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Preface
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Chapter 1

Fredholm Theory

1.1 Introduction

If k(x, y) is a continuous complex-valued function on [a, b]× [a, b] then K : C[a, b] →
C[a, b] defined by

(Kf)(x) =

∫ b

a

k(x, y)f(y)dy

is a compact operator. The classical Fredholm integral equations is

λf(x)−
∫ b

a

k(x, y)f(y)dy = g(x), a ≤ x ≤ b,

where g ∈ C[a, b], λ is a parameter and f is the unknown. Using I to be the identity
operator on C[a, b], we can recast this equation into the form (λI −K)f = g. Thus
we are naturally led to study of operators of the form T = λI − K on any Banach
space X. Riesz-Schauder theory concentrates attention on these operators of the
form T = λI −K, λ ̸= 0, K compact. The Fredholm theory concentrates attention
on operators called Fredholm operators, whose special cases are the operators λI −
K. After we develop the “Fredholm Theory”, we see the following result. Suppose
k(x, y) ∈ C[a, b]× C[a, b] (or L2[a, b]× L2[a, b]). The equation

λf(x)−
∫ b

a

k(x, y)f(y)dy = g(x), λ ̸= 0 (1.1)

has a unique solution in C[a, b] for each g ∈ C[a, b] if and only if the homogeneous
equation

λf(x)−
∫ b

a

k(x, y)f(y)dy = 0, λ ̸= 0 (1.2)

has only the trivial solution in C[a, b]. Except for a countable set of λ, which has
zero as the only possible limit point, equation (1.1) has a unique solution for every
g ∈ C[a, b]. For λ ̸= 0, the equation (1.2) has at most a finite number of linear
independent solutions.
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CHAPTER 1. FREDHOLM THEORY

1.2 Preliminaries

Let X and Y be complex Banach spaces. Write B(X,Y ) for the set of bounded linear
operators from X to Y and abbreviate B(X,X) to B(X). If T ∈ B(X) write ρ(T ) for
the resolvent set of T ; σ(T ) for the spectrum of T ; π0(T ) for the set of eigenvalues
of T .

We begin with:

Definition 1.2.1. Let X be a normed space and let X∗ be the dual space of X. If
Y is a subset of X, then

Y ⊥ = {f ∈ X∗ : f(x) = 0 for all x ∈ Y } = {f ∈ X∗ : Y ⊂ f−1(0)}

is called the annihilator of Y . If Z is a subset of X∗ then

.⊥Z = {x ∈ X : f(x) = 0 for all f ∈ Z} =
∩
f∈Z

f−1(0)

is called the back annihilator of Z.

Even if Y and Z are not subspaces, and Y ⊥ and .⊥Z are closed subspaces.

Lemma 1.2.2. Let Y, Y ′ ⊂ X and Z,Z ′ ⊂ X∗. Then
(a) Y ⊂ .⊥(Y ⊥), Z ⊂ (⊥Z)⊥;
(b) Y ⊂ Y ′ =⇒ (Y ′)⊥ ⊂ Y ⊥; Z ⊂ Z ′ =⇒ .⊥(Z ′) ⊂ .⊥Z;
(c) (⊥(Y ⊥))⊥ = Y ⊥, .⊥((⊥Z)⊥) =⊥ Z;
(d) {0}⊥ = X∗, X⊥ = {0}, .⊥{0} = X.

Proof. This is straightforward.

Theorem 1.2.3. Let M be a subspace of X. Then
(a) X∗/M⊥ ∼=M∗;
(b) If M is closed then (X/M)

∗ ∼=M⊥;
(c) .⊥(M⊥) = clM .

Proof. See [Go, p.25].

Theorem 1.2.4. If T ∈ B(X,Y ) then
(a) T (X)⊥ = (T ∗)−1(0);
(b) clT (X) = .⊥(T ∗−1(0));
(c) T−1(0) ⊂ .⊥T ∗(Y ∗);
(d) clT ∗(Y ∗) ⊂ T−1(0)⊥.

Proof. See [Go, p.59].
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CHAPTER 1. FREDHOLM THEORY

Theorem 1.2.5. Let X and Y be Banach spaces and T ∈ B(X,Y ). Then the fol-
lowings are equivalent:

(a) T has closed range;
(b) T ∗ has closed range;
(c) T ∗(Y ∗) = T−1(0)⊥;
(d) T (X) = .⊥(T ∗−1(0)).

Proof. (a) ⇔ (d): From Theorem 1.2.4 (b).
(a) ⇒ (c): Observe that the operator T∧ : X/T−1(0) → TX defined by

x+ T−1(0) 7→ Tx

is invertible by the Open Mapping Theorem. Thus we have

T−1(0)⊥ ∼=
(
X/T−1(0)

)∗ ∼= (TX)∗ ∼= T ∗(Y ∗).

(c) ⇒ (b): This is clear because T−1(0)⊥ is closed.
(b) ⇒ (a): Observe that if T1 : X → cl (TX) then T ∗

1 : (clTX)∗ → X∗ is one-one.
Since T ∗(Y ∗) = ranT ∗

1 , T
∗
1 has closed range. Therefore T ∗

1 is bounded below, so that
T1 is open; therefore TX is closed.

Definition 1.2.6. If T ∈ B(X,Y ), write

α(T ) := dimT−1(0) and β(T ) = dimY/cl (TX).

Theorem 1.2.7. If T ∈ B(X,Y ) has a closed range then

α(T ∗) = β(T ) and α(T ) = β(T ∗).

Proof. This follows form the following observation:

T ∗−1(0) = (TX)⊥ ∼= (Y/TX)∗ ∼= Y/TX

and
T−1(0) ∼= (T−1(0))∗ ∼= X∗/T−1(0)⊥ ∼= X∗/T ∗(Y ∗).
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CHAPTER 1. FREDHOLM THEORY

1.3 Definitions and Examples

In the sequel X and Y denote complex Banach spaces.

Definition 1.3.1. An operator T ∈ B(X,Y ) is called a Fredholm operator if TX
is closed, α(T ) < ∞ and β(T ) < ∞. In this case we define the index of T by the
equality

index (T ) := α(T )− β(T ).

In the below we shall see that the condition “ TX is closed ” is automatically fulfilled
if β(T ) <∞.

Example 1.3.2. If X and Y are both finite dimensional then any operator T ∈
B(X,Y ) is Fredholm and

index(T ) = dimX − dimY :

indeed recall the “rank theorem”

dimX = dimT−1(0) + dimTX,

which implies

index(T ) = dimT−1(0)− dimY/TX

= dimX − dimTX − (dimY − dimTX)

= dimX − dimY.

Thus in particular, if T ∈ B(X) with dimX <∞ then T is Fredholm of index zero.

Example 1.3.3. If K ∈ B(X) is a compact operator then T = I −K is Fredholm of
index 0. This follows from the Fredholm theory for compact operators.

Example 1.3.4. If U is the unilateral shift operator on ℓ2, then

indexU = −1 and indexU∗ = −1.

With U and U∗, we can build a Fredholm operator whose index is equal to an arbitrary
prescribed integer. Indeed if

T =

[
Up 0
0 U∗q

]
: ℓ2 ⊕ ℓ2 → ℓ2 ⊕ ℓ2,

then T is Fredholm, α(T ) = q, β(T ) = p, and hence indexT = q − p.

10



CHAPTER 1. FREDHOLM THEORY

1.4 Operators with Closed Ranges

If T ∈ B(X,Y ), write

dist
(
x, T−1(0)

)
= inf

{
||x− y|| : Ty = 0

}
for each x ∈ X. (1.3)

If T ∈ B(X,Y ), we define

γ(T ) = inf

{
c > 0 : ||Tx|| ≥ cdist (x, T−1(0)) for each x ∈ X

}
:

we call γ(T ) the reduced minimum modulus of T .

Theorem 1.4.1. If T ∈ B(X,Y ) then

T (X) is closed ⇐⇒ γ(T ) > 0.

Proof. Consider X̂ = X/T−1(0) and thus X̂ is a Banach space with norm ||x̂|| =
dist (x, T−1(0)). Define T̂ : X̂ → Y by T̂ x̂ = Tx. Then T̂ is one-one and T̂ (X̂) =
T (X).

(⇒) Suppose TX is closed and thus T̂ : X̂ → TX is bijective. By the Open

Mapping Theorem T̂ is invertible with inverse T̂−1. Thus

||Tx|| = ||T̂ x̂|| ≥ 1

||T̂−1||
||x̂|| = 1

||T̂−1||
dist (x, T−1(0)),

which implies that γ(T ) = 1

||T̂−1||
> 0.

(⇐) Suppose γ(T ) > 0. Let Txn → y. Then by the assumption ||Txn|| ≥
γ(T ) ||x̂n||, and hence, ||Txn − Txm|| ≥ γ(T ) ||x̂n − x̂m||, which implies that (x̂n)

is a Cauchy sequence in X̂. Thus x̂n → x̂ ∈ X̂ because X̂ is complete. Hence
Txn = T̂ x̂n → T̂ x̂ = Tx; therefore y = Tx.

Theorem 1.4.2. If there is a closed subspace Y0 of Y for which T (X)⊕ Y0 is closed
then T has closed range.

Proof. Define T0 : X × Y0 → Y by

T0(x, y0) = Tx+ y0.

The space X × Y0 is a Banach space with the norm defined by

||(x, y0)|| = ||x||+ ||y0||.

Clearly, T0 is a bounded linear operator and ran (T0) = T (X) ⊕ Y0, which is closed
by hypothesis. Moreover, ker (T0) = T−1(0)× {0}. Theorem 1.4.1 asserts that there
exists a c > 0 such that

||Tx|| = ||T0(x, 0)|| ≥ c dist

(
(x, 0), kerT0

)
= cdist

(
x, T−1(0)

)
,

which implies that T (X) is closed.
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CHAPTER 1. FREDHOLM THEORY

Corollary 1.4.3. If T ∈ B(X,Y ) then

T (X) is complemented =⇒ T (X) is closed.

In particular, if β(T ) <∞ then T (X) is closed.

Proof. If T (X) is complemented then we can find a closed subspace Y0 for which
T (X)⊕ Y0 = Y . Theorem 1.4.2 says that T (X) is closed.

To see the importance of Corollary 1.4.3, note that for a subspace M of a Banach
space Y ,

Y =M ⊕ Y0 does not imply that M is closed.

Take a non-continuous linear functional f on Y and put M = ker f . Then there
exists a one-dimensional subspace Y0 such that Y = M ⊕ Y0 (recall that Y/ker (f)
is one-dimensional). But M = ker f cannot be closed because f is continuous if and
only if f−1(0) is closed.

Consequently, we don’t guarantee that

dim (Y/M) <∞ =⇒ M is closed. (1.4)

However Corollary 1.4.3 asserts that if M is a range of a bounded linear operator
then (1.4) is true. Of course, it is true that

M is closed, dim (Y/M) <∞ =⇒ M is complemented.

Theorem 1.4.4. Let T ∈ B(X,Y ). If T maps bounded closed sets onto closed sets
then T has closed range.

Proof. Suppose T (X) is not closed. Then by Theorem 1.4.1 there exists a sequence
{xn} such that

Txn → 0 and dis
(
xn, T

−1(0)
)
= 1.

For each n choose zn ∈ T−1(0) such that ||xn − zn|| < 2. Let V := cl {xn − zn : n =
1, 2, . . .}. Since V is closed and bounded in X, T (V ) is closed in Y by assumption.
Note that Txn = T (xn−zn) ∈ T (V ). So 0 ∈ T (V ) (Txn → 0 ∈ T (V )) and thus there
exists u ∈ V ∩ T−1(0). From the definition of V it follows that

||u− (xn0 − zn0)|| <
1

2
for some n0,

which implies that

dis
(
xn0 , T

−1(0)
)
<

1

2
.

This contradicts the fact that dist
(
xn, T

−1(0)
)
= 1 for all n. Therefore T (X) is

closed.
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CHAPTER 1. FREDHOLM THEORY

Theorem 1.4.5. Let K ∈ B(X). If K is compact then T = I −K has closed range.

Proof. Let V be a closed bounded set in X and let

y = lim
n→∞

(I −K)xn, where xn ∈ V. (1.5)

We have to prove that y = (I −K)x0 for some x0 ∈ V . Since V is bounded and K
is compact the sequence {Kxn} has a convergent subsequence {Kxni}. By (1.5), we
see that

x0 := lim
i→∞

xni = lim
i→∞

(
(I −K)xni +Kxni

)
exists.

But then y = (I −K)x0 ∈ (I −K)V ; thus (I −K)V is closed. Therefore by Theorem
1.4.4, I −K has closed range.

Corollary 1.4.6. If K ∈ B(X) is compact then I −K is Fredholm.

Proof. From Theorem 1.4.5 we see that (I−K)(X) is closed. Since x ∈ (I−K)−1(0)
implies x = Kx, the identity operator acts as a compact operator on (I −K)−1(0);
thus α(I −K) <∞. To prove that β(I −K) <∞, recall that K∗ : X∗ → X∗ is also
compact. Since (I −K)(X) is closed it follows from Theorem 1.2.7 that

β(I −K) = α(I −K∗) <∞.

13



CHAPTER 1. FREDHOLM THEORY

1.5 The Product of Fredholm Operators

Let T ∈ B(X,Y ). Suppose T−1(0) and T (X) are complemented by subspaces X0

and Y0; i.e.,
X = T−1(0)⊕X0 and Y = T (X)⊕ Y0.

Define T̃ : X0 × Y0 → Y by

T̃ (x0, y0) = Tx0 + y0.

The space X0 × Y0 is a Banach space with the norm defined by ||(x, y)|| = ||x||+ ||y||
and T̃ is a bijective bounded linear operator. We call T̃ the bijection associated with
T . If T is Fredholm then such a bijection always exists and Y0 is finite dimensional.
If we identify X0

∼= X0 × {0} then the operator T0 : X0 → Y defined by

T0x = Tx

is a common restriction of T and T̃ to X0 (= X0 × {0}).

Note that

(a) 1

||T̃−1||
= γ(T );

(b) If T̂ : X/T−1(0) → TX then T̂ ∼= T̃ .

Lemma 1.5.1. Let T ∈ B(X,Y ) and M ⊂ X with codimM = n <∞. Then

T is Fredholm ⇐⇒ T0 := T |M is Fredholm,

in which case, indexT = indexT0 + n.

Proof. It suffices to prove the lemma for n = 1. Put X := M ⊕ span {x1}. We
consider two cases:

(Case 1) Assume Tx1 /∈ T0(M). Then TX = T0M ⊕ span {Tx1} and T−1(0) =
T−1
0 (0). Hence

β(T0) = β(T ) + 1 and α(T0) = α(T ). (1.6)

(Case 2) Assume Tx1 ∈ T0(M). Then TX = T0M , and hence there exists u ∈M
such that Tx1 = T0u. Thus T

−1(0) = T−1
0 (0)⊕ span {x1 − u}. Thus

β(T0) = β(T ) and α(T0) = α(T )− 1. (1.7)

From (1.6) and (1.7) we have the result.

Theorem 1.5.2. (Index Product Theorem) If T ∈ B(X,Y ) and S ∈ B(Y,Z) then

S and T are Fredholm =⇒ ST is Fredholm with

index (ST ) = indexS + indexT.
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Proof. Let T̃ be a bijection associated with T , X0, and Y0: i.e., X = T−1(0) ⊕ X0

and Y = T (X)⊕ Y0. Suppose T0 := T |X0 . Since T̃ is invertible, ST̃ is invertible and

index (ST̃ ) = indexS. By identifying X0 and X0×{0}, we see that ST0 is a common

restriction of ST̃ and ST to X0. By Lemma 1.5.1, ST is Fredholm and

index (ST ) = index (ST0) + dimX/X0

= index(ST̃ )− dim

(
X0 × Y0/X0 × {0}

)
+ α(T )

= indexS − dimY0 + α(T )

= indexS − β(T ) + α(T )

= indexS + indexT.

The converse of Theorem 1.5.2 is not true in general. To see this, consider the
following operators on ℓ2:

T (x1, x2, x3, . . .) = (0, x1, 0, x2, 0, x3, . . .)

S(x1, x2, x3, . . .) = (x2, x4, x6, . . .).

Then T ad S are not Fredholm, but ST = I. However, if ST = TS then we have

ST is Fredholm =⇒ S and T are both Fredholm

because T−1(0) ⊂ (ST )−1(0) and (ST )(X) = TS(X) ⊂ T (X).

Remark 1.5.3. For a time being, a Fredholm operator of index 0 will be called a
Weyl operator. Then we have the following question: Is there implication that if
ST = TS then

S, T are Weyl ⇐⇒ ST is Weyl ?

Here is the answer. The forward implication comes from the “Index Product Theo-
rem” without commutativity condition. However the backward implication may fail
even with commutativity condition. To see this, let

T =

[
U 0
0 I

]
and S =

[
I 0
0 U∗

]
,

where U is the unilateral shift on ℓ2. Evidently,

index (ST ) = index

[
U 0
0 U∗

]
= indexU + indexU∗

= 0,

but S and T are not Weyl.
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1.6 Perturbation Theorems

We begin with:

Theorem 1.6.1. Suppose T ∈ B(X,Y ) is Fredholm. If S ∈ B(X,Y ) with ||S|| <
γ(T ) then T + S is Fredholm and

(i) α(T + S) ≤ α(T );
(ii) β(T + S) ≤ β(T );
(iii) index (T + S) = indexT .

Proof. Let X = T−1(0) ⊕X0 and Y = T (X) ⊕ Y0. Suppose T̃ is the bijection with
T,X0 and Y0. Put R = T + S and define

R̃ : X0 × Y0 → Y by R̃(x0, y0) = Rx0 + y0.

By definition, T̃ (x0, y0) = Tx0 + y0. Since T̃ is invertible and

||T̃ − R̃|| ≤ ||T −R|| = ||S|| < γ(T ) =
1

||T̃−1||
,

we have that R̃ is also invertible. Note that R0 : X0 → Y defined by

R0x = Rx

is a common restriction of R and R̃ to X0. By Lemma 1.5.1, R is Fredholm and

indexR = indexR0 + α(T )

= index R̃− β(T ) + α(T )

= indexT

which proves (iii). The invertibility of R̃ implies that X0 ∩ R−1(0) = {0}. Thus we
have

α(R) ≤ dimX/X0 = α(T ),

which proves (i). Note that (ii) is an immediate consequence of (i) and (iii).

The first part of Theorem 1.6.1 asserts that

the set of Fredholm operators forms an open set.

Theorem 1.6.2. Let T,K ∈ B(X,Y ). Then

T is Fredholm, K is compact =⇒ T +K is Fredholm with

index (T +K) = indexT.
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Proof. Let X = T−1(0)⊕X0 and Y = T (X)⊕ Y0. Define T̃ , K̃ : X0 × Y0 → Y by

T̃ (x0, y0) = Tx0 + y0, K̃(x0, y0) = Kx0 + y0.

Therefore K̃ is compact since K is compact and dimY0 <∞. From (T̃ + K̃)(x0, 0) =
(T +K)x0 and Lemma 1.5.1 it follows that

T +K is Fredholm ⇐⇒ T̃ + K̃ is Fredholm.

But T̃ is invertible. So
T̃ + K̃ = T̃

(
I + T̃−1K̃

)
.

Observe that T̃−1K̃ is compact. Thus by Corollary 1.4.6, I + T̃−1K̃ is Fredholm.
Hence T +K is Fredholm.

To prove the statement about the index consider the integer valued function
F (λ) := index (T +λK). Applying Theorem 1.6.1 to T +λK in place of T shows that
f is continuous on [0, 1]. Consequently, f is constant. In particular,

indexT = f(0) = f(1) = index (T +K).

Corollary 1.6.3. If K ∈ B(X) then

K is compact =⇒ I −K is Fredholm with index (I −K) = 0.

Proof. Apply the preceding theorem with T = I and note that index I = 0.

17
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1.7 The Calkin Algebra

We begin with:

Theorem 1.7.1. If T ∈ B(X,Y ) then

T is Fredholm ⇐⇒ ∃ S ∈ B(Y,X) such that I − ST and I − TS are finite rank.

Proof. (⇒) Suppose T Fredholm and let

X = T−1(0)⊕X0 and Y = T (X)⊕ Y0.

Define T0 := T |X0 . Since T0 is one-one and T0(X0) = T (X) is closed

T−1
0 : T (X) → X0 is invertible.

Put S := T−1
0 Q, where Q : Y → T (X) is a projection. Evidently, S(Y ) = X0 and

S−1(0) = Y0. Furthermore,

I − ST is the projection of X onto T−1(0)

I − TS is the projection of Y onto Y0.

In particular, I − ST and I − TS are of finite rank.
(⇐) Assume ST = I −K1 and TS = I −K2, where K1,K2 are finite rank. Since

T−1(0) ⊂ (ST )−1(0) and (TS)X ⊂ T (X),

we have
α(T ) ≤ α(ST ) = α(I −K1) <∞
β(T ) ≤ β(TS) = β(I −K2) <∞,

which implies that T is Fredholm.

Theorem 1.7.1 remains true if the statement “I − ST and I − TS are of finite
rank” is replaced by “I − ST and I − TS are compact operators.” In other words,

T is Fredholm ⇐⇒ T is invertible modulo compact operators.

Let K(X) be the space of all compact operators on X. Note that K(X) is a closed
ideal of B(X). On the quotient space B(X)/K(X), define the product

[S][T ] = [ST ], where [S] is the coset S +K(X).

The space B(X)/K(X) with this additional operation is an algebra, which is called
the Calkin algebra, with identity [I].

18
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Theorem 1.7.2. (Atkinson’s Theorem) Let T ∈ B(X). Then

T is Fredholm ⇐⇒ [T ] is invertible in B(X)/K(X).

Proof. (⇒) If T is Fredholm then

∃ S ∈ B(X) such that ST − I and TS − I are compact.

Hence [S][T ] = [T ][S] = [I], so that [S] is the inverse of [T ] in the Calkin algebra.
(⇐) If [S][T ] = [T ][S] = [I] then

ST = I −K1 and TS = I −K2,

where K1,K2 are compact operators. Thus T is Fredholm.

Let T ∈ B(X). The essential spectrum σe(T ) of T is defined by

σe(T ) = {λ ∈ C : T − λI is not Fredholm}

We thus have
σe(T ) = σB(X)/K(X)(T +K(X)).

Evidently σe(T ) is compact. If dimX = ∞ then

σe(T ) ̸= ∅ (because B(X)/K(X) ̸= ∅).

In particular, Theorem 1.6.2 implies that

σe(T ) = σe(T +K) for every K ∈ K(X).

Theorem 1.7.3. If T ∈ B(X,Y ) then

T is Weyl ⇐⇒ ∃ a finite rank operator F such that T + F is invertible.

Proof. (⇒) Let T be Weyl and put

X = T−1(0)⊕X0 and Y = T (X)⊕ Y0.

Since indexT = 0, it follows that

dimT−1(0) = dimY0.

Thus there exists an invertible operator F0 : T−1(0) → Y0. Define F := F0(I − P ),
where P is the projection of X onto X0. Obviously, T + F is invertible.

(⇐) Assume S = T +F is invertible, where F is of finite rank. By Theorem 1.6.2,
T is Fredholm and indexT = indexS = 0.
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The Weyl spectrum, ω(T ), of T ∈ B(X) is defined by

ω(T ) =

{
λ ∈ C : T − λI is not Weyl

}
Evidently, ω(T ) is compact and in particular,

ω(T ) =
∩

K compact

σ(T +K).

Definition 1.7.4. An operator T ∈ B(X,Y ) is said to be regular if there is T ′ ∈
B(Y,X) for which

T = TT ′T ; (1.8)

then T ′ is called a generalized inverse of T . We can always arrange

T ′ = T ′TT ′ : (1.9)

indeed if (1.8) holds then

T ′′ = T ′TT ′ =⇒ TT ′′T and T ′′ = T ′′TT ′′.

If T ′ satisfies (1.8) and (1.9) then it will be called a generalized inverse of T in the
strong sense. Also T ∈ B(X,Y ) is said to be decomposably regular if there exists
T ′ ∈ B(Y,X) such that

T = TT ′T and T ′ is invertible.

The operator S := T−1
0 Q, which was defined in the proof of Theorem 1.7.1, is a

generalized inverse of in the strong sense. Thus we have

T is Fredholm ⇐⇒ I − T ′T and I − TT ′ are finite rank.

Generalized inverses are useful in solving linear equations. Suppose T ′ is a gen-
eralized inverse of T . If Tx = y is solvable for a given y ∈ Y , then T ′y is a solution
(not necessary the only one). Indeed,

Tx = y is solvable =⇒ ∃ x0 such that Tx0 = y

=⇒ TT ′y = TT ′Tx0 = Tx0 = y.

Theorem 1.7.5. If T ∈ B(X,Y ), then

T is regular ⇐⇒ T−1(0) and T (X) are complemented.
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Proof. (⇐) If X = X0 ⊕ T−1(0) and Y = Y0 ⊕ T (X) then T ′ : Y → X defined by

T ′(Tx0 + y0) = x0, where x0 ∈ X0 and y0 ∈ Y0

is a generalized inverse of T because for x0 ∈ X0 and z ∈ T−1(0),

TT ′T (x0 + z) = TT ′(Tx0) = Tx0 = T (x0 + z).

(⇒) Assume T ′ is a generalized inverse of T : TT ′T = T . Obviously, TT ′ and T ′T
are both projections. Also,

T (X) = TT ′T (X) ⊂ TT ′(X) ⊂ T (X);

T−1(0) ⊂ (T ′T )−1(0) ⊂ (TT ′T )−1(0) = T−1(0),

which gives
TT ′(X) = T (X) and (T ′T )−1(0) = T−1(0),

which implies that T−1(0) and T (X) are complemented.

Corollary 1.7.6. If T ∈ B(X,Y ) then

T is Fredholm =⇒ T is regular.

Theorem 1.7.7. If T ∈ B(X,Y ) is Fredholm with T = TT ′T , then T ′ is also
Fredholm with

index (T ′) = −index (T ).

Proof. We first claim that

ST is Fredholm =⇒ (S Fredholm ⇐⇒ T Fredholm) : (1.10)

indeed,

ST is Fredholm =⇒ I − (ST )′(ST ) ∈ K0 and I − (ST )(ST )′ ∈ K0,

which implies

T is Fredholm ⇐⇒ I − T (ST )′S ∈ K0 ⇐⇒ S is Fredholm.

Thus by (1.10), T ′ is Fredholm and by the index product theorem,

index (T ) = index (TT ′T ) = index (T ) + index (T ′) + index (T ).
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Theorem 1.7.8. If T ∈ B(X,Y ) is Fredholm with generalized inverse T ′ ∈ B(Y,X)
in the strong sense then

index (T ) = dimT−1(0)− dim (T ′)−1(0).

Proof. Observe that

(T ′)−1(0) = (TT ′)−1(0) ∼= X/TT ′(X) ∼= X/T (X),

which gives that β(T ) = α(T ′).

Theorem 1.7.9. If T ∈ B(X,Y ) is Fredholm with generalized inverse T ′ ∈ B(Y,X),
then

index (T ) = trace (TT ′ − T ′T ).

Proof. If T = TT ′T is Fredholm then

I − T ′T and I − TT ′ are both finite rank.

Observe that

dim (I − T ′T )(X) = dim (T ′T )−1(0) = dimT−1(0) = α(T );

dim (I − TT ′)(Y ) = dim (TT ′)−1(0) = dimX/TT ′(Y ) = dimX/T (X) = β(T ).

Thus we have

trace (TT ′ − T ′T ) = trace
(
(I − T ′T )− (I − TT ′)

)
= trace (I − T ′T )− trace (I − TT ′)

= rank (I − T ′T )(X)− dim (I − TT ′)(X)

= α(T )− β(T )

= index (T ).
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1.8 The Punctured Neighborhood Theorem

If T ∈ B(X,Y ) then
(a) T is said to be upper semi-Fredholm if T (X) is closed and α(T ) <∞;
(b) T is said to be lower semi-Fredholm if T (X) is closed and β(T ) <∞.
(c) T is said to be semi-Fredholm if it is upper or lower semi-Fredholm.

Theorem 1.6.1 remains true for semi-Fredholm operators. Thus we have:

Lemma 1.8.1. Suppose T ∈ B(X,Y ) is semi-Fredholm. If ||S|| < γ(T ) then
(i) T + S has a closed range;
(ii) α(T + S) ≤ α(T ), β(T + S) ≤ β(T );
(iii) index (T + S) = indexT .

Proof. This follows from a slight change of the argument for Theorem 1.6.1.

We are ready for the punctured neighborhood theorem; this proof is due to Harte
and Lee [HaL1].

Theorem 1.8.2. (Punctured Neighborhood Theorem) If T ∈ B(X) is semi-Fredholm
then there exists ρ > 0 such that α(T −λI) and β(T −λI) are constant in the annulus
0 < |λ| < ρ.

Proof. Assume that T is upper semi-Fredholm and α(T ) <∞. First we argue

(T − λI)−1(0) ⊂
∞∩
n=1

Tn(X) =: T∞(X). (1.11)

Indeed,

x ∈ (T − λI)−1(0) =⇒ Tx = λx, and hence x ∈ T (X)

=⇒ Note that λx = Tx ∈ T (TX) = T 2(X)

=⇒ By induction,x ∈ Tn(X) for all n.

Next we claim that
T∞(X) is closed:

indeed, since Tn is upper semi-Fredholm for all n, Tn(X) is closed and hence T∞(X)
is closed.

If S commutes with T , so that also S(T∞(X)) ⊂ T∞(X), we shall write S̃ :
T∞(X) → T∞(X). We claim that

T̃ : T∞(X) → T∞(X) is onto. (1.12)

To see this, let y ∈ T∞(X) and thus

∃ xn ∈ Tn(X) such that Txn = y (n = 1, 2, . . .).
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Since T−1(0) is finite dimensional and Tn(X) ⊃ Tn+1(X),

∃n0 ∈ N such that T−1(0) ∩ Tn0(X) = T−1(0) ∩ Tn(X) for n ≥ n0.

From the fact that Tn(X) ⊂ Tn0(X), we have

xn − xn0 ∈ T−1(0) ∩ Tn0(X) = T−1(0) ∩ Tn(X) ⊂ Tn(X).

Hence

xn0 ∈
∩
n≥n0

Tn(X) = T∞(X) and Txn0 = y,

which says that T̃ is onto. This proves (1.12). Now observe

dim (T − λI)−1(0) = dim T̃ − λI
−1

(0) = index T̃ − λI = index T̃ : (1.13)

the first equality comes from (1.11), the second equality follows from the fact that

β(T̃ − λI) ≤ β(T̃ ) = 0 by Lemma 1.8.1, and the third equality follows the observation

that T̃ is semi-Fredholm. Since the right-hand side of (1.13) is independent of λ,
α(T − λI) is constant and hence also is β(T − λI).

If instead β(T ) <∞, apply the above argument with T ∗.

Theorem 1.8.3. Define

U :=

{
λ ∈ C : T − λI is semi-Fredholm

}
.

Then

(i) U is an open set;

(ii) If C is a component of U then on C, with the possible exception of isolated
points,

α(T − λI) and β(T − λI) have constant values n1 and n2, respectively.

At the isolated points,

α(T − λI) > n1 and β(T − λI) > n2.

Proof. (i) For λ ∈ U apply Lemma 1.8.1 to T − λI in place of T .
(ii) The component C is open since any component of an open set in C is open.

Let α(λ0) = n1 be the smallest integer which is attained by

α(λ) = α(T − λI) on C.
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Suppose α(λ′) ̸= n1. Since C is connected there exists an arc Γ lying in C with
endpoints λ0 and λ′. It follows from Theorem 1.8.2 and the fact that C is open that
for each µ ∈ Γ, there exists an open ball S(µ) in C such that

α(λ) is constant on the set S(µ) with the point µ deleted.

Since Γ is compact and connected there exist points λ1, λ2, · · · , λn = λ′ on Γ such
that

S(λ0), S(λ1), . . . , S(λn) cover Γ and S(λi) ∩ S(λi+1) ̸= ∅ (0 ≤ i ≤ n− 1) (1.14)

We claim that α(λ) = α(λ0) on all of S(λ0). Indeed it follows from the Lemma 1.8.1
that

α(λ) ≤ α(λ0) for λ sufficiently close to λ0.

Therefore, since α(λ0) is the minimum of α(λ) on C,

α(λ) = α(λ0) for λ sufficiently close to λ0.

Since α(λ) is constant for all λ ̸= λ0 in S(λ0), which is α(λ0). Now α(λ) is constant
on the set S(λi) with the point λi deleted (1 ≤ i ≤ n). Hence it follows from (1.14)
and the observation α(λ) = α(λ0) for all λ ∈ S(λ0) that α(λ) = α(λ0) for all λ ̸= λ′

in S(λ′) and α(λ′) > n1. The result just obtained can be applied to the adjoint. This
completes the proof.
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1.9 The Riesz-Schauder (or Browder) Theory

An operator T ∈ B(X) is said to be quasinilpotent if

∥Tn∥ 1
n −→ 0

and is said to be nilpotent if

Tn = 0 for some n.

An example for quasinilpotent but not nilpotent:

T : ℓ2 → ℓ2

T (x1, x2, x3, . . .) 7−→ (0, x1,
x2
2
,
x3
3
, . . .).

An example for quasinilpotent but neither nilpotent nor compact:

T = T1 ⊕ T2 : ℓ2 ⊕ ℓ2 −→ ℓ2 ⊕ ℓ2,

where
T1 : (x1, x2, x3, . . .) 7−→ (0, x1, 0, x3, 0, x5, . . .)

T2 : (x1, x2, x3, . . .) 7−→ (0, x1,
x2
2
,
x3
3
, . . .).

Remember that if T ∈ B(X) we define LT , RT ∈ B(B(X)) by

LT (S) := TS and RT (S) := ST for S ∈ B(X).

Lemma 1.9.1. We have:

(a) LT is 1-1 ⇐⇒ T is 1-1;

(b) RT is 1-1 ⇐⇒ T is dense;

(c) LT is bounded below ⇐⇒ T is bounded below;

(d) RT is bounded below ⇐⇒ T is open.

Proof. See [Be3].

Theorem 1.9.2. If T ∈ B(X), then

(a) T is nilpotent =⇒ T is neither 1-1 nor dense;

(b) T is quasinilpotent =⇒ T is neither bounded below nor open.

26



CHAPTER 1. FREDHOLM THEORY

Proof. By Lemma 1.9.1,

(a) T is nilpotent =⇒ Tn+1 = 0 ̸= Tn

=⇒ LT (T
n) = RT (T

n) = 0 ̸= Tn

=⇒ LT and RT are not 1-1
=⇒ T is not 1-1 and not dense.

(b) T is quasinilpotent =⇒ ∀ ε > 0, ∃n ∈ N such that ∥Tn∥ 1
n ≥ ε > ∥Tn+1∥

1
n+1

=⇒ ∥LT (Tn)∥ = ∥RT (Tn)∥ < ε∥Tn∥
=⇒ LT and RT are not bounded below
=⇒ T is not bounded below and not open.

We would remark that

{quasinilpotents} ⊆ ∂B−1(X).

Observe that quasinilpotents of finite rank or cofinite rank are nilpotents.

Definition 1.9.3. An operator T ∈ B(X) is said to be quasipolar [polar, resp.] if
there is a projection P commuting with T for which T has a matrix representation

T =

[
T1 0
0 T2

]
:

[
P (X)
P−1(0)

]
→

[
P (X)
P−1(0)

]
,

where T1 is invertible and T2 is quasinilpotent [nilpotent, resp.]

Definition 1.9.4. An operator T ∈ B(X) is said to be simply polar if there is
T ′ ∈ B(X) for which

T = TT ′T with TT ′ = T ′T

Proposition 1.9.5. Simply polar operators are decomposably regular.

