1, 0) (2, 0) (3, 0)

√
1
11

√
1
2

√
11
16 · · ·

√
1
8

√
3
8

√
5
12 · · ·

√
1
16

√
5
12

√
9
20 · · ·

· · · · · ·

√
x

√
3
4

√
44
48

...

√
11
8
x

√
3
8

√
5
12

...

√
33
32

x

√
5
12

√
9
20

Figure 1. (i) The weight diagram of a generic 2-variable weighted shift;
(ii) The weight diagram of the 2-variable weighted shift (T1, T2) given in Theorem 1.1.

(T1, T2) |M∩N

§4. A description of the main theorem. For an arbitrary commuting 2-variable weighted shift
W(α,β) ≡ (T1, T2), let (T1, T2) |R denote the restriction of W(α,β) to R, where R is a common

invariant subspace of �2(Z2
+) for T1 and T2. Throughout the paper, we write

M :=
∨{

e(k1,k2) ∈ �2(Z2
+) : k1 ≥ 0, k2 ≥ 1

}
;

N :=
∨{

e(k1,k2) ∈ �2(Z2
+) : k1 ≥ 1, k2 ≥ 0

}
.

To answer question (1.1), we use the 2-variable weighted shift W(α,β) ≡ (T1, T2) with the weight

diagram given by Figure 1(ii), where α(0,1) :=
√

1
8 , the 0-th horizontal slice of T1 is a weighted

shift Wa := shift
(
α(0,0), α(1,0), · · ·

)
whose weight sequence a ≡ {an}∞n=0 is given by

an :=

⎧⎨
⎩
√

1
11 if n = 0√
4n+2n+2

4n+2n+1+8 if n ≥ 1,

and the 0-th vertical slice of T2 is a weighted shift Wb := shift
(
β(0,0), β(0,1), · · ·

)
whose weight

sequence b ≡ {bn}∞n=0 is given by

bn :=

{ √
x (x > 0) if n = 0√

10·22n+2n+1
10·22n+2n+1+4 if n ≥ 1.

Now, we define (T1, T2) |M∩N . For both of 0-th horizontal and vertical slices of (T1, T2) |M∩N , we
put a weighted shift Wc whose weight sequence c ≡ {cn}∞n=0 is given by

cn :=
√

2n+1+1
2n+2+4 (n ≥ 0):

in other words,

Wc := shift
(
α(1,1), α(2,1), · · ·

)
= shift

(
β(1,1), β(1,2), · · ·

)
= shift

(√
3
8 ,
√

5
12 , · · ·
)
.

In turn, both of the i-th horizontal and vertical slices of (T1, T2) |M∩N are defined by a restriction
of Wc to the subspace Li :=

∨{en : n ≥ i}, that is,
Wc|Li = shift

(
α(i,i), α(i+1,i), · · ·

)
= shift

(
β(i,i), β(i,i+1), · · ·

)
= shift

(√
2i+1+1
2i+2+4 ,

√
2i+2+1
2i+3+4 , · · ·

)
.
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Then, the remaining weights of T1 and T2 are automatically determined by the commutativity of
T1 and T2. Via Berger’s Theorem, we can show that

(a) Wa is subnormal with the 4-atomic Berger measure ξa := 3
4δ0 +

2
11δ 1

4
+ 1

22δ 1
2
+ 1

44δ1;

(b) Wb is subnormal with the 4-atomic Berger measure ξb :=
(
1− 15x

8

)
δ0 + x
(
δ 1

4
+ 1

4δ 1
2
+ 5

8δ1

)
;

(c) Wc is subnormal with the 2-atomic Berger measure ξc :=
1
2δ 1

4
+ 1

2δ 1
2
,

where δp denotes Dirac measure at p.