Proof. Assume T = TT ′T with TT ′ = T ′T . Then

T ′′ = T ′ + (1− T ′T ) =⇒
{
T = TT ′′T
(T ′′)−1 = T + (1− T ′T )

.

Theorem 1.9.6. If T ∈ B(X) then

T is quasipolar but not invertible ⇐⇒ 0 ∈ isoσ(T )
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Proof. (⇒) If T is quasipolar we may write

T =

[
T1 0
0 T2

]
:

[
P (X)
P−1(0)

]
→

[
P (X)
P−1(0)

]
,

where T1 is invertible and T2 is quasinilpotent. Thus for sufficiently small λ ̸= 0,
T1 − λI and T2 − λI are both invertible, which implies that 0 ∈ isoσ(T )

(⇐) If 0 ∈ isoσ(T ), construct open discs D1 and D2 such that D1 contains 0, D2

contains the spectrum σ(T ) and D1 ∩ D2 = ∅. If we define f : D1 ∪ D2 −→ C by
setting

f(λ) =

{
0 on D1

1 on D2

then f is analytic on D1 ∪D2 and f(λ)2 = f(λ). Observe that

P = PD2 = f(T ) =
1

2πi

∫
∂D2

(λ− T )−1dλ

and PT = TP . Thus we may write

T =

[
T1 0
0 T2

]
: P (X)⊕ P−1(0) −→ P (X)⊕ P−1(0),

where σ(T1) = σ(T )\{0} and σ(T2) = {0}. Therefore T1 is invertible and T2 is
quasinilpotent; so that T is quasipolar.

Theorem 1.9.7. If T ∈ B(X) then

T is simply polar ⇐⇒ T (X) = T 2(X), T−1(0) = T−2(0)

Proof. (⇒) Observe

T (X) = TT ′T (X) = T 2T ′(X) ⊆ T 2(X) ⊆ TX;

T−1(0) = (TT ′T )−1(0) = (T ′T 2)−1(0) ⊇ T−2(0) ⊇ T−1(0).

(⇐) (i) x ∈ TX ∩ T−1(0) ⇒ x = Ty for some y ∈ X and Tx = 0
⇒ T 2y = 0 ⇒ y ∈ T−2(0) = T−1(0)
⇒ Ty = 0 ⇒ x = 0,

which gives TX ∩ T−1(0) = {0}.

(ii) By assumption, T (T (X)) = T (X). Let T1 := T |T (X), so that T1(X) =
T 2(X) = T (X). Thus for all x ∈ X,

∃ y ∈ T (X) such that Tx = T1y = Ty.
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Define z = x − y, and hence z ∈ T−1(0). Thus X = T (X) + T−1(0). In particular,
T (X) is closed by Theorem 1.4.2, so that

X = T (X)⊕ T−1(0).

Therefore we can find a projection P ∈ B(X) for which

P (X) = T (X) and P−1(0) = T−1(0).

We thus write

T =

[
T1 0
0 0

]
:

[
P (X)
P−1(0)

]
→

[
P (X)
P−1(0)

]
,

where T1 is invertible because T1 := T |TX is 1-1 and onto since T (X) = T 2(X). If
we put

T ′ =

[
T−1
1 0
0 0

]
,

then TT ′T = T and

TT ′ = T ′T =

[
T−1
1 0
0 0

] [
T1 0
0 0

]
=

[
I 0
0 0

]
= P,

which says that T is simply polar.

Theorem 1.9.8. If T ∈ B(X) then

T is polar ⇐⇒ Tn is simply polar for some n ∈ N

Proof. (⇒) If T is polar then we can write T =

[
T1 0
0 T2

]
with T1 invertible and

T2 nilpotent. So Tn =

[
Tn1 0
0 0

]
, where n is the nilpotency of T2. If we put S =[

T−n
1 0
0 I

]
, then TnSTn = Tn and STn = TnS.

(⇐) If Tn is simply polar then X = Tn(X) ⊕ T−n(0). Observe that since Tn is
simply polar we have

T (TnX) = Tn+1(X) ⊇ T 2n(X) = Tn(X)

T (T−n(0)) ⊆ T−n+1(0) ⊆ T−n(0)

Thus we see that T |Tn(X) is 1-1 and onto, so that invertible. Thus we may write

T =

(
T1 0
0 T2

)
: Tn(X)⊕ T−n(0) −→ Tn(X)⊕ T−n(0),

where T1 = T |Tn(X) is invertible and T2 = T |T−n(0) is nilpotent with nilpotency n.
Therefore T is polar.
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The following is an immediate result of Theorem 1.9.8 :

Corollary 1.9.9. If T ∈ B(X) then

T is polar ⇐⇒ ascent (T ) = descent (T ) <∞

Corollary 1.9.10. If S, T ∈ B(X) with ST = TS, then

S and T are polar =⇒ ST is polar.

Proof. Suppose Sn(X) = Sn+1(X) and Tn(X) = Tn+1(X). Then

(ST )mn+1(X) = Smn+1Tmn+1(X) = Smn+1Tmn(X) = TmnSmn+1(X)

= TmnSmn(X) = (ST )mn(X)

Similarly,

(ST )−p−1(0) = (ST )−p(0).

Definition 1.9.11. An operator T ∈ B(X) is called a Browder (or Riesz-Schauder)
operator if T is Fredholm and quasipolar.

If T is Fredholm then by the remark above Definition 1.9.3,

T is quasipolar ⇐⇒ T is polar.

Thus we have

T is Browder ⇐⇒ T is Fredholm and polar.

Theorem 1.9.12. If T ∈ B(X), the following are equivalent:
(a) T is Browder, but not invertible;
(b) T is Fredholm and 0 ∈ isoσ(T );
(c) T is Weyl and 0 ∈ isoσ(T );
(d) T is Fredholm and ascent (T ) = descent (T ) <∞.

Proof. (a) ⇔ (b) : Theorem 1.9.6
(b) ⇔ (c) : From the continuity of the index
(b) ⇔ (d) : From Corollary 1.9.9.

Theorem 1.9.13. If K ∈ B(X), then

K is compact =⇒ I +K is Browder.
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Proof. From the spectral theory of the compact operators,

−1 ∈ isoσ(K) (in fact, λ ̸= 0 ⇒ λ /∈ accσ(K)),

which gives
0 ∈ isoσ(I +K).

From Corollary 1.4.6, I + K is Fredholm. Now Theorem 1.9.12 says that I + K is
Browder.

Theorem 1.9.14. (Riesz-Schauder Theorem). If T ∈ B(X) then

T is Browder ⇐⇒ T = S+K, where S is invertible and K is compact with SK = KS.

Proof. (⇒) If T is Browder then it is polar, so that we can write

T =

[
T1 0
0 T2

]
,

where T1 is invertible and T2 is nilpotent. Since T is Fredholm, T2 is also Fredholm.
If we put

S =

[
T1 0
0 I

]
and K =

[
0 0
0 T1 − I

]
,

then evidently T2 − I is of finite rank. Thus S is invertible and K is of finite rank.
Further,

T = S +K and SK = KS.

(⇐) Suppose T = S +K and SK = KS. Since, by Theorem 1.9.13, I + S−1K
is Browder, so that I + S−1K is Fredholm and polar. Therefore, by Theorem 1.5.2
and Corollary 1.9.10, T = S(I + S−1K) is Fredholm and polar, and hence Browder.
Here, note that S and I + S−1K commutes.

Remark 1.9.15. If S, T ∈ B(X) and ST = TS then
(a) S, T are Browder ⇐⇒ ST is Browder;
(b) S is Browder and T is compact =⇒ S + T is Browder.

Example 1.9.16. There exists a Weyl operator which is not Browder.

Proof. Put T =

[
U 0
0 U∗

]
: ℓ2⊕ℓ2 → ℓ2⊕ℓ2, where U is the unilateral shift. Evidently,

T is Fredholm and indexT = indexU + indexU∗ = 0, which says that T is Weyl.
However, σ(T ) = {λ ∈ C : |λ| ≤ 1} ; so that 0 /∈ isoσ(T ), which implies that T is not
Browder.
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1.10 Essential Spectra

If T ∈ B(X) we define:
(a) The essential spectrum of T := σe(T ) = {λ ∈ C : T − λI is not Fredolm}
(b) The Weyl spectrum of T := ω(T ) = {λ ∈ C : T − λI is not Weyl}
(c) The Browder spectrum of T := σb(T ) = {λ ∈ C : T − λI is not Browder}
Evidently, σe(T ), ω(T ) and σb(T ) are all compact;

σe(T ) ⊂ ω(T ) ⊂ σb(T );

these are nonempty if dimX = ∞.

Theorem 1.10.1. If T ∈ B(X) then
(a) σ(T ) = σe(T ) ∪ σp(T ) ∪ σcom(T );
(b) σ(T ) = ω(T ) ∪

(
σp(T ) ∩ σcom(T )

)
;

(c) σb(T ) = σe(T ) ∪ accσ(T ),
where σcom(T ) := {λ ∈ C : T − λI does not have dense range}.

Proof. Immediate follow from definitions.

Definition 1.10.2. We shall write

P00(T ) = isoσ(T )\σe(T )

for the Riesz points of σ(T ). Evidently, λ ∈ P00(T ) means that T − λI is Browder,
but not invertible.

Lemma 1.10.3. If Ω is locally connected and H, K ⊂ Ω, then

∂K ⊆ H ∪ isoK =⇒ K ⊂ ηH ∪ isoK

Proof. See [Har4].

Theorem 1.10.4. If T ∈ B(X) then
(a) ∂σ(T )\σe(T ) ⊆ isoσ(T );
(b) σ(T ) ⊆ ησe(T ) ∪ P00(T )

Proof. (a) This is an immediate consequence of the Punctured Neighborhood The-
orem.

(b) From (a) and Lemma 1.10.3,

σ(T ) ⊆ ησe(T ) ∪ isoσ(T )

= ησe(T ) ∪ P00(T )

by the fact that if λ /∈ ησe(T ) and λ ∈ isoσ(T ), then T − λI is Fredholm and
λ ∈ isoσ(T ) thus T − λI is Browder.
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1.11 Spectral Mapping Theorems

Recall the Calkin algebra B(X)/K(X). The Calkin homomorphism π is defined by

π : B(X) −→ B(X)/K(X)

π(T ) = T +K(X).

Evidently, by the Atkinson’s Theorem,

T is Fredholm ⇐⇒ π(T ) is invertible.

Theorem 1.11.1. If T ∈ B(X) and f is analytic in a neighborhood of σ(T ), then

f(σe(T )) = σe(f(T ))

Proof. Since f(π(T )) = f(T +K(X)) = f(T ) +K(X) = π(f(T )) it follows that

f(σe(T )) = f(σ(π(T ))) = σ(f(π(T ))) = σ(π(f(T ))) = σe(f(T )).

Theorem 1.11.2. If T ∈ B(X) and f is analytic in a neighborhood of σ(T ), then

f(σb(T )) = σb(f(T ))

Proof. Since by the analyticity of f , f(accK) = acc f(K), it follows that

f(σb(T )) = f(σe(T ) ∪ accσ(T ))

= f(σe(T )) ∪ f(accσ(T ))
= σe(f(T )) ∪ accσ(f(T ))

= σb(f(T )).

Theorem 1.11.3. If T ∈ B(X) and p is a polynomial then

ω(p(T )) ⊆ p(ω(T )).

Proof. Let p(z) = a0 + a1z + · · ·+ anz
n ; thus p(z) = c0(z − α1) · · · (z − αn). Then

p(T ) = c0(T − α1I) · · · (T − αnI).

We now claim that

0 /∈ p(ω(T )) =⇒ c0(z − α1) · · · (z − αn) ̸= 0 for each λ ∈ ω(T )

=⇒ λ ̸= αi for each λ ∈ ω(T )

=⇒ T − αiI is Weyl for each i = 1, 2, . . . n

=⇒ c0(T − α1I) · · · (T − αnI) is Weyl

=⇒ 0 /∈ ω(p(T ))
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In fact, we can show that ω(f(T )) ⊆ f(ω(T )) for any analytic function f in a
neighborhood of σ(T ).

The inclusion of Theorem 1.11.3 may be proper. For example, if U is the unilateral
shift, consider

T =

[
U + I 0

0 U∗ − I

]
: ℓ2 ⊕ ℓ2 −→ ℓ2 ⊕ ℓ2.

Then
ω(T ) = σ(T ) =

{
z ∈ C : |1 + z| ≤ 1

}
∪
{
z ∈ C : |1− z| ≤ 1

}
.

Let p(z) = (z + 1)(z − 1). Then

p(ω(T )) is a cardioid containing 0.

Therefore 0 ∈ p(ω(T )). However

p(T ) = (T + I)(T − I) =

[
U + 2I 0

0 U∗

] [
U 0
0 U∗ − 2I

]
,

so that index (p(T )) = indexU∗ + indexU = 0, which implies 0 /∈ ω(p(T )). Therefore

p(ω(T )) * ω(p(T )).
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1.12 The Continuity of Spectra

Let σn be a sequence of compact subsets of C.
(a) The limit inferior, lim inf σn, is the set of all λ ∈ C such that every neighborhood

of λ has a nonempty intersection with all but finitely many σn.

(b) The limit superior, lim supσn, is the set of all λ ∈ C such that every neighbor-
hood of λ intersects infinitely many σn.

(c) If lim inf σn = lim supσn then limσn is said to be exist and is the common limit.

A mapping T on B(X) whose values are compact subsets of C is said to be upper
semi-continuous at T when

Tn −→ T =⇒ lim sup T (Tn) ⊂ T (T )

and to be lower semi-continuous at T when

Tn −→ T =⇒ T (T ) ⊂ lim inf T (Tn).

If T is both upper and lower semi-continuous, then it is said to be continuous.

Example 1.12.1. The spectrum σ : T 7−→ σ(T ) is not continuous in general: for
example, if

Tn :=

[
U 1

n (I − UU∗)
0 U∗

]
and T :=

[
U 0
0 U∗

]
then σ(Tn) = ∂D, σ(T ) = D, and Tn −→ T .

Proposition 1.12.2. σ is upper semi-continuous.

Proof. Suppose Tn → T and λ ∈ lim supσ(Tn). Then there exists λn ∈ lim supσ(Tn)
so that λnk

→ λ. Since Tnk
− λnk

I is singular and Tnk
− λnk

I −→ T − λI, it follows
that T − λI is singular; therefore λ ∈ σ(T ).

Theorem 1.12.3. σ is continuous on the set of all hyponormal operators.

Proof. Let Tn, T be hyponormal operators such that Tn → T in norm. We want to
prove that

σ(T ) ⊂ lim inf σ(Tn).

Assume λ /∈ lim inf σ(Tn). Then there exists a neighborhood N(λ) of λ such that it
does not intersect infinitely many σ(Tn). Thus we can choose a subsequence {Tnk

} of
{Tn} such that for some ε > 0,

dist

(
λ, σ(Tnk

)

)
> ε.
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Since Tnk
is hyponormal, it follows that

dist(λ, σ(Tnk
)) = min

µ∈σ(Tnk
−λ)

|µ| = 1

max
µ∈σ((Tnk

−λ)−1)

|µ|
=

1

∥(Tnk
− λ)−1∥

,

where the second equality follows from the observation

σ(T−1) =

{
1

z
: z ∈ σ(T )

}
because if f(z) = 1

z then σ(T−1) = σ(f(T )) = f(σ(T )) = { 1
z : z ∈ σ(T )} and the last

equality uses the fact that (Tnk
− λI)−1 is normaloid. So ∥(Tnk

− λI)−1∥ < 1
ε . We

thus have

∥(Tnk
− λI)−1 − (Tnl

− λI)−1∥ = ∥(Tnk
− λI)−1

{
(Tnk

− λI)− (Tnl
− λI)

}
− (Tnl

− λI)−1∥

≤ ∥(Tnk
− λI)−1∥ · ∥Tnl

− Tnk
∥ · ∥(Tnl

− λI)−1∥

<
1

ε2
∥Tnl

− Tnk
∥.

Since Tnk
→ T , it follows that {(Tnk

− λI)−1} converges, to some operator B, say.
Therefore

(T − λI)B = lim(Tnk
− λI) · lim(Tnk

− λI)−1

= lim(Tnk
− λI)(Tnk

− λI)−1 = 1.

Similarly, B(T − λI) = 1 and hence λ /∈ σ(T ).

Lemma 1.12.4. Let A be a commutative Banach algebra. If x ∈ A is not invertible
and ∥y − x∥ < ε, then there exists λ such that y − λ is not invertible and |λ| < ε.

Proof. Since x is not invertible, it generates an ideal ̸= A. Thus there exists a maximal
idealM containing x. So z ∈M =⇒ z is not invertible. Since A/M ∼= F, λ·1 ∈ y+M
for some y. Thus y − λ · 1 ∈ M . Since x ∈ M we have y − x − λ · 1 ∈ M , so that
λ ∈ σ(y − x). Finally, |λ| ≤ ∥y − x∥ < ε.

Theorem 1.12.5. If in a Banach algebra A, xi → x and xix = xxi for all i, then
limσ(xi) = σ(x).

Proof. Let B be the algebra generated by 1, x, and xi. Then (x−µ)−1 and (xi−µ)−1

are commutative whenever they exist. Let λ ∈ σ(x), i.e., x − λ is not invertible. By
Lemma 1.12.4, there exists N such that

i > N =⇒ σ(xi − λ) ∩Nε(0) ̸= ∅.

So 0 ∈ lim inf σ(xi − λ), or λ ∈ lim inf σ(xi), so that

σ(x) ⊆ lim inf σ(xi) ⊆ lim supσ(xi) ⊆ σ(x).
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Theorem 1.12.6. ω is upper semi-continuous.

Proof. We want to prove that

lim supω(Tn) ⊂ ω(T ) if Tn → T.

Let λ /∈ ω(T ), so T − λI is Weyl. Since the set of Weyl operators forms an open set,

∃ η > 0 such that ∥T − λI − S∥ < η =⇒ S is Weyl.

Let N be such that

∥(T − λI)− (Tn − λI)∥ < η

2
for n ≥ N.

Let V = B(λ ; η2 ). Then for µ ∈ V, n ≥ N ,

∥(T − λI)− (Tn − µI)∥ < η,

so that Tn − µI is Weyl, which implies that λ /∈ lim supω(Tn).

Theorem 1.12.7. Let Tn → T . If TnT = TTn for all n, then limω(Tn) = ω(T ).

Proof. In view of Theorem 1.12.6, it suffices to show that

ω(T ) ⊆ lim inf ω(Tn) (1.15)

Observe that π(Tn)π(T ) = π(T )π(Tn) and hence by Theorem 1.12.5, limσe(Tn) =
σe(T ). Towards (1.15), suppose λ /∈ lim inf ω(Tn). So there exists a neighborhood
V (x) which does not intersect infinitely many ω(Tn). Since σe(Tn) ⊂ ω(Tn), V does
not intersect infinitely many σe(Tn), i.e., λ /∈ limσe(Tn) = σe(T ). This shows that
T − λI is Fredholm. By the continuity of index, T − λI is Weyl, i.e., λ /∈ ω(T ).

Theorem 1.12.8. If S and T are commuting hyponormal operators then

S, T are Weyl ⇐⇒ ST is Weyl.

Hence if f is analytic in a neighborhood of σ(T ), then

ω(f(T )) = f(ω(T )).

Proof. See [LeL2].
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1.13 Comments and Problems

Let H be an infinite dimensional separable Hilbert space. An operator T ∈ B(H)
is called a Riesz operator if σe(T ) = 0. If T ∈ B(H) then the West decomposition
theorem [Wes] says that

T is Riesz ⇐⇒ T = K +Q with compact K and quasinilpotent Q:

this is equivalent to the following: if QB(H) and QC(H) denote the sets of quasinilpo-
tents of B(H) and C(H), respectively, then

π
(
QB(H)

)
= QC(H), (1.16)

where C(H) = B(H)/K(H) is the Calkin algebra and π denotes the Calkin homo-
morphism. It remains still open whether the West decomposition theorem survives
in the Banach space setting.

Problem 1.1. Is the equality (1.16) true if H is a Banach space ?

Suppose A is a Banach algebra with identity 1: we shall write A−1 for the invertible
group of A and A−1

0 for the connected components of the identity in A−1. It was [Har3]
known that

A−1
0 := Exp(A) = {ec1ec2 · · · eck : k ∈ N, ci ∈ A} .

Evidently, Exp (A) is open, relatively closed in A−1, connected and a normal sub-
group. Write

κ(A) := A−1/Exp (A)

for the abstract index group. The exponential spectrum ϵ(a) of a ∈ A is defined by

ϵ(a) := {λ ∈ C : a− λ /∈ Exp (A)}.

Clearly,
∂ϵ(a) ⊂ σ(a) ⊂ ϵ(a).

If A = B(H) then ϵ(a) = σ(a). We have known that σ(ab) \ {0} = σ(ba) \ {0}.
However we were not able to answer to the following:

Problem 1.2. If A is a Banach algebra and a, b ∈ A, does it follow that

ϵ(ab) \ {0} = ϵ(ba) \ {0} ?
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Chapter 2

Weyl Theory

2.1 Introduction

In 1909, writing about differential equations, Hermann Weyl noticed something about
the essential spectrum of a self adjoint operator on Hilbert space: when you take it
away from the spectrum, you are left with the isolated eigenvalues of finite multiplicity.
This was soon generalized to normal operators, and then to more and more classes of
operators, bounded and unbounded, on Hilbert and on Banach spaces.

The spectrum σ(T ) of a bounded linear operator T on a complex Banach space
X is of course the set of those complex numbers for which T − λI does not have an
everywhere defined two-sided inverse: this concept extends at once to the spectrum
σA(a) of a Banach algebra element a ∈ A. Thus the Fredholm essential spectrum
σe(T ) is the spectrum of the coset T +K(X) of the operator T ∈ B(X) in the Calkin
algebra B(X)/K(X). Equivalently λ ∈ C is excluded from the spectrum σ(T ) if
and only if operator T − λI is one one and onto, and is excluded from the essential
spectrum σe(T ) if and only if the operator T − λI has finite dimensional null space
and range of finite co dimension.

The Fredholm essential spectrum is contained in the larger Weyl spectrum, which
also includes points λ ∈ C for which T −λI is Fredholm but with non zero index: the
two finite dimensions involved are unequal. Equivalently, T − λI /∈ B(X)−1 +K(X)
cannot be expressed as the sum of an invertible and a compact operator. What is
relevant here is that for self adjoint and more general normal operators the Weyl
and the Fredholm spectra coincide: every normal Fredholm operator has index zero.
Thus while the original Weyl observation of 1909 may have seemed to subtract the
Fredholm essential spectrum from the spectrum, it can equally be interpreted as
subtracting the Weyl essential spectrum. For non normal operators it is this modified
version that seems to be the property that is of interest. For a linear operator on
a Banach space the most obvious points of its spectrum are the eigenvalues π0(T ),
collecting λ ∈ C for which T − λI fails to be one-one. As is familiar from matrix
theory, in finite dimensions this is all of the spectrum. In a sense therefore Weyl’s
theorem seems to be suggesting that for nice operators the spectrum splits into a
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finite dimensional component and a component modulo finite dimensions. Weyl’s
theorem asks not just that the spectrum split into Fredholm spectra and eigenvalues:
it wants the spectrum to divide into Weyl spectrum and eigenvalues which are both
topologically isolated in the spectrum, and geometrically of finite multiplicity, with
finite dimensional eigenspaces.
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2.2 Weyl’s Theorem

If T ∈ B(X) write π0f (T ) for the eigenvalues of finite multiplicity; π0i(T ) for the
eigenvalues of infinite multiplicity; N(T ) and R(T ) for the null space and the range of
T , respectively. If we write isoK = K \ accK, and ∂ K for the topological boundary
of K, and

π00(T ) := {λ ∈ isoσ(T ) : 0 < dimN(T − λI) <∞} (2.1)

for the isolated eigenvalues of finite multiplicity, and ([Har4])

p00(T ) := σ(T ) \ σb(T ) (2.2)

for the Riesz points of σ(T ), then by the punctured neighborhood theorem, i.e.,
∂ σ(T ) \ σe(T ) ⊆ isoσ(T ) (cf. [Har4], [HaL1]),

isoσ(T ) \ σe(T ) = isoσ(T ) \ ω(T ) = p00(T ) ⊆ π00(T ). (2.3)

H. Weyl [We] examined the spectra of all compact perturbations T +K of a single
hermitian operator T and discovered that λ ∈ σ(T +K) for every compact operator
K if and only if λ is not an isolated eigenvalue of finite multiplicity in σ(T ). Today
this result is known as Weyl’s theorem: that is, we say that Weyl’s theorem holds for
T ∈ B(X) if there is equality

σ(T ) \ ω(T ) = π00(T ). (2.4)

In this section we explore the class of operators satisfying Weyl’s theorem.
If T ∈ B(X), write r(T ) for the spectral radius of T . It is familiar that r(T ) ≤ ||T ||.

An operator T is called normaloid if r(T ) = ||T || and isoloid if isoσ(T ) ⊆ π0(T ). If X
is a Hilbert space, an operator T ∈ B(X) is called reduction-isoloid if the restriction
of T to any reducing subspace is isoloid.

Let X be a Hilbert space and suppose that T ∈ B(X) is reduced by each of its
finite-dimensional eigenspaces. If

M :=
∨

{N(T − λI) : λ ∈ π0f (T )},

thenM reduces T . Let T1 := T |M and T2 := T |M⊥. Then we have ([Be2, Proposition
4.1]) that

(i) T1 is a normal operator with pure point spectrum;
(ii) π0(T1) = π0f (T );
(iii) σ(T1) = clπ0(T1);
(iv) π0(T2) = π0(T ) \ π0f (T ) = π0i(T ).

In this case, S.Berberian ([Be2, Definition 5.4]) defined

τ(T ) := σ(T2) ∪ accπ0f (T ). (2.5)
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We shall call τ(T ) the Berberian spectrum of T . S. Berberian has also shown that τ(T )
is a nonempty compact subset of σ(T ). We can, however, show that Weyl spectra,
Browder spectra, and Berberian spectra all coincide for operators reduced by each of
its finite-dimensional eigenspaces:

Theorem 2.2.1. If X is a Hilbert space and T ∈ B(X) is reduced by each of its
finite-dimensional eigenspaces then

τ(T ) = ω(T ) = σb(T ). (2.6)

Proof. Let M be the closed linear span of the eigenspaces N(T − λI) (λ ∈ π0f (T ))
and write

T1 := T |M and T2 := T |M⊥.

From the preceding arguments it follows that T1 is normal, π0(T1) = π0f (T ) and
π0f (T2) = ∅. For (2.6) it will be shown that

ω(T ) ⊆ τ(T ) ⊆ σb(T ) (2.7)

and
σb(T ) ⊆ ω(T ). (2.8)

For the first inclusion of (2.7) suppose λ ∈ σ(T ) \ τ(T ). Then T2 − λI is invertible
and λ ∈ isoπ0(T1). Since also π0(T1) = π0f (T1), we have that λ ∈ π00(T1). But since
T1 is normal, it follows that T1 − λI is Weyl and hence so is T − λI. This proves
the first inclusion. For the second inclusion of (2.7) suppose λ ∈ σ(T ) \ σb(T ). Thus
T − λI is Browder but not invertible. Observe that the following equality holds with
no other restriction on either R or S:

σb(R⊕ S) = σb(R) ∪ σb(S) for each R ∈ B(X1) and S ∈ B(X2). (2.9)

Indeed if λ ∈ isoσ(R ⊕ S) then λ is either an isolated point of the spectra of direct
summands or a resolvent element of direct summands, so that if R − λI and S − λI
are Fredholm then by (2.3), λ is either a Riesz point or a resolvent element of direct
summands, which implies that σb(R) ∪ σb(S) ⊆ σb(R ⊕ S), and the reverse inclusion
is evident. From this we can see that T1 − λI and T2 − λI are both Browder. But
since π0f (T2) = ∅, it follows that T2 − λI is one-one and hence invertible. Therefore
λ ∈ π00(T1) \ σ(T2), which implies that λ /∈ τ(T ). This proves the second inclusion of
(2.7). For (2.8) suppose λ ∈ σ(T ) \ω(T ) and hence T −λI is Weyl but not invertible.
Observe that if X1 is a Hilbert space and if an operator R ∈ B(X1) satisfies the
equality ω(R) = σe(R), then

ω(R⊕ S) = ω(R) ∪ ω(S) for each Hilbert space X2 and S ∈ B(X2) : (2.10)

this follows from the fact that the index of a direct sum is the sum of the indices

index (R⊕ S − λ(I ⊕ I)) = index (R− λI) + index (S − λI)

whenever λ /∈ σe(R ⊕ S) = σe(R) ∪ σe(S). Since T1 is normal, applying the equality
(2.10) to T1 in place of R gives that T1 − λI and T2 − λI are both Weyl. But since
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π0f (T2) = ∅, we must have that T2 − λI is invertible and therefore λ ∈ σ(T1) \ω(T1).
Thus from Weyl’s theorem for normal operators we can see that λ ∈ π00(T1) and
hence λ ∈ isoσ(T1)∩ ρ(T2), which by (2.3), implies that λ /∈ σb(T ). This proves (2.8)
and completes the proof.

As applications of Theorem 2.2.1 we will give several corollaries below.

Corollary 2.2.2. If X is a Hilbert space and T ∈ B(X) is reduced by each of its
finite-dimensional eigenspaces then σ(T ) \ ω(T ) ⊆ π00(T ).

Proof. This follows at once from Theorem 2.2.1.

Weyl’s theorem is not transmitted to dual operators: for example if T : ℓ2 → ℓ2 is
the unilateral weighted shift defined by

Ten =
1

n+ 1
en+1 (n ≥ 0), (2.11)

then σ(T ) = ω(T ) = {0} and π00(T ) = ∅, and therefore Weyl’s theorem holds for T ,
but fails for its adjoint T ∗. We however have:

Corollary 2.2.3. Let X be a Hilbert space. If T ∈ B(X) is reduced by each of its
finite-dimensional eigenspaces and isoσ(T ) = ∅, then Weyl’s theorem holds for T and
T ∗. In this case, σ(T ) = ω(T ).

Proof. If isoσ(T ) = ∅, then it follows from Corollary 2.2.2 that σ(T ) = ω(T ), which
says that Weyl’s theorem holds for T . The assertion that Weyl’s theorem holds for

T ∗ follows from noting that σ(T )∗ =
(
σ(T )

)−
, ω(T ∗) =

(
ω(T )

)−
and π00(T

∗) =(
π00(T )

)−
= ∅.

In Corollary 2.2.3, the condition “isoσ(T ) = ∅” cannot be replaced by the condi-
tion “π00(T ) = ∅”: for example consider the operator T defined by (2.11).

Corollary 2.2.4. ([Be1, Theorem]) If X is a Hilbert space and T ∈ B(X) is reduction-
isoloid and is reduced by each of its finite-dimensional eigenspaces then Weyl’s theorem
holds for T .

Proof. In view of Corollary 2.2.2, it suffices to show that π00(T ) ⊆ σ(T ) \ ω(T ).
Suppose λ ∈ π00(T ). Then with the preceding notations, λ ∈ π00(T1) ∩

[
isoσ(T2) ∪

ρ(T2)
]
. If λ ∈ isoσ(T2), then since by assumption T2 is isoloid we have that λ ∈ π0(T2)

and hence λ ∈ π0f (T2). But since π0f (T2) = ∅, we should have that λ /∈ isoσ(T2).
Thus λ ∈ π00(T1) ∩ ρ(T2). Since T1 is normal it follows that T1 − λI is Weyl and so
is T − λI; therefore λ ∈ σ(T ) \ ω(T ).

Since hyponormal operators are isoloid and are reduced by each of its eigenspaces,
it follows from Corollary 2.2.4 that Weyl’s theorem holds for hyponormal operators.
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If the condition “reduction-isoloid” is replaced by “isoloid” then Corollary 2.2.4
may fail: for example, consider the operator T = T1 ⊕ T2, where T1 is the one-
dimensional zero operator and T2 is an injective quasinilpotent compact operator.

If X is a Hilbert space, an operator T ∈ B(X) is said to be p-hyponormal if
(T ∗T )p − (TT ∗)p ≥ 0 (cf. [Al],[Ch3]). If p = 1, T is hyponormal and if p = 1

2 , T is
semi-hyponormal.

Corollary 2.2.5. [CIO] Weyl’s theorem holds for every p-hyponormal operator.

Proof. This follows from the fact that every p-hyponormal operator is isoloid and is
reduced by each of its eigenspaces ([Ch3]).

L. Coburn [Co, Corollary 3.2] has shown that if T ∈ B(X) is hyponormal and
π00(T ) = ∅, then T is extremally noncompact, in the sense that

||T || = ||π(T )||,

where π is the canonical map of B(X) onto the Calkin algebra B(X)/K(X). His
proof relies upon the fact that Weyl’s theorem holds for hyponormal operators, and
hence σ(T ) = ω(T ) since π00(T ) = ∅. Now we can strengthen the Coburn’s argument
slightly:

Corollary 2.2.6. If T ∈ B(X) is normaloid and π00(T ) = ∅, then T is extremally
noncompact.

Proof. Since σ(T ) ⊆ η ω(T )∪p00(T ) for any T ∈ B(X), we have that η σ(T )\η ω(T ) ⊆
π00(T ). Thus by our assumption, η σ(T ) = η ω(T ). Therefore we can argue that for
each compact operator K ∈ B(X),

||T || = r(T ) = rω(T ) = rω(T +K) ≤ r(T +K) ≤ ||T +K||,

where rω(T ) denotes the “Weyl spectral radius”. This completes the proof.

Note that if T ∈ B(X) is normaloid and π00(T ) = ∅, then Weyl’s theorem may
fail for T ; for example take X = ℓ2 ⊕ ℓ2 and T = U ⊕ U∗, where U is the unilateral
shift.

We next consider Weyl’s theorem for Toeplitz operators.

The Hilbert space L2(T) has a canonical orthonormal basis given by the trigono-
metric functions en(z) = zn, for all n ∈ Z, and the Hardy space H2(T) is the closed
linear span of {en : n = 0, 1, . . . }. An element f ∈ L2 is referred to as analytic if
f ∈ H2 and coanalytic if f ∈ L2⊖H2. If P denotes the projection operator L2 → H2,
then for every φ ∈ L∞(T), the operator Tφ on H2 defined by

Tφg = P (φg) for all g ∈ H2 (2.12)

is called the Toeplitz operator with symbol φ.
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Theorem 2.2.7. [Co] Weyl’s theorem holds for every Toeplitz operator Tφ.

Proof. It was known [Wi2] that σ(Tφ) is always connected. Since there are no
quasinilpotent Toeplitz operators except 0, σ(Tφ) can have no isolated eigenvalues
of finite multiplicity. Thus Weyl’s theorem is equivalent to the fact that

σ(Tφ) = ω(Tφ). (2.13)

Since Tφ − λI = Tφ−λ, it suffices to show that if Tφ is Weyl then Tφ is invertible.
If Tφ is not invertible, but is Weyl then it is easy to see that both Tφ and T ∗

φ = Tφ
must have nontrivial kernels. Thus we want to show that this can not happen, unless
φ = 0 and hence Tφ is the non-Weyl operator.

Suppose that there exist nonzero functions φ, f , and g (φ ∈ L∞ and f, g ∈ H2)
such that Tφf = 0 and Tφg = 0. Then P (φf) = 0 and P (φg) = 0, so that there exist
functions h, k ∈ H2 such that∫

h dθ =

∫
k dθ = 0 and φf = h, φg = k.

Thus by the F. and M. Riesz’s theorem, φ, f, g, h, k are all nonzero except on a set
of measure zero. We thus have that f/g = h/k pointwise a.e., so that fk = gh a.e.,
which implies gh = 0 a.e. Again by the F. and M. Riesz’s theorem, we can conclude
that either g = 0 a.e. or h = 0 a.e. This contradiction completes the proof.

We review here a few essential facts concerning Toeplitz operators with continuous
symbols, using [Do1] as a general reference. The sets C(T) of all continuous complex-
valued functions on the unit circle T and H∞(T) = L∞∩H2 are Banach algebras, and
it is well-known that every Toeplitz operator with symbol φ ∈ H∞ is subnormal. The
C∗-algebra A generated by all Toeplitz operators Tφ with φ ∈ C(T) has an important
property which is very useful for spectral theory: the commutator ideal of A is the
ideal K(H2) of compact operators on H2. As C(T) and A/K(H2) are ∗-isomorphic
C∗-algebras, then for every φ ∈ C(T),

Tφ is a Fredholm operator if and only if φ is invertible (2.14)

indexTφ = −wn(φ) , (2.15)

σe(Tφ) = φ(T) , (2.16)

where wn(φ) denotes the winding number of φ with respect to the origin. Finally,
we make note that if φ ∈ C(T) and if f is an analytic function defined on an open
set containing σ(Tφ), then f ◦ φ ∈ C(T) and f(Tφ) is well-defined by the analytic
functional calculus.

We require the use of certain closed subspaces and subalgebras of L∞(T), which
are described in further detail in [Do2] and Appendix 4 of [Ni]. Recall that the
subspace H∞(T) + C(T) is a closed subalgebra of L∞. The elements of the closed
selfadjoint subalgebra QC, which is defined to be

QC =
(
H∞(T) + C(T)

)
∩
(
H∞(T) + C(T)

)
,
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are called quasicontinuous functions. The subspace PC is the closure in L∞(T) of
the set of all piecewise continuous functions on T. Thus φ ∈ PC if and only if it is
right continuous and has both a left- and right-hand limit at every point. There are
certain algebraic relations among Toeplitz operators whose symbols come from these
classes, including

TψTφ − Tψφ ∈ K(H2) for every φ ∈ H∞(T) + C(T) and ψ ∈ L∞(T) , (2.17)

and

the commutator [Tφ, Tψ] is compact for every φ,ψ ∈ PC . (2.18)

We add to these relations the following one.

Lemma 2.2.8. If Tφ is a Toeplitz operator with quasicontinuous symbol φ, and if
f ∈ H(σ(Tφ)), then Tf◦φ − f(Tφ) is a compact operator.

Proof. Assume that φ ∈ QC. Recall from [Do1, p.188] that if ψ ∈ H∞ + C(T),
then Tψ is Fredholm if and only if ψ is invertible in H∞ +C(T). Therefore for every
λ ̸∈ σ(Tφ), both φ−λ and φ− λ are invertible in H∞+C(T); hence, (φ−λ)−1 ∈ QC.
Using this fact together with (2.17) we have that, for ψ ∈ L∞ and λ, µ ∈ C,

Tφ−µTψT(φ−λ)−1 − T(φ−µ)ψ(φ−λ)−1 ∈ K(H2) whenever λ /∈ σ(Tφ) .

The arguments above extend to rational functions to yield: if r is any rational function
with all of its poles outside of σ(Tφ), then r(Tφ) − Tr◦φ ∈ K(H2). Suppose that f
is an analytic function on an open set containing σ(Tφ). By Runge’s theorem there
exists a sequence of rational functions rn such that the poles of each rn lie outside of
σ(Tφ) and rn → f uniformly on σ(Tφ). Thus rn(Tφ) → f(Tφ) in the norm-topology of
L(H2). Furthermore, because rn ◦φ→ f ◦φ uniformly, we have Trn◦φ → Tf◦φ in the
norm-topology. Hence, Tf◦φ − f(Tφ) = lim

(
Trn◦φ − rn(Tφ)

)
, which is compact.

Lemma 2.2.8 does not extend to piecewise continuous symbols φ ∈ PC, as we
cannot guarantee that Tnφ − Tφn ∈ K(H2) for each n ∈ Z+. For example, if φ(eiθ) =
χT+ −χT− , where χT+ and χT− are characteristic functions of, respectively, the upper
semicircle and the lower semicircle, then T 2

φ − I is not compact.

Corollary 2.2.9. If Tφ is a Toeplitz operator with quasicontinuous symbol φ, then
for every f ∈ H(σ(Tφ)),

1. ω(f(Tφ)) = σ(Tf◦φ), and

2. f(Tφ) is essentially normal and is unitarily equivalent to a compact perturbation
of f(Tφ)⊕Mf◦φ, whereMf◦φ is the operator of multiplication by f ◦φ on L2(T).

Proof. Because the Weyl spectrum is stable under the compact perturbations, it fol-
lows from Lemma 2.2.8 that ω(f(Tφ)) = ω(Tf◦φ) = σ(Tf◦φ), which proves statement
(1). To prove (2), observe that because QC is a closed algebra, the composition of the
analytic function f with φ ∈ QC produces a quasicontinuous function f ◦ φ ∈ QC.
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Moreover, by (2.17), every Toeplitz operator with quasicontinuous symbol is essen-
tially normal. The (normal) Laurent operator Mf◦φ on L2(T) has its spectrum con-
tained within the spectrum of the (essentially normal) Toeplitz operator Tf◦φ. Thus
there is the following relationship involving the essentially normal operators f(Tφ)
and Mf◦φ ⊕ f(Tφ):

σe
(
f(Tφ)⊕Mf◦φ

)
= σe(f(Tφ)) and SP(f(Tφ)) = SP

(
f(Tφ)⊕Mf◦φ

)
,

where SP(T ) denotes the spectral picture of an operator T . (The spectral picture
SP(T ) is the structure consisting of the set σe(T ), the collection of holes and pseudo-
holes in σe(T ), and the Fredholm indices associated with these holes and pseudoholes.)
Thus it follows from the Brown-Douglas-Fillmore theorem [Pe] that f(Tφ) is compa-
lent to f(Tφ) ⊕ Mf◦φ, in the sense that there exists a unitary operator W and a
compact operator K such that W

(
f(Tφ)⊕Mf◦φ

)
W ∗ +K = f(Tφ).

Corollary 2.2.9 (1) can be viewed as saying that σ(f(Tφ)) \ σ(Tf◦φ) consists of
holes with winding number zero.

We consider the following question ([Ob2]):

if Tφ is a Toeplitz operator, then does Weyl’s theorem hold for T 2
φ ? (2.19)

To answer the above question, we need a spectral property of Toeplitz operators with
continuous symbols.

Lemma 2.2.10. Suppose that φ is continuous and that f ∈ H(σ(Tφ)). Then

σ(Tf◦φ) ⊆ f(σ(Tφ)) , (2.20)

and equality occurs if and only if Weyl’s theorem holds for f(Tφ).

Proof. By Corollary 2.2.9, σ(Tf◦φ) = ω(f(Tφ)) ⊆ σ(f(Tφ)) = f(σ(Tφ)). Because
σ(Tφ) is connected, so is f(σ(Tφ)) = σ(f(Tφ)); therefore the set π00(f(Tφ)) is
empty. Again by Corollary 2.2.9, ω(f(Tφ)) = σ(Tf◦φ) and so ω(f(Tφ)) = σ(f(Tφ)) \
π00(f(Tφ)) if and only if σ(Tf◦φ) = f(σ(Tφ)).

If φ is not continuous, it is possible for Weyl’s theorem to hold for some f(Tφ)
without σ(Tf◦φ) being equal to f(σ(Tφ)). One example is as follows. Let φ(ei θ) =

e
i θ
3 (0 ≤ θ < 2π), a piecewise continuous function. The operator Tφ is invertible but

Tφ2 is not; hence 0 ∈ σ(Tφ2) \ {σ(Tφ)}2. However ω(T 2
φ) = σ(T 2

φ), and π00(T
2
φ) is

empty (see Figure 2); therefore Weyl’s theorem holds for T 2
φ.

We can now answer the question (2.19): the answer is no.

Example 2.2.11. There exists a continuous function φ ∈ C(T) such that σ(Tφ2) ̸=
{σ(Tφ)}2.

47



CHAPTER 2. WEYL THEORY

Proof. Let φ be defined by

φ(ei θ) =

{
−e2i θ + 1 (0 ≤ θ ≤ π)

e−2i θ − 1 (π ≤ θ ≤ 2π) .

The orientation of the graph of φ is shown in Figure 3. Evidently, φ is continuous and,
in Figure 3, φ has winding number +1 with respect to the hole of C1; the hole of C2

has winding number −1. Thus we have σe(Tφ) = φ(T) and σ(Tφ) = convφ(T). On the
other hand, a straightforward calculation shows that φ2(T) is the Cardioid r = 2(1+
cos θ). In particular, φ2(T) traverses the Cardioid once in a counterclockwise direction
and then traverses the Cardioid once in a clockwise direction. Thus wn(φ2 − λ) = 0
for each λ in the hole of φ2(T). Hence Tφ2−λ is a Weyl operator and is, therefore,
invertible for each λ in the hole of φ2(T). This implies that σ(Tφ2) is the Cardioid
r = 2(1 + cos θ). But because {σ(Tφ)}2 = {convφ(T)}2 = {(r, θ) : r ≤ 2(1 + cos θ)},
it follows that σ(Tφ2) ̸= {σ(Tφ)}2.

We next consider Weyl’s theorem through the local spectral theory. Local spectral
theory is based on the existence of analytic solutions f : U → X to the equation
(T − λI)f(λ) = x on an open subset U ⊂ C, for a given operator T ∈ B(X) and a
given element x ∈ X. We define the spectral subspace as follows: for a closed set
F ⊂ C, let

XT (F ) := {x ∈ X : (T − λI)f(λ) = x has an analytic solution f : C \ F → X}.

We say that T ∈ B(X) has the single valued extension property (SVEP) at λ0 ∈ C
if for every neighborhood U of λ0, f = 0 is the only analytic solution f : U → X
satisfying (T −λI)f(λ) = 0. We also say that T has the SVEP if T has this property
at every λ ∈ C. The local spectrum of T at x is defined by

σT (x) := C\
∪{

(T−λI)f(λ) = x has an analytic solution f : U → X on the open subset U ⊂ C
}
.

If T has the SVEP then XT (F ) = {x ∈ X : σT (x) ⊂ F}.

The following lemma gives a connection of the SVEP with a finite ascent property.

Lemma 2.2.12. [Fin] If T ∈ B(X) is semi-Fredholm then

T has the SVEP at 0 ⇐⇒ T has a finite ascent at 0.

The finite dimensionality of XT ({λ}) is necessary ad sufficient for T − λI to be
Fredholm whenever λ is an isolated point of the spectrum.

Lemma 2.2.13. [Ai] Let T ∈ B(X). If λ ∈ isoσ(T ) then

λ /∈ σe(T ) ⇐⇒ XT ({λ}) is finite dimensional.
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Theorem 2.2.14. If T ∈ B(X) has the SVEP then the following are equivalent:
(a) Weyl’s theorem holds for T ;
(b) R(T − λI) is closed for every λ ∈ π00(T );
(c) XT ({λ}) is finite dimensional for every λ ∈ π00(T ).

Proof. (a) ⇒ (b): Evident.
(b) ⇒ (a): If λ ∈ σ(T ) \ ω(T ) then by Lemma 2.2.12, T − λI has a finite ascent.

Thus T − λI is Browder and hence λ ∈ π00(T ). Conversely, if λ ∈ π00(T ) then by
assumption T − λI is Browder, so λ ∈ σ(T ) \ ω(T ).

(b) ⇔ (c): Immediate from Lemma 2.2.13.

An operator T ∈ B(X) is called reguloid if each isolated point of spectrum is a
regular point, in the sense that there is a generalized inverse:

λ ∈ iso σ(T ) =⇒ T − λI = (T − λI)Sλ(T − λI) with Sλ ∈ B(X).

It was known [Har4] that if T is reguloid then R(T−λI) is closed for each λ ∈ isoσ(T ).
Also an operator T ∈ B(X) is said to satisfy the growth condition (G1), if for all
λ ∈ C \ σ(T )

||(T − λI)−1||dist(λ, σ(T )) ≤ 1.

Lemma 2.2.15. If T ∈ B(X) then

(G1) =⇒ reguloid =⇒ isoloid. (2.21)

Proof. Recall ([Har4, Theorem 7.3.4]) that if T − λI has a generalized inverse and
if λ ∈ ∂σ(T ) is in the boundary of the spectrum then T − λI has an invertible
generalized inverse. If therefore T is reguloid and λ ∈ isoσ(T ) then T − λI has an
invertible generalized inverse, and hence ([Har4, (3.8.6.1)])

N(T − λI) ∼= X/R(T − λI).

Thus if N(T − λI) = {0} then T − λI is invertible, a contradiction. Therefore λ is
an eigenvalue of T , which proves the second implication of (2.21). Towards the first
implication we may write T in place of T − λI and hence assume λ = 0: then using
the spectral projection at 0 ∈ C we can represent T as a 2× 2 operator matrix:

T =

[
T0 0
0 T1

]
,

where σ(T0) = {0} and σ(T1) = σ(T ) \ {0}. Now we can borrow an argument of J.
Stampfli ([Sta1, Theorem C]): take 0 < ϵ ≤ 1

2dist(0, σ(T ) \ {0}) and argue

T0 =
1

2πi

∫
|z|=ϵ

z(T − zI)−1dz,

using the growth condition (G1) to see that

||T0|| ≤
1

2π

∫
|z|=ϵ

|z| ||(T − zI)−1|| |dz| ≤ 1

2π
ϵ
1

ϵ
2πϵ = ϵ, (2.22)
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which tends to 0 with ϵ. It follows that T0 = 0 and hence that

T =

[
0 0
0 T1

]
= TST with S =

[
0 0
0 T−1

1

]
has a generalized inverse.

Corollary 2.2.16. If T ∈ B(X) is reguloid and has the SVEP then Weyl’s theorem
holds for T .

Proof. Immediate from Theorem 2.2.14.

Lemma 2.2.17. Let T ∈ B(X). If for any λ ∈ C, XT ({λ}) is closed then T has the
SVEP.

Proof. This follows from [Ai, Theorem 2.31] together with the fact that

XT ({λ}) = {x ∈ X : lim
n→∞

||(T − λI)nx|| 1
n = 0}.

Corollary 2.2.18. If T ∈ B(X) satisfies

XT ({λ}) = N(T − λI) for every λ ∈ C, (2.23)

then T has the SVEP and both T and T ∗ are reguloid. Thus in particular if T satisfies
(2.23) then Weyl’s theorem holds for T .

Proof. If T satisfies the condition (2.23) then by Lemma 2.2.17, T has the SVEP. The
second assertion follows from [Ai, Theorem 3.96]. The last assertion follows at once
from Corollary 2.2.16.

An operator T ∈ B(X) is said to be paranormal if

||Tx||2 ≤ ||T 2x|| ||x|| for every x ∈ X.

It was well known that if T ∈ B(X) is paranormal then the following hold:

(a) T is normaloid;
(b) T has finite ascent;
(c) if x and y are nonzero eigenvectors corresponding to, respectively, distinct

nonzero eigenvalues of T , then ||x|| ≤ ||x+ y|| ([ChR, Theorem 2,6])

In particular, p-hyponormal operators are paranormal (cf. [FIY]). An operator T ∈
B(X) is said to be totally paranormal if T − λI is paranormal for every λ ∈ C.
Evidently, every hyponormal operator is totally paranormal. On the other hand,
every totally paranormal operator satisfies (2.23): indeed, for every x ∈ X and λ ∈ C,

||(T − λI)nx|| 1
n ≥ ||(T − λI)x|| for every n ∈ N.
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So if x ∈ XT ({λ}) then ||(T − λI)nx|| 1
n → 0 as n → ∞, so that x ∈ N(T − λI),

which gives XT ({λ}) ⊂ N(T − λI). The reverse inclusion is true for every operator.
Therefore by Corollary 2.2.18 we can conclude that Weyl’s theorem holds for totally
paranormal operators. We can prove more:

Theorem 2.2.19. Weyl’s theorem holds for paranormal operators on a separable
Banach space.

Proof. It was known [ChR] that paranormal operators on a separable Banach space
have the SVEP. So in view of Theorem 2.2.14 it suffices to show that R(T − λI)
is closed for each λ ∈ π00(T ). Suppose λ ∈ π00(T ). Using the spectral projection
P = 1

2πi

∫
∂B

(λI − T )−1dλ, where B is an open disk of center λ which contains no
other points of σ(T ), we can represent T as the direct sum

T = T1 ⊕ T2, where σ(T1) = {λ} and σ(T2) = σ(T ) \ {λ}.

If λ = 0 then T1 is a quasinilpotent paranormal operator, so that T1 = 0. If λ ̸= 0
write TA = 1

λT1. Then TA is paranormal and σ(TA) = {1}. Since TA is invertible we

have that TA and T−1
A are paranormal, and hence normaloid. So ||TA|| = ||T−1

A || = 1
and hence

||x|| = ||T−1
A TAx|| ≤ ||TAx|| ≤ ||x||,

which implies that TA and T−1
A are isometries. Also since TA − 1 is a quasinilpotent

operator it follows that TA = I, and hence T1 = λI. Thus we have that T − λI =
0⊕ (T2 − λI) has closed range. This completes the proof.

Does Weyl’s theorem hold for paranormal operators on an arbitrary Banach space?
Paranormal operators on an arbitrary Banach space may not have the SVEP. So the
proof of Theorem 2.2.19 does not work for arbitrary Banach spaces. In spite of it
Weyl’s theorem holds for paranormal operators on an arbitrary Banach space. To see
this recall the reduced minimum modulus of T is defined by

γ(T ) := inf
||Tx||

dist (x, N(T )
(x /∈ N(T )).

It was known [Go] that γ(T ) > 0 if and only if T has closed range.

Theorem 2.2.20. Weyl’s theorem holds for paranormal operators on a Banach space.

Proof. The proof of Theorem 2.2.19 shows that with no restriction on X, π00(T ) ⊂
σ(T ) \ ω(T ) for every paranormal operator T ∈ B(X). Thus we must show that
σ(T ) \ ω(T ) ⊂ isoσ(T ). Suppose λ ∈ σ(T ) \ ω(T ). If λ = 0 then T is Weyl and has
finite ascent. Thus T is Browder, and hence 0 ∈ isoσ(T ). If λ ̸= 0 and λ /∈ isoσ(T )
then we can find a sequence {λn} of nonzero eigenvalues such that λn → λ. By the
property (c) above Theorem 2.2.19,

dist

(
xλn , N(T − λI)

)
≥ 1 for each unit vector xλn ∈ N(T − λnI).
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We thus have

||(T − λI)xn||
dist (xλn , N(T − λI))

=
|λn − λ|

dist (xλn , N(T − λI))
→ 0,

which shows that γ(T − λI) = 0 and hence T − λI does not have closed range, a
contradiction. Therefore λ ∈ isoσ(T ). This completes the proof.
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2.3 Spectral Mapping Theorem for the Weyl spec-
trum

Let S denote the set, equipped with the Hausdorff metric, of all compact subsets
of C. If A is a unital Banach algebra then the spectrum can be viewed as a func-
tion σ : A → S, mapping each T ∈ A to its spectrum σ(T ). It is well-known that
the function σ is upper semicontinuous, i.e., if Tn → T then lim supσ(Tn) ⊂ σ(T )
and that in noncommutative algebras, σ does have points of discontinuity. The work
of J. Newburgh [Ne] contains the fundamental results on spectral continuity in gen-
eral Banach algebras. J. Conway and B. Morrel [CoM] have undertaken a detailed
study of spectral continuity in the case where the Banach algebra is the C∗-algebra
of all operators acting on a complex separable Hilbert space. Of interest is the iden-
tification of points of spectral continuity, and of classes C of operators for which σ
becomes continuous when restricted to C. In [BGS], the continuity of the spectrum
was considered when restricted to certain subsets of the entire manifold of Toeplitz
operators. The set of normal operators is perhaps the most immediate in the latter
direction: σ is continuous on the set of normal operators. As noted in Solution 104 of
[Ha3], Newburgh’s argument uses the fact that the inverses of normal resolvents are
normaloid. This argument can be easily extended to the set of hyponormal operators
because the inverses of hyponormal resolvents are also hyponormal and hence nor-
maloid. Although p-hyponormal operators are normaloid, it was shown [HwL1] that
σ is continuous on the set of all p-hyponormal operators.

We now examine the continuity of the Weyl spectrum in pace of the spectrum.
In general the Weyl spectrum is not continuous: indeed, it was in [BGS] that the
spectrum is discontinuous on the entire manifold of Toeplitz operators. Since the
spectra and the Weyl spectra coincide for Toeplitz operators, it follows at once that
the weyl spectrum is discontinuous.

However the Weyl spectrum is upper semicontinuous.

Lemma 2.3.1. The map T → ω(T ) is upper semicontinuous.

Proof. Let λ ∈ ω(T ). Since the set of Weyl operators forms an open set, there exists
δ > 0 such that if S ∈ B(X) and ||T − λI − S|| < δ then S is Weyl. So there exists
an integer N such that ||T − λI − (Tn − λI)|| < δ

2 for n ≥ N . Let V be an open
(δ/2)-neighborhhod of λ. We have, for µ ∈ V and n ≥ N ,

||T − λI − (Tn − µI)|| < δ,

so that Tn − µI is Weyl. This shows that λ /∈ lim supω(Tn). Thus lim supω(Tn) ⊂
ω(T ).

Lemma 2.3.2. [Ne, Theorem 4] If {Tn}n is a sequence of operators converging to an
operator T and such that [Tn, T ] is compact for each n, then limσe(Tn) = σe(T ).
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Proof. Newburgh’s theorem is stated as follows: if in a Banach algebra A, {ai}i is a
sequence of elements commuting with a ∈ A and such that ai → a, then lim σ(ai) =
σ(a). If π denotes the canonical homomorphism of B(X) onto the Calkin algebra
B(X)/K(X), then the assumptions give that π(Tn) → π(T ) and [π(Tn), π(T )] = 0
for each n. Hence, lim σ(π(Tn)) = σ(π(T )); that is, limσe(Tn) = σe(T ).

Theorem 2.3.3. Suppose that T, Tn ∈ B(X), for n ∈ Z+, are such that Tn converges
to T . If [Tn, T ] ∈ K(X) for each n, then

lim ω(f(Tn)) = ω(f(T )) for every f ∈ H(σ(T )). (2.24)

Remark. Because Tn → T , by the upper-semicontinuity of the spectrum, there is
a positive integer N such that σ(Tn) ⊆ V whenever n > N . Thus, in the left-hand
side of (2.24) it is to be understood that n > N .

Proof. If Tn and T commute modulo the compact operators then, whenever T−1
n and

T−1 exist, Tn, T, T
−1
n and T−1 all commute modulo the compact operators. Therefore

r(Tn) and r(T ) also commute modulo K(X) whenever r is a rational function with no
poles in σ(T ) and n is sufficiently large. Using Runge’s theorem we can approximate
f on compact subsets of V by rational functions r who poles lie off of V . So there
exists a sequence of rational functions ri whose poles lie outside of V and ri → f
uniformly on compact subsets of V . If n > N , then by the functional calculus,

f(Tn)f(T )− f(T )f(Tn) = lim
i

(
ri(Tn)ri(T )− ri(T )ri(Tn)

)
,

which is compact for each n. Furthermore,

||f(Tn)− f(T )|| = || 1

2πi

∫
Γ

f(λ)
(
(λ− Tn)

−1 − (λ− T )−1
)
dλ||

≤ 1

2πi
ℓ(Γ) max

λ∈Γ
|f(λ)| ·max

λ∈Γ
||(λ− Tn)

−1 − (λ− T )−1|| ,

where Γ is the boundary of V and ℓ(Γ) denotes the arc length of Γ. The right-
hand side of the above inequality converges to 0, and so f(Tn) → f(T ). By Lemma
2.25, lim σe(f(Tn)) = σe(f(T )). The arguments used by J.B. Conway and B.B.
Morrel in Proposition 3.11 of [CoM] can now be used here to obtain the conclusion
lim ω(f(Tn)) = ω(f(T )).

In general there is only inclusion for the Weyl spectrum:

Theorem 2.3.4. If T ∈ B(X) then

ω(p(T )) ⊆ p(ω(T )) for every polynomial p.

Proof. We can suppose p is nonconstant. Suppose λ /∈ pω(T ). Writing p(µ) − λ =
a(µ− µ1)(µ− µ2) · · · (µ− µn), we have

p(T )− λI = a(T − µ1I) · · · (T − µnI). (2.25)

For each i, p(µi) = λ /∈ pω(T ), so that µi /∈ ω(T ), i.e., T −µiI is weyl. It thus follows
from (2.25) that p(T )− λI is Weyl since the product of Weyl operators is Weyl.
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In general the spectral mapping theorem is liable to fail for the Weyl spectrum:

Example 2.3.5. Let T = U ⊕ (U∗ + 2I), where U is the unilateral shift on ℓ2, and
let p(λ) := λ(λ− 2). Then 0 ∈ p(ω(T )) but 0 /∈ ω(p(T )).

Proof. Observe p(T ) = T (T − 2I) = [U ⊕ (U∗ + 2I)][(U − 2I) ⊕ U∗]. Since U is
Fredholm of index −1, and since U∗ + 2I and U − 2I are invertible it follows that T
and T − 2I are Fredholm of indices −1 and +1, respectively. Therefore p(T ) is Weyl,
so that 0 /∈ ω(p(T )), while 0 = p(0) ∈ p(ω(T )).

Lemma 2.3.6. If T ∈ B(X) is isoloid then for every polynomial p,

p(σ(T ) \ π00(T )) = σ(p(T )) \ π00(p(T )).

Proof. We first claim that with no restriction on T ,

σ(p(T )) \ π00(p(T )) ⊂ p(σ(T ) \ π00(T )). (2.26)

Let λ ∈ σ(p(T )) \ π00(p(T )) = p(σ(T )) \ π00(p(T )). There are two cases to consider.
Case 1. λ /∈ iso p(σ(T )). In this case, there exists a sequence (λn) in p(σ(T )) such

that λn → λ. So there exists a sequence (µn) in σ(T ) such that p(µn) = λn → λ.
This implies that (µn) contains a convergent subsequence and we may assume that
limµn = µ0. Thus λ = lim p(µn) = p(µ0). Since µ0 ∈ σ(T ) \ π00(T ), it follows that
λ ∈ p(σ(T ) \ π00(T )).

Case 2. λ ∈ iso p(σ(T )). In this case either λ is not an eigenvalue of p(T ) or it
is an eigenvalue of infinite multiplicity. Let p(T ) − λI = a0(T − µ1I) · · · (T − µnI).
If λ is not an eigenvalue of p(T ) then none of µ1, · · · , µn can be an eigenvalue of T
and at least one of µ1, · · · , µn is in σ(T ). Therefore λ ∈ p(σ(T ) \ π00(T )). If λ is an
eigenvalue of p(T ) of infinite multiplicity then at least one of µ1, · · · , µn, say µ1, is
an eigenvalue of T of infinite multiplicity. Then µ1 ∈ σ(T ) \ π00(T ) and p(µ1) = λ,
so that λ ∈ p(σ(T ) \ π00(T )). This proves (2.26). For the reverse inclusion of (2.26),
we assume λ ∈ p(σ(T ) \ π00(T )). Since p(σ(T )) = σ(p(T )), we have λ ∈ σ(p(T )). If
possible let λ ∈ π00(p(T )). So λ ∈ isoσ(p(T )). Let

p(T )− λI = a0(T − µ1I) · · · (T − µnI). (2.27)

The equality (2.27) shows that if any of µ1, · · · , µn is in σ(T ) then it must be an
isolated point of σ(T ) and hence an eigenvalue since T is isoloid. Since λ is an
eigenvalue of finite multiplicity, any such µ must be an eigenvalue of finite multiplicity
and hence belongs to π00(T ). This contradicts the fact that λ ∈ p(σ(T ) \ π00(T )).
Therefore λ /∈ π00(T ) and

p(σ(T ) \ π00(T )) ⊂ σ(p(T )) \ π00(p(T )).

Theorem 2.3.7. If T ∈ B(X) is isoloid and Weyl’s theorem holds for T then for
every polynomial p, Weyl’s theorem holds for p(T ) if and only if p(ω(T )) = ω(p(T )).
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Proof. By Lemma 2.3.6, p(σ(T ) \ π00(T )) = σ(p(T )) \ π00(p(T )). If Weyl’s theorem
holds for T then ω(T ) = σ(T ) \ π00(T ), so that

p(ω(T )) = p(σ(T ) \ π00(T )) = σ(p(T )) \ π00(p(T )).

The result follows at once from this relationship.

Example 2.3.8. Theorem 2.3.7 may fail if T is not isoloid. To see this define T1 and
T2 on ℓ2 by

T1(x1, x2, · · · ) = (x1, 0, x2/2, x3/2, · · · )

and
T2(x1, x2, · · · ) = (0, x1/2, x2/3, x3/4, · · · ).

Let T := T1 ⊕ (T2 − I) on X = ℓ2 ⊕ ℓ2. Then

σ(T ) = {1} ∪ {z : |z| ≤ 1/2} ∪ {−1}, π00(T ) = {1},

and
ω(T ) = {z : |z| ≤ 1/2} ∪ {−1},

which shows that Weyl’s theorem holds for T . Let p(t) = t2. Then

σ(p(T )) = {z : |z| ≤ 1/4} ∪ {1}, π00(p(T )) = {1}

and
ω(p(T )) = {z : |z| ≤ 1/4} ∪ {1}.

Thus 1 ∈ p(σ(T ) \ π00(T )), but 1 /∈ σ(p(T )) \ π00(p(T )). Also ω(p(T )) = p(ω(T )) but
Weyl’s theorem does not hold for p(T ).

Theorem 2.3.9. If p(ω(T )) = ω(p(T )) for every polynomial p, then f(ω(T )) =
ω(f(T )) for every f ∈ H(σ(T )).

Proof. Let (pn(T )) be a sequence of polynomials converging uniformly in a neighbor-
hood of σ(T ) to f(t) so that pn(T ) → f(T ). Since f(T ) commutes with each pn(T ),
it follows from Theorem 2.3.3 that

ω(f(T )) = limω(pn(T )) = lim pn(ω(T )) = f(ω(T )).

Theorem 2.3.10. If T ∈ B(X) then the following are equivalent:

index(T − λI) index(T − µI) ≥ 0 for each pair λ, µ ∈ C \ σe(T ); (2.28)

f(ω(T )) = ω(f(T )) for every f ∈ H(σ(T )). (2.29)
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Proof. The spectral mapping theorem for the Weyl spectrum may be rewritten as
implication, for arbitrary n ∈ N and λ ∈ Cn,

(T − λ1I)(T − λ2I) · · · (T − λnI) Weyl =⇒ T − λjI Weyl for each j = 1, 2, · · · , n.
(2.30)

Now if index(T − zI) ≥ 0 on C \ σe(T ) then we have

n∑
j=1

index(T −λjI) = index
n∏
j=1

(T −λjI) = 0 =⇒ index(T −λjI) = 0 (j = 1, 2, · · · , n),

and similarly if index (T − zI) ≤ 0 off σe(T ). If conversely there exist λ, µ for which

index(T − λI) = −m < 0 < k = index(T − µI) (2.31)

then
(T − λI)k(T − µI)m (2.32)

is a Weyl operator whose factors are not Weyl. This together with Theorem 2.3.9
proves the equivalence of the conditions (2.28) and (2.29).

Corollary 2.3.11. If X is a Hilbert space and T ∈ B(X) is hyponormal then

f(ω(T )) = ω(f(T )) for every f ∈ H(σ(T )). (2.33)

Proof. Immediate from Theorem 2.3.10 together with the fact that if T is hyponormal
then index (T − λI) ≤ 0 for every λ ∈ C \ σe(T ).

Corollary 2.3.12. Let T ∈ B(X). If

(i) Weyl’s theorem holds for T ;
(ii) T is isoloid;
(iii) T satisfies the spectral mapping theorem for the Weyl spectrum,

then Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )).

Proof. A slight modification of the proof of Lemma 2.3.6 shows that if T is isoloid
then

f
(
σ(T ) \ π00(T )

)
= σ(f(T )) \ π00(f(T )) for every f ∈ H(σ(T )).

It thus follows from Theorem 1.7.8 and Corollary 2.3.11 that

σ(f(T )) \ π00(f(T )) = f
(
σ(T ) \ π00(T )

)
= f(ω(T )) = ω(f(T )),

which implies that Weyl’s theorem holds for f(T ).

Corollary 2.3.13. If T ∈ B(X) has the SVEP then

ω(f(T )) = f(ω(T )) for every f ∈ H(σ(T )).

57



CHAPTER 2. WEYL THEORY

Proof. If λ /∈ σe(T ) then by Lemma 2.2.12, T − λI has a finite ascent. Since if
S ∈ B(X) is Fredholm of finite ascent then index (S) ≤ 0: indeed, either if S has
finite descent then S is Browder and hence index (S) = 0, or if S does not have finite
descent then

n index (S) = dimN(Sn)− dimR(Sn)⊥ → −∞ as n→ ∞,

which implies that index (S) < 0. Thus we have that index (T − λI) ≤ 0. Thus T
satisfies the condition (2.28), which gives the result.

Theorem 2.3.14. If T ∈ B(X) satisfies

XT ({λ}) = N(T − λI) for every λ ∈ C,

then Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )).

Proof. By Corollary 2.2.18, Weyl’s theorem holds for T , T is isoloid, and T has the
SVEP. In particular by Corollary 2.3.13, T satisfies the spectral mapping theorem for
the Weyl spectrum. Thus the result follows from Corollary 2.3.12.
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2.4 Perturbation Theorems

In this section we consider how Weyl’s theorem survives under “small” perturbations.
Weyl’s theorem is transmitted from T ∈ B(X) to T − K for commuting nilpotents
K ∈ B(X) To see this we need:

Lemma 2.4.1. If T ∈ B(X) and if N is a quasinilpotent operator commuting with
T then ω(T +N) = ω(T ).

Proof. It suffices to show that if 0 /∈ ω(T ) then 0 /∈ ω(T +N). Let 0 /∈ ω(T ) so that
0 /∈ σ(π(T )). For all λ ∈ C we have σ(π(T+λN)) = σ(π(T )). Thus 0 /∈ σ(π(T+λN))
for all λ ∈ C, which implies T + λN is a Fredholm operator forall λ ∈ C. But since
T is Weyl, it follows that T +N is also Weyl, that is, 0 /∈ ω(T +N).

Theorem 2.4.2. Let T ∈ B(X) and let N be a nilpotent operator commuting with
T . If Weyl’s theorem holds for T then it holds for T +N .

Proof. We first claim that

π00(T +N) = π00(T ). (2.34)

Let 0 ∈ π00(T ) so that ker (T ) is finite dimensional. Let (T +N)x = 0 for some x ̸= 0.
Then Tx = −Nx. Since T commutes with N it follows that

Tmx = (−1)mNmx for every m ∈ N. (2.35)

Let n be the nilpotency of N , i.e., n be the smallest positive integer such that Nn = 0.
Then by (2.35) we have that for some r with 1 ≤ r ≤ n, T rx = 0 and then T r−1x ∈
N(T ). Thus N(T +N) ⊂ N(Tn−1). Therefore N(T +N) is finite dimensional. Also
if for some x ( ̸= 0) Tx = 0 then (T + N)nx = 0, and hence 0 is an eigenvalue of
T +N . Again since σ(T +N) = σ(T ) it follows that 0 ∈ π00(T +N). By symmetry
0 ∈ π00(T +N) implies 0 ∈ π00(T ), which proves (2.34). Thus we have

ω(T +N) = ω(T ) (by Lemma 2.4.1)

= σ(T ) \ π00(T ) (since Weyl’s theorem holds for T )

= σ(T +N) \ π00(T +N),

which shows that Weyl’s theorem holds for T +N .