{Proof: For � ≥ 1,∫
s�dξa(s) = γ� (Wa) = a20a

2
1 · · ·a2�−2a

2
�−1

= 1
11 · 4+2+2

4+22+8 · 42+22+2
42+23+8 · · · 4�−2+2�−2+2

4�−2+2�−1+8
· 4�−1+2�−1+2

4�−1+2�+8

= 1
11 · 8( 1

4 )
2
+2( 1

2 )
2
+1

8( 1
4 )+2( 1

2 )+1
· 8( 1

4 )
3
+2( 1

2 )
3
+1

8( 1
4 )

2
+2( 1

2 )
2
+1

· · · 8( 1
4 )

�−1
+2( 1

2 )
�−1

+1

8( 1
4 )

�−2
+2( 1

2 )
�−2

+1
· 8( 1

4 )
�
+2( 1

2 )
�
+1

8( 1
4 )

�−1
+2( 1

2 )
�−1

+1

= 1
44 ·
(
8
(
1
4

)�
+ 2
(
1
2

)�
+ 1
)
= 2

11 · (14 )� + 1
22 · (12 )� + 1

44 ,

(1.4)

giving (a). The assertions (b) and (c) follow from the same argument as (a).}

Then, our main theorem follows:

Theorem 1.1. Let W(α,β) ≡ (T1, T2) be given by Figure 1(ii). Then, we have:

(i) T1 and T2 are both subnormal if and only if 0 < x ≤ 8
33 ;

(ii) (T1, T2) is subnormal if and only if 0 < x ≤ 2
11 ;

(iii) T1 + T2 is subnormal if 0 < x ≤ 2
11 + ε for some ε > 0.

Consequently, Theorem 1.1 proves that there exists a commuting pair (T1, T2) of subnormal
operators such that T1 + T2 is subnormal, but the pair (T1, T2) is not subnormal; that is, the pair
(T1, T2) does not admit commuting normal extensions. This answers Lubin’s question (1.1) in the
negative.

In Section 2, we give a proof of Theorem 1.1.

2. Proof of Theorem 1.1

To examine the subnormality of 2-variable weighted shifts, we need some definitions.

(i) Let μ and ν be two positive measures on a set X ≡ R+. We say that μ ≤ ν on X if
μ(E) ≤ ν(E) for each Borel subset E ⊆ X ; equivalently, μ ≤ ν if and only if

∫
fdμ ≤ ∫ fdν

for all f ∈ C(X) such that f ≥ 0 on X , where C(X) denotes the set of all continuous functions
on X .

(ii) Let μ be a probability measure on X × Y ≡ R+ × R+ and assume that 1
t ∈ L1(μ), i.e.,∫∫

1
t dμ(s, t) < ∞. The extremal measure μext (which is also a probability measure) on

X × Y is given by

dμext(s, t) :=
1

t
∥∥1

t

∥∥
L1(μ)

dμ(s, t).

(iii) Given a measure μ on X × Y , the marginal measure μX is given by μX := μ ◦ π−1
X , where

πX : X × Y → X is the canonical projection onto X . Thus μX(E) = μ(E × Y ) for every
E ⊆ X .
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We provide several auxiliary lemmas which are needed for the proof of Theorem 1.1. Recall
the subnormal backward extension of 1-variable weighted shifts (cf. [9]): If shift (α1, α2, · · · ) is
subnormal with Berger measure ξ, then shift (α0, α1, α2, · · · ) is subnormal if and only if

1

s
∈ L1(ξ) and α2

0 ≤
(∣∣∣∣
∣∣∣∣1s
∣∣∣∣
∣∣∣∣
L1(ξ)

)−1

. (2.1)

The following lemma is the 2-variable version of (2.1).

Lemma 2.1. ([13, Proposition 3.10]) (Subnormal backward extension of 2-variable weighted shifts)
Assume that W(α,β) ≡ (T1, T2) is a commuting pair of subnormal operators and (T1, T2)|M is
subnormal with associated Berger measure μM. Then, W(α,β) is subnormal if and only if the
following conditions hold:

(i) 1
t ∈ L1(μM);

(ii) β2
(0,0) ≤ (

∥∥ 1
t

∥∥
L1(μM)

)−1;

(iii) β2
(0,0)

∥∥ 1
t

∥∥
L1(μM)

(μM)Xext ≤ ξ0, where ξ0 is the Berger measure of shift (α(0,0), α(1,0), · · · ).
In the case when W(α,β) is subnormal, the Berger measure μ of W(α,β) is given by

dμ(s, t) = β2
(0,0)

∥∥∥∥1t
∥∥∥∥
L1(μM)

d(μM)ext(s, t) +
(
dξ0(s)− β2

(0,0)

∥∥∥∥1t
∥∥∥∥
L1(μM)

d(μM)Xext(s)
)
dδ0(t).

On the other hand, we also employ disintegration-of-measure techniques. To do so, we need
to review some basic properties on disintegration of measures; most of the discussion is taken from
[7, VII.2, pp. 317-319]. Let X and Z be compact metric spaces and let μ be a positive regular
Borel measure on Z. Let L1(μ) denote the set of all Borel functions f on Z such that

∫ |f |dμ <∞
and let L1(μ) be the corresponding Lebesgue space of the equivalence classes of those functions.
For a Borel mapping φ : Z → X , let ν be the Borel measure μ ◦ φ−1 on X ; that is,

ν(Δ) := μ(φ−1(Δ)) (2.2)

for every Borel set Δ ⊆ X . If f ∈ L1(μ) then the map ψ �→ ∫Z(ψ ◦φ)f dμ defines a bounded linear

functional on L∞(ν). When restricted to characteristic functions χΔ in L∞(ν), Δ �→ ∫
Z
(χΔ ◦

φ)f dμ =
∫
φ−1(Δ)

f dμ is a Borel measure on X which is absolutely continuous with respect to ν.

Then, there exists a unique element E(f) in L1(ν) such that
∫
Z
(χΔ ◦ φ)f dμ =

∫
X
χΔE(f)dν for

every Borel set Δ of X . Via convergence theorems, one can show that∫
Z

(ψ ◦ φ) f dμ =

∫
X

ψE(f)dν (2.3)

for all ψ ∈ L∞(ν). This defines a map E : L1(μ) → L1(ν) called the expectation operator. We
write M(Z) for the set of all regular Borel measures on Z. A disintegration of the measure μ
with respect to φ is a function x �→ λx from X to M(Z) such that λx is a probability measure
for each x ∈ X and E(f)(x) =

∫
Z f dλx a.e. [ν] for each f ∈ L1(μ). Then we have the existence

and uniqueness of the disintegration of a measure (cf. [7, Theorem VII.2.11]): (i) given a regular
Borel measure μ on a compact metric space Z, and a Borel function φ from Z into a compact
metric space X , there is a disintegration x �→ λx of μ with respect to φ; (ii) if x �→ λ

′
x is another

disintegration of μ with respect to φ, then λx = λ
′
x a.e. [ν].

The following lemma is useful in the sequel.

Lemma 2.2. If μ is a positive regular Borel measure defined on Z := X × Y ≡ R+ × R+ and
1
t ∈ L1(μ), then ∥∥∥∥1t

∥∥∥∥
L1(μ)

=

∥∥∥∥1t
∥∥∥∥
L1(μY )

,

where μY := μ ◦ π−1
Y and πY : Z → Y is the canonical projection onto Y .
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Proof. Put φ = πY in the preceding argument. Then, for the disintegration t �→ λt of the measure
μ with respect to φ, we know (cf. [7, Proposition VII.2.10]) that supp (λt) = φ−1(t) = X×{t} ⊆ Z.
Thus, we may regard λt as a measure on X for each t ∈ Y and write dλt(s) for dλt(s, t). Note
that

E(f)(t) =

∫∫
X×Y

f dλt(s, t) =

∫∫
X×{t}

f dλt(s, t).

We thus have ∥∥∥∥1t
∥∥∥∥
L1(μ)

=

∫∫
1

t
dμ(s, t)

=

∫
Y

E

(
1

t

)
dμY (t) (by (2.3) with ψ ≡ 1)

=

∫
Y

(∫∫
X×{t}

1

t
dλt(s, t)

)
dμY (t)

=

∫
Y

(∫
X

1

t
dλt(s)

)
dμY (t) =

∫
Y

1

t
dμY (t)

=

∥∥∥∥1t
∥∥∥∥
L1(μY )

,

which proves the lemma. �
The following is a well-known combinatoric identity, where the first equality is called the

Chu-Vandermonde identity.