Theorem 2.4.2 however does not extend to quasinilpotents: let

Q : (x1, x2, x3, · · · ) 7→ ( 12x2,
1
3x3,

1
4x4, · · · ) on ℓ

2

and set on ℓ2 ⊕ ℓ2,

T =

[
1 0
0 0

]
and K =

[
0 0
0 Q

]
. (2.36)
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Evidently K is quasinilpotent commutes with T : but Weyl’s Theorem holds for T
because

σ(T ) = ω(T ) = {0, 1} and π00(T ) = ∅, (2.37)

while Weyl’s Theorem does not hold for T +K because

σ(T +K) = ω(T +K) = {0, 1} and π00(T +K) = {0}. (2.38)

But if K is an injective quasinilpotent operator commuting with T then Weyl’s
theorem is transmitted from T to T +K.

Theorem 2.4.3. If Weyl’s theorem holds for T ∈ B(X) then Weyl’s theorem holds
for T +K if K ∈ B(X) is an injective quasinilpotent operator commuting with T .

Proof. First of all we prove that if there exists an injective quasinilpotent operator
commuting with T , then

T is Weyl =⇒ T is injective. (2.39)

To show this suppose K is an injective quasinilpotent operator commuting with T .
Assume to the contrary that T is Weyl but not injective. Then there exists a nonzero
vector x ∈ X such that Tx = 0. Then by the commutativity assumption, TKnx =
KnTx = 0 for every n = 0, 1, 2, · · · , so that Knx ∈ N(T ) for every n = 0, 1, 2, · · · .
We now claim that {Knx}∞n=0 is a sequence of linearly independent vectors in X.
To see this suppose c0x + c1Kx + · · · + cnK

nx = 0. We may then write cn(K −
λ1I) · · · (K − λnI)x = 0. Since K is an injective quasinilpotent operator it follows
that (K−λ1I) · · · (K−λnI) is injective. But since x ̸= 0 we have that cn = 0. By an
induction we also have that cn−1 = · · · = c1 = c0 = 0. This shows that {Knx}∞n=0 is a
sequence of linearly independent vectors in X. From this we can see N(T ) is infinite-
dimensional, which contradicts to the fact that T is Weyl. This proves (2.39). From
(2.39) we can see that if Weyl’s theorem holds for T then π00(T ) = ∅. We now claim
that π00(T +K) = ∅. Indeed if λ ∈ π00(T +K), then 0 < dimN(T +K − λI) <∞,
so that there exists a nonzero vector x ∈ X such that (T + K − λI)x = 0. But
since K commutes with T + K − λI, the same argument as in the proof of (2.39)
with T +K − λI in place of T shows that N(T +K − λI) is infinite-dimensional, a
contradiction. Therefore π00(T +K) = ∅ and hence Weyl’s theorem holds for T +K
because ϖ(T ) = ϖ(T +K) with ϖ = σ, ω.

In Theorem 2.4.3, “quasinilpotent” cannot be replaced by “compact”. For example
consider the following operators on ℓ2 ⊕ ℓ2:

T =


0

1
2 0

1
3

0 1
4

. . .

⊕ I and K =


1
− 1

2 0

− 1
3

0 − 1
4

. . .

⊕Q,
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where Q is an injective compact quasinilpotent operator on ℓ2. Observe that Weyl’s
theorem holds for T , K is an injective compact operator, and TK = KT . But

σ(T +K) = {0, 1} = ω(T +K) and π00(T +K) = {1},

which says that Weyl’s theorem does not hold for T +K.

On the other hand, Weyl’s theorem for T is not sufficient for Weyl’s theorem for
T + F with finite rank F . To see this, let X = ℓ2 and let T, F ∈ B(X) be defined by

T (x1, x2, x3, · · · ) = (0, x1/2, x2/3, · · · )

and
F (x1, x2, x3, · · · ) = (0,−x1/2, 0, 0, · · · ).

since the point spectrum of T is empty it follows Weyl’s theorem holds for T . Also
F is a nilpotent operator. Since 0 ∈ π00(T + F ) ∩ ω(T + F ), it follows that Weyl’s
theorem fails for T + F .

Lemma 2.4.4. Let T ∈ B(X). If F ∈ B(X) is a finite rank operator then

dimN(T ) <∞ ⇐⇒ dimN(T + F ) <∞.

Further if TF = FT then

accσ(T ) = accσ(T + F ).

Proof. This follows from a straightforward calculation.

Theorem 2.4.5. Let T ∈ B(X) be an isoloid operator and let F ∈ B(X) be a finite
rank operator commuting with T . If Weyl’s theorem holds for T then it holds for
T + F .

Proof. We have to show that λ ∈ σ(T + F ) \ ω(T +F ) if and only if λ ∈ π00(T +F ).
Without loss of generality we may assume that λ = 0. We first suppose that 0 ∈
σ(T + F ) \ ω(T + F ) and thus T + F is Weyl but not invertible. It suffice to show
that 0 ∈ isoσ(T + F ). Since T is Weyl and Weyl’s theorem holds for T , it follows
that 0 ∈ ρ(T ) or 0 ∈ isoσ(T ). Thus by Lemma 2.4.4, 0 /∈ accσ(T + F ). But since
T + F is not invertible we have that 0 ∈ isoσ(T + F ).

Conversely, suppose that 0 ∈ π00(T + F ). We want to show that T + F is Weyl.
By our assumption, 0 ∈ isoσ(T + F ) and 0 < dimN(T + F ) <∞. By Lemma 2.4.4,
we have

0 /∈ accσ(T ) and dimN(T ) <∞. (2.40)

If T is invertible then it is evident that T + F is Weyl. If T is not invertible then by
the first part of (2.40) we have 0 ∈ isoσ(T ). But since T is isoloid it follows that T is
not one-one, which together with the second part of (2.40) gives 0 < dimN(T ) <∞.
Since Weyl’s theorem holds for T it follows that T is Weyl and so is T + F .
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Example 2.4.6. There exists an operator T ∈ B(X) and a finite rank operator
F ∈ B(X) commuting with T such that Weyl’s theorem holds for T but it does not
hold for T + F .

Proof. Define on ℓ2 ⊕ ℓ2, T := I ⊕S and F = K ⊕ 0, where S : ℓ2 → ℓ2 is an injective
quasinilpotent operator and F : ℓ2 → ℓ2 is defined by

F (x1, x2, x3, · · · ) = (−x1, 0, 0, · · · ).

Then F is of finite rank and commutes with T . It is easy to see that

σ(T ) = ω(T ) = {0, 1} and π00(T ) = ∅,

which implies that Weyl’s theorem holds for T . We however have

σ(T + F ) = ω(T + F ) = {0, 1} and π00(T + F ) = {0},

which implies that Weyl’s theorem fails for T + F .

Theorem 2.4.5 may fail if “finite rank” is replaced by “compact”. In fact Weyl’s
theorem may fail even if K is both compact and quasinilpotent: for example, take
T = 0 and K the operator on ℓ2 defined by K(x1, x2, · · · ) = (x2

2 ,
x3

3 ,
x4

4 , · · · ). We will
however show that if “isoloid” condition is strengthened slightly then Weyl’s theorem
is transmitted from T to T +K if K is either a compact or a quasinilpotent operator
commuting with T . To see this we observe:

Lemma 2.4.7. If K ∈ B(X) is a compact operator commuting with T ∈ B(X) then

π00(T +K) ⊆ isoσ(T ) ∪ ρ(T ).

Proof. See [HanL2].

An operator T ∈ B(X) will be said to be finite-isoloid if isoσ(T ) ⊆ π0f (T ).
Evidently finite-isoloid ⇒ isoloid. The converse is not true in general: for example,
take T = 0. In particular if σ(T ) has no isolated points then T is finite-isoloid. We
now have:

Theorem 2.4.8. Suppose T ∈ B(X) is finite-isoloid. If Weyl’s theorem holds for T
then Weyl’s theorem holds for T + K if K ∈ B(X) commutes with T and is either
compact or quasinilpotent.

Proof. First we assume that K is a compact operator commuting with T . Suppose
Weyl’s theorem holds for T . We first claim that with no restriction on T ,

σ(T +K) \ ω(T +K) ⊆ π00(T +K). (2.41)

For (2.41), it suffices to show that if λ ∈ σ(T +K) \ω(T +K) then λ ∈ isoσ(T +K).
Assume to the contrary that λ ∈ accσ(T +K). Then we have that λ ∈ σb(T +K) =
σb(T ), so that λ ∈ σe(T ) or λ ∈ accσ(T ). Remember that the essential spectrum and
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the Weyl spectrum are invariant under compact perturbations. Thus if λ ∈ σe(T )
then λ ∈ σe(T + K) ⊆ ω(T + K), a contradiction. Therefore we should have that
λ ∈ accσ(T ). But since Weyl’s theorem holds for T and λ /∈ ω(T + K) = ω(T ), it
follows that λ ∈ π00(T ), a contradiction. This proves (2.41). For the reverse inclusion
suppose λ ∈ π00(T +K). Then by Lemma 2.4.7, either λ ∈ isoσ(T ) or λ ∈ ρ(T ). If
λ ∈ ρ(T ) then evidently T+K−λI is Weyl, i.e., λ /∈ ω(T+K). If instead λ ∈ isoσ(T )
then λ ∈ π00(T ) whenever T is finite-isoloid. Since Weyl’s theorem holds for T , it
follows that λ /∈ ω(T ) and hence λ /∈ ω(T +K). Therefore Weyl’s theorem holds for
T +K.

Next we assume that K is a quasinilpotent operator commuting with T . Then by
Lemma 2.4.1, ϖ(T ) = ϖ(T + Q) with ϖ = σ, ω. Suppose Weyl’s theorem holds for
T . Then

σ(T +K) \ ω(T +K) = σ(T ) \ ω(T ) = π00(T ) ⊆ isoσ(T ) = isoσ(T +K),

which implies that σ(T + K) \ ω(T + K) ⊆ π00(T + K). Conversely, suppose λ ∈
π00(T +K). If T is finite-isoloid then λ ∈ isoσ(T +K) = isoσ(T ) ⊆ π0f (T ). Thus
λ ∈ π00(T ) = σ(T ) \ ω(T ) = σ(T +K) \ ω(T +K). This completes the proof.

Corollary 2.4.9. Suppose X is a Hilbert space and T ∈ B(X) is p-hyponormal. If
T satisfies one of the following:

(i) isoσ(T ) = ∅;
(ii) T has finite-dimensional eigenspaces,

then Weyl’s theorem holds for T +K if K ∈ B(X) is either compact or quasinilpotent
and commutes with T .

Proof. Observe that each of the conditions (i) and (ii) forces p-hyponormal operators
to be finite-isoloid. Since by Corollary 2.2.5 Weyl’s theorem holds for p-hyponormal
operators, the result follows at once from Theorem 2.4.8.

In the perturbation theory the “commutative” condition looks so rigid. Without
the commutativity, the spectrum can however undergo a large change under even rank
one perturbations. In spite of it, Weyl’s theorem may hold for (non-commutative)
compact perturbations of “good” operators. We now give such a perturbation theo-
rem. To do this we need:

Lemma 2.4.10. If N ∈ B(X) is a quasinilpotent operator commuting with T ∈ B(X)
modulo compact operators (i.e., TN − NT ∈ K(X)) then σe(T + N) = σe(T ) and
ω(T +N) = ω(T ).

Proof. Immediate from Lemma 2.4.1.

Theorem 2.4.11. Suppose T ∈ B(X) satisfies the following:

(i) T is finite-isoloid;
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(ii) σ(T ) has no “holes” (bounded components of the complement), i.e., σ(T ) =
η σ(T );

(iii) σ(T ) has at most finitely many isolated points;
(iv) Weyl’s theorem holds for T .

If K ∈ B(X) is either compact or quasinilpotent and commutes with T modulo com-
pact operators then Weyl’s theorem holds for T +K.

Proof. By Lemma 2.4.10, we have that σe(T +K) = σe(T ) and ω(T +K) = ω(T ).
Suppose Weyl’s theorem holds for T and λ ∈ σ(T +K) \ ω(T +K). We now claim
that λ ∈ isoσ(T + K). Assume to the contrary that λ ∈ accσ(T + K). Since
λ /∈ ω(T + K) = ω(T ), it follows from the punctured neighborhood theorem that
λ /∈ ∂ σ(T + K). Also since the set of all Weyl operators forms an open subset of
B(X), we have that λ ∈ int

(
σ(T + K) \ ω(T + K)

)
. Then there exists ϵ > 0 such

that {µ ∈ C : |µ−λ| < ϵ} ⊆ int
(
σ(T +K) \ω(T +K)

)
, and hence {µ ∈ C : |µ−λ| <

ϵ} ∩ ω(T ) = ∅. But since

∂ σ(T +K) \ isoσ(T +K) ⊆ σe(T +K) = σe(T ),

it follows from our assumption that

{µ ∈ C : |µ− λ| < ϵ} ⊆ int
(
σ(T +K) \ ω(T +K)

)
⊆ η

(
∂ σ(T +K) \ isoσ(T +K)

)
⊆ η σe(T ) ⊆ η σ(T ) = σ(T ),

which implies that {µ ∈ C : |µ − λ| < ϵ} ⊆ σ(T ) \ ω(T ). This contradicts to Weyl’s
theorem for T . Therefore λ ∈ isoσ(T + K) and hence σ(T + K) \ ω(T + K) ⊆
π00(T + K). For the reverse inclusion suppose λ ∈ π00(T + K). Assume to the
contrary that λ ∈ ω(T +K) and hence λ ∈ ω(T ). Then we claim λ /∈ ∂ σ(T ). Indeed
if λ ∈ isoσ(T ) then by assumption λ ∈ π00(T ), which contradicts to Weyl’s theorem
for T . If instead λ ∈ accσ(T ) ∩ ∂ σ(T ) then since isoσ(T ) is finite it follows that

λ ∈ acc
(
∂ σ(T )

)
⊆ accσe(T ) = accσe(T +K),

which contradicts to the fact that λ ∈ isoσ(T +K). Therefore λ /∈ ∂ σ(T ). Also since
λ ∈ isoσ(T +K), there exists ϵ > 0 such that

{µ ∈ C : 0 < |µ− λ| < ϵ} ⊆ σ(T ) ∩ ρ(T +K),

so that {µ ∈ C : 0 < |µ−λ| < ϵ}∩ω(T ) = ∅, which contradicts to Weyl’s theorem for
T . Thus λ ∈ σ(T +K)\ω(T +K) and therefore Weyl’s theorem holds for T +K.

If, in Theorem 2.4.11, the condition “σ(T ) has no holes” is dropped then Theorem
2.4.11 may fail even though T is normal. For example, if on ℓ2 ⊕ ℓ2

T =
(
U I−UU∗

0 U∗

)
and K =

(
0 I−UU∗

0 0

)
,

where U is the unilateral shift on ℓ2, then T is unitary (essentially the bilateral shift)
with σ(T ) = T, K is a rank one nilpotent, and Weyl’s theorem does not hold for
T −K.
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Also in Theorem 2.4.11, the condition “isoσ(T ) is finite” is essential in the cases
where K is compact. For example, if on ℓ2

T (x1, x2, · · · ) = (x1,
x2
2
,
x3
3
, · · · ) and Q(x1, x2, · · · ) = (

x2
2
,
x3
3
,
x4
4
, · · · ),

we define K := −(T + Q). Then we have that (i) T is finite-isoloid; (ii) σ(T ) has
no holes; (iii) Weyl’s theorem holds for T ; (iv) isoσ(T ) is infinite; (v) K is compact
because T and Q are both compact; (vi) Weyl’s theorem does not hold for T + K
(= −Q).

Corollary 2.4.12. If σ(T ) has no holes and at most finitely many isolated points
and if K is a compact operator then Weyl’s theorem is transmitted from T to T +K.

Proof. Straightforward from Theorem 2.4.11.

Corollary 2.4.12 shows that if Weyl’s theorem holds for T whose spectrum has no
holes and at most finitely many isolated points then for every compact operator K,
the passage from σ(T ) to σ(T +K) is putting at most countably many isolated points
outside σ(T ) which are Riesz points of σ(T + K). Here we should note that this
holds even if T is quasinilpotent because for every quasinilpotent operator T (more
generally, “Riesz operators”), we have

σ(T +K) ⊆ η σe(T +K) ∪ p00(T +K) = η σe(T ) ∪ p00(T +K) = {0} ∪ p00(T +K).
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2.5 Weyl’s theorem in several variables

In this section we consider Weyl’s theorem from multivariable operator theory. Let
H be a complex Hilbert space and write B(H) for the set of bounded linear operators
acting on H. Let T = (T1, · · · , Tn) be a commuting n-tuple of operators in B(H), let
Λ[e] ≡ {Λk[e1, · · · , en]}nk=0 be the exterior algebra on n generators (ei ∧ ej = −ej ∧ ei
for all i, j = 1, · · · , n) and write Λ(H) := Λ[e] ⊗ H. Let Λ(T ) : Λ(H) → Λ(H) be
defined by (cf. [Cu1], [Har1], [Har4], [Ta1])

Λ(T )(ω ⊗ x) =
n∑
i=1

(ei ∧ ω)⊗ Tix. (2.42)

The operator Λ(T ) in (2.42) can be represented by the Koszul complex for T :

0 // Λ0(H)
Λ0(T ) // Λ1(H)

Λ1(T ) // · · ·
Λn−1(T )// Λ(H) // 0 , (2.43)

where Λk(H) is the collection of k-forms and Λk(T ) = Λ(T )|Λk(H). For n = 2, the
Koszul complex for T = (T1, T2) is given by

0 // H

T1
T2


//
[
H
H

] [
−T2 T1

]
// H // 0

Evidently, Λ(T )2 = 0, so that ranΛ(T ) ⊆ kerΛ(T ), or equivalently, ranΛk−1(T ) ⊆
kerΛk(T ) for every k = 0, · · · , n, where, for notational convenience, Λ−1(T ) := 0 and
Λn(T ) = 0. For the representation of Λ(T ), we may put together its odd and even
parts, writing

Λ(T ) =

[
0 Λodd(T )

Λeven(T ) 0

]
:

[
Λodd(H)
Λeven(H)

]
→
[
Λodd(H)
Λeven(H)

]
,

where

Λ∗(H) =
⊕
p is ∗

Λp(H), Λ∗(T ) =
⊕
p is ∗

Λp(T ) with ∗ = even, odd.

Write
Hk(T ) := kerΛk(T )/ranΛk−1(T ) (k = 0, · · · , n),

which is called the k-th cohomology for the Koszul complex Λ(T ). We recall ([Cu1],
[Har4], [Ta1]) that T is said to be Taylor invertible if ker Λ(T ) = ranΛ(T ) (in other
words, the Koszul complex (2.43) is exact at every stage, i.e., Hk(T ) = {0} for
every k = 0, · · · , n) and is said to be Taylor Fredholm if ker Λ(T )/ranΛ(T ) is finite
dimensional (in other words, all cohomologies of (2.43) are finite dimensional). If
T = (T1, · · · , Tn) is Taylor Fredholm, define the index of T by

index (T ) ≡ Euler(0,Λn−1(T ), · · · ,Λ0(T ), 0) :=
n∑
k=0

(−1)kdimHk(T ),
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where Euler(·) is the Euler characteristic of the Koszul complex for T . We shall
write σT (T ) and σTe(T ) for the Taylor spectrum and Taylor essential spectrum of T ,
respectively: namely,

σT (T ) = {λ ∈ Cn : T − λ is not Taylor invertible};
σTe(T ) = {λ ∈ Cn : T − λ is not Taylor Fredholm}.

Following to R. Harte [Har4, Definition 11.10.5], we shall say that T = (T1, · · · , Tn)
is Taylor Weyl if T is Taylor Fredholm and index(T ) = 0. The Taylor Weyl spectrum,
σTw(T ), of T is defined by

σTw(T ) = {λ ∈ Cn : T − λ is not Taylor Weyl}.

It is known ([Har4, Theorem 10.6.4]) that σTw(T ) is compact and evidently,

σTe(T ) ⊂ σTw(T ) ⊂ σT (T ).

On the other hand, “Weyl’s theorem” for an operator on a Hilbert space is the state-
ment that the complement in the spectrum of the Weyl spectrum coincides with the
isolated eigenvalues of finite multiplicity. In this note we introduce the joint version
of Weyl’s theorem and then examine the classes of n-tuples of operators satisfying
Weyl’s theorem.

The spectral mapping theorem is liable to fail for σTw(T ) even though T =
(T1, · · · , Tn) is a commuting n-tuple of hyponormal operators (remember [LeL] that
if n = 1 then every hyponormal operator enjoys the spectral mapping theorem for the
Weyl spectrum). For example, let U be the unilateral shift on ℓ2 and T := (U,U).
Then a straightforward calculation shows that σTw(T ) = {(λ, λ) : |λ| = 1}. If
f : C2 → C1 is the map f(z1, z2) = z1 + z2 then σTwf(T ) = σTw(2U) = {2λ :
|λ| ≤ 1} * fσTw

(T ) = {2λ : |λ| = 1}. If instead f : C1 → C2 is the map f(z) = (z, z)
then σTwf(U) = {(λ, λ) : |λ| = 1} + fσTw(U) = {(λ, λ) : |λ| ≤ 1}. Therefore σTw(T )
satisfies no way spectral mapping theorem in general.

The Taylor Weyl spectrum however satisfies a “subprojective” property.:

Lemma 2.5.1. If T = (T1, · · · , Tn) is a commuting n-tuple then σTw(T ) ⊂
∏n
j=1 σTe(Tj).

Proof. This follows at once from the fact (cf. [Cu1, p.144]) that every commuting
n-tuple having a Fredholm coordinate has index zero. �

On the other hand, M. Cho and M. Takaguchi [ChT] have defined the joint Weyl
spectrum, ω(T ), of a commuting n-tuple T = (T1, · · · , Tn) by

ω(T ) =
∩{

σT (T +K) : K = (K1, · · · ,Kn) is an n-tuple of compact operators

and T +K = (T1 +K1, · · · , Tn +Kn) is commutative.
}
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A question arises naturally: For a commuting n-tuple T , does it follow that σTw(T ) =
ω(T )? If n = 1 then σTw(T ) and ω(T ) coalesce: indeed, T is Weyl if and only if T is
a sum of an invertible operator and a compact operator.

We first observe:

Lemma 2.5.2. If T = (T1, · · · , Tn) is a commuting n-tuple then

σTw(T ) ⊂ ω(T ). (2.44)

Proof. Write K0(T ) := Λodd(T ) + Λeven(T )∗. Then it was known that (cf. [Cu1],
[Har4], [Va])

T is Taylor invertible [Taylor Fredholm] ⇐⇒ K0(T ) is invertible [Fredholm] (2.45)

and moreover index(T ) = index(K0(T )). If λ = (λ1, · · · , λn) /∈ ω(T ) then there
exists an n-tuple of compact operators K = (K1, · · · ,Kn) such that T + K − λ is
commutative and Taylor invertible. By (2.45), K0(T +K−λ) is invertible. But since
K0(T +K − λ)−K0(T − λ) is a compact operator it follows that K0(T − λ) is Weyl,
and hence, by (2.45), T − λ is Taylor Weyl, i.e., λ /∈ σTw(T ). �

The inclusion (2.44) cannot be strengthened by the equality. R. Gelca [Ge] showed
that if S is a Fredholm operator with index(S) ̸= 0 then there do not exist compact
operators K1 and K2 such that (T +K1,K2) is commutative and Taylor invertible.
Thus for instance, if U is the unilateral shift then ω(U, 0) * σTw(U, 0).

We introduce an interesting notion which commuting n-tuples may enjoy.

A commuting n-tuple T = (T1, · · · , Tn) is said to have the quasitriangular property
if the dimension of the left cohomology for the Koszul complex Λ(T − λ) is greater
than or equal to the dimension of the right cohomology for Λ(T − λ) for all λ =
(λ1, · · · , λn) ∈ Cn, i.e.,

dimHn(T − λ) ≤ dimH0(T − λ) for all λ = (λ1, · · · , λn) ∈ Cn. (2.46)

Since H0(T −λ) = kerΛ0(T −λ) =
∩n
i=1 ker (Ti−λi) and Hn(T −λ) = kerΛn(T −

λ)/ranΛn−1(T − λ) ∼=
(
ranΛn−1(T − λ)

)⊥ ∼=
∩n
i=1 ker (Ti − λi)

∗, the condition (2.46)
is equivalent to the condition

dim
n∩
i=1

ker (Ti − λi)
∗ ≤ dim

n∩
i=1

ker (Ti − λi).

If n = 1, the condition (2.46) is equivalent to the condition dim (T − λ)∗−1(0) ≤
dim (T − λ)−1(0) for all λ ∈ C, or equivalently, the spectral picture of T contains
no holes or pseudoholes associated with a negative index, which, by the celebrated
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theorem due to Apostol, Foias and Voiculescu, is equivalent to the fact that T is
quasitriangular (cf. [Pe, Theorem 1.31]). Evidently, every commuting n-tuple of
quasitriangular operators has the quasitriangular property. Also if a commuting n-
tuple T = (T1, · · · , Tn) has a coordinate whose adjoint has no eigenvalues then T has
the quasitriangular property.

As we have seen in the above, the inclusion (2.44) cannot be reversible even though
T = (T1, · · · , Tn) is a doubly commuting n-tuple (i.e., [Ti, T

∗
j ] ≡ TiT

∗
j − T ∗

j Ti = 0
for all i ̸= j) of hyponormal operators. On the other hand, R. Curto [Cu1, Corollary
3.8] showed that if T = (T1, · · · , Tn) is a doubly commuting n-tuple of hyponormal
operators then

T is Taylor invertible [Taylor Fredholm] ⇐⇒
n∑
i=1

TiT
∗
i is invertible [Fredholm].

(2.47)

On the other hand, many authors have considered the joint version of the Browder
spectrum. We recall ([BDW], [CuD], [Da1], [Da2], [Har4], [JeL], [Sn]) that a com-
muting n-tuple T = (T1, · · · , Tn) is called Taylor Browder if T is Taylor Fredholm
and there exists a deleted open neighborhood N0 of 0 ∈ Cn such that T −λ is Taylor
invertible for all λ ∈ N0. The Taylor Browder spectrum, σTb

(T ), is defined by

σTb
(T ) = {λ ∈ Cn : T − λ is not Taylor Browder}.

Note that σTb
(T ) = σTe(T )∪ accσT (T ), where acc(·) denotes the set of accumulation

points. We can easily show that

σTw(T ) ⊂ σTb
(T ). (2.48)

Indeed, if λ /∈ σTb
(T ) then T −λ is Taylor Fredholm and there there exists δ > 0 such

that T − λ − µ is Taylor invertible for 0 < |µ| < δ. Since the index is continuous it
follows that index(T − λ) = 0, which says that λ /∈ σTw(T ), giving (2.48).

If T = (T1, · · · , Tn) is a commuting n-tuple, we write π00(T ) for the set of all
isolated points of σT (T ) which are joint eigenvalues of finite multiplicity and write
R(T ) ≡ isoσT (T ) \ σTe(T ) for the Riesz points of σT (T ). By the continuity of the
index, we can see that R(T ) = isoσT (T ) \ σTw(T ).

Lemma 2.5.3. If T = (T1, · · · , Tn) is a commuting n-tuple then ω(T ) ⊂ σTb
(T ).

Proof. Suppose without loss of generality that 0 /∈ σTb
(T ). Then T is Taylor invertible

and 0 ∈ isoσT (T ). So there exists a projection P ∈ B(H) satisfying that
(i) P commutes with Ti (i = 1, · · · , n);
(ii) σT (T |P (H)) = {0} and σT (T |(I−P )(H)) = σT (T ) \ {0};
(iii) P is of finite rank
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(see [Ta2, Theorem 4.9]). Put Q = (P, · · · , P ). Evidently, 0 /∈ σT ((T +Q)|(I−P )(H)).
Since a commuting quasinilpotent perturbation of an invertible operator is also invert-
ible, it follows that 0 /∈ σT ((T+Q)|P (H)). But since σT (T ) = σT ((T+Q)|(I−P )(H))

∪
σT ((T+

Q)|P (H)), we can conclude that T +Q is Taylor invertible. So 0 /∈ ω(T ). �

“Weyl’s theorem” for an operator on a Hilbert space is the statement that the com-
plement in the spectrum of the Weyl spectrum coincides with the isolated eigenvalues
of finite multiplicity. There are two versions of Weyl’s theorem in several variables.

If T = (T1, · · · , Tn) is a commuting n-tuple then we say that Weyl’s theorem (I)
holds for T if

σT (T ) \ π00(T ) = σTw(T ) (2.49)

and that Weyl’s theorem (II) holds for T if

σT (T ) \ π00(T ) = ω(T ). (2.50)

The notion of Weyl’s theorem (II) was first introduced by M. Cho and M. Tak-
aguchi [ChT]. We note that

Weyl’s theorem (I) =⇒ Weyl’s theorem (II). (2.51)

Indeed, since σTw(T ) ⊂ ω(T ), it follows that if σT (T ) \ π00(T ) ⊂ σTw(T ), then
σT (T ) \ π00(T ) ⊂ ω(T ). Now suppose σTw(T ) ⊂ σT (T ) \ π00(T ). So if λ ∈ π00(T )
then T − λ is Taylor Weyl, and hence Taylor Browder. By Lemma 4, λ /∈ ω(T ).
Therefore ω(T ) ⊂ σT (T )\π00(T ), and so Weyl’s theorem (II) holds for T , which gives
(2.51).

But the converse of (2.51) is not true in general. To see this, let T := (U, 0), where
U is the unilateral shift on ℓ2. Then

(a) σT (T ) = clD× {0};
(b) σTw(T ) = ∂D× {0};
(c) ω(T ) = clD× {0};
(d) π00(T ) = ∅,

where D is the open unit disk. So Weyl’s theorem (II) holds for T while Weyl’s theo-
rem (I) fails even though T is a doubly commuting n-tuple of hyponormal operators.

M. Cho [Ch2] showed that Weyl’s theorem (II) holds for a commuting n-tuple of
normal operators. The following theorem is an extension of this result.

Theorem 2.5.4. Let T = (T1, · · · , Tn) be a doubly commuting n-tuple of hyponormal
operators. If T has the quasitriangular property then Weyl’s theorem (I) holds for T .
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Proof. In [Ch2] it was shown that if T is a doubly commuting n-tuple of hyponormal
operators then ω(T ) ⊂ σT (T )\π00(T ). Then by Lemma 2, σTw(T ) ⊂ σT (T )\π00(T ).
For the reverse inclusion, we first claim that

σTe(T ) = σTw(T ) = ω(T ). (2.52)

In view of 2.5.2, we need to show that ω(T ) ⊂ σTe(T ). Suppose without loss of
generality that 0 /∈ σTe(T ). Thus by (2.47) we have that

∑n
i=1 TiT

∗
i is Fredholm

(and hence Weyl since it is self-adjoint). Let P denote the orthogonal projection
onto ker

∑n
i=1 TiT

∗
i . Since P is of finite rank and Weyl-ness is stable under compact

perturbations, we have that
∑n
i=1 TiT

∗
i +nP is Weyl. In particular, a straightforward

calculation shows that
∑n
i=1 TiT

∗
i + nP is one-one and therefore

∑n
i=1 TiT

∗
i + nP is

invertible. Since each Ti is a hyponormal operator, we have that

ranP = ker
[
T1, · · · , Tn

] T
∗
1
...
T ∗
n

 =
n∩
i=1

kerT ∗
i ⊃

n∩
i=1

kerTi.

So if T has the quasitriangular property then since ranP is finite dimensional, it
follows that

ranP =

n∩
i=1

kerTi =

n∩
i=1

kerT ∗
i .

So TiP = PTi = 0 for all i = 1, · · · , n. Hence we can see that (T1 +P, · · · , Tn+P ) is
a doubly commuting n-tuple of hyponormal operators. Thus (T1 + P, · · · , Tn + P ) is
Taylor invertible if and only if

∑
TiT

∗
i + nP is invertible. Therefore (T1, · · · , Tn) +

(P, · · · , P ) is Taylor invertible, and hence 0 /∈ ω(T ), which proves (2.52). So in view
of (2.52), it now suffices to show that σT (T ) \ π00(T ) ⊂ σTe(T ). To see this we need
to prove that

accσT (T ) ⊂ σTe(T ). (2.53)

Suppose λ = limλk with distinct λk ∈ σT (T ). Write λ := (λ1, · · · , λn) and λk :=
(λk1 , · · · , λkn). If λk ∈ σTe(T ) then clearly, λ ∈ σTe(T ) since σTe(T ) is a closed set. So
we assume λk ∈ σT (T )\σTe(T ). Then by (2.47),

∑n
i=1(Ti−λki)(Ti−λki)∗ is Fredholm

but not invertible. So there exists a unit vector xk such that (Ti−λki)
∗xk = 0 for all

i = 1, · · · , n. If T has the quasitriangular property, it follows that (Ti − λki)xk = 0.
In particular, since the Ti are hyponormal, {xk} forms an orthonormal sequence.
Further, we have

n∑
i=1

||(Ti − λi)xk|| ≤
n∑
i=1

(||(Ti − λki)xk||+ ||(λki − λk)xk||)

=
n∑
i=1

|λki − λi| −→ 0 as k → ∞.

Therefore λ ∈ σTe(T ) (see [Da1, Theorem 2.6] or [Ch2, Theorem 1]), which proves
(2.53) and completes the proof. �
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Corollary 2.5.5. A commuting n-tuple of normal operators satisfies Weyl’s theorem
(I) and hence Weyl’s theorem (II).

Proof. Immediate from (2.51) and 2.5.4. �

Corollary 2.5.6. (Riesz-Schauder theorem in several variables) Let T = (T1, · · · , Tn)
be a doubly commuting n-tuple of hyponormal operators. If T has the quasitriangular
property then

ω(T ) = σTb
(T ).

Proof. In view of refthm5.63, we need to show that σTb
(T ) ⊂ ω(T ). Indeed if

λ ∈ σT (T ) \ ω(T ) then by (2.53), λ ∈ isoσT (T ), and hence T − λ is Taylor-Browder.
�
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2.6 Comments and Problems

(a) Transaloid and SVEP. For an operator T ∈ B(X) for a Hilbert space X,
denote W (T ) = {(Tx, x) : ||x|| = 1} for the numerical range of T and w(T ) =
sup {|λ| : λ ∈W (T )} for the numerical radius of T . An operator T is called convexoid
if convσ(T ) = clW (T ) and is called spectraloid if w(T ) = r(T ) = the spectral radius.
We call an operator T ∈ B(X) transaloid if T − λI is normaloid for all λ ∈ C. It was
well known that

transaloid =⇒ convexoid =⇒ spectraloid,

(G1) =⇒ convexoid and (G1) =⇒ reguloid.

We would like to expect that Corollary 2.2.16 remains still true if “reguloid” is
replaced by “transaloid”

Problem 2.1. If T ∈ B(X) is transaloid and has the SVEP, does Weyl’s theorem
hold for T ?

The following question is a strategy to answer Problem 2.1.

Problem 2.2. Does it follow that

transaloid =⇒ reguloid ?

If the answer to Problem 2.2 is affirmative then the answer to Problem 2.1 is affir-
mative by Corollary 2.2.16.

(b) ∗-paranormal operators. An operator T ∈ B(X) for a Hilbert space X is
said to be ∗-paranormal if

||T ∗x||2 ≤ ||T 2x|| ||x|| for every x ∈ X.

It was [AT] known that if T ∈ B(X) is ∗-paranormal then the following hold:

T is normaloid; (2.54)

N(T − λI) ⊂ N((T − λI)∗). (2.55)

So if T ∈ B(X) is ∗-paranormal then by (2.55), T − λI has finite ascent for every
λ ∈ C. Thus ∗-paranormal operators have the SVEP ([La]). On the other hand,
by the same argument as the proof of Corollary ?? we can see that if T ∈ B(X) is
∗-paranormal then

σ(T ) \ ω(T ) ⊂ π00(T ). (2.56)

However we were unable to decide:

Problem 2.3. Does Weyl’s theorem hold for ∗-paranormal operators ?

The following question is a strategy to answer Problem 2.3.
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Problem 2.4. Is every ∗-paranormal operator isoloid ?

If the answer to Problem 2.4 is affirmative then the answer to Problem 2.3 is
affirmative. To see this suppose T ∈ B(X) is ∗-paranormal. In view of (2.56), it
suffices to show that π00(T ) ⊆ σ(T ) \ ω(T ). Assume λ ∈ π00(T ). By (2.43), T − λI
is reduced by its eigenspaces. Thus we can write

T − λI =

[
0 0
0 S

]
:

[
N(T − λI)
N(T − λI)⊥

]
−→

[
N(T − λI)
N(T − λI)⊥

]
.

Thus T =
(
λI 0
0 S+λI

)
. We now claim that S is invertible. Assume to the contrary

that S is not invertible. Then 0 ∈ isoσ(S) since λ ∈ isoσ(T ). Thus λ ∈ isoσ(S+λI).
But since S + λI is also ∗-paranormal, it follows from our assumption that λ is an
eigenvalue of S+λI. Thus 0 ∈ π0(S), which contradicts to the fact that S is one-one.
Therefore S should be invertible. Note that N(T − λI) is finite-dimensional. Thus
evidently T − λI is Weyl, so that λ ∈ σ(T ) \ ω(T ). This gives a proof.

(c) Subclasses of paranormal operators. An operator T ∈ B(X) for a Hilbert
space X is said to be quasihyponormal if T ∗(T ∗T −TT ∗)T ≥ 0 and is said to be class
A-operator if |T 2| ≥ |T |2 (cf. [FIY]). Let T = U |T | be the polar decomposition of

T and T̃ := |T | 12U |T | 12 be the Aluthge transformation of T (cf. [Al]). An operator

T ∈ B(X) for a Hilbert space X is called w-hyponormal if |T̃ | ≥ |T | ≥ |T̃ ∗|. It was
well known that

hyponormal =⇒ quasihyponormal =⇒ class A =⇒ paranormal (2.57)

hyponormal =⇒ p-hyponormal =⇒ w-hyponormal =⇒ paranormal. (2.58)

Since by Theorem 2.2.20, Weyl’s theorem holds for paranormal operators on an arbi-
trary Banach space, all classes of operators in (2.57) and (2.58) enjoy Weyl’s theorem.

(d) Open problems in multivariable operator theory. It was known that

(i) If (A1, · · · , An) is invertible and
((

A1 B1

0 C1

)
, · · · ,

(
An Bn

0 Cn

))
is invertible then (C1, · · · , Cn)

is invertible.

(ii) If (A1, · · · , An) is invertible and (C1, · · · , Cn) is invertible then
((

A1 B1

0 C1

)
, · · · ,

(
An Bn

0 Cn

))
is invertible.

Problem 2.5. If (A B
0 C ) ≡

((
A1 B1

0 C1

)
, · · · ,

(
An Bn

0 Cn

))
, find a necessary and sufficient

condition for (A B
0 C ) to be invertible for some B.

If n = 1 then it was known that (A B
0 C ) is invertible for some B if and only if

(i) A is left invertible;

(ii) C is right invertible;
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(iii) ran(A)⊥ ∼= ker (C).

Problem 2.6. What is a kind of several variable version of the Punctured Neighbor-
hood Theorem ?

The Punctured Neighborhood Theorem says that ∂σ(T ) \ σe(T ) ⊂ isoσ(T ). Our
question is that if T = (T1, · · · , Tn) then

∂σT (T ) \ σTe(T ) ⊂ ( ? ) of σT (T ).

Problem 2.7. (Deformation Problem)Given two Fredholm n-tuples A = (A1, · · · , An)
and B = (B1, · · · , Bn) ∈ F with the same index, is it always possible to find a con-
tinuous path γ : [0, 1] → F such that γ(0) = A and γ(1) = B ?

The answer for n = 1 is yes. Also if dimH <∞ then the answer is yes.

Problem 2.8. If (A1, · · · , An) and (Ak11 , · · · , Aknn ) are Fredholm, does it follow

index (Ak11 , · · · , Aknn ) = k1 · · · kn · index(A1, · · · , An) ?

Problem 2.9. If S = (S1, · · · , Sn) is subnormal (i.e., there exists a commuting n-
tuple N = (N1, · · · , Nn) such that Nj = mne(Sj)) and N = (N1, · · · , Nn) = mne(S),
how σT (S) can be obtained from σT (N) ?

R. Curto and M. Putinar [CP2] showed that

σT (N) ⊂ σT (S) ⊂ ησT (N).

If n = 1 then σ(S) is obtained from σ(N) y “filling in some holes”.

Problem 2.10. If T = (T1, · · · , Tn) is commutative then

(i) σT (T ) ⊂
∏n
j=1 σ(Tj);

(ii) If p ∈ polymn then σT (p(T )) = p(σT (T )).

Let T = (T1, · · · , Tn) be a hyponormal n-tuple of commuting operators and p ∈ polymn .
Does it follow

σT (p(T )) = 0 =⇒ p(T ) = 0 ?

If n = 1 then the answer is yes: indeed, if σ(p(T )) = 0 and hence p(σ(T )) = 0
then σ(T ) is finite, so that T should be normal, which implies that p(T ) is normal
and quasinilpotent then p(T ) = 0.
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Chapter 3

Hyponormal and Subnormal
Theory

3.1 Hyponormal Operators

An operator A ∈ B(H) is called hyponormal if

[A∗, A] ≡ A∗A−AA∗ ≥ 0.

Thus if A ∈ B(H) then

A is hyponormal ⇐⇒ ∥Ah∥ ≥ ∥A∗h∥ for all h ∈ H.

If A∗A ≤ AA∗, or equivalently, ∥A∗h∥ ≥ ∥Ah∥ for all h, then A is called a co-
hyponormal operator. Operators that are either hyponormal or cohyponormal are
called seminormal.

Proposition 3.1.1. Let A ∈ B(H) be a hyponormal operator. Then we have:

(a) If A is invertible then A−1 is hyponormal.
(b) A− λ is hyponormal for every λ ∈ C.
(c) If λ ∈ π0(A) and Af = λf then A∗f = λf, i.e., ker (A− λ) ⊆ ker (A− λ)∗.
(d) If f and g are eigenvectors corresponding to distinct eigenvalues of A then

f ⊥ g.
(e) If M ∈ LatA then A|M is hyponormal.

Proof. (a) Recall that if T is positive and invertible then

T ≥ 1 =⇒ T−1 ≤ 1 :
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because if T ∈ C∗(T ) ≡ C(X) then T = f ≥ 1 ⇒ T−1 = 1
f ≤ 1. Since A∗A ≥ AA∗

and A is invertible,

A−1(A∗A)(A∗)−1 ≥ A−1(AA∗)(A∗)−1 = 1

=⇒ A∗A−1(A∗)−1A ≤ 1

=⇒ A−1(A∗)−1 = (A∗)−1(A∗A−1A∗−1A)A−1 ≤ (A∗)−1A−1

=⇒ A−1 is hyponormal.

(b) (A−λ)(A∗−λ) = AA∗−λA∗−λA+|λ|2 ≤ A∗A−λA∗−λA+|λ|2 = (A∗−λ)(A−λ).

(c) Immediate from the fact that ∥(A∗ − λ)f∥ ≤ ∥(A− λ)f∥.

(d) Af = λf, Ag = µg ⇒ λ⟨f, g⟩ = ⟨Af, g⟩ = ⟨f,A∗g⟩ = ⟨f, µg⟩ = µ⟨f, g⟩.

(e) If M ∈ LatA then

A =

[
B C
0 D

]
M
M⊥ is hyponormal

=⇒ 0 ≤ [A∗, A] =

[
[B∗, B]− CC∗ ∗

∗ ∗

]
=⇒ [B∗, B] ≥ CC∗ ≥ 0

=⇒ B is hyponormal.

Corollary 3.1.2. If A is hyponormal and λ ∈ π0(A) then ker (A − λ) reduces A.
Hence if A is a pure hyponormal then π0(A) = ∅.

Proof. From Proposition 3.1.1(c), if f ∈ ker (A− λ) then Af = λf ∈ ker (A− λ) and
A∗f = λf ∈ ker (A− λ).

Proposition 3.1.3. [Sta1] If A is hyponormal then ∥An∥ = ∥A∥n, so

∥A∥ = γ(A), where r(·) denoted the spectral radius,

in other words, A is normaloid.

Proof. Observe

∥Anf∥2 =< Anf,Anf >=< A∗Anf,An−1f >≤ ∥A∗Anf∥·∥An−1f∥ ≤ ∥An+1f∥·∥An−1f∥.

Hence ∥An∥2 ≤ ∥An+1∥ · ∥An−1∥. We use an induction. Clearly, it is true for n = 1.
Suppose ∥Ak∥ = ∥A∥k for 1 ≤ k ≤ n. Then ∥A∥2n = ∥An∥2 ≤ ∥An+1∥ · ∥An−1∥ =

∥An+1∥ · ∥A∥n−1, so ∥A∥n+1 ≤ ∥An+1∥. Also r(A) = lim ∥An∥ 1
n = ∥A∥.
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Corollary 3.1.4. If A is hyponormal and λ /∈ σ(A) then

1

∥(λ−A)−1∥
= dist

(
λ, σ(A)

)
.

Proof. Observe

|| 1

(λ−A)−1
|| = 1

maxµ∈σ(λ−A)−1 |µ|
= minµ∈σ(λ−A)|µ| = dist

(
λ, σ(A)

)
.

Proposition 3.1.5. [Sta1] If A is hyponormal then A is isoloid, i.e., isoσ(A) ⊆
π0(A). The pure hyponormal operators have no isolated points in their spectrum.

Proof. Replacing A by A − λ we may assume that λ = 0. Observe that the only
quasinilpotent hyponormal operator is zero. Consider the spectral decomposition of
A:

A =

[
A1 0
0 A2

]
, where σ(A1) = {0}, σ(A2) = σ(A)\{0}.

Then A1 = 0, so 0 ∈ π0(A).
The second assertion comes from the fact that ker (A−λ) is a reducing subspaces

of a hyponormal operator A.

Corollary 3.1.6. The only compact hyponormal operator is normal.

Proof. Recall that if K is compact then every nonzero point of σ(K) is isolated. So
if K is hyponormal then every eigenspaces reduces K and the restriction of K to
each eigenspace is normal. Consider the restriction of K to the orthogonal comple-
ment of the span of all the eigenvectors. The resulting operator is hyponormal and
quasinilpotent, and hence 0. Therefore K is normal.

Proposition 3.1.7. Let A be a hyponormal operator. Then we have:

(a) A is invertible ⇐⇒ A is right invertible.
(b) A is Fredholm ⇐⇒ A is right Fredholm.
(c) σ(A) = σr(A) and σe(A) = σre(A).
(d) A is pure, λ ∈ σ(A)\σe(A) =⇒ index (A− λ) ≤ −1.

Proof. (a) Observe that

A is right invertible =⇒ ∃ B such that AB = 1

=⇒ A is onto and hence kerA∗ = (ranA)⊥ = {0}
=⇒ kerA = {0}
=⇒ A is invertible.
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(b) Similar to (a).

(c) From (a) and (b).

(d) Observe that

A is pure hyponormal =⇒ A− λ is pure hyponormal

=⇒ ker (A− λ) = {0} (by Proposition 3.1.5)

=⇒ A− λ is not onto since λ ∈ σ(A)

=⇒ index (A− λ) = dim (ker (A− λ))− dim
(
ran(A− λ)⊥

)
= −dim

(
ran(A− λ)⊥

)
≤ −1.

Write F denotes the set of Fredholm operators. We here give a direct proof
showing that Weyl’s theorem holds for hyponormal operators.

Proposition 3.1.8. If A ∈ B(H) is hyponormal then

σ(A)\ω(A) = π00(A),

where π00(A) = the set of isolated eigenvalues of finite multiplicity.

Proof. (⇐) If λ ∈ π00(A) then ker (A− λ) reduces A. So

A = λI
⊕

B,

where I is the identity on a finite dimensional space, B is hyponormal and λ /∈ σ(B).
So λ /∈ ω(A).

(⇒) Suppose λ ∈ σ(A)\ω(A), and soA−λ not invertible, Fredholm with index (A−
λ) = 0. We may assume λ = 0. Since A ∈ F and indexA = 0, it follows that 0 is an
eigenvalue of finite multiplicity.

It remains to show that 0 ∈ isoσ(A). Observe that

ker (A) ⊆ ker (A∗) = (ranA)⊥ and 0 = index(A) = dim (ker (A))− dim
(
ranA)⊥

)
,

so that ker(A) = (ranA)⊥. So

A = 0
⊕

B,

where B is invertible. Since σ(A) = {0} ∪ σ(B), 0 must be an isolated point of
σ(A).

Corollary 3.1.9. If A ∈ B(H) is a pure hyponormal then

∥A∥ ≤ ∥A+K∥ for every compact operator K.

Proof. Since A is pure, π0(A) = ∅. So σ(A) = ω(A) =
∩
K∈K(H) σ(A+K). Thus for

every compact operator K, σ(A) ⊆ σ(A+K). Therefore, ∥A∥ = r(A) ≤ r(A+K) ≤
∥A+K∥.
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3.2 The Berger-Shaw Theorem

If A is a selfadjoint operator then A is said to be absolutely continuous if its scalar-
valued spectral measure is absolutely continuous with respect to the Lebesgue measure
on the line.

Let N =
∫
zdE(z) be the spectral decomposition of N . A scalar-valued spectral

measure for N is a positive Borel measure µ on σ(N) such that

µ(△) = 0 ⇐⇒ E(△) = 0.

Since W ∗(N) is an abelian von Neumann algebra, W ∗(N) has a separating vector e0,
i.e.,

Ae0 = 0 =⇒ A = 0 for A ∈W ∗(N).

Define µ on σ(N) by
µ(△) = ∥E(△)e0∥2.

In fact, this µ is the unique scalar-valued spectral measure for N .

Theorem 3.2.1. (Putnam, 1963) If S is a pure hyponormal operator and S = A+iB,
where A and B are selfadjoint then A and B are absolutely continuous.

Proof. See [Con2, p.150].

Definition 3.2.2. An operator T ∈ B(H) is said to be finitely multicyclic if there
exist a finite number of vectors g1, · · · , gm ∈ H such that

H =
∨{

f(T )gj : 1 ≤ j ≤ m and f ∈ Ratσ(T )
}
.

The vectors g1, · · · , gm are called generating vectors. If T is finitely multicyclic and
m is the smallest number of generating vectors then T is said to be m-multicyclic.

Theorem 3.2.3. (The Berger-Shaw Theorem) If T is an m-multicyclic hyponormal
operator then [T ∗, T ] is a trace class operator and

tr [T ∗, T ] ≤ m

π
Area (σ(T )).

This inequality is sharp: indeed, consider the unilateral shift T :

[T ∗, T ] =

1 0
. . .

 , σ(T ) = clD, m = 1,
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so

tr [T ∗, T ] = 1,
m

π
Area(σ(T )) =

1

π
· π = 1.

To prove Theorem 3.2.3 we need auxiliary lemmas. Recall the Hilbert-Schmidt norm
of X:

∥X∥2 ≡
[∑⟨

|X|2en, en
⟩] 1

2

=
[∑

⟨X∗Xen, en⟩
] 1

2

= [tr (X∗X)]
1
2 .

Lemma 3.2.4. If T ∈ B(H) and P is a finite rank projection then

tr
(
P [T ∗, T ]P

)
≤ ∥P⊥TP∥22.

Proof. Write

T =

[
A B
C P

]
:

[
ranP
ranP⊥

]
→
[
ranP
ranP⊥

]
.

Since P =

[
1 0
0 0

]
,

P [T ∗, T ]P = [A∗, A] + C∗C −BB∗.

So by the above remark, tr (P [T ∗, T ]P ) = tr[A∗, A] + ∥C∥22 − ∥B∥22. But since A is a
finite-dimensional operator,

tr[A∗, A] = 0.

Hence tr (P [T ∗, T ]P ) ≤ ∥C∥22 = ||P⊥TP ||22.

Lemma 3.2.5. If T ∈ B(H) is an m-multicyclic operator then there exists a sequence
{Pk} of finite rank projections such that Pk ↑ 1(SOT) and

rank
(
P⊥
k TPk

)
≤ m for all k ≥ 1.

Proof. Let g1, · · · , gm be the generating vectors for T and let {λj} be a countable
dense subset of C \σ(T ); for convenience, arrange {λj} so that each point is repeated
infinitely often. Let Pk be the projection of H onto∨{

T j(T − λ1)
−1 · · · (T − λk)

−1gi : 0 ≤ j ≤ 2k, 1 ≤ i ≤ m
}
.

Thus Pk is finite rank, Pk ≤ Pk+1, and

rank [P⊥
k TPk] ≤ m for all k ≥ 1.
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We should prove that Pk → 1(SOT). Since {Pk} is increasing, L = cl
∪
k ranPk is a

closed linear space. To show that Pk → 1(SOT) it suffices to show that L = H. To
do this, it suffices to show that f(T )L ⊆ L for all f ∈ Rat(σ(T )). Since {λj} is dense
in σ(T )c, it is only necessary to show that f(T )L ⊆ L when f is a rational function
with poles in {λj}. Hence we must show that

TL ⊆ L and (T − λj)
−1L ⊆ L.

From the definition of L we see that these two conditions are equivalent, respectively,
to show that for all β ≥ 1:

T

(
T j(T − λ1)

−1 · · · (T − λk)
−1gi

)
∈ L for 0 ≤ j ≤ 2k ; (3.1)

(T − λm)−1

(
T j(T − λ1)

−1 · · · (T − λk)
−1gi

)
∈ L for 0 ≤ j ≤ 2k and all m. (3.2)

To prove (3.1) we need only consider the case where j = 2k. Now

T 2k+1(T − λ1)
−1 · · · (T − λ2k)

−1gi ∈ ranP2k

and A = (T − λk+1) · · · (T − λ2k) is a polynomial in T of degree 2k − k. Hence

T 2k+1(T−λ1)−1 · · · (T−λk)−1gi = AT 2k+1(T−λ1)−1 · · · (T−λ2k)−1gi ∈ ranP2k ⊆ L,

which proves (3.1).
Since (3.1) implies that L is an invariant subspace for T , to show (3.2) it suffices

to show that

(T − λm)−1

(
(T − λ1)

−1 · · · (T − λk)
−1gi

)
∈ L for all m.

Since λm is repeated infinitely often, we may assume m ≥ k + 2. If B = (T −
λk+1) · · · (T − λm−1), then B is a polynomial in T of degree m+ k − 1. Hence

(T−λm)−1

(
(T−λ1)−1 · · · (T−λk)−1gi

)
= B(T−λ1)−1 · · · (T−λm)−1gi ∈ ranPm ⊆ L,

which proves (3.2).

Lemma 3.2.6. If T ∈ B(H) is an m-multicyclic hyponormal operator then

tr [T ∗, T ] ≤ m∥T∥2.

Proof. By Lemma 3.2.5, there exists an increasing sequence {Pk} of finite rank pro-
jections such that Pk ↑ 1(SOT) and rank [P⊥

k TPk] ≤ m for all k ≥ 1. Note that

∥P⊥
k TPk∥22 ≤ m∥P⊥

k TPk∥2.
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Since {Pk} is an increasing sequence,

tr[T ∗, T ] = limktr
(
Pk[T

∗, T ]Pk
)
.

By Lemma 3.2.4 we get

tr [T ∗, T ] ≤ limsup∥P⊥
k TPk∥22 ≤ limsup

(
m∥P⊥

k TPk∥2
)

≤ m∥T∥2.

We are ready for:

Proof of the Berger-Shaw Theorem. Let R = ∥T∥ and put D = B(0;R). If ε > 0, let
D1, · · · , Dn be pairwise disjoint closed disks contained in D \ σ(T ) such that

Area (D) < Areaσ(T ) +
∑
j

Area (Dj) + ε.

If Dj = B(aj ; rj), this inequality says

πR2 − π
∑
j

r2j < Areaσ(T ) + ε.

If S is the unilateral shift of multiplicity 1, let Sj = (aj + rjS)
(m). Now that each Sj

is m-multicyclic. Thus

A =


T

S1 0

0
. . .

Sn


is an m-multicyclic hyponormal operator since the spectra of the operator summands
are pairwise disjoint. Also ∥A∥ = R. By Lemma 3.2.6, tr [A∗, A] ≤ mR2. But

tr [A∗, A] = tr [T ∗, T ] +
n∑
j=1

tr [S∗
j , Sj ] = tr [T ∗, T ] +m

n∑
j=1

r2j .

Therefore

π tr [T ∗, T ] ≤ m

πR2 − π

n∑
j=1

r2j

 ≤ m
(
Areaσ(T ) + ε

)
.

Since ε was arbitrary, the proof is complete.

Theorem 3.2.7. (Putnam’s inequality) If S ∈ B(H) is a hyponormal operator then

∥[S∗, S]∥ ≤ 1

π
Area (σ(S)).
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Proof. Fix ∥f∥ ≤ 1 and let K ≡
∨
{r(s)f : r ∈ Rat (σ(S))}. If T = S|K then T is an

1-multicyclic hyponormal operator. By the Berger-Shaw theorem and the fact that
∥T ∗f∥ ≤ ∥S∗f∥, we get

⟨[S∗, S]f, f⟩ = ∥Sf∥2 − ∥S∗f∥2

≤ ∥Tf∥2 − ∥T ∗f∥2

= ⟨[T ∗, T ]f, f⟩
≤ tr [T ∗, T ]

≤ 1

π
Area(σ(T ))

≤ 1

π
Area(σ(S)).

Since f was arbitrary, the result follows.

Corollary 3.2.8. If S is a hyponormal operator such that Area (σ(S)) = 0 then S is
normal.
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3.3 Subnormal Operators

Definition 3.3.1. An operator S on a Hilbert space H is called subnormal if there
exists a Hilbert space K ⊇ H and a normal operator N on K such that

NH ⊆ H and N |H = S.

The concept of subnormality was introduced in P. Halmos in 1950. Loosely speak-
ing, a subnormal operator is one that has a normal extension. Every isometry is
subnormal (by Wold-von Neumann decomposition).

Proposition 3.3.2. Every subnormal operator is hyponormal.

Proof. If S is subnormal then

∃ a normal operator N =

[
S A
0 B

]
.

So

0 = N∗N −NN∗ =

[
[S∗, S]−AA∗ S∗A

A∗S A∗A+ [B∗, B]

]
,

which implies that [S∗, S] = AA∗ ≥ 0.

An example of a hyponormal operator that is not subnormal:

A ≡ U∗ + 2U ;

then A is hyponormal, but A2 is not; so A is not subnormal (To see this use Theorem
3.3.7 below).

Example 3.3.3. Let µ be a compactly supported measure on C and define Nµ on
L2(µ) by

Nµf = zf.

Then Nµ is normal since N∗
µf = zf . If P 2(µ) is the closure in L2(µ) of analytic

polynomials, define Sµ on P 2(µ) by

Sµf = zf.

Then Sµ is subnormal and Nµ is a normal extension of Sµ.

Definition 3.3.4. An operator S is called quasinormal if S and S∗S commute.

86



CHAPTER 3. HYPONORMAL AND SUBNORMAL THEORY

Proposition 3.3.5. If S = UA is the polar decomposition of S then

S is quasinormal ⇐⇒ UA = AU.

Proof. (⇐) UA = AU =⇒ SA2 = UA3 = A2UA = A2S =⇒ S is quasinormal.
(⇒) If S is quasinormal then SA2 = A2S (A2 = S∗S). Thus SA = AS, so

(UA− AU)A = SA− AS = 0. Thus UA− AU = 0 on ranA. But if f ∈ (ranA)⊥ =
kerA then since kerA = kerU , we have Uf = 0. Therefore UA = AU .

Proposition 3.3.6. Every quasinormal operator is subnormal.

Proof. Suppose S is quasinormal.
(Case 1: kerS = {0}) If S = UA is the polar decomposition of S then U must

be an isometry. If E = UU∗ then E is the projection onto ranU . Thus (I − E)U =
U∗(I − E) = 0. Define V,B ∈ B(H ⊕H) by

V =

[
U I − E
0 U∗

]
, V =

[
A 0
0 A

]
.

Let N = V B. Since UA = AU and U∗A = AU∗ it follows that N is normal. Since

N =

[
S (I − E)A
0 U∗A

]
=

[
S (I − E)A
0 S∗

]
,

we have NH ⊆ H and N |H = S.

(Case 2: kerS ̸= {0}) Here kerS = L ⊆ kerS∗ since S∗ = AU∗ = U∗A. Let

S1 :=
(
S|L
)⊥
. So S = S1 ⊕ 0 on L⊥ ⊕ L = H. Now S∗S = S∗

1S1 ⊕ 0. Observe S1 is
quasinormal. By Case 1, S1 is subnormal and therefore S is subnormal.

Remember [Con2, p.44] that

S is pure quasinormal ⇐⇒ S = U⊗A, where A is a positive operator with kerA = {0}.

If X is a locally compact space, a positive operator-valued measure(POM) on X
is defined by a function Q such that

Q: a Borel set △ ⊆ X 7→ Q(△), a positive operator, ∈ B(H);
Q(X) = 1;
⟨Q(·)f, f⟩ is a regular Borel measure on X.

Every spectral measure is a POM. But the converse is false. Let E be a spectral
measure on X with values in B(K), H be a subspace of K and let P be the orthogonal
projection of K onto H. Define

Q(△) := PE(△)|H .
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Then Q is a POM with ∥Q(△)∥ ≤ 1 for all △. But Q is a spectral measure if and
only if P commutes with E(△) for any △.

If Q is a POM and ϕ is a bounded Borel function on X then
∫
ϕdQ denotes the

unique operator T defined by the bounded quadratic form

⟨Tf, f⟩ =
∫
ϕ(x)d⟨Q(x)f, f⟩.

Theorem 3.3.7. If S ∈ B(H), the following are equivalent:

(a) S is subnormal.

(b) (Bram-Halmos, 1955/1950) If f0, · · · , fn ∈ H then∑
j,k

⟨Sjfk, Skfj⟩ ≥ 0. (3.3)

(c) (Embry, 1973) For any f0, · · · , fn ∈ H∑
j,k

⟨Sj+kfj , Sj+kfk⟩ ≥ 0. (3.4)

(d) (Bunce and Deddens, 1977) If B0, · · · , Bn ∈ C∗(S) then∑
j,k

B∗
jS

∗kSjBk ≥ 0

(e) (Bram, 1955) There is a POM Q supported on a compact subset of C such that

S∗nSm =

∫
znzmdQ(z) for all m,n ≥ 0. (3.5)

(f) (Embry, 1973) There is a POM Q on some interval [0, a] ⊆ R such that

S∗nSn =

∫
t2ndQ(t) for all n ≥ 0.

Proof. (a) ⇒ (b): Let N =

[
S ∗
0 ∗

]
H
H′ be a normal operator on K. If P is the
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projection of K onto H, then S∗nf = PN∗nf, f ∈ H. If f0, · · · , fn ∈ H then

∑
j,k

⟨Sjfk, Skfj⟩ =
∑
j,k

⟨N jfk, N
kfj⟩

=
∑
j,k

⟨N∗kN jfk, fj⟩

=
∑
j,k

⟨N jN∗kfk, fj⟩

=
∑
j,k

⟨N∗kfk, N
∗jfj⟩

=

∥∥∥∥∥∑
k

N∗kfk

∥∥∥∥∥
2

.

So (3.3) holds.

(b) ⇒ (c): Put gk = Skfk. Then (3.3) implies

∑
j,k

⟨Sjgk, Skgj⟩ =
∑
j,k

⟨Sj+kfk, Sj+kfj⟩.

So (3.4) holds.

(c) ⇒ (a): See [Con2].

(b) ⇒ (d): If B0, · · · , Bn ∈ C∗(S), let fk = Bkf . Then

(3.3) ⇐⇒

⟨∑
j,k

B∗
jS

∗kSjBkf, f

⟩
≥ 0.

(d) ⇒ (b): By Zorn’s lemma,

any operator =
⊕

star-cyclic operator.

So we may assume that S has a star-cyclic vector e0, i.e., assume H = cl [C∗(S)e0].
If B0, · · · , Bn ∈ C∗(S) then (3.3) holds for fk = Bke0. Since (3.3) holds for a dense
set of vector, (3.3) holds for all vectors.

(a) ⇒ (e): Let N =
∫
zdE(z) be the spectral decomposition of N , a normal

extension of S acting on K ⊇ H. Let P be the orthogonal projection of K onto H.
Define

Q(△) := PE(△)|H for every Borel subset △ of C.
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Then Q is a POM and is supported on σ(N). Also for all h ∈ H,

⟨S∗nSmh, h⟩ = ⟨N∗nNmh, h⟩

=

∫
znzmd⟨E(z)h, h⟩

=

∫
znzmd⟨E(z)h, Ph⟩

=

∫
znzmd⟨PE(z)h, h⟩

=

∫
znzmd⟨Q(z)h, h⟩

=

⟨(∫
znzmdQ(z)

)
h, h

⟩
,

so that

S∗nSm =

∫
znzmdQ(z).

(e) ⇒ (f): Let Q be the POM hypothesized in (i) and K = suppQ. For a Borel
set △ ⊆ [0,∞), define

Q+(△) := Q{z ∈ C : |z| ∈ △}.

In fact, Q+(△) = Q(τ−1△), where τ(z) = |z|. Then Q+ is a POM whose support
⊆ [0, a] with a = maxz∈K |z|. For any f ∈ H,∫

t2nd⟨Q+(t)f, f⟩ =
∫

|z|2nd⟨Q(z)f, f⟩.

(f) ⇒ (c): Fix f0, · · · , fn ∈ H and define scalar-valued measures µjk by

µjk(△) = ⟨Q(△)fj , fk⟩.

Let µ be a positive measure on [0, a] such that µjk ≪ µ for any j, k. Let hjk =
dµjk

dµ

(Radon-Nikodym derivative). For each u ∈ C[0, a], ρ(u) =
∫
udQ defines a bounded

operator and ρ : C[0, a] → B(H) is a positive linear map. Note that for all u,
⟨ρ(u)fj , fk⟩ =

∫
udµjk =

∫
uhj,kdµ. Moreover if λ0, · · · , λn ∈ C and u ≥ 0 then

∑
j,k

(∫
uhjkdµ

)
λjλk =

∥∥∥∥∥∥
∑
j

ρ(u)
1
2λjfj

∥∥∥∥∥∥
2

≥ 0.

It follows that (hjk(t))j,k is positive (n + 1) × (n + 1) matrix for [µ] almost every t.
This implies that ∑

j,k

hjk(t)t
2jt2k ≥ 0 a.e. [µ].

90



CHAPTER 3. HYPONORMAL AND SUBNORMAL THEORY

Therefore

0 ≤
∫ ∑

j,k

hjk(t)t
2(j+k)dµ(t)

=
∑
j,k

∫
t2(j+k)dµjk(t)

=
∑
j,k

⟨
Sj+kfj , S

j+kfk
⟩
,

so (3.4) holds.

Remark. Without loss of generality we may assume that ||S|| < 1. Let K = H∞ and
let K0 = the finitely nonzero sequences in K. Let

M =


1 S∗ S∗2 · · ·
S S∗S S∗2S · · ·
S2 S∗S2 S∗2S2 · · ·
S3 S∗S3 S∗2S3 · · ·
...

...
...

 on K0.

If f = (f0, · · · , fn, · · · ) ∈ K0 then

∑
j

∥(Mf)j∥2 =
∑
j

∥∥∥∥∥∑
k

S∗kSjfk

∥∥∥∥∥
2

≤
∑
j

[∑
k

∥S∥k+j∥fk∥2
]

≤
∑
j

[∑
k

∥S∥2k+2j

][∑
k

∥fk∥

]2
≤ (1− ∥S∥2)−2∥f∥2.

Since ∥S∥ < 1, Mf ∈ K and M extends to a bounded operator on K. Clearly, M is
hermitian. Note

⟨Mf, f⟩K =
∑
j,k

⟨Sjfk, Skfj⟩.

So

(3.3) holds ⇐⇒M is positive.

Recall the Smul’jan theorem – if M =

[
A B
B∗ C

]
(A,C hermitian, A invertible), then

M ≥ 0 ⇐⇒ B∗A−1B ≤ C.
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We thus have that if

M =


1 S∗ · · · S∗k · · ·
S S∗S · · · S∗kS · · ·
S2 S∗S2 · · · S∗kS2 · · ·
...

... · · ·
... · · ·


then

M ≥ 0 ⇐⇒


S
S2

S3

...

 [S∗ S∗2 S∗3 · · ·
]
≤

 S
∗S S∗2S S∗3S · · ·

S∗S2 S∗2S2 S∗3S2 · · ·
...

...
...

...



⇐⇒

 S∗S − SS∗ S∗2S − SS∗2 · · ·
S∗S2 − S2S∗ S∗2S2 − S2S∗2 · · ·

...
...

...

 ≥ 0

⇐⇒


[S∗, S] [S∗2, S] [S∗3, S] · · ·
[S∗, S2] [S∗2, S2] [S∗3, S2] · · ·
[S∗, S3] [S∗2, S3] [S∗3, S3] · · ·

...
...

...
...

 ≥ 0

Definition 3.3.8. IfA is a C∗−algebra, define s ∈ A to be subnormal if
∑
j,k a

∗
js

∗ksjak ≥
0 for any choice a0, · · · , an ∈ C∗(s).

It is easy to see that ifA,B are C∗−algebras and ρ : A −→ B is a ∗−homomorphism
then ρ maps subnormal elements of A onto subnormal elements of B. In particular,
if (ρ,H) is a representation of A, ρ(s) is a subnormal operator on H whenever S is
a subnormal element of A.

Remark. (Agler [Ag2, 1985]’s characterization of subnormal operators) If S is a con-
traction then

S is subnormal ⇐⇒
n∑
k=0

(−1)k
(
n

k

)
S∗kSk ≥ 0 for all n ≥ 1.

Note that if N is a normal extension of S ∈ B(H) to K then

K ⊇
∨{

N∗kh : h ∈ H, k = 0, 1, 2, · · ·
}
.

If L :=
∨{

N∗kh : h ∈ H, k = 0, 1, 2, · · ·
}
then

L is a reducing subspace for N that contains H.

Thus N |L is also a normal extension of S. Moreover if R is any reducing subspace
for N that contains H then R must contain L.
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Definition 3.3.9. If S is a subnormal operator on H and N is a normal extension
of S to K then N is called a minimal normal extension of S if

K =
∨{

N∗kh : h ∈ H, k ≥ 0
}
.

Proposition 3.3.10. If S is a subnormal operator then any two minimal normal
extensions are unitarily equivalent.

Proof. For p = 1, 2 let Np be a minimal normal extension of S acting on Kp ⊇ H.
Define U : K1 −→ K2 by

U (N∗
1
nh) = N∗

2
nh (h ∈ H).