Lemma 2.3.
n∑

k=0

(
n

k

)2
=

(
2n

n

)
=

1

2πi

∫
|z|=1

(1 + z)2n

zn+1
dz =

1

π

∫ 4

0

sn√
4s− s2

ds.

Proof. The first equality comes from [17, (3.66)], the second equality follows from the Cauchy
integral formula, and the last equality follows from a direct calculation. �
Lemma 2.4. IfW(α,β) ≡ (T1, T2) is a 2-variable weighted shift given by Figure 1(ii), then (T1, T2) |M∩N
is subnormal with Berger measure

μM∩N ≡ 1

2
δ( 1

4 ,
1
4 )

+
1

2
δ( 1

2 ,
1
2 )
. (2.4)

Proof. For each t ∈ [0, 1], define

δt(s) :=

{
1 if s = t

0 otherwise.

Then, by the weight diagram of (T1, T2) |M∩N given in Figure 1(ii), we can see that for all k1, k2 ≥ 0,∫∫
[0,1]2

sk1tk2dμM∩N (s, t) =

∫ 1

0

tk1+k2d (μM∩N )
Y
(t)

=

∫ 1

0

tk2

[∫ 1

0

sk1dδt (s)

]
d (μM∩N )

Y
(t)

=

∫∫
[0,1]2

sk1tk2dδt (s) dξc(t)

=

∫∫
[0,1]2

sk1tk2dδt (s) d

(
1

2
δ 1

4
+

1

2
δ 1

2

)
(t)

=

∫∫
[0,1]2

sk1tk2d

(
1

2
δ( 1

4 ,
1
4 )

+
1

2
δ( 1

2 ,
1
2 )

)
(s, t),
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which gives (2.4). �

We are now ready for:

Proof of Theorem 1.1.

(i) For m ≥ 0, let Wc|Lm denote the restriction of Wc to Lm ≡ ∨{e(k1,0) : k1 ≥ m}. Since

ξc = 1
2δ 1

4
+ 1

2δ 1
2
, it follows that for each m = 1, 2, · · · , Wc|Lm is also subnormal with Berger

measure

d(ξc)Lm(s) :=
sm

γm (Wc)
dξc (s) =

1

γm (Wc)

(
1

2

(
1

4

)m
dδ 1

4
(s) +

1

2

(
1

2

)m
dδ 1

2
(s)

)
.

Note ∥∥∥∥1s
∥∥∥∥
L1((ξc)Lm )

=
2
(
1
4

)m
+
(
1
2

)m
γm (Wc)

and α2
(0,m+1) =

γm (Wc)

8 · γm (Wb|L1)
,

where the Berger measure of Wb|L1 is (ξb)L1 := 1
4δ 1

4
+ 1

8δ 1
2
+ 5

8δ1. Since the m-th horizontal slice

of (T1, T2) |M∩N is a restriction of Wc to Lm, it follows from (2.1) that T1 is subnormal if and only

if α2
(0,m+1) ≤

∥∥1
s

∥∥−1

L1((ξc)Lm )
(all m ≥ 0). Since

2

(
1

4

)m
+

(
1

2

)m
≤ 8 · γm (Wb|L1) = 8

∫
smd(ξb)L1(s) = 2

(
1

4

)m
+

(
1

2

)m
+ 5 (all m ≥ 0),

it follows at once that T1 is subnormal.