We want to show that U is an isomorphism. If h1, · · · , hm ∈ H and n1, · · · , nm ≥ 0
then ∥∥∥∥∥∑

k

N∗
2
nkhk

∥∥∥∥∥
2

=

⟨∑
k

N∗
2
nkhk,

∑
j

N∗
2
njhj

⟩
=
∑
j,k

⟨N2
njhk, N2

nkhj⟩

=
∑
j,k

⟨Snjhk, S
nkhj⟩

=
∑
j,k

⟨N1
njhk, N1

nkhj⟩

=

∥∥∥∥∥∑
k

N∗
1
nkhk

∥∥∥∥∥
2

,

which shows that

U

[∑
k

N∗
1
nkhk

]
=
∑
k

N∗
2
nkhk

is a well defined linear operator from a dense linear manifold in K1 onto a dense linear
manifold in K2 and U is an isometry. Also for all h ∈ H, Uh = h. Thus for h ∈ H
and n ≥ 0,

UN1N
∗
1
nh = UN∗

1
nSh = N∗

2
nSh = N2N

∗
2
nh = N2UN

∗
1
nh,

i.e., UN1 = N2U , so that N1 and N2 are unitarily equivalent.

Now it is legitimate to speak of the minimal normal extension of a subnormal
operator. Therefore it is unambiguous to define the normal spectrum of a subnormal
operator S, σn(S), as the spectrum of its minimal normal extension.
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Proposition 3.3.11. If S is a subnormal operator then the following hold:

(a) (Halmos, 1952) σn(S) ⊆ σ(S).

(b) σap(S) ⊆ σn(S) and ∂σ(S) ⊆ ∂σn(S).

(c) (Bram, 1955) If U is a bounded component of C\σn(S), then either U∩σ(S) = ∅
or U ⊆ σ(S).

Proof. (a) We want to show that S is invertible ⇒ N is invertible.
IfN =

∫
zdE(z) is the spectral decomposition ofN, ε > 0, andM = E (B(0; ε))K

then we claim that

||Nkf || ≤ εk∥f∥ for k = 1, 2, 3, · · · and f ∈M.

To see this let △ := B(0; ε). Then

NE(△) =

∫
zχ△(z)dE(z) = ϕ(N), where ϕ = zχ△.

We thus have

∥NE(△)∥ = ∥ϕ(N)∥ ≤ ∥ϕ∥ = sup|ϕ(z)| = sup{|z| : z ∈ △} ≤ ε.

So if f ∈M then E(△)f = f. Therefore

∥Nf∥ = ∥NE(△)f∥ ≤ ∥NE(△)∥∥f∥ ≤ ε∥f∥.

So if f ∈M and h ∈ H,

|⟨f, h⟩| =
∣∣⟨f, SkS−kh⟩

∣∣ = ∣∣⟨f,NkS−kh⟩
∣∣ = ∣∣∣⟨N∗kf, S−kh⟩

∣∣∣
≤
∥∥N∗kf

∥∥ · ∥∥S−kh
∥∥ ≤ εk∥f∥

∥∥S−k∥∥ ≤ εk
∥∥S−1

∥∥k ∥f∥ ∥h∥.
Letting k → ∞ shows that

ε <
1

∥S−1∥
=⇒ ⟨f, h⟩ = 0,

so that H ⊆M⊥. Since M is a reducing subspace for N , N |M⊥ is a normal extension
of S. By the minimality of N, M = {0} and so N is invertible because N = Nφ and
|φ(x) ≥ ε a.e.

(b) Observe that

λ ∈ σap(S) =⇒ ∃ unit vectors hn ∈ H such that ∥(λ− S)hn∥ −→ 0.

But (λ− S)hn = (λ−N)hn.

=⇒ σap(S) ⊆ σap(N) = σ(N) = σn(S).

λ ∈ ∂σ(S) =⇒ λ ∈ σap(S) =⇒ λ ∈ σn(S) =⇒ λ /∈ intσn(S) =⇒ λ ∈ ∂σn(S).

(c) (Due to S. Parrot) Let U be a bounded component of σn(S)
c
and put

U+ = U \ σ(S) and U− = U ∩ σ(S).

So U = U− ∪ U+, U+ ∩ U− = ∅ and U+ is open. By (b), U− = U ∩ intσ(S), so that
U− is open. By the connectedness of U , either U+ = ∅ or U− = ∅.
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Corollary 3.3.12. If S is a subnormal operator whose minimal normal extension is
N then

r(S) = ∥S∥ = ∥N∥ = r(N).

Proof. Since r(S) ≤ ∥S∥ ≤ ∥N∥ = r(N), the result follows from Proposition 3.3.11.

Definition 3.3.13. If A ∈ B(H), e0 ∈ H, K is a compact subset of C containing
σ(A) then e0 is called a Rat(K) cyclic vector for A if{

u(A)e0 : u ∈ Rat (K)

}
is dense in H.

An operator is called Rat (K) cyclic if it has a Rat (K) cyclic vector. In the cases
that K = σ(S), A is called a rationally cyclic operator.

Recall that e0 is a cyclic vector for A (A is a cyclic operator) if {p(A)e0 :
p is a polynomial} is dense in H. By Runge’s theorem, e0 is cyclic for A ⇔ e0 is

Ratσ̂(A) cyclic for A.
Note that if S is subnormal and N = mme (S) then since σ(N) ⊆ σ(S), it follows

that if K contains σ(S) then u(N) is well defined for any U ∈ Rat (K).

Theorem 3.3.14. If S is subnormal and has a Rat (K) cyclic vector e0 then there
exists a unique compactly supported measure µ on K and an isomorphism U : K →
L2(µ) such that

(a) UH = R2(K,µ);
(b) Ue0 = 1;
(c) UNU−1 = Nµ;
(d) if V = U |H , then V is an isomorphism of H onto R2(K,µ) and V SV −1 =

Nµ|R2(K,µ).

Proof. If N = mme (S) then K =
∨

{N∗nu(N)e0 : n ≥ 0, u ∈ Rat (K)}. We claim
that e0 is a ∗−cyclic vector for N . Indeed, let L =

∨
{N∗nu(N)e0 : n, k ≥ 0}. Ev-

idently, L is a reducing subspace for N . By the Stone-Weierstrass theorem, C(K)
is the uniformly closed linear span of

{
znzk : n, k ≥ 0

}
. Since Rat (K) ⊆ C(K), we

have that u(N)e0 ∈ L for every U ∈ Rat (K). Thus H ⊆ L. By the minimality of
N we have H = K. Hence e0 is a ∗−cyclic vector for N . Therefore there exists a
compactly supported measure µ and an isomorphism

U : K → L2(µ) such that Ue0 = 1 and UNU−1 = Nµ.

So (b) and (c) hold. Observe Uϕ(N) = ϕ(Nµ)U for every bounded Borel function
ϕ. In particular, for u ∈ Rat (K), Uu(S)e0 = Uu(N)e0 = u(Nµ)Ue0 = u(Nµ)1 = u.
Taking limits gives (a). The assertion (d) is immediate. The proof of the uniqueness
of µ comes from the Stone-Weierstrass theorem.
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Corollary 3.3.15. An operator S is a cyclic subnormal operator if and only if S ∼= Sµ
for some compactly supported measure µ.

For any compact K, define

R(K) := the uniform closure in C(K) of Rat (K).

Define ∥f∥K = supz∈K |f(z)|. For a subnormal operator S, we may define f(S) for all
functions f ∈ R (σ(S)) . If f ∈ R (σ(S)), f(S) = f(N)|H . So f(S) is subnormal, so
that

σ(f(S)) = f(σ(S))

∥f∥σ(S) = ∥f(S)∥ ≤ ∥f(N)∥ = ∥f∥σ(N) ≤ ∥f∥σ(S),
i.e., the map f 7→ f(S) is an isometry from R(σ(S)) into B(H). Define, for f ∈
R(σ(S)),

f(S) := the image of f under this isomorphism.

Then
f(N)H ⊆ H, f(N)|H = f(S).

Theorem 3.3.16. If S is subnormal and N = mne (S), and for each f ∈ R(σ(S)),
f(S) = f(N)|H then the map f 7→ f(S) is a multiplicative linear isometry from
R(σ(S)) into B(H) that extends the Riesz functional calculus for S. Moreover,

σ(f(S)) = f(σ(S)) for f ∈ R(σ(S)).

Proof. See [Con2].

Lemma 3.3.17. If S is subnormal and σ(S) ⊆ R then S is hermitian.

Proof. Let N = mne (S), acting on K. By Proposition 3.3.11, σ(N) ⊆ σ(S) ⊆ R.
Hence N = N∗. Then every invariant subspace for N reduces N . In particular, H
reduces N . By the minimality of N , K = H. So S = N and hence S is hermitian.

Proposition 3.3.18. If S is subnormal and R(σ(S)) = C(σ(S)) then S is normal.

Proof. Let ϕ(z) = Re z and ψ(z) = Im z. By hypothesis, ϕ, ψ ∈ R(σ(S)). By Theorem
3.3.16, ϕ(S) is subnormal and

σ(ϕ(S)) = ϕ(σ(S)) ⊆ R.

Therefore ϕ(S) is hermitian. Similarly, ψ(S) is hermitian. Since ϕ + iψ = z, S =
ϕ(S) + iψ(S). Since ϕ(S)ψ(S) = ψ(S)ϕ(S), it follows S is normal.

Remark. If σ is compact and R(σ) = C(σ) then σ is called thin. It was known [Wer]
that

(i) σ is thin =⇒ intσ = ∅;
(ii) The converse of (i) fails;
(iii) m(σ) = 0 =⇒ σ thin.
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3.4 p-Hyponormal Operators

Recall that the numerical range of T ∈ B(H) is defined by

W (T ) :=

{
⟨Tx, x⟩ : ||x|| = 1

}
and the numerical radius of T is defined by

w(T ) := sup

{
|λ| : λ ∈W (T )

}
.

It was well-known (cf. [Ha3]) that

(a) W (T ) is convex (Toeplitz-Haussdorff theorem);
(b) convσ(T ) ⊂ clW (T );
(c) r(T ) ≤ w(T ) ≤ ||T ||;
(d) 1

dist (λ,σ(T ))
≤ ||(T − λ)−1|| ≤ 1

dist (λ,clW (T ))
.

Definition 3.4.1. (a) T is called normaloid if ||T || = r(T );
(b) T is called spectraloid if w(T ) = r(T );
(c) T is called convexoid if convσ(T ) = clW (T );
(d) T is called transaloid if T − λ is normaloid for any λ;
(e) T is siad to satisfy (G1)-condition if

||(T − λ)−1|| ≤ 1

dist (λ, σ(T ))
, in fact, ||(T − λ)−1|| = 1

dist (λ, σ(T ))
.

(f) T is called paranormal if ||T 2x|| ≥ ||Tx||2 for any x with ||x|| = 1.

It was well-known that it T is paranormal then
(i) Tn is paranormal for any n;
(ii) T is normaloid;
(iii) T−1 is paranormal if it exists;

and that

hyponormal ⊂ paranormal ⊂ normaloid ⊂ spectraloid.

Theorem 3.4.2. If T ∈ B(H) then

(a) T is convexoid ⇐⇒ T − λ is spectraloid for any λ, i.e., w(T − λ) = r(T − λ);

(b) T is convexoid ⇐⇒ ||(T − λ)−1|| ≤ 1

dist (λ, convσ(T ))
for any λ /∈ convσ(T ).
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Proof. (a) Note that

convX = the intersection of all disks containing X

=
∩
µ

{
λ : |λ− µ| ≤ sup

x∈X
|x− µ|

}
.

Since clW (T ) is convex,

clW (T ) =
∩
µ

{
λ : |λ− µ| ≤ w(T − µ)

}
;

convσ(T ) =
∩
µ

{
λ : |λ− µ| ≤ r(T − µ)

}
.

so the result immediately follows.
(b) (⇒) Clear from the preceding remark.
(⇐) Suppose

||(T − λ)−1|| ≤ 1

dist (λ, convσ(T ))
for any λ /∈ convσ(T ),

or equivalently,

||(T − λ)x|| ≥ 1

dist (λ, convσ(T ))
for any λ /∈ convσ(T ) and ||x|| = 1.

Thus

||Tx||2 − 2Re ⟨Tx, x⟩λ+ |λ|2 ≥ inf
s∈convσ(T )

(
|s|2 − 2Re sλ+ |λ|2

)
.

Taking λ = |λ|e−i(θ+π), dividing by |λ| and letting λ→ ∞, we have

Re ⟨Tx, x⟩eiθ ≥ inf
s∈convσ(T )

Re
(
seiθ

)
for ||x|| = 1,

which implies clW (T ) ⊂ convσ(T ). Therefore clW (T ) = convσ(T ).

Corollary 3.4.3. We have:

(a) transaloid ⇒ convexoid;
(b) (G1) ⇒ convexoid.

Proof. (a) Clear.
(b) ||(T − λ)−1|| = 1

dist (λ, σ(T ))
≤ 1

dist (λ, convσ(T ))

Definition 3.4.4. An operator T ∈ B(H) is said to satisfy the projection property if
Reσ(T ) = σ(ReT ), where ReT := 1

2 (T + T ∗).
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Theorem 3.4.5. An operator T ∈ B(H) is convexoid if and only if

Re convσ
(
eiθT

)
= convσ

(
Re (eiθT )

)
for any θ ∈ [0, 2π).

Proof. Observe that

Re
(
eiθconvσ(T )

)
= convσ

(
Re (eiθT )

)
= clW

(
Re (eiθT )

)
= Re clW (eiθT )

= Re
(
eiθclW (T )

)
.

which implies that convσ(T ) = clW (T ) and this argument is reversible.

Example 3.4.6. There exist convexoid operators which are not normaloid and vice
versa. (see [Ha2, Problem 219]).

Example 3.4.7. (An example of a non-convexoid and papranormal operator) Let U
be the unilateral shift on ℓ2, P = diag(1, 0, 0, . . .) and put

T =

[
U + I P

0 0

]
.

Then σ(T ) = σ(U + I) ∪ {0} = {λ : |λ − 1| ≤ 1}. But if x = (− 1
2 , 0, 0, . . .) and

y = (
√
3
2 , 0, 0, . . .) then

∣∣∣∣∣∣∣∣[xy
]∣∣∣∣∣∣∣∣ = 1 and

W (T ) ∋ ⟨T (x⊕ y), x⊕ y⟩ = 1

4
−

√
3

4
< 0.

Therefore T is not convexoid, but T is papranormal (see [T. Furuta, Invitation to
Linear operators]).

Definition 3.4.8. An operator T ∈ B(H) is called p-hyponormal if

(T ∗T )
p ≥ (TT ∗)

p
.

If p = 1, T is hyponormal ad if p = 1
2 , T is called seminormal. It was known that

q-hyponormal ⇒ p-hyponormal for p ≤ q by Löner-Heinz inequality.

Theorem 3.4.9. p-hyponormal =⇒ paranormal.

Proof. See [An].
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It was also well-known that if T is p-hyponormal then
(i) T is normaloid;
(ii) T is reduced by its eigenspaces;
(iii) T−1 is paranormal if it exists.

However p-hyponormal operators need not be transaloid. In fact, p-hyponormality is
not translation-invariant. To see this we first recall:

Lemma 3.4.10. If T is p-hyponormal then Tn is p
n -hyponormal for 0 < p ≤ 1.

Proof. See [AW].

Theorem 3.4.11. There exists an operator T satisfying
(i) T is semi-hyponormal;
(ii) T − λ is not p-hyponormal for any p > 0 and some λ ∈ C.

Proof. Let

S ≡ 4U2 + U∗2 + 2UU∗ + 2 (U =the unilateral shift on ℓ2).

Then we claim that

(a) S is semi-hyponormal;
(b) S − 4 is not p-hyponormal for any p > 0, in fact S − 4 is not paranormal.

Indeed, if we put φ(z) = 2z + z−1 the Tφ is hyponormal but T 2
φ is not because Since

T 2
φ = S, so S is semi-hyponormal. On the other hand, observe that

||(S − 4)e0||2 = 20 and ||(S − 4)2e0|| =
√
384,

so
||(S − 4)e0||2 > ||(S − 4)2e0||,

which is not paranormal.
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3.5 Comments and Problems

The following problem on p-hyponormal operators remains still open:

Problem 3.1.

(a) Is every p-hyponormal operator convexoid ?
(b) Does every p-hyponormal operator satisfy the (G1)-condition ?
(c) Does every p-hyponormal operator satisfy the projection properry ?

In fact,
Yes to (b) =⇒ Yes to (a) =⇒ Yes to (c).

It was known that the projection property holds for every hyponormal operator. For
a proof, see [Put2].

For a partial answer see [M. Cho, T. Huruya, Y. Kim, J. Lee, A note on real parts
of some semi-hyponormal operator.]

It is easily check that every p-hyponormal weighted shift is hyponormal. However
we were unable to answer the following:

Problem 3.2. Is every p-hyponormal Toeplitz operator hyponormal ?

We conclude with a problem of hyponormal operators with finite rank self-commutators.
In general it is quite difficult to determine the subnormality of an operator by def-
inition. An alternative description of subnormality is given by the Bram-Halmos
criterion, which states that an operator T is subnormal if and only if∑

i,j

(T ixj , T
jxi) ≥ 0

for all finite collections x0, x1, · · · , xk ∈ H ([Bra], [Con1, II.1.9]). It is easy to see that
this is equivalent to the following positivity test:

I T ∗ · · · T ∗k

T T ∗T · · · T ∗kT
...

...
. . .

...
T k T ∗T k · · · T ∗kT k

 ≥ 0 (all k ≥ 1 ). (3.6)

Condition (3.6) provides a measure of the gap between hyponormality and subnor-
mality. An operator T ∈ B(H) is called k-hyponormal if the (k+1)× (k+1) operator
matrix in (3.6) is positive; the Bram-Halmos criterion can be then rephrased as saying
that T is subnormal if and only if T is k-hyponormal for every k ≥ 1 ([CMX]). It
now seems to be interesting to consider the following problem:

Which 2-hyponormal operators are subnormal ? (3.7)

The first inquiry involves the self-commutator. The self-commutator of an operator
plays an important role in the study of subnormality. B. Morrel [Mor] showed that
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a pure subnormal operator with rank-one self-commutator (pure means having no
normal summand) is unitarily equivalent to a linear function of the unilateral shift.
Morrel’s theorem can be essentially stated (also see [Con2, p.162]) that if

(i) T is hyponormal;

(ii) [T ∗, T ] is of rank-one; and

(iii) ker [T ∗, T ] is invariant for T ,

(3.8)

then T−β is quasinormal for some β ∈ C. Now remember that every pure quasinormal
operator is unitarily equivalent to U ⊗ P , where U is the unilateral shift and P is
a positive operator with trivial kernel. Thus if [T ∗, T ] is of rank-one (and hence so
is [(T − β)∗, (T − β)]), we must have P ∼= α (̸= 0) ∈ C, so that T − β ∼= αU , or
T ∼= αU + β. It would be interesting (in the sense of giving a simple sufficiency for
the subnormality) to note that Morrel’s theorem gives that if T satisfies the condition
(3.8) then T is subnormal. On the other hand, it was shown ([CuL2, Lemma 2.2])
that if T is 2-hyponormal then T (ker [T ∗, T ]) ⊆ ker [T ∗, T ]. Therefore by Morrel’s
theorem, we can see that

every 2-hyponormal operator with rank-one self-commutator is subnormal. (3.9)

On the other hand, M. Putinar [Pu4] gave a matricial model for the hyponormal
operator T ∈ B(H) with finite rank self-commutator, in the cases where

H0 :=
∞∨
k=0

T ∗k(ran [T ∗, T ]
)
has finite dimension d and H =

∞∨
n=0

TnH0.

In this case, if we write

Hn := Gn ⊖Gn−1 (n ≥ 1) and Gn :=
n∨
k=0

T kH0 (n ≥ 0),

then T has the following two-diagonal structure relative to the decomposition H =
H0 ⊕H1 ⊕ · · · :

T =


B0 0 0 0 · · ·
A0 B1 0 0 · · ·
0 A1 B2 0 · · ·
0 0 A2 B3 · · ·
...

...
...

...
. . .

 , (3.10)

where 
dim (Hn) = dim (Hn+1) = d (n ≥ 0);

[T ∗, T ] = ([B∗
0 , B0] +A∗

0A0)⊕ 0∞;

[B∗
n+1, Bn+1] +A∗

n+1An+1 = AnA
∗
n (n ≥ 0);

A∗
nBn+1 = BnA

∗
n (n ≥ 0).

(3.11)

We will refer the operator (3.10) to the Putinar’s matricial model of rank d. This
model was also introduced in [GuP, Pu1, Xi3, Ya1], and etc.
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We here review a few essential facts concerning weak subnormality. Note that
the operator T is subnormal if and only if there exist operators A and B such that

T̂ :=

[
T A
0 B

]
is normal, i.e.,


[T ∗, T ] := T ∗T − TT ∗ = AA∗

A∗T = BA∗

[B∗, B] +A∗A = 0.

(3.12)

The operator T̂ is called a normal extension of T . We also say that T̂ in B(K)
is a minimal normal extension (briefly, m.n.e.) of T if K has no proper subspace

containing H to which the restriction of T̂ is also a normal extension of T . It is
known that

T̂ = m.n.e.(T ) ⇐⇒ K =
∨{

T̂ ∗nh : h ∈ H, n ≥ 0
}
,

and the m.n.e.(T ) is unique.
An operator T ∈ B(H) is said to be weakly subnormal if there exist operators

A ∈ B(H ′,H) and B ∈ B(H ′) such that the first two conditions in (3.12) hold:

[T ∗, T ] = AA∗ and A∗T = BA∗, (3.13)

or equivalently, there is an extension T̂ of T such that T̂ ∗T̂ f = T̂ T̂ ∗f for all f ∈ H.
The operator T̂ is called a partially normal extension (briefly, p.n.e.) of T . We also

say that T̂ in B(K) is a minimal partially normal extension (briefly, m.p.n.e.) of

T if K has no proper subspace containing H to which the restriction of T̂ is also a
partially normal extension of T . It is known ([CuL2, Lemma 2.5 and Corollary 2.7])
that

T̂ = m.p.n.e.(T ) ⇐⇒ K =
∨{

T̂ ∗nh : h ∈ H, n = 0, 1
}
,

and the m.p.n.e.(T ) is unique. For convenience, if T̂ = m.p.n.e. (T ) is also weakly

subnormal then we write T̂ (2) :=
̂̂
T and more generally, T̂ (n) :=

̂̂
T (n−1), which will

be called the n-th minimal partially normal extension of T . It was ([CuL2], [CJP])
shown that

2-hyponormal =⇒ weakly subnormal =⇒ hyponormal (3.14)

and the converses of both implications in (3.14) are not true in general. It was
([CuL2]) known that

T is weakly subnormal =⇒ T (ker [T ∗, T ]) ⊆ ker [T ∗, T ] (3.15)

and it was ([CJP]) known that if T̂ := m.p.n.e.(T ) then for any k ≥ 1,

T is (k + 1)-hyponormal ⇐⇒ T is weakly subnormal and T̂ is k-hyponormal.
(3.16)
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So, in particular, one can see that if T is subnormal then T̂ is subnormal. It is worth
to noticing that in view of (3.14) and (3.15), Morrel’s theorem gives that every weakly
subnormal operator with rank-one self-commutator is subnormal.

We now have

Theorem 3.5.1. Let T ∈ B(H). If

(i) T is a pure hyponormal operator;
(ii) [T ∗, T ] is of rank-two; and
(iii) ker [T ∗, T ] is invariant for T ,

then the following hold:

1. If T |ker [T∗,T ] has the rank-one self-commutator then T is subnormal;

2. If T |ker [T∗,T ] has the rank-two self-commutator then T is either a subnormal
operator or the Putinar’s matricial model (3.10) of rank two.

Proof. See [LeL3].

Since the operator (3.10) can be constructed from the pair of matrices {A0, B0},
we know that the pair {A0, B0} is a complete set of unitary invariants for the operator
(3.10). Many authors used the following Xia’s unitary invariants {Λ, C} to describe
pure subnormal operators with finite rank self-commutators:

Λ :=
(
T ∗|ran [T∗,T ]

)∗
and C := [T ∗, T ]|ran [T∗,T ].

Consequently,
Λ = B0 and C = [B∗

0 , B0] +A2
0.

We know that given Λ and C (or equivalently, A0 and B0) corresponding to a pure
subnormal operator we can reconstruct T . Now the following question naturally
arises: “what are the restrictions on matrices A0 and B0 such that they represent a
subnormal operator ?” In the cases where A0 and B0 operate on a finite dimensional
Hilbert space, D. Yakubovich [Ya1] showed that such a description can be given in
terms of a topological property of a certain algebraic curve, associated with A0 and
B0. However there is a subtle difference between Yakubovich’s criterion and the
Putinar’s model operator (3.10). In fact, in some sense, Yakubovich gave conditions
on A0 and B0 such that the operator (3.10) can be constructed so that the condition
(3.11) is satisfied. By comparison, the Putinar’s model operator (3.10) was already
constructed so that it satisfies the condition (3.11). Thus we would guess that if the
operator (3.10) can be constructed so that the condition (3.11) is satisfied then two
matrices {A0, B0} in (2.8) must satisfy the Yakubovich’s criterion. In this viewpoint,
we have the following:

Conjecture 3.3. The Putinar’s matricial model (3.10) of rank two is subnormal.

An affirmative answer to the conjecture would show that if T is a hyponormal
operator with rank-two self-commutator and satisfying that ker [T ∗, T ] is invariant
for T then T is subnormal. Hence, in particular, one could obtain: Every weakly
subnormal operator with rank-two self-commutator is subnormal.
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Chapter 4

Weighted Shifts

4.1 Berger’s theorem

Recall that given a bounded sequence of positive numbers α : α0, α1, α2, · · · (called
weights), the (unilateral) weighted shift Wα associated with α is the operator ℓ2(Z+)
defined by

Wαen = αnen+1 (n ≥ 0),

where {en}∞n=0 is the canonical orthonormal basis for ℓ2. It is straightforward to check
that

Wα is compact ⇐⇒ αn → 0.

Indeed, Wα = UD, where U is the unilateral shift and D is the diagonal operator
whose diagonal entries are αn.

We observe:

Proposition 4.1.1. If T ≡Wα is a weighted shift and ω ∈ ∂D then T ∼= ωT .

Proof. If V en := ωnen for all n then V TV ∗ = ωT .

As a consequence of Proposition 4.1.1, we can see that the spectrum of a weighted
shift must be a circular symmetry:

σ(Wα) = σ(ωWα) = ωσ(Wα).

Indeed we have:

Theorem 4.1.2. If T ≡ Wα is a weighted shift with weight sequence α ≡ {αn}∞n=0

such that αn → α+ then

(i) σp(T ) = ∅;
(ii) σ(T ) = {λ : |λ| ≤ α+};
(iii) σe(T ) = {λ : |λ| = α+};
(iv) |λ| < α+ ⇒ ind (T − λ) = −1.
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Proof. The assertion (i) is straightforward. For the other assertions, observe that if
α+ = 0 then T is compact and quasinilpotent. If instead α+ > 0 then T − α+U
(U :=the unilateral shift) is a weighted shift whose weight sequence converges to 0.
Hence T − α+U is a compact and hence

σe(T ) = σe(α+U) = α+σe(U) = {λ : |λ| = α+}.

If |λ| < α+ then T − λ is Fredholm and

index (T − λ) = index (α+U − λ) = −1.

In particular, {λ : |λ| ≤ α+} ⊂ σ(T ). By the assertion (i), we can conclude that
σ(T ) = {λ : |λ| ≤ α+}.

Theorem 4.1.3. If T ≡ Wα is a weighted shift with weight sequence α ≡ {αn}∞n=0

then

[T ∗, T ] =


α2
0

α2
1 − α2

0

α2
2 − α2

1

. . .


Proof. From a straightforward calculation.

The moments of Wα are defined by

β0 := 1, βn+1 = α0 · · ·αn,

but we reserve this term for the sequence γn := β2
n.

Theorem 4.1.4. (Berger’s theorem) Let T ≡ Wα be a weighted shift with weight
sequence α ≡ {αn} and define the moment of T by

γ0 := 1 and γn := α2
0α

2
1 · · ·α2

n−1 (n ≥ 1).

Then T is subnormal if and only if there exists a probability measure ν on
[
0, ∥T∥2

]
such that

γn =

∫
[0,∥T∥2]

tndν(t) (t ≥ 1). (4.1)

Proof. (⇒) Note that T is cyclic. So if T is subnormal then T ∼= Sµ, i.e., there is an
isomorphism U : L2(µ) −→ P 2(µ) such that

Ue0 = 1 and UTU−1 = Sµ.

Observe Tne0 =
√
γnen for all n. Also U(Tne0) = SnµUe0 = Snµ1 = zn. So∫

|z|2ndµ =

∫
|UTne0|2dµ =

∫
|U(

√
γnen)|2dµ = γn

∫
|Uen|2dµ = γn∥Uen∥ = γn.
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If ν is defined on [0, ||T ||2] by

ν(∆) := µ
(
{z : |z|2 ∈ ∆}

)
,

then ν is a probability measure and γn =
∫
tndν(t).

(⇐) If ν is the measure satisfying (4.1), define the measure µ by dµ(reiθ) =
1
2πdθdµ(r). Then we can see that T ∼= Sµ.

Example 4.1.5. (a) The Bergman shift Bα is the weighted shift with weight sequence
α ≡ {αn} given by

αn =

√
n+ 1

n+ 2
(n ≥ 0).

Then Bα is subnormal: indeed,

γn := α2
0α

2
1 · · ·α2

n−1 =
1

2
· 2
3
· · · n

n+ 1
=

1

n+ 1

and if we define µ(t) = t, i.e., dµ = dt then∫ 1

0

tndµ(t) =
1

n+ 1
= γn.

(b) If αn : β, 1, 1, 1, · · · then Wα is subnormal: indeed γn = β2 and if we define

dµ = β2δ1 + (1− β2)δ0 then
∫ 1

0
tndµ = β2 = γn.

Remark. Recall that the Bergman space A(D) for D is defined by

A(D) :=
{
f : D → C : f is analytic with

∫
D
|f |2dµ <∞

}
.

Then the orthonormal basis for A(D) is given by {en ≡
√
n+ 1 zn : n = 0, 1, 2, · · · }

with dµ = 1
πdA. The Bergman operator T : A(D) → A(D) is defined by

Tf = zf.

In this case the matrix (αij) of the Bergman operator T with respect to the basis
{en ≡

√
n+ 1 zn : n = 0, 1, 2, · · · } is given by

αij = ⟨Tej , ei⟩

= ⟨T
√
j + 1 zj ,

√
i+ 1 zi⟩

= ⟨
√
j + 1 zj+1,

√
i+ 1 zi⟩

=
√
(j + 1)(i+ 1)

∫
D
zj+1zidµ

=
√
(j + 1)(i+ 1)

1

π

∫ 2π

0

∫ 1

0

rj+1+iei(j+1−i)θ · rdr dθ

=

{√
j+1
j+2 (i = j + 1)

0 (i ̸= j + 1) :
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therefore

T =



0√
1
2 0√

2
3 0√

3
4 0

. . .
. . .


.
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4.2 k-Hyponormality

Given an n-tuple T = (T1, . . . , Tn) of operators acting on H, we let

[T∗,T] ≡


[T ∗

1 , T1] [T ∗
2 , T1] · · · [T ∗

n , T1]
[T ∗

1 , T2] [T ∗
2 , T2] · · · [T ∗

n , T2]
...

...
...

...
[T ∗

1 , Tk] [T ∗
2 , Tk] · · · [T ∗

n , Tn]

 .
By analogy with the case n = 1, we shall say that T is (jointly) hyponormal if
[T∗,T] ≥ 0.

An operator T ∈ B(H) is called k-hyponormal if (1, T, T 2, · · · , T k) is jointly hy-
ponormal, i.e.,

Mk(T ) ≡
(
[T ∗j , T i]

)k
i,j=1

=


[T ∗, T ] [T ∗2, T ] · · · [T ∗k, T ]

[T ∗, T 2] [T ∗2, T 2] · · · [T ∗k, T 2]
...

...
...

...

[T ∗, T k] [T ∗2, T k] · · · [T ∗k, T k]

 ≥ 0

An application of Choleski algorithm for operator matrices shows that Mk(T ) ≥ 0 is
equivalent to the positivity of the following matrix

1 T ∗ · · · T ∗k

T T ∗T · · · T ∗kT
...

...
...

...

T k T ∗T k · · · T ∗kT k

 .
The Bram-Halmos criterion can be then rephrased as saying that

T is subnormal ⇐⇒ T is k-hyponormal for every k ≥ 1.

Recall ([Ath],[CMX],[CoS]) that T is called weakly k-hyponormal if

LS(T, T 2, · · · , T k) :=


k∑
j=1

αjT
j : α = (α1, · · · , αk) ∈ Ck


consists entirely of hyponormal operators, or equivalently, Mk(T ) is weakly positive,
i.e., ⟨

Mk(T )

λ1x...
λkx

 ,
λ1x...
λkx

⟩ ≥ 0 ∀λ1, · · · , λk ∈ C.
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Observe that ⟨[
(λ1T + · · ·+ λkT

k)∗, (λ1T + · · ·+ λkT
k)
]
x, x

⟩

=

⟨
[T ∗, T ] [T ∗2, T ] · · · [T ∗k, T ]

[T ∗, T 2] [T ∗2, T 2] · · · [T ∗k, T 2]
...

...
...

...

[T ∗, T k] [T ∗2, T k] · · · [T ∗k, T k]



λ1x
λ2x
...

λkx

 ,

λ1x
λ2x
...

λkx


⟩

(4.2)

If k = 2 then T is said to be quadratically hyponormal. If k = 3 then T is said
to be cubically hyponormal. Also T is said to be polynomially hyponormal if p(T ) is
hyponormal for every polynomial p ∈ C[z].

Evidently, by (4.2)

k-hyponormal =⇒ weakly k-hyponormal.

The classes of (weakly) k-hyponormal operators have been studied in an attempt to
bridge the gap between subnormality and hyponormality ([Cu1, Cu2, CuF1, CuF2,
CuF3, CLL, CuL1, CuL2, CuL3, CMX, DPY, McCP]). The study of this gap has been
only partially successful. For example, such a gap is not yet well described for Toeplitz
operators on the Hardy space of the unit circle. For weighted shifts, positive results
appear in [Cu1] and [CuF3], although no concrete example of a weighted shift which
is polynomially hyponormal but not subnormal has yet been found (the existence of
such weighted shifts was established in [CP1] and [CP2]).

Theorem 4.2.1. Let T ≡ Wα be a weighted shift with weight sequence α ≡ {αn}∞0 .
The following are equivalent:

(a) T is k-hyponormal;

(b) For every n ≥ 0, the Hankel matrix

(γn+i+j)
k
i,j=0 ≡


γn γn+1 · · · γn+k+1

γn+1 γn+2 · · · γn+k+2

...
...

...
...

γn+k+1 γn+k+2 · · · γn+2k+2

 is positive.

Proof. [Cu1, Theorem 4]

Lemma 4.2.2. Let T = (T1, T2) be a pair of operators on H. Then T is (jointly)
hyponormal if and only if

(i) T1 is hyponormal
(ii) T2 is hyponormal

(iii) |⟨[T ∗
2 , T1]y, x⟩|

2 ≤ ⟨[T ∗
1 , T1]x, x⟩⟨[T ∗

2 , T2]y, y⟩ (for any x, y ∈ H).
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Proof. [T∗,T] ≥ 0 ⇐⇒
⟨
[T∗,T∗]

(
x
ty

)
,

(
x
ty

)⟩
≥ 0 for any x, y ∈ H and t ∈ R.

Thus

[T∗,T∗] ≥ 0 ⇐⇒
⟨[

[T ∗
1 , T1] [T ∗

2 , T1]
[T ∗

1 , T2] [T ∗
2 , T2]

](
x
ty

)
,

(
x
ty

)⟩
≥ 0

⇐⇒⟨[T ∗
1 , T1]x, x⟩+ t2⟨[T ∗

2 , T2]y, y⟩+ 2tRe ⟨[T ∗
2 , T1]y, x⟩ ≥ 0 (†)

=⇒If T1 and T2 are hyponormal then

t2⟨[T ∗
2 , T2]y, y⟩+ 2t

∣∣⟨[T ∗
2 , T1]y, x⟩

∣∣+ ⟨[T ∗
1 , T1]x, x⟩ ≥ 0

=⇒D/4 ≡ |⟨[T ∗
2 , T1]y, x⟩|

2 − ⟨[T ∗
1 , T1]x, x⟩⟨[T ∗

2 , T2]y, y⟩ ≤ 0

=⇒
∣∣⟨[T ∗

2 , T1]y, x⟩
∣∣2 ≤ ⟨[T ∗

1 , T1]x, x⟩⟨[T ∗
2 , T2]y, y⟩ (∗)

Conversely if (*) holds then

Re ⟨[T ∗
2 , T1]y, x⟩

2 ≤ ⟨[T ∗
1 , T1]x, x⟩⟨[T ∗

2 , T2]y, y⟩,

which implies (†) holds.

Corollary 4.2.3. Let T = (T1, T2) be a pair of operators on H. Then T is hyponor-
mal if and only if T1 and T2 are hyponormal and

[T ∗
2 , T1] = [T ∗

1 , T1]
1
2D[T ∗

2 , T2]
1
2

for some contraction D.

Proof. This follows from a theorem of Smul’jan [Smu]:[
A B
B∗ C

]
≥ 0 ⇐⇒ A ≥ 0, C ≥ 0 and B =

√
AD

√
C for some contraction D.

Corollary 4.2.4. Let T ≡ Wα be a weighted shift with weight sequence α : α0 ≤
α1 ≤ α2 ≤ · · · . Then the following are equivalent:

(i) T is 2-hyponormal;

(ii) α2
n+1

(
α2
n+2 − α2

n

)2 ≤
(
α2
n+1 − α2

n

) (
α2
n+2α

2
n+3 − α2

nα
2
n+1

)
for any n ≥ 0;

(iii) α2
n

(
α2
n+2 − α2

n+1

)2 ≤ α2
n+2

(
α2
n+1 − α2

n

) (
α2
n+3 − α2

n+2

)
for any n ≥ 0.

Proof. By Corollary 4.2.3,

(T, T 2) hyponormal ⇐⇒ [T ∗2, T ] = [T ∗, T ]
1
2E[T ∗2, T 2]

1
2 for some contraction E.

111



CHAPTER 4. WEIGHTED SHIFTS

Observe that [T ∗, T ] and [T ∗2, T 2] are diagonal and that [T ∗2, T ] is a backward
weighted shift. It follows that E is a backward weighted shift. So it suffices to
check that (n, n+ 1)-entries of E. Now,⟨

[T ∗2, T ]en+1, en

⟩
=
⟨
[T ∗, T ]

1
2E[T ∗2, T 2]

1
2 en+1, en

⟩
=
⟨
E[T ∗2, T 2]

1
2 en+1, [T

∗, T ]
1
2 en

⟩
=
⟨⟨
E[T ∗2, T 2]

1
2 en+1, en+1

⟩
en+1,

⟨
[T ∗, T ]

1
2 en, en

⟩
en

⟩
=
⟨
[T ∗2, T 2]

1
2 en+1, en+1

⟩⟨
[T ∗, T ]

1
2 en, en

⟩
⟨Een+1, en+1⟩ .

Thus we can see that such a contraction E exists if and only if∣∣∣⟨[T ∗2, T ]en+1, en

⟩∣∣∣2 ≤ ⟨[T ∗, T ]en, en⟩
⟨
[T ∗2, T 2]en+1, en+1

⟩
∀n ≥ 0

which gives

α2
n+1

(
α2
n+2 − α2

n

)2 ≤
(
α2
n+1 − α2

n

) (
α2
n+2α

2
n+3 − α2

nα
2
n+1

)
(α2

1α0)
2 ≤ α2

0α
2
1α

2
2 (this holds automatically since α1 ≤ α2),

which gives (i) ⇔ (ii).
Finally, (iii) is just (ii) suitably rewritten.
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4.3 The Propagation

We introduce:

Definition 4.3.1. If α0 < α1 = α2 = α3 = · · · then (αn) is said to be flat.

Proposition 4.3.2. If T ≡ Wα is a weighted shift with flat weights then T is sub-
normal.

Proof. Without loss of generality we may assume that

(αn) : α, 1, 1, 1, · · · .

Then γn = α2 for any n = 0, 1, 2, · · · . Put dµ = α2δ1 + (1 − α2)δ0, where δk = the

point mass at k. Then
∫ 1

0
tndµ = (1 − α2) · 0 + α2 · 1 = α2 = γn. Therefore, T is

subnormal.

Theorem 4.3.3. Let T be a weighted shift with weight sequence {αn}∞n=0.

(i) [Sta3] Let T be subnormal. Then

αn = αn+1 for some n ≥ 0 =⇒ α is flat

(ii) [Cu2] Let Wα be 2-hyponormal. Then

αn = αn+1 for some n ≥ 0 =⇒ α is flat.

Proof. (ii) ⇒ (i): Obvious.
(ii) Immediate from Corollary 4.2.4(ii).

Lemma 4.3.4. Let T be a weighted shift whose restriction to
∨
{e1, e2, · · · } is sub-

normal with associated measure µ. Then T is subnormal if and only if

(i) 1
t ∈ L1(µ), i.e.,

∫
1
t dµ <∞;

(ii) α2
0 ≤

(∥∥ 1
t

∥∥
L1

)−1
.

In particular, T is never subnormal when µ(α) > 0.

Proof. Let S := T |∨{e1,e2,··· }. Then S has weights αk(S) := αk+1 (k ≥ 0). So the
corresponding “β numbers” are related by the equation

βk(S) = α1 · · ·αk =
βk+1

α0
(k = 1, 2, · · · ).
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Since βk(S)
2 =

∫
t2kdµ, we see that

T is subnormal ⇐⇒ ∃ a probability measure ν on [0, ∥T∥] such that

1

α2
0

∫
t2(k+1)dν(t) =

β2
k+1

α2
0

= βk(S)
2 =

∫
t2kdµ (k ≥ 0).

So t2dν = α2
0dµ. Thus

T is subnormal ⇐⇒ dν = λδ0 +
α2
0

t
dµ for some λ ≥ 0.

Thus

T is subnormal ⇐⇒
{
α2
0

∫
1
t dµ ≤ 1 or 1

t ∈ L1(µ)
α2
0

∥∥ 1
t

∥∥ ≤ 1.

Theorem 4.3.5. For x > 0, let Tx be the weighted shift whose weight sequence is
given by

x,

√
2

3
,

√
3

4
,

√
4

5
,

√
5

6
, · · ·

(a) Tx is subnormal ⇐⇒ 0 < x ≤
√

1
2

(b) Tx is k−hyponormal ⇐⇒ 0 < x ≤ k+1√
2k(k+2)

In particular, Tx is 2-hyponormal ⇐⇒ 0 < x ≤ 3
4

(c) Tx is quadratically hyponormal ⇐⇒ 0 < x ≤
√

2
3 .

Proof. (a) Tx|∨{e1,e2,··· } has measure dµ = 2tdt. So, 1
t ∈ L1(µ) and∥∥∥∥1t

∥∥∥∥
L1(µ)

= 2 =⇒ x2 ≤ 1

2
=⇒ x ≤

√
1

2
.

(b) It is sufficient to show that γ0 γ1 γ2
γ1 γ2 γ3
γ2 γ3 γ4

 ≥ 0

Since

γ0 = 1, γ1 = x2, γ2 =
2

3
x2, γ3 =

1

2
x2, γ4 =

2

5
x2,
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we have

det

 1 x2 2
3x

2

x2 2
3x

2 1
2x

2

2
3x

2 1
2x

2 2
5x

2

 = x2det

 1
x2 1 2

3
1 2

3
1
2

2
3

1
2

2
5


= x2

(
1

60x2
− 4

135

)
≥ 0 =⇒ x ≤ 3

4
.

(c) See [Cu2]

Let Wα be a weighted shift with weights α ≡ {αn}∞n=0. For s ∈ C, write

D(s) :=
[(
Wα + sW 2

α

)∗
,Wα + sW 2

α

]
and let

Dn(s) := PnD(s)Pn =



q0 γ0 0 · · · 0 0
γ0 q1 γ1 · · · 0 0
0 γ1 q2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · qn−1 γn−1

0 0 0 · · · γn−1 qn


,

where Pn := the orthogonal projection onto the subspace spanned by {e0, · · · , en},{
qn := un + |s|2vn
γn := s

√
wn,

where  un := α2
n − α2

n−1

vn := α2
nα

2
n+1 − α2

n−1α
2
n−2

wn = α2
n(α

2
n+1 − α2

n−1)
2,

and, for notational convenience, α−2 = α−1 = 0.

Clearly,

Wα is quadratically hyponormal ⇐⇒ Dn(s) ≥ 0 for any s ∈ C, for any n ≥ 0.

Let dn(·) = detDn(·). Then dn satisfies the following 2-step recursive formula:

d0 = q0, d1 = q0q1 − |γ0|2, dn+2 = qn+2dn+1 − |γn+1|2dn.

If we let t := |s|2, we observe that dn is a polynomial in t of degree n+1. If we write

dn ≡
n+1∑
i=0

c(n, i)ti,
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then c(n, i) satisfy a double-indexed recursive formula, i.e.,
c(1, 1) = u1v0 + v1u0 − w0

c(n, 0) = u0 · · ·un
c(n, n+ 1) = v0 · · · vn
c(n+ 2, i) = un+2c(n+ 1, i) + vn+2c(n+ 1, i− 1)− wn+1c(n, i− 1).

Theorem 4.3.6. (Outer propagation) Let T be a weighted shift with weight sequence
{αn}∞n=0. If T is quadratically hyponormal then

αn = αn+1 = αn+2 for some n =⇒ αn = αn+1 = αn+2 = αn+3 = · · · .

Proof. We may assume that n = 0 and α0 = α1 = α2 = 1. We want to show that
α3 = 1. A straightforward calculation shows that

d0 = 1 + t

d1 = t2

d2 =
(
α2
3 − 1

)
t3

d3 =
(
α2
3 − 1

) (
α2
3α

2
4 − 1

)
t4

d4 = q4d3 − γ23d2

=
[(
α2
4 − α2

3

)
+ t
(
α2
4α

2
5 − α2

3

)] (
α2
3 − 1

) (
α2
3α

2
4 − 1

)
t4 − tα2

3

(
α2
4 − 1

)2 (
α2
3 − 1

)
t3.

So

lim
t→0+

d4
t4

= −α2
4

(
α2
3 − 1

)3 ≥ 0,

which implies that α3 = 1.

Theorem 4.3.7. (Inner Propagation) Let T be a weighted shift with weight sequence
{αn}∞n=0. If T is quadratically hyponormal then

αn = αn+1 = αn+2 for some n =⇒ α1 = · · · = αn.

Proof. Withou loss of generality we may assume n = 2, i.e., α2 = α3 = α4 = 1. We
want to show that α1 = 1. We consider d3. Now,

d3(0) = q3(0)d2(0) = 0 since q3(0) = α2
3 − α2

2 = 0

d′3(0) = q′3(0)d2(0)− α2
2(α

2
3 − α2

1)
2α1(0) = · · · = 0

d′′3(0) = 2q′3(0)d
′
2(0)− 2(1− α2

1)α
′
1(0) = · · · = −2α4

0(1− α2
1)

3.

Therefore
d3(t) = −α4

0(1− α2
1)

3t2 + · · · .

Since d3 ≥ 0 (all t ≥ 0), it follows α1 = 1.
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Theorem 4.3.8. (Propagation of quadratic hyponormality) Let T be a weighted shift
with weight sequence {αn}∞n=0. If T is quadratically hyponormal then

αn = αn+1 for some n ≥ 1 =⇒ α is flat, i.e., α1 = α2 = · · · .

Proof. Without loss of generality we may assume n = 1 and α1 = α2 = 1. We want
to show that α0 = 1 or α3 = 1. Then we have

d4(t) = α2
0α

2
4(α

2
0 − 1)(α2

3 − 1)3t2 + c(4, 3)t3 + c(4, 4)t4 + c(4, 5)t5,

so

lim
t→0+

d4(t)

t2
= α2

0α
2
4(α

2
0 − 1)(α2

3 − 1)3 ≥ 0.

Thus α0 = 1 or α3 = 1, so that three equal weights are present.

Remark. However the condition “n ≥ 1” cannot be relaxed to “n ≥ 0”. For example,
in view of Theorem 4.3.5, if

α :

√
2

3
,

√
2

3
,

√
3

4
,

√
4

5
,

√
5

6
, · · ·

thenWα is quadratically hyponormal but not subnormal. In fact, Wα is not cubically
hyponormal : if we let

c5(t) := det (P5[(Wα + tW 2
α + t2W 3

α)
∗, (Wα + tW 2

α + t2W 3
α)]P5)

then

lim
t→0+

c5(t)

t8
= − 1

2041200
< 0.

We have a related problem (see Problems 4.1 and 4.2).

Theorem 4.3.9. If Wα is a polynomial hyponormal weighted shift with weight se-
quence {αn}∞n=0 such that α0 = α1 then α is flat.

Proof. Without loss of generality we may assume α0 = α1 = 1. We claim that if
α0 = α1 = 1 and Wα is weakly k-hyponormal then

(2− α2
k−1)α

2
k ≥ 1 for all k ≥ 3. (4.3)

For (4.3) suppose Wα is weakly k-hyponormal. Then Tk :=Wα+ sW
k
α is hyponormal

for every s ∈ R. For k ≥ 3,

Dk = Pk[T
∗
k , Tk]Pk =



qk,0 0 0 · · · γk,0 0
0 qk,1 0 · · · 0 γk,1
0 0 qk,2 · · · 0 0
...

...
...

. . .
...

...
γk,0 0 0 · · · qk,k−1 0
0 γk,1 0 · · · 0 qk,k


,
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where

qk,j :=

{
(α2
j − α2

j−1) + s2(α2
k+j−1α

2
k+j−2 · · ·α2

j ) (0 ≤ j ≤ k − 1)

(α2
k − α2

k−1) + s2(α2
2k−1α

2
2k−2 · · ·α2

k − α2
k−1α

2
k−2 · · ·α2

0) (j = k)

γk,0 = sα0α1 · · ·αk−2α
2
k−1

γk,1 = sα1α2 · · ·αk−1(α
2
k − α2

0).

Thus

detDk =

{
(qk,kqk,1 − γ2k,1)(qk,k−1qk,0 − γ2k,0)qk,k−2qk,k−3 · · · qk,2 (k ≥ 4)

(q3,3q3,1 − γ23,1)(q3,2q3,0 − γ23,0) (k = 3)

If α0 = α1 = 0 and if we let t := s2 then

lim
t→0+

detDk

tk
= (2α2

k − α2
k−1α

2
k − 1)

k−1∏
j=2

α2
j (α

2
j − α2

j−1).

Since detDk ≥ 0 it follows that

(2− α2
k−1)α

2
k − 1 ≥ 0,

which proves (4.3). If limt→0+ α
2
n = α then (2− α2)α− 1 ≥ 0, i.e.,

(α− 1)2 ≤ 0, i.e., α = 1.

Consider the case of cubic hyponormality. LetWα be a hyponormal weighted shift
with {αn}∞n=0. For s, t ∈ C, let

Cn(s, t) := Pn[(Wα + sW 2
α + tW 3

α)
∗Wα + sW 2

α + tW 3
α]Pn.

Then Cn(s, t) is a pentadiagonal matrix :

Cn(s, t) =



q0 γ0 υ0 0 0 · · · 0
γ0 q1 γ1 υ1 0 0 · · · 0
υ0 γ1 q2 γ2 υ2 0 · · · 0
0 υ1 γ2 q3 γ3 υ3 · · · 0
. . .

. . .
. . .

. . .
. . .

. . . · · · 0
. . .

. . .
. . .

. . .
. . .

. . . · · · υn−2

. . .
. . .

. . .
. . .

. . .
. . .

. . . γn−1

· · · · · · · · · · · · · · · υn−2 γn−1 qn


,

where
qn = (α2

n − α2
n−1) + (α2

nα
2
n+1|t|2 + (α2

nα
2
n+1α

2
n+2 − α2

n−3α
2
n−2α

2
n−1)|t|2

γn = αn(α
2
n+1 − α2

n−1)s+ αn(α
2
n+1α

2
n+2 − α2

n−1α
2
n−2)st

υn = αnαn+1(α
2
n+2 − α2

n−1)t
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and α−1 = α−2 = α−3 = 0. Then

Wα is cubically hyponormal ⇐⇒ detCn(s, t) ≥ 0 (s, t ∈ C, n ≥ 0).

In particular, if dk := detCk(s, t) then

dk =
(
qk−1 −

γk−3γk−2υk−3

|γk−3|2
)
dk−1 −

(
|γk−2|2 −

qk−2γk−3γk−2υk−3

|γk−3|2
)
dk−2

+
(
|υk−3|2qk−2 − γk−3γk−2υk−3

)
dk−3 + |υk−4|2

(
|υk−3|2 −

qk−3γk−3γk−2υk−3

|γk−3|2
)
dk−4

+
|υk−4|2|υk−2|2γk−3γk−2υk−3

|γk−3|2
dk−5.
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4.4 The Perturbations

Recall the Bram-Halmos criterion for subnormality, which states that an operator T
is subnormal if and only if ∑

i,j

(T ixj , T
jxi) ≥ 0

for all finite collections x0, x1, · · · , xk ∈ H, or equivalently,
I T ∗ . . . T ∗k

T T ∗T . . . T ∗kT
...

...
. . .

...
T k T ∗T k . . . T ∗kT k

 ≥ 0 (all k ≥ 1). (4.4)

Condition (4.4) provides a measure of the gap between hyponormality and sub-
normality. In fact, the positivity condition (4.4) for k = 1 is equivalent to the hy-
ponormality of T , while subnormality requires the validity of (4.4) for all k. Let
[A,B] := AB −BA denote the commutator of two operators A and B, and define T
to be k-hyponormal whenever the k × k operator matrix

Mk(T ) := ([T ∗j , T i])ki,j=1 (4.5)

is positive. An application of the Choleski algorithm for operator matrices shows that
the positivity of (4.5) is equivalent to the positivity of the (k + 1)× (k + 1) operator
matrix in (4.4); the Bram-Halmos criterion can be then rephrased as saying that T is
subnormal if and only if T is k-hyponormal for every k ≥ 1.

Recall also that T ∈ L(H) is said to be weakly k-hyponormal if

LS(T, T 2, · · · , T k) :=


k∑
j=1

αjT
j : α = (α1, · · · , αk) ∈ Ck


consists entirely of hyponormal operators, or equivalently, Mk(T ) is weakly positive,
i.e.,

(Mk(T )

λ0x...
λkx

 ,
λ0x...
λkx

) ≥ 0 for x ∈ H and λ0, · · · , λk ∈ C. (4.6)

If k = 2 then T is said to be quadratically hyponormal, and if k = 3 then T is said to
be cubically hyponormal. Similarly, T ∈ B(H) is said to be polynomially hyponormal
if p(T ) is hyponormal for every polynomial p ∈ C[z]. It is known that k-hyponormal
⇒ weakly k-hyponormal, but the converse is not true in general.

In the present section we renew our efforts to help describe the gap between sub-
normality and hyponormality, with particular emphasis on polynomial hyponormality.
We focus on the class of unilateral weighted shifts, and initiate a study of how the
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above mentioned notions behave under finite perturbations of the weight sequence.
We first obtain three concrete results:

(i) the subnormality of Wα is never stable under nonzero finite rank perturbations
unless the perturbation is confined to the zeroth weight;

(ii) 2-hyponormality implies positive quadratic hyponormality, in the sense that
the Maclaurin coefficients of Dn(s) := detPn [(Wα + sW 2

α)
∗, Wα + sW 2

α]Pn are non-
negative, for every n ≥ 0, where Pn denotes the orthogonal projection onto the basis
vectors {e0, · · · , en}; and

(iii) if α is strictly increasing and Wα is 2-hyponormal then for α′ a small pertur-
bation of α, the shift Wα′ remains positively quadratically hyponormal.

Along the way we establish two related results, each of independent interest:
(iv) an integrality criterion for a subnormal weighted shift to have an n-step sub-

normal extension; and
(v) a proof that the sets of k-hyponormal and weakly k-hyponormal operators are

closed in the strong operator topology.

C. Berger’s characterization of subnormality for unilateral weighted shifts states
that Wα is subnormal if and only if there exists a Borel probability measure µ sup-
ported in [0, ||Wα||2], with ||Wα||2 ∈ suppµ, such that

γn =

∫
tndµ(t) for all n ≥ 0.

Given an initial segment of weights α : α0, · · ·αm, the sequence α̂ ∈ ℓ∞(Z+) such
that α̂ : αi (i = 0, · · · ,m) is said to be recursively generated by α if there exists r ≥ 1
and φ0, · · · , φr−1 ∈ R such that

γn+r = φ0γn + · · ·+ φr−1γn+r−1 (all n ≥ 0),

where γ0 = 1, γn = α2
0 · · ·α2

n−1 (n ≥ 1). In this case, Wα̂ with weights α̂ is said to
be recursively generated. If we let

g(t) := tr − (φr−1t
r−1 + · · ·+ φ0)

then g has r distinct real roots 0 ≤ s0 < · · · < sr−1. Then Wα̂ is a subnormal shift
whose Berger measure µ is given by

µ = ρ0δs0 + · · ·+ ρr−1δsr−1,

where (ρ0, · · · , ρr−1) is the unique solution of the Vandermonde equation
1 1 · · · 1
s0 s1 · · · sr−1

...
...

...
sr−1
0 sr−1

1 · · · sr−1
r−1



ρ0
ρ1
...

ρr−1

 =


γ0
γ1
...

γr−1

 .
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For example, given α0 < α1 < α2, W ̂(α0,α1,α2)
is the recursive weighted shift whose

weights are calculated according to the recursive relation

α2
n+1 = φ1 + φ0

1

α2
n

,

where φ0 = −α2
0α

2
1(α

2
2−α

2
1)

α2
1−α2

0
and φ1 = −α2

1(α
2
2−α

2
0)

α2
1−α2

0
. In this case, W ̂(α0,α1,α2)

is subnor-

mal with 2-atomic Berger measure. Write W ̂x(α0,α1,α2)
for the weighted shift whose

weight sequence consists of the initial weight x followed by the weight sequence of
W ̂(α0,α1,α2)

.

By the Density Theorem ([CuF2, Theorem 4.2 and Corollary 4.3]), we know that
if Wα is a subnormal weighted shift with weights α = {αn} and ϵ > 0, then there
exists a nonzero compact operator K with ||K|| < ϵ such thatWα+K is a recursively
generated subnormal weighted shift; in fact Wα+K =W

α̂(m)
for some m ≥ 1, where

α(m) : α0, · · · , αm. The following result shows that K cannot generally be taken to
be finite rank.

Theorem 4.4.1. (Finite Rank Perturbations of Subnormal Shifts) If Wα is a subnor-
mal weighted shift then there exists no nonzero finite rank operator F (̸= cP{e0}) such
that Wα + F is a subnormal weighted shift. Concretely, suppose Wα is a subnormal
weighted shift with weight sequence α = {αn}∞n=0 and assume α′ = {α′

n} is a nonzero
perturbation of α in a finite number of weights except the initial weight; then Wα′ is
not subnormal.

We next consider the selfcommutator [(Wα + sW 2
α)

∗,Wα + sW 2
α]. Let Wα be a

hyponormal weighted shift. For s ∈ C, we write

D(s) := [(Wα + sW 2
α)

∗,Wα + sW 2
α]

and we let

Dn(s) := Pn[(Wα+sW
2
α)

∗,Wα+sW
2
α]Pn =



q0 r̄0 0 . . . 0 0
r0 q1 r̄1 . . . 0 0
0 r1 q2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . qn−1 r̄n−1

0 0 0 . . . rn−1 qn


, (4.7)

where Pn is the orthogonal projection onto the subspace generated by {e0, · · · , en},

qn := un + |s|2vn
rn := s

√
wn

un := α2
n − α2

n−1

vn := α2
nα

2
n+1 − α2

n−1α
2
n−2

wn := α2
n(α

2
n+1 − α2

n−1)
2,

(4.8)
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and, for notational convenience, α−2 = α−1 = 0. Clearly, Wα is quadratically hy-
ponormal if and only if Dn(s) ≥ 0 for all s ∈ C and all n ≥ 0. Let dn(·) := det (Dn(·)).
Then dn satisfies the following 2–step recursive formula:

d0 = q0, d1 = q0q1 − |r0|2, dn+2 = qn+2dn+1 − |rn+1|2dn.

If we let t := |s|2, we observe that dn is a polynomial in t of degree n + 1, and if

we write dn ≡
∑n+1
i=0 c(n, i)t

i, then the coefficients c(n, i) satisfy a double-indexed
recursive formula, namely

c(n+ 2, i) = un+2 c(n+ 1, i) + vn+2 c(n+ 1, i− 1)− wn+1 c(n, i− 1),

c(n, 0) = u0 · · ·un, c(n, n+ 1) = v0 · · · vn, c(1, 1) = u1v0 + v1u0 − w0

(4.9)

(n ≥ 0, i ≥ 1). We say that Wα is positively quadratically hyponormal if c(n, i) ≥ 0
for every n ≥ 0, 0 ≤ i ≤ n + 1. Evidently, positively quadratically hyponormal =⇒
quadratically hyponormal. The converse, however, is not true in general.

The following theorem establishes a useful relation between 2-hyponormality and
positive quadratic hyponormality.

Theorem 4.4.2. Let α ≡ {αn}∞n=0 be a weight sequence and assume that Wα is 2-
hyponormal. Then Wα is positively quadratically hyponormal. More precisely, if Wα

is 2-hyponormal then

c(n, i) ≥ v0 · · · vi−1ui · · ·un (n ≥ 0, 0 ≤ i ≤ n+ 1). (4.10)

In particular, if α is strictly increasing and Wα is 2-hyponormal then the Maclaurin
coefficients of dn(t) are positive for all n ≥ 0.

If Wα is a weighted shift with weight sequence α = {αn}∞n=0, then the moments
of Wα are usually defined by β0 := 1, βn+1 := αnβn (n ≥ 0); however, we prefer to
reserve this term for the sequence γn := β2

n (n ≥ 0). A criterion for k-hyponormality
can be given in terms of these moments ([Cu2, Theorem 4]): if we build a (k + 1)×
(k + 1) Hankel matrix A(n; k) by

A(n; k) :=


γn γn+1 . . . γn+k
γn+1 γn+2 . . . γn+k+1

...
...

...
γn+k γn+k+1 . . . γn+2k

 (n ≥ 0),

then
Wα is k-hyponormal ⇐⇒ A(n; k) ≥ 0 (n ≥ 0). (4.11)

In particular, for α strictly increasing, Wα is 2-hyponormal if and only if

det

 γn γn+1 γn+2

γn+1 γn+2 γn+3

γn+2 γn+3 γn+4

 ≥ 0 (n ≥ 0). (4.12)
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One might conjecture that if Wα is a k-hyponormal weighted shift whose weight
sequence is strictly increasing then Wα remains weakly k-hyponormal under a small
perturbation of the weight sequence. We will show below that this is true for k = 2
([?]).

In [CuF3, Theorem 4.3], it was shown that the gap between 2-hyponormality and
quadratic hyponormality can be detected by unilateral shifts with a weight sequence
α :

√
x, (

√
a,
√
b,
√
c)∧. In particular, there exists a maximum value H2 ≡ H2(a, b, c)

of x that makes W√
x,(

√
a,
√
b,
√
c)∧ 2-hyponormal; H2 is called the modulus of 2-

hyponormality (cf. citeCuF3). Any value of x > H2 yields a non-2-hyponormal
weighted shift. However, if x−H2 is small enough, W√

x,(
√
a,
√
b,
√
c)∧ is still quadrati-

cally hyponormal. The following theorem shows that, more generally, for finite rank
perturbations of weighted shifts with strictly increasing weight sequences, there al-
ways exists a gap between 2-hyponormality and quadratic hyponormality.

Theorem 4.4.3. (Finite Rank Perturbations of 2-hyponormal Shifts) Let α = {αn}∞n=0

be a strictly increasing weight sequence. If Wα is 2-hyponormal then Wα remains pos-
itively quadratically hyponormal under a small nonzero finite rank perturbation of α.

We are ready for:

Proof of Theorem 4.4.1. It suffices to show that if T is a weighted shift whose re-
striction to

∨
{en, en+1, · · · } (n ≥ 2) is subnormal then there is at most one αn−1 for

which T is subnormal.
Let W := T |∨{en−1,en,en+1,··· } and S := T |∨{en,en+1,··· }, where n ≥ 2. Then

W and S have weights αk(W ) := αk+n−1 and αk(S) := αk+n (k ≥ 0). Thus the
corresponding moments are related by the equation

γk(S) = α2
n · · ·α2

n+k−1 =
γk+1(W )

α2
n−1

.

We now adapt the proof of [Cu2, Proposition 8]. Suppose S is subnormal with asso-

ciated Berger measure µ. Then γk(S) =
∫ ||T ||2

0
tk dµ. Thus W is subnormal if and

only if there exists a probability measure ν on [0, ||T ||2] such that

1

α2
n−1

∫ ||T ||2

0

tk+1 dν(t) =

∫ ||T ||2

0

tk dµ(t) for all k ≥ 0,

which readily implies that t dν = α2
n−1 dµ. Thus W is subnormal if and only if the

formula

dν := λ · δ0 +
α2
n−1

t
dµ

defines a probability measure for some λ ≥ 0, where δ0 is the point mass at the
origin. In particular 1

t ∈ L1(µ) and µ({0}) = 0 whenever W is subnormal. If we
repeat the above argument for W and V := T |∨{en−2,en−1,··· }, then we should have
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that ν({0}) = 0 whenever V is subnormal. Therefore we can conclude that if V is
subnormal then λ = 0, and hence

dν =
α2
n−1

t
dµ.

Thus we have

1 =

∫ ||T ||2

0

dν(t) = α2
n−1

∫ ||T ||2

0

1

t
dµ(t),

so that

α2
n−1 =

(∫ ||T ||2

0

1

t
dµ(t)

)−1

,

which implies that αn−1 is determined uniquely by {αn, αn+1, · · · } whenever T is
subnormal. This completes the proof. �

Theorem 4.4.1 says that a nonzero finite rank perturbation of a subnormal shift is
never subnormal unless the perturbation occurs at the initial weight. However, this is
not the case for k-hyponormality. To see this we use a close relative of the Bergman

shift B+ (whose weights are given by α = {
√

n+1
n+2}

∞
n=0); it is well known that B+ is

subnormal.

Example 4.4.4. For x > 0, let Tx be the weighted shift whose weights are given by

α0 :=

√
1

2
, α1 :=

√
x, and αn :=

√
n+ 1

n+ 2
(n ≥ 2).

Then we have:

(i)

Tx is subnormal ⇐⇒ x = 2
3 ;

(ii)

Tx is 2-hyponormal ⇐⇒ 63−
√
129

80 ≤ x ≤ 24
35 .

Proof. Assertion (i) follows from Theorem 4.4.1. For assertion (ii) we use (4.12): Tx
is 2-hyponormal if and only if

det

 1 1
2

1
2x

1
2

1
2x

3
8x

1
2x

3
8x

3
10x

 ≥ 0 and det

 1
2

1
2x

3
8x

1
2x

3
8x

3
10x

3
8x

3
10x

1
4x

 ≥ 0,

or equivalently, 63−
√
129

80 ≤ x ≤ 24
35 .

For perturbations of recursive subnormal shifts of the form W(
√
a,
√
b,
√
c)∧ , subnor-

mality and 2-hyponormality coincide.
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Theorem 4.4.5. Let α = {αn}∞n=0 be recursively generated by
√
a,
√
b,
√
c. If Tx is

the weighted shift whose weights are given by αx : α0, · · · , αj−1,
√
x, αj+1, · · · , then

we have

Tx is subnormal ⇐⇒ Tx is 2-hyponormal ⇐⇒

{
x = α2

j if j ≥ 1;

x ≤ a if j = 0.

Proof. Since α is recursively generated by
√
a,
√
b,
√
c, we have that α2

0 = a, α2
1 =

b, α2
2 = c,

α2
3 =

b(c2 − 2ac+ ab)

c(b− a)
, and α2

4 =
bc3 − 4abc2 + 2ab2c+ a2bc− a2b2 + a2c2

(b− a)(c2 − 2ac+ ab)
.

(4.13)
Case 1 (j = 0): It is evident that Tx is subnormal if and only if x ≤ a. For

2-hyponormality observe by (4.11) that Tx is 2-hyponormal if and only if

det

 1 x bx
x bx bcx
bx bcx α2

3bcx

 ≥ 0,

or equivalently, x ≤ a.
Case 2 (j ≥ 1): Without loss of generality we may assume that j = 1 and a = 1.

Thus α1 =
√
x. Then by Theorem 4.4.1, Tx is subnormal if and only if x = b. On the

other hand, by (4.12), Tx is 2-hyponormal if and only if

det

1 1 x
1 x cx
x cx α2

3cx

 ≥ 0 and det

 1 x cx
x cx α2

3cx
cx α2

3cx α2
3α

2
4cx

 ≥ 0.

Thus a direct calculation with the specific forms of α3, α4 given in (4.13) shows that

Tx is 2-hyponormal if and only if (x − b)
(
x− b(c2−2c+b)

b−1

)
≤ 0 and x ≤ b. Since

b ≤ b(c2−2c+b)
b−1 , it follows that Tx is 2-hyponormal if and only if x = b. This completes

the proof.

With the notation in (4.8), we let

pn := un vn+1 − wn (n ≥ 0).

We then have:

Lemma 4.4.6. If α ≡ {αn}∞n=0 is a strictly increasing weight sequence then the
following statements are equivalent:

(i)
Wα is 2-hyponormal;

(ii)
α2
n+1(un+1 + un+2)

2 ≤ un+1vn+2 (n ≥ 0);
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(iii)
α2

n

α2
n+2

un+2

un+3
≤ un+1

un+2
(n ≥ 0);

(iv)
pn ≥ 0 (n ≥ 0).

Proof. This follows from a straightforward calculation.

We are ready for:

Proof of Theorem 4.4.2. If α is not strictly increasing then α is flat, by the argument
of [Cu2, Corollary 6], i.e., α0 = α1 = α2 = · · · . Then

Dn(s) =

[
α2
0 + |s|2α4

0 s̄α3
0

sα3
0 |s|2α4

0

]
⊕ 0∞

(cf. (4.7)), so that (4.10) is evident. Thus we may assume that α is strictly increasing,
so that un > 0, vn > 0 and wn > 0 for all n ≥ 0. Recall that if we write dn(t) :=∑n+1
i=0 c(n, i)t

i then the c(n, i)’s satisfy the following recursive formulas (cf. (4.9)):

c(n+2, i) = un+2 c(n+1, i)+vn+2 c(n+1, i−1)−wn+1 c(n, i−1) (n ≥ 0, 1 ≤ i ≤ n).
(4.14)

Also, c(n, n + 1) = v0 · · · vn (again by (4.9) and pn := unvn+1 − wn ≥ 0 (n ≥ 0), by
Lemma 4.4.6. A straightforward calculation shows that

d0(t) = u0 + v0 t;

d1(t) = u0u1 + (v0u1 + p0) t+ v0v1 t
2;

d2(t) = u0u1u2 + (v0u1u2 + u0p1 + u2p0) t+ (v0v1u2 + v0p1 + v2p0) t
2 + v0v1v2 t

3.
(4.15)

Evidently,
c(n, i) ≥ 0 (0 ≤ n ≤ 2, 0 ≤ i ≤ n+ 1). (4.16)

Define
β(n, i) := c(n, i)− v0 · · · vi−1ui · · ·un (n ≥ 1, 1 ≤ i ≤ n).