Similarly, if n ≥ 0, then∥∥∥∥1t
∥∥∥∥
L1((ξc)Ln )

=
2
(
1
4

)n
+
(
1
2

)n
γn (Wc)

and β2
(n+1,0) =

11x · γn (Wc)

8 · γn (Wa|L1)
, (2.5)

where the Berger measure of Wa|L1 is (ξa)L1 := 1
2δ 1

4
+ 1

4δ 1
2
+ 1

4δ1. Since T2 is subnormal if and

only if β2
(n+1,0) ≤

∥∥1
t

∥∥−1

L1((ξc)Ln )
(all n ≥ 0), a direct calculation together with (2.1) and (2.5) shows

that

T2 is subnormal ⇐⇒ x ≤ 8
(
1
2

(
1
4

)n
+ 1

4

(
1
2

)n
+ 1

4

)
11
(
2
(
1
4

)n
+
(
1
2

)n) (all n ≥ 0) ⇐⇒ x ≤ 8

33
,

where the second implication follows from the observation that the fractional function of the second
term is increasing on n ≥ 0. This proves (i).

(ii) We first claim that

(T1, T2) |M is subnormal with Berger measure μM ≡ 1

4
δ( 1

4 ,
1
4 )

+
1

8
δ( 1

2 ,
1
2 )

+
5

8
δ(0,1). (2.6)

For (2.6), we first observe that by Lemma 2.2,
∥∥1
s

∥∥
L1(μM∩N )

=
∥∥ 1
s

∥∥
L1((μM∩N )X) = 3 since

(μM∩N )X = 1
2δ 1

4
+ 1

2δ 1
2
(by Lemma 2.4). We thus have

(μM∩N )Yext =

(∥∥∥∥1s
∥∥∥∥
−1

L1(μM∩N )

μM∩N
s

)Y
=

2

3
δ 1

4
+

1

3
δ 1

2
. (2.7)

Hence, by Lemma 2.1(iii), (T1, T2) |M is subnormal if and only if

α2
(0,1)

∥∥∥∥1s
∥∥∥∥
L1(μM∩N )

(μM∩N )Yext ≤ (ξb)L1 ⇐⇒ 1

4
δ 1

4
+

1

8
δ 1

2
≤ 1

4
δ 1

4
+

1

8
δ 1

2
+

5

8
δ1,
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which is always true. Therefore, (T1, T2) |M is always subnormal. By Lemma 2.1 and (2.7), we
get the desired Berger measure of (T1, T2) |M:

dμM(s, t) = α2
(0,1)

∥∥∥∥1s
∥∥∥∥
L1(μM∩N )

d(μM∩N )ext(s, t)

+

(
d(ξb)L1(t)− α2

(0,1)

∥∥∥∥1s
∥∥∥∥
L1(μM∩N )

d(μM∩N )Yext(t)

)
dδ0(s)

=
3

8

(
2

3
dδ( 1

4 ,
1
4 )
(s, t) +

1

3
dδ( 1

2 ,
1
2 )
(s, t)

)
+

5

8
dδ1(t)dδ0(s)

=
1

4
dδ( 1

4 ,
1
4 )
(s, t) +

1

8
dδ( 1

2 ,
1
2 )
(s, t) +

5

8
dδ(0,1)(s, t),

which gives

μM =
1

4
δ( 1

4 ,
1
4 )

+
1

8
δ( 1

2 ,
1
2 )

+
5

8
δ(0,1).

We next claim that

(T1, T2) |N is subnormal ⇐⇒ 0 < x ≤ 2

11
.

By Lemma 2.2, we note that
∥∥1

t

∥∥
L1(μM∩N )

=
∥∥ 1

t

∥∥
L1((μM∩N )Y ) = 3 and (μM∩N )Xext(s) =

2
3δ 1

4
+ 1

3δ 1
2
.

Thus, by Lemma 2.1(iii), (T1, T2) |N is subnormal if and only if

β2
(1,0)

∥∥ 1
t

∥∥
L1(μM∩N )

(μM∩N )Xext ≤ (ξa)L1

⇐⇒ 11x
8 · 3 ·

(
2
3δ 1

4
+ 1

3δ 1
2

)
≤ 1

2δ 1
4
+ 1

4δ 1
2
+ 1

4δ1 ⇐⇒ x ≤ 2
11 .

We now claim that

(T1, T2) is subnormal ⇐⇒ 0 < x ≤ 2

11
. (2.8)

Towards (2.8), observe that the commutativity of T1 and T2 comes directly from Figure 1(ii). By
the proof of (i) just given above, we know that T1 is always subnormal and

T2 is subnormal ⇐⇒ 0 < x ≤ 8

33
.

By Lemma 2.2, we have
∥∥1

t

∥∥
L1(μM)

=
∥∥1

t

∥∥
L1((μM)Y ) =

15
8 (since μY

M = 1
4δ 1

4
+ 1

8δ 1
2
+ 5

8δ1) and

(μM)Xext =

(∥∥∥∥1t
∥∥∥∥
−1

L1(μM)

μM
t

)X
=

1

3
δ0 +

8

15
δ 1

4
+

2

15
δ 1

2
.

Hence, by Lemma 2.1(iii), (T1, T2) is subnormal if and only if

β2
00

∥∥ 1
t

∥∥
L1(μM)

(μM)Xext ≤ ξa

⇐⇒ x
(

5
8δ0 + δ 1

4
+ 1

4δ 1
2

)
≤ 3

4δ0 +
2
11δ 1

4
+ 1

22δ 1
2
+ 1

44δ1 ⇐⇒ x ≤ 2
11 ,

which proves (ii).

(iii) For the subnormality of T1 + T2, we shall use Agler’s criterion for subnormality in [4], which

states that a contraction S ∈ B(H) is subnormal if and only if
n∑

�=0

(−1)�
(
n
l

) ∥∥S�x
∥∥2 ≥ 0 for all

n ≥ 1 and all x ∈ H. Since (T1, T2)|M is subnormal, it is enough to consider Agler’s criterion at{
e(k,0)
}∞
k=0

: indeed, if x =
∑

k ake(k,0), then∥∥∥∥∥
(
T1 + T2

2

)�
x

∥∥∥∥∥
2

=
∑
k

|ak|2
∥∥∥∥∥
(
T1 + T2

2

)�
e(k,0)

∥∥∥∥∥
2

,
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and hence
n∑

�=0

(−1)�
(
n

l

)∥∥∥∥∥
(
T1 + T2

2

)�
x

∥∥∥∥∥
2

=
∑
k

|ak|2
n∑

�=0

(−1)�
(
n

l

)∥∥∥∥∥
(
T1 + T2

2

)�
e(k,0)

∥∥∥∥∥
2

,

which gives

T1 + T2
2

is subnormal ⇐⇒ Pn (k, 0) :=
n∑

�=0

(−1)�
(
n

�

)∥∥∥∥∥
(
T1 + T2

2

)�
e(k,0)

∥∥∥∥∥
2

≥ 0 (all n ≥ 1) .

Hence, we see that T1 + T2 is subnormal if and only if inf
{
Pn (k, 0) : n ∈ Z+

}
≥ 0 for all k ≥ 0.

For � ≥ 1, we observe (
T1 + T2

2

)�
= 2−�

(
T �
1 + T �

2 +

�−1∑
i=1

(
�

i

)
T �−i
1 T i

2

)
.

First of all, we suppose k ≥ 1. We then have

Pn (k, 0) =
n∑

�=0

(−1)�
(
n
�

) ∥∥∥(T1+T2

2

)�
e(k,0)

∥∥∥2

= 1 +
n∑

�=1

(−1)
� (n

�

)
2−2�

(
γk+�(ξa)
γk(ξa)

+ x
8

γk+�−2

(
(μM∩N )X

)
γk(ξa)

+
�−1∑
i=1

(
�
i

)2 x
8

γk+�−2

(
(μM∩N )X

)
γk(ξa)

)

= 1 +
n∑

�=1

(−1)
� (n

�

)
2−2�

(
γk+�(ξa)
γk(ξa)

+ x
8

γk+�−2

(
(μM∩N )X

)
γk(ξa)

(
�−1∑
i=1

(
�
i

)2
+ 1

))
,

where γ�(ξa) and γ�
(
(μM∩N )X

)
denote the �-th moments of shift

(
α(0,0), α(1,0), · · ·

)
and the 0-th

horizontal slice of (T1, T2)|M∩N , respectively. Note that{
γ�(ξa) =

2
11

(
1
4

)�
+ 1

22

(
1
2

)�
+ 1

44

γ�
(
(μM∩N )X

)
= 1

2

(
1
4

)�
+ 1

2

(
1
2

)�
.

We thus have

Pn(k, 0) = 1 + 1
γk(ξa)

(
n∑

�=1

(−1)
� (n

�

)
2−2�
(

2
11

(
1
4

)k+�
+ 1

22

(
1
2

)k+�
+ 1

44

)
+ x

8

n∑
�=1

(−1)
� (n

�

)
2−2�
(

1
2

(
1
4

)k+�−2
+ 1

2

(
1
2

)k+�−2
)(�−1∑

i=1

(
�
i

)2
+ 1

))
.

Observe that
�−1∑
i=1

(
�

i

)2
+ 1 =

(
2�

�

)
− 1 (by Lemma 2.3) (2.9)

and
n∑

�=1

(−1)
�

(
n

�

)
c� = (1− c)

n − 1 (0 < c < 1). (2.10)

By (2.9) and (2.10), Pn (k, 0) can be written as

Pn (k, 0) = 1 + 1
γk(ξa)

((
2
11 − x
) (

1
4

)k (( 15
16

)n − 1
)
+
(

1
22 − x

4

) (
1
2

)k (( 7
8

)n − 1
)
+ 1

44

((
3
4

)n − 1
)

+x
(
1
4

)k n∑
�=1

(−1)�
(
n
�

)(
2�
�

) (
1
16

)�
+ x

4

(
1
2

)k n∑
�=1

(−1)�
(
n
�

)(
2�
�

) (
1
8

)�)
.

(2.11)
Now, we should resolve the last two terms of (2.11). To do so, we consider the following weighted
shift

WS := shift

(∥∥Se(0,0)∥∥∥∥e(0,0)∥∥ ,
∥∥S2e(0,0)

∥∥∥∥Se(0,0)∥∥ ,
∥∥S3e(0,0)

∥∥∥∥S2e(0,0)
∥∥ , · · ·
)
,
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where S := U+ ⊗ I + I ⊗ U+ ∈ B(�2(Z2
+)) (where U+ ≡ shift(1, 1, · · · ) is the unilateral shift),

which is subnormal. By Lambert’s Theorem in [21] and Berger’s Theorem, we can see that WS is
subnormal and ∫ 4

0

s�dμ (s) = γ� (WS) =
∥∥S�e(0,0)

∥∥2 =

�∑
k=0

(
�

k

)2
=

(
2�

�

)
, (2.12)

where μ is the Berger measure corresponding to the subnormal weighted shift WS . We thus have
n∑

�=1

(−1)
�

(
n

�

)(
2�

�

)(
1

16

)�
=

n∑
�=1

(−1)
�

(
n

�

)(∫ 4

0

s�dμ (s)

)(
1

16

)�
(by (2.12))

=

∫ 4

0

(
n∑

�=0

(
n

�

)
(−1)�
( s
16

)�)
dμ (s)− 1

=

∫ 4

0

(
1− s

16

)n
dμ (s)− 1 (by (2.10))

(2.13)

and similarly,
n∑

�=1

(−1)
�

(
n

�

)(
2�

�

)(
1

8

)�
=

∫ 4

0

(
1− s

8

)n
dμ (s)− 1. (2.14)

By (2.13) and (2.14), (2.11) can be written as

Pn (k, 0) = 1 + 1
γk(ξa)

((
2
11 − x
) (

1
4

)k (( 15
16

)n − 1
)
+
(

1
22 − x

4

) (
1
2

)k (( 7
8

)n − 1
)
+ 1

44

((
3
4

)n − 1
)

+ x
(
1
4

)k (∫ 4
0

(
1− s

16

)n
dμ (s)− 1

)
+ x

4

(
1
2

)k (∫ 4
0

(
1− s

8

)n
dμ (s)− 1

))
.

Since γk(ξa) =
2
11

(
1
4

)k
+ 1

22

(
1
2

)k
+ 1

44 , it follows that

Pn (k, 0) =
1

γk(ξa)

((
2
11 − x
) (

1
4

)k ( 15
16

)n
+
(

1
22 − x

4

) (
1
2

)k ( 7
8

)n
+ 1

44

(
3
4

)n
+ x
(
1
4

)k ∫ 4
0

(
1− s

16

)n
dμ (s) + x

4

(
1
2

)k ∫ 4
0

(
1− s

8

)n
dμ (s)
)
,

(2.15)

which implies that

Pn (k, 0)γk(ξa) =
2
11

(
1
4

)k ( 15
16

)n
+ 1

22

(
1
2

)k ( 7
8

)n
+ 1

44

(
3
4

)n
+ x
(
1
4

)k (∫ 4
0

(
1− s

16

)n
dμ (s)− ( 1516)n)+ x

4

(
1
2

)k (∫ 4
0

(
1− s

8

)n
dμ (s)− ( 78)n) .

(2.16)
Observe that by Lemma 2.3,

dμ(s) =
1

π

ds√
4s− s2

.

We thus have∫ 4
0

(
1− s

16

)n
dμ(s)(

15
16

)n =
1

π

∫ 4

0

(
16− s

15

)n
ds√

4s− s2

≥ 1

π

∫ 1
2

1
3

(
16− s

15

)n
ds√

4s− s2

=
1

6π

(
16− s0

15

)n
1√

4s0 − s20
(for some s0 with 1

3 < s0 <
1
2 ),

which tends to ∞ as n→ ∞ and similarly,∫ 4
0

(
1− s

8

)n
dμ(s)(

7
8

)n → ∞ as n→ ∞.

This implies that by (2.16), there exists n0 ∈ Z+ such that

Pn(k, 0) ≥ 0 if n > n0. (2.17)
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Now, suppose

ε1 := min
1≤n≤n0

∫ 4

0

(
1− s

16

)n
dμ (s) = min

1≤n≤n0

1

π

∫ 4

0

(
1− s

16

)n ds√
4s− s2

;

ε2 := min
1≤n≤n0

∫ 4

0

(
1− s

8

)n
dμ (s) = min

1≤n≤n0

1

π

∫ 4

0

(
1− s

8

)n ds√
4s− s2

and put ε := min{ε1, ε2}. Obviously, ε > 0. Thus, by (2.15),

Pn (k, 0) ≥ 1
γk(ξa)

((
2
11 − x+ ε

) (
1
4

)k ( 15
16

)n
+
(

1
22 − x

4 + ε
4

) (
1
2

)k ( 7
8

)n
+ 1

44

(
3
4

)n)
,

which implies that

Pn(k, 0) ≥ 0 (1 ≤ n ≤ n0) whenever 0 < x ≤ 2
11 + ε. (2.18)

By (2.17) and (2.18), we can conclude that for each k ≥ 1, Pn(k, 0) ≥ 0 for all n ∈ Z+ if
0 < x ≤ 2

11 + ε (some ε > 0).
If instead k = 0 then the same argument shows that

Pn(0, 0) =
(
3
4 − 5x

8

)
+
(

2
11 − x
) (

15
16

)n
+
(

1
22 − x

4

) (
7
8

)n
+
(

1
44 + 5x

8

) (
3
4

)n
+ x
∫ 4
0

(
1− s

16

)n
dμ (s) + x

4

∫ 4
0

(
1− s

8

)n
dμ (s) ,

which also implies that

Pn(0, 0) ≥ 0 (all n ∈ Z+) whenever 0 < ε ≤ 2
11 + ε.

Therefore, we can conclude that T1 +T2 is subnormal if 0 < x ≤ 2
11 + ε (some ε > 0). This proves

the theorem. �

Remark 2.5. Our 2-variable weighted shift in Theorem 1.1 has 4-atomic Berger measures in the
0-th horizontal and vertical slices of (T1, T2). However, if we take 3-atomic Berger measures in
the 0-th horizontal and vertical slices of (T1, T2), then our extensively numerous trials resisted
resolution for finding a gap between the subnormality of T1 + T2 and the subnormality of (T1, T2).
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