For every n ≥ 1, we now have

c(n, i) =


u0 · · ·un ≥ 0 (i = 0)

v0 · · · vi−1ui · · ·un + β(n, i) (1 ≤ i ≤ n)

v0 · · · vn ≥ 0 (i = n+ 1).

(4.17)

For notational convenience we let β(n, 0) := 0 for every n ≥ 0.

Claim 1. For n ≥ 1,
c(n, n) ≥ un c(n− 1, n) ≥ 0.

Proof of Claim 1. We use mathematical induction. For n = 1,

c(1, 1) = v0u1 + p0 ≥ u1 c(0, 1) ≥ 0,
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and

c(n+ 1, n+ 1) = un+1 c(n, n+ 1) + vn+1 c(n, n)− wnc(n− 1, n)

≥ un+1 c(n, n+ 1) + vn+1 unc(n− 1, n)− wn c(n− 1, n) (by inductive hypothesis)

= un+1 c(n, n+ 1) + pn c(n− 1, n)

≥ un+1 c(n, n+ 1),

which proves Claim 1.

Claim 2. For n ≥ 2,

β(n, i) ≥ un β(n− 1, i) ≥ 0 (0 ≤ i ≤ n− 1). (4.18)

Proof of Claim 2. We use mathematical induction. If n = 2 and i = 0, this is trivial.
Also,

β(2, 1) = u0 p1 + u2 p0 = u0 p1 + u2 β(1, 1) ≥ u2 β(1, 1) ≥ 0.

Assume that (4.18) holds. We shall prove that

β(n+ 1, i) ≥ un+1 β(n, i) ≥ 0 (0 ≤ i ≤ n).

For,
β(n+ 1, i) + v0 · · · vi−1ui · · ·un+1 = c(n+ 1, i) (by (4.14))

= un+1c(n, i) + vn+1c(n, i− 1)− wnc(n− 1, i− 1)

= un+1

(
β(n, i) + v0 · · · vi−1ui · · ·un

)
+ vn+1

(
β(n, i− 1) + v0 · · · vi−2ui−1 · · ·un

)
− wn

(
β(n− 1, i− 1) + v0 · · · vi−2ui−1 · · ·un−1

)
,

so that

β(n+ 1, i) = un+1β(n, i) + vn+1β(n, i− 1)− wnβ(n− 1, i− 1)

+ v0 · · · vi−2ui−1 · · ·un−1 (unvn+1 − wn)

= un+1β(n, i) + vn+1β(n, i− 1)− wnβ(n− 1, i− 1) + (v0 · · · vi−2ui−1 · · ·un−1) pn

≥ un+1β(n, i) + vn+1unβ(n− 1, i− 1)− wnβ(n− 1, i− 1)

(by the inductive hypothesis and Lemma 4.4.6;

observe that i− 1 ≤ n− 1, so (4.18) applies)

= un+1β(n, i) + pn β(n− 1, i− 1)

≥ un+1 β(n, i),

which proves Claim 2.
By Claim 2 and (4.17), we can see that c(n, i) ≥ 0 for all n ≥ 0 and 1 ≤ i ≤ n− 1.

Therefore (4.16), (4.17), Claim 1 and Claim 2 imply

c(n, i) ≥ v0 · · · vi−1ui · · ·un (n ≥ 0, 0 ≤ i ≤ n+ 1).
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This completes the proof. �

To prove Theorem 4.4.3 we need:

Lemma 4.4.7. ([CuF3, Lemma 2.3]) Let α ≡ {αn}∞n=0 be a strictly increasing weight
sequence. If Wα is 2-hyponormal then the sequence of quotients

Θn :=
un+1

un+2
(n ≥ 0)

is bounded away from 0 and from ∞. More precisely,

1 ≤ Θn ≤ u1
u2

(
||Wα||2

α0α1

)2

for sufficiently large n.

In particular, {un}∞n=0 is eventually decreasing.

We are ready for:

Proof of Theorem 4.4.3. By Theorem 4.4.2, Wα is strictly positively quadratically
hyponormal, in the sense that all coefficients of dn(t) are positive for all n ≥ 0. Note
that finite rank perturbations of α affect a finite number of values of un, vn and wn.
More concretely, if α′ is a perturbation of α in the weights {α0, · · · , αN}, then un, vn,
wn and pn are invariant under α′ for n ≥ N +3. In particular, pn ≥ 0 for n ≥ N +3.

Claim 1. For n ≥ 3, 0 ≤ i ≤ n+ 1,

c(n, i) =un c(n− 1, i) + pn−1 c(n− 2, i− 1) +
n∑
k=4

pk−2

 n∏
j=k

vj

 c(k − 3, i− n+ k − 2)

+ vn · · · v3 ρi−n+1,
(4.19)

where

ρi−n+1 =


0 (i < n− 1)

u0p1 (i = n− 1)

v0p1 + v2p0 (i = n)

v0v1v2 (i = n+ 1)

(cf. [CuF3, Proof of Theorem 4.3]).

Proof of Claim 1. We use induction. For n = 3, 0 ≤ i ≤ 4,

c(3, i) = u3 c(2, i) + v3 c(2, i− 1)− w2 c(1, i− 1)

= u3 c(2, i) + v3

(
u2 c(1, i− 1) + v2 c(1, i− 2)− w1 c(0, i− 2)

)
− w2 c(1, i− 1)

= u3 c(2, i) + p2 c(1, i− 1) + v3

(
v2 c(1, i− 2)− w1 c(0, i− 2)

)
= u3 c(2, i) + p2 c(1, i− 1) + v3 ρi−2,
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where by (4.15),

ρi−2 =


0 (i < 2)

u0p1 (i = 2)

v0p1 + v2p0 (i = 3)

v0v1v2 (i = 4).

Now,

c(n+ 1, i) = un+1c(n, i) + vn+1c(n, i− 1)− wnc(n− 1, i− 1)

= un+1c(n, i) + vn+1

(
unc(n− 1, i− 1) + pn−1c(n− 2, i− 2)

+
n∑
k=4

pk−2

 n∏
j=k

vj

 c(k − 3, i− n+ k − 3) + vn · · · v3ρi−n
)
− wn c(n− 1, i− 1)

= un+1c(n, i) + pnc(n− 1, i− 1) + vn+1pn−1c(n− 2, i− 2)

+ vn+1

n∑
k=4

pk−2

 n∏
j=k

vj

 c(k − 3, i− n+ k − 3) + vn+1 · · · v3ρi−n

(by inductive hypothesis)

= un+1c(n, i) + pnc(n− 1, i− 1) +
n+1∑
k=4

pk−2

n+1∏
j=k

vj

 c(k − 3, i− n+ k − 3)

+ vn+1 · · · v3ρi−n,
which proves Claim 1.

Write u′n, v
′
n, w

′
n, p

′
n, ρ

′
n, and c

′(·, ·) for the entities corresponding to α′. If pn > 0
for every n = 0, · · · , N+2, then in view of Claim 1, we can choose a small perturbation
such that p′n > 0 (0 ≤ n ≤ N + 2) and therefore c′(n, i) > 0 for all n ≥ 0 and
0 ≤ i ≤ n+ 1, which implies that Wα′ is also positively quadratically hyponormal. If
instead pn = 0 for some n = 0, · · · , N + 2, careful inspection of (4.19) reveals that
without loss of generality we may assume p0 = · · · = pN+2 = 0. By Theorem 4.4.2,
we have that for a sufficiently small perturbation α′ of α,

c′(n, i) > 0 (0 ≤ n ≤ N + 2, 0 ≤ i ≤ n+ 1) and c′(n, n+ 1) > 0 (n ≥ 0). (4.20)

Write
kn :=

vn
un

(n = 2, 3, · · · ).

Claim 2. {kn}∞n=2 is bounded.

Proof of Claim 2. Observe that

kn =
vn
un

=
α2
nα

2
n+1 − α2

n−1α
2
n−2

α2
n − α2

n−1

= α2
n + α2

n−1 + α2
n

α2
n+1 − α2

n

α2
n − α2

n−1

+ α2
n−1

α2
n−1 − α2

n−2

α2
n − α2

n−1

.
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Therefore if Wα is 2-hyponormal then by Lemma 4.4.7, the sequences

{
α2
n+1 − α2

n

α2
n − α2

n−1

}∞

n=2

and

{
α2
n−1 − α2

n−2

α2
n − α2

n−1

}∞

n=2

are both bounded, so that {kn}∞n=2 is bounded. This proves Claim 2.

Write k := supn kn. Without loss of generality we assume k < 1 (this is possible
from the observation that cα induces {c2kn}). Choose a sufficiently small perturbation
α′ of α such that if we let

h := sup
0≤ℓ≤N+2;0≤m≤1

∣∣∣∣∣∣
N+4∑
k=4

p′k−2

N+3∏
j=k

v′j

 c′(k − 3, ℓ) + v′N+3 · · · v′3 ρ′m

∣∣∣∣∣∣ (4.21)

then

c′(N + 3, i)− 1

1− k
h > 0 (0 ≤ i ≤ N + 3) (4.22)

(this is always possible because by Theorem 4.4.2, we can choose a sufficiently small
|p′i| such that

c′(N +3, i) > v0 · · · vi−1ui · · ·uN+3− ϵ and |h| < (1−k)
(
v0 · · · vi−1ui · · ·uN+3− ϵ

)
for any small ϵ > 0).

Claim 3. For j ≥ 4 and 0 ≤ i ≤ N + j,

c′(N + j, i) ≥ uN+j · · ·uN+4

(
c′(N + 3, i)−

j−3∑
n=1

kn h

)
. (4.23)

Proof of Claim 3. We use induction. If j = 4 then by Claim 1 and (4.21),

c′(N + 4, i) = u′N+4c
′(N + 3, i) + p′N+3c

′(N + 2, i− 1)

+ v′N+4

N+4∑
k=4

p′k−2

N+3∏
j=k

v′j

 c′(k − 3, i−N + k − 6) + v′N+4 · · · v′3ρ′i−(N+3)

≥ u′N+4c
′(N + 3, i) + p′N+3c

′(N + 2, i− 1)− v′N+4h

≥ uN+4

(
c′(N + 3, i)− kN+4h

)
≥ uN+4

(
c′(N + 3, i)− k h

)
because u′N+4 = uN+4, v

′
N+4 = vN+4 and p′N+3 = pN+3 ≥ 0. Now suppose (4.23)
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holds for some j ≥ 4. By Claim 1, we have that for j ≥ 4,

c′(N + j + 1, i) = u′N+j+1c
′(N + j, i) + p′N+jc(N + j − 1, i− 1)

+

N+j+1∑
k=4

p′k−2

N+j+1∏
j=k

v′j

 c′(k − 3, i−N + k − j − 3) + v′N+j+1 · · · v′3ρ′i−(N+j)

= u′N+j+1c
′(N + j, i) + p′N+jc(N + j − 1, i− 1)

+

N+j+1∑
k=N+5

p′k−2

N+j+1∏
j=k

v′j

 c′(k − 3, i−N + k − j − 3)

+

N+4∑
k=4

p′k−2

N+j+1∏
j=k

v′j

 c′(k − 3, i−N + k − j − 3) + v′N+j+1 · · · v′3ρ′i−(N+j).

Since p′n = pn > 0 for n ≥ N + 3 and c′(n, ℓ) > 0 for 0 ≤ n ≤ N + j by the inductive
hypothesis, it follows that

p′N+jc(N+j−1, i−1)+

N+j+1∑
k=N+5

p′k−2

N+j+1∏
j=k

v′j

 c′(k−3, i−N+k−j−3) ≥ 0. (4.24)

By inductive hypothesis and (4.24),

c′(N + j + 1, i)

≥ u′N+j+1c
′(N + j, i) +

N+4∑
k=4

p′k−2

N+j+1∏
j=k

v′j

 c′(k − 3, i−N + k − j − 3) + v′N+j+1 · · · v′3ρ′i−(N+j)

≥ uN+j+1uN+j · · ·uN+4

(
c′(N + 3, i)−

j−3∑
n=1

knh

)

+ vN+j+1vN+j · · · vN+4

N+4∑
k=4

p′k−2

N+3∏
j=k

v′j

 c′(k − 3, i−N + k − j − 3) + v′N+3 · · · v′3ρ′i−(N+j)


≥ uN+j+1uN+j · · ·uN+4

(
c′(N + 3, i)−

j−3∑
n=1

knh

)
− vN+j+1vN+j · · · vN+4 h

= uN+j+1uN+j · · ·uN+4

(
c′(N + 3, i)−

j−3∑
n=1

knh− kN+j+1kN+j · · · kN+4 h

)

≥ uN+j+1uN+j · · ·uN+4

(
c′(N + 3, i)−

j−2∑
n=1

knh

)
,

which proves Claim 3.

Since
∑j
n=1 k

n < 1
1−k for every j > 1, it follows from Claim 3 and (4.22) that

c′(N + j, i) > 0 for j ≥ 4 and 0 ≤ i ≤ N + j. (4.25)
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It thus follows from (4.20) and (4.25) that c′(n, i) > 0 for every n ≥ 0 and 0 ≤ i ≤ n+1.
Therefore Wα′ is also positively quadratically hyponormal. This completes the proof.
�

Corollary 4.4.8. Let Wα be a weighted shift such that αj−1 < αj for some j ≥ 1,
and let Tx be the weighted shift with weight sequence

αx : α0, · · · , αj−1, x, αj+1, · · · .

Then {x : Tx is 2-hyponormal} is a proper closed subset of {x : Tx is quadratically hyponormal}
whenever the latter set is non-empty.

Proof. Write
H2 := {x : Tx is 2-hyponormal}.

Without loss of generality, we can assume that H2 is non-empty, and that j = 1.
Recall that a 2-hyponormal weighted shift with two equal weights is of the form
α0 = α1 = α2 = · · · or α0 < α1 = α2 = α3 = · · · . Let xm := inf H2. By Proposition
4.4.14 below, Txm is hyponormal. Then xm > α0. By assumption, xm < α2. Thus
α0, xm, α2, α3, · · · is strictly increasing. Now we apply Theorem 4.4.3 to obtain x′

such that α0 < x′ < xm and Tx′ is quadratically hyponormal. However Tx′ is not
2-hyponormal by the definition of xm. The proof is complete.

The following question arises naturally:

Question. Let α be a strictly increasing weight sequence and let k ≥ 3. If Wα is a
k-hyponormal weighted shift, does it follow that Wα is weakly k-hyponormal under a
small perturbation of the weight sequence ?

Let α : α0, α1, · · · be a weight sequence, let xi > 0 for 1 ≤ i ≤ n, and let
(xn, · · ·x1)α : xn, · · · , x1, α0, α1, · · · be the augmented weight sequence. We say that
W(xn,··· ,x1)α is an extension (or n-step extension) of Wα. Observe that

W(xn,··· ,x1)α|∨{en,en+1,··· }
∼=Wα.

The hypothesis F ̸= c P{e0} in Theorem 4.4.1 is essential. Indeed, there exist in-
finitely many one-step subnormal extension of a subnormal weighted shift whenever
one such extension exists. Recall ([Cu2, Proposition 8]) that if Wα is a weighted shift
whose restriction to

∨
{e1, e2, · · · } is subnormal with associated measure µ, then Wα

is subnormal if and only if

(i) 1
t ∈ L1(µ);

(ii) α2
0 ≤

(
|| 1t ||L1(µ)

)−1
.

Also note that there may not exist any one-step subnormal extension of the subnormal
weighted shift: for example, ifWα is the Bergman shift then the corresponding Berger
measure is µ(t) = t, and hence 1

t is not integrable with respect to µ; therefore Wα

does not admit any subnormal extension. A similar situation arises when µ has an
atom at {0}.

More generally we have:
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Theorem 4.4.9. (Subnormal Extensions) Let Wα be a subnormal weighted shift
with weights α : α0, α1, · · · and let µ be the corresponding Berger measure. Then
W(xn,··· ,x1)α is subnormal if and only if

(i) 1
tn ∈ L1(µ);

(ii) xj =

(
|| 1

tj−1 ||L1(µ)

|| 1

tj
||L1(µ)

) 1
2

for 1 ≤ j ≤ n− 1;

(iii) xn ≤
(

|| 1

tn−1 ||L1(µ)

|| 1
tn ||L1(µ)

) 1
2

.

In particular, if we put

S := {(x1, · · · , xn) ∈ Rn :W(xn,··· ,x1)α is subnormal}

then either S = ∅ or S is a line segment in Rn.

Proof. Write Wj := W(xn,··· ,x1)α|∨{en−j ,en−j+1,··· } (1 ≤ j ≤ n) and hence Wn =
W(xn,··· ,x1)α. By the argument used to establish (3.2) we have that W1 is subnormal
with associated measure ν1 if and only if

(i) 1
t ∈ L1(µ);

(ii) dν1 =
x2
1

t dµ, or equivalently, x
2
1 =

(∫ ||Wα||2

0
1
t dµ(t)

)−1

.

Inductively Wn−1 is subnormal with associated measure νn−1 if and only if

(i) Wn−2 is subnormal;
(ii) 1

tn−1 ∈ L1(µ);

(iii) dνn−1 =
x2
n−1

t dνn−2 = · · · = x2
n−1···x

2
1

tn−1 dµ, or equivalently, x2n−1 =
∫ ||Wα||2
0

1

tn−2 dµ(t)∫ ||Wα||2
0

1

tn−1 dµ(t)
.

Therefore Wn is subnormal if and only if

(i) Wn−1 is subnormal;
(ii) 1

tn ∈ L1(µ);

(iii) x2n ≤
(∫ ||Wα||2

0
1
t dνn−1

)−1

=
(∫ ||Wα||2

0

x2
n−1···x

2
1

tn dµ(t)
)−1

=
∫ ||Wα||2
0

1

tn−1 dµ(t)∫ ||Wα||2
0

1
tn dµ(t)

.

Corollary 4.4.10. If Wα is a subnormal weighted shift with associated measure µ,
there exists an n-step subnormal extension of Wα if and only if 1

tn ∈ L1(µ).

Corollary 4.4.11. A recursively generated subnormal shift with φ0 ̸= 0 admits an
n-step subnormal extension for every n ≥ 1.

Proof. The assumption about φ0 implies that the zeros of g(t) are positive, so that
s0 > 0. Thus for every n ≥ 1, 1

tn is integrable with respect to the corresponding
Berger measure µ = ρ0δs0 + · · · + ρr−1δsr−1 . By Corollary 4.4.10, there exists an
n-step subnormal extension.
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We need not expect that for arbitrary recursively generated shifts, 2-hyponormality

and subnormality coincide as in Theorem 4.4.5. For example, if α :
√

1
2 ,
√
x, (

√
3,
√

10
3 ,
√

17
5 )∧

then by (4.12) and Theorem 4.4.9,

(i) Tx is 2-hyponormal ⇐⇒ 4−
√
6 ≤ x ≤ 2;

(ii) Tx is subnormal ⇐⇒ x = 2.

A straightforward calculation shows, however, that Tx is 3-hyponormal if and only if
x = 2; for,

A(0; 3) :=


1 1

2
1
2x

3
2x

1
2

1
2x

3
2x 5x

1
2x

3
2x 5x 17x

3
2x 5x 17x 58x

 ≥ 0 ⇐⇒ x = 2.

This behavior is typical of general recursively generated weighted shifts: we show in
[CJL] that subnormality is equivalent to k-hyponormality for some k ≥ 2.

Next, we will show that canonical rank-one perturbations of k-hyponormal weighted
shifts which preserve k-hyponormality form a convex set. To see this we need an aux-
iliary result.

Lemma 4.4.12. Let I = {1, · · · , n} × {1, · · · , n} and let J be a symmetric subset of
I. Let A = (aij) ∈Mn(C) and let C = (cij) ∈Mn(C) be given by

cij =

{
c aij if (i, j) ∈ J

aij if (i, j) ∈ I \ J
(c > 0).

If A and C are positive semidefinite then B = (bij) ∈Mn(C) defined by

bij =

{
b aij if (i, j) ∈ J

aij if (i, j) ∈ I \ J
(b ∈ [1, c] or [c, 1])

is also positive semidefinite.

Proof. Without loss of generality we may assume c > 1. If b = 1 or b = c the assertion
is trivial. Thus we assume 1 < b < c. The result is now a consequence of the following
observation. If [D](i,j) denotes the (i, j)-entry of the matrix D then

[
c− b

c− 1

(
A+

b− 1

c− b
C

)]
(i,j)

=


c−b
c−1

(
1 + b−1

c−b c
)
aij if (i, j) ∈ J

c−b
c−1

(
1 + b−1

c−b

)
aij if (i, j) ∈ I \ J

=

{
b aij if (i, j) ∈ J

aij if (i, j) ∈ I \ J

= [B](i,j),

which is positive semidefinite because positive semidefinite matrices in Mn(C) form
a cone.
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An immediate consequence of Lemma 4.4.12 is that positivity of a matrix forms
a convex set with respect to a fixed diagonal location; i.e., if

Ax =

∗ ∗ ∗
∗ x ∗
∗ ∗ ∗


then {x : Ax is positive semidefinite} is convex.

We now have:

Theorem 4.4.13. Let α = {αn}∞n=0 be a weight sequence, let k ≥ 1, and let j ≥ 0.
Define α(j)(x) : α0, · · · , αj−1, x, αj+1, · · · . Assume Wα is k-hyponormal and define

Ωk,jα := {x : Wα(j)(x) is k-hyponormal}.

Then Ωk,jα is a closed interval.

Proof. Suppose x1, x2 ∈ Ωk,jα with x1 < x2. Then by ([?]), the (k+1)×(k+1) Hankel
matrix

Axi(n; k) :=


γn γn+1 . . . γn+k
γn+1 γn+2 . . . γn+k+1

...
...

...
γn+k γn+k+1 . . . γn+2k

 (n ≥ 0; i = 1, 2)

is positive, where Axi corresponds to α
(j)(xi). We must show that tx1+(1−t)x2 ∈ Ωk,jα

(0 < t < 1), i.e.,

Atx1+(1−t)x2
(n; k) ≥ 0 (n ≥ 0, 0 < t < 1).

Observe that it suffices to establish the positivity of the 2k Hankel matrices corre-
sponding to α(j)(tx1 + (1 − t)x2) such that tx1 + (1 − t)x2 appears as a factor in at
least one entry but not in every entry. A moment’s thought reveals that without loss
of generality we may assume j = 2k. Observe that

Az1(n; k)−Az2(n; k) = (z21 − z22)H(n; k)

for some Hankel matrix H(n; k). For notational convenience, we abbreviate Az(n; k)
as Az. Then

Atx1+(1−t)x2
=

t
2Ax1 + (1− t)2Ax2 + 2t(1− t)A√

x1x2
for 0 ≤ n ≤ 2k(

t+ (1− t)x2

x1

)2
Ax1 for n ≥ 2k + 1.

Since Ax1 ≥ 0, Ax2 ≥ 0 and A√
x1x2

have the form described by Lemma 4.4.12
and since x1 <

√
x1x2 < x2 it follows from Lemma 4.4.12 that A√

x1x2
≥ 0. Thus

evidently, Atx1+(1−t)x2
≥ 0, and therefore tx1 + (1 − t)x2 ∈ Ωk,jα . This shows that

Ωk,jα is an interval. The closedness of the interval follows from Proposition 4.4.14
below.
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In [CP1] and [CP2], it was shown that there exists a non-subnormal polynomially
hyponormal operator. Also in [McCP], it was shown that there exists a non-subnormal
polynomially hyponormal operator if and only if there exists one which is also a
weighted shift. However, no concrete weighted shift has yet been found. As a strategy
for finding such a shift, we would like to suggest the following:

Question Does it follow that the polynomial hyponormality of the weighted shift is
stable under small perturbations of the weight sequence ?

If the answer to the above question were affirmative then we would easily find
a polynomially hyponormal non-subnormal (even non-2-hyponormal) weighted shift;
for example, if

α : 1,
√
x, (

√
3,

√
10

3
,

√
17

5
)∧

and Tx is the weighted shift associated with α, then by Theorem 4.4.5, Tx is subnormal
⇔ x = 2, whereas Tx is polynomially hyponormal ⇔ 2 − δ1 < x < 2 + δ2 for some
δ1, δ2 > 0 provided the answer to the above question is yes; therefore for sufficiently
small ϵ > 0,

αϵ : 1,
√
2 + ϵ, (

√
3,

√
10

3
,

√
17

5
)∧

would induce a non-2-hyponormal polynomially hyponormal weighted shift.

The answer to the above question for weak k-hyponormality is negative. In fact
we have:

Proposition 4.4.14. (i) The set of k-hyponormal operators is sot-closed.
(ii) The set of weakly k-hyponormal operators is sot-closed.

Proof. Suppose Tη ∈ L(H) and Tη → T in sot. Then, by the Uniform Boundedness
Principle, {||Tη||}η is bounded. Thus T ∗i

η T
j
η → T ∗iT j in sot for every i, j, so that

Mk(Tη) →Mk(T ) in sot (where Mk(T ) is as in (4.5). (i) In this case Mk(Tη) ≥ 0 for
all η, so Mk(T ) ≥ 0, i.e., T is k-hyponormal.

(ii) Here, Mk(Tη) is weakly positive for all η. By (4.6), Mk(T ) is also weakly
positive, i.e., T is weakly k-hyponormal.
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4.5 The Extensions

In [Sta3], J. Stampfli showed that given α :
√
a,
√
b,
√
c with 0 < a < b < c, there

always exists a subnormal completion of α, but that for α :
√
a,
√
b,
√
c,
√
d (a < b <

c < d) such a subnormal completion may not exist.
There are instances where k-hyponormality implies subnormality for weighted

shifts. For example, in [CuF3], it was shown that if α(x) :
√
x, (

√
a,
√
b,
√
c)∧ (a <

b < c) then Wα(x) is 2-hyponormal if and only if it is subnormal: more concretely,
Wα(x) is 2-hyponormal if and only if

√
x ≤ H2(

√
a,
√
b,
√
c) :=

√
ab(c− b)

(b− a)2 + b(c− b)
,

in which caseWα(x) is subnormal. In this section we extend the above result to weight
sequences of the form α : xn, · · · , x1, (α0, · · · , αk)∧ with 0 < α0 < · · · < αk. We here
show:

Extensions of Recursively Generated Weighted Shifts.
If α : xn, · · · , x1, (α0, · · · , αk)∧ then

Wα is subnormal ⇐⇒

{
Wα is ([k+1

2 ] + 1)-hyponormal (n = 1)

Wα is ([k+1
2 ] + 2)-hyponormal (n > 1).

In particular, the above theorem shows that the subnormality of an extension of
the recursive shift is independent of its length if the length is bigger than 1.

Given an initial segment of weights

α : α0, · · · , α2k (k ≥ 0),

suppose α̂ ≡ (α0, · · · , α2k)
∧, i.e., α̂ is recursively generated by α. Write

vn :=

 γn
...

γn+k

 (0 ≤ n ≤ k + 1).

Then {v0, · · · ,vk+1} is linearly dependent in Rk+1. Now the rank of α is defined
by the smallest integer i (1 ≤ i ≤ k + 1) such that vi is a linear combination of
v0, · · · ,vi−1. Since {v0, · · · ,vi−1} is linearly independent, there exists a unique i-
tuple φ ≡ (φ0, · · · , φi−1) ∈ Ri such that vi = φ0v0 + · · ·+ φi−1vi−1, or equivalently,

γj = φi−1γj−1 + · · ·+ φ0γj−i (i ≤ j ≤ k + i),

which says that (α0, · · · , αk+i) is recursively generated by (α0, · · · , αi). In this case,
Wα is said to be i-recursive (cf. [CuF3, Definition 5.14]).

We begin with:
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Lemma 4.5.1. ([CuF2, Propositions 2.3, 2.6, and 2.7]) Let A,B ∈ Mn(C), Ã, B̃ ∈
Mn+1(C) (n ≥ 1) be such that

Ã =

[
A ∗

∗

]
and B̃ =

[
∗ ∗
∗ B

]
.

Then we have:

(i) If A ≥ 0 and if Ã is a flat extension of A (i.e., rank(Ã) = rank(A)) then Ã ≥ 0;
(ii) If A ≥ 0 and Ã ≥ 0 then det(A) = 0 implies det(Ã) = 0;
(iii) If B ≥ 0 and B̃ ≥ 0 then det(B) = 0 implies det(B̃) = 0.

Lemma 4.5.2. If α ≡ (α0, · · · , αk)∧ then

Wα is subnormal ⇐⇒ Wα is ([
k

2
] + 1)-hyponormal. (4.26)

In the cases where Wα is subnormal and i := rank(α), then we have that α =
(α0, · · · , α2i−2)

∧.

Proof. We only need to establish the sufficiency condition in (4.26). Let i := rank(α).
Since Wα is i-recursive, [CuF3, Proposition 5.15] implies the subnormality of Wα

follows after we verify that A(0, i − 1) ≥ 0 and A(1, i − 1) ≥ 0. Now observe that
i− 1 ≤ [k2 ] + 1 and

A(j, [
k

2
] + 1) =

[
A(j, i− 1) ∗

∗ ∗

]
(j = 0, 1),

so the positivity of A(0, i − 1) and A(1, i − 1) is a consequence of the positivity
of the ([k2 ] + 1)-hyponormality of Wα. For the second assertion, observe that if
i := rank(α) then detA(n, i) = 0 for all n ≥ 0. By assumption A(n, i + 1) ≥ 0,
so by Lemma 4.5.1 (ii) we have detA(n, i+1) = 0, which says that (α0, · · · , α2i−1) ⊂
(α0, · · · , α2i−2)

∧. By iteration we obtain (α0, · · · , αk) ⊂ (α0, · · · , α2i−2)
∧, and there-

fore (α0, · · · , αk)∧ = (α0, · · · , α2i−2)
∧. This proves the lemma.

In what follows, and for notational convenience, we shall set x−j := αj (0 ≤ j ≤ k).

Theorem 4.5.3. (Subnormality Criterion) If α : xn, · · · , x1, (α0, · · · , αk)∧ then

Wα is subnormal ⇐⇒

{
Wα is ([k+1

2 ] + 1)-hyponormal (n = 1)

Wα is ([k+1
2 ] + 2)-hyponormal (n > 1).

(4.27)

Furthermore, in the cases where the above equivalence holds, if rank(α0, · · · , αk) = i
then

Wα is subnormal ⇐⇒

{
Wα is i-hyponormal (n = 1)

Wα is (i+ 1)-hyponormal (n > 1).
(4.28)

139



CHAPTER 4. WEIGHTED SHIFTS

In fact, 
x1 = Hi(α0, · · · , α2i−2)

· · · · · · · · ·
xn−1 = Hi(xn−2, · · · , · · · , α2i−n)

xn ≤ Hi(xn−1, · · · , α2i−n−1),

where Hi is the modulus of i-hyponormality (cf. [CuF3, Proposition 3.4 and (3.4)]),
i.e.,

Hi(α) := sup{x > 0 : Wxα is i-hyponormal}.

Therefore, Wα =Wxn(xn−1,··· ,α2i−n−1)∧ .

Proof. Consider the (k + 1)× (l + 1) “Hankel” matrix A(n; k, l) by

A(n; k, l) :=


γn γn+1 . . . γn+l
γn+1 γn+2 . . . γn+1+l

...
...

...
γn+k γn+k+1 . . . γn+k+l

 (n ≥ 0).

Case 1 (α : x1, (α0, · · · , αk)∧): Let Â(n; k, l) and A(n; k, l) denote the Hankel
matrices corresponding to the weight sequences (α0, · · · , αk)∧ and α, respectively.
Suppose Wα is ([k+1

2 ] + 1)-hyponormal. Then by Lemma 4.5.2, W(α0,··· ,αk)∧ is sub-
normal. Observe that

A(n+ 1;m,m) = x21 Â(n;m,m) for all n ≥ 0 and all m ≥ 0.

Thus it suffices to show that A(0;m,m) ≥ 0 for all m ≥ [k+1
2 ] + 2. Also note that

if B̃ denotes the (k − 1) × k matrix obtained by eliminating the first row of a k × k
matrix B then

Ã(0;m,m) = x21 Â(0;m− 1,m) for all m ≥ [
k + 1

2
] + 2.

Therefore for every m ≥ [k+1
2 ] + 2, A(0;m,m) is a flat extension of A(0; [k+1

2 ] +

1, [k+1
2 ] + 1). This implies A(0;m,m) ≥ 0 for all m ≥ [k+1

2 ] + 2 and therefore Wα is
subnormal.

Case 2 (α : xn, · · · , x1, (α0, · · · , αk)∧)): As in Case 1, let Â(n; k, l) and A(n; k, l)
denote the Hankel matrices corresponding to the weight sequences (α0, · · · , αk)∧ and
α, respectively. Observe that det Â(n; [k+1

2 ] + 1, [k+1
2 ] + 1) = 0 for all n ≥ 0. Suppose

Wα is ([k+1
2 ] + 2)-hyponormal. Observe that

A(n+ 1; [
k + 1

2
] + 1, [

k + 1

2
] + 1) = x21 · · ·x2nÂ(1; [

k + 1

2
] + 1, [

k + 1

2
] + 1),

so that

detA(n+ 1; [
k + 1

2
] + 1, [

k + 1

2
] + 1) = 0. (4.29)
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Also observe

A(n− 1; [
k + 1

2
] + 2, [

k + 1

2
] + 2) =

[
x22 · · ·x2n ∗

∗ A(n+ 1; [k+1
2 ] + 1, [k+1

2 ] + 1)

]
.

Since Wα is ([k+1
2 ] + 1)-hyponormal it follows from Lemma 4.5.1 (iii) and (4.29) that

detA(n− 1; [k+1
2 ] + 1, [k+1

2 ] + 1) = 0. Note that

A(n− 1; [
k + 1

2
] + 1, [

k + 1

2
] + 1) = x21 · · ·x2n


1
x2
1

γ̂0 . . . γ̂[ k+1
2 ]+1

γ̂0 γ̂1 . . . γ̂[ k+1
2 ]+2

...
...

...
γ̂[ k+1

2 ]+1 γ̂[ k+1
2 ]+2 . . . γ̂2[ k+1

2 ]+2

 ,

where γ̂j denotes the moments corresponding to the weight sequence (α0, · · · , αk)∧.
Therefore x1 is determined uniquely by {α0, · · · , αk} such that (x1, α0, · · · , αk−1)

∧ =
x1, (α0, · · · , αk)∧: more precisely, if i := rank (α) and φ0, · · · , φi−1 denote the coeffi-
cients of recursion in (α0, · · · , αk)∧ then

x1 = Hi[(α0, · · · , αk)∧] =
[

φ0

γ̂i−1 − φi−1γ̂i−2 − · · · − φ1γ̂0

] 1
2

(cf. [CuF3, (3.4)]). Continuing this process we can see that x1, · · · , xn−1 are deter-
mined uniquely by a telescoping method such that

(xn−1, · · · , xn−1−k)
∧ = xn−1, · · · , x1, (α0, · · · , αk)∧

and W(xn−1,··· ,xn−1−k)∧ is subnormal. Therefore, after (n − 1) steps, Case 2 reduces
to Case 1. This proves the first assertion. For the second assertion, note that if
rank(α0, · · · , αk) = i then

det Â(n; i, i) = 0.

Now applying the above argument with i in place of [k+1
2 ]+1 gives that x1, · · · , xn−1

are determined uniquely by α0, · · · , α2i−2 such that W(xn−1,··· ,xn−2i−1)∧ is subnormal.
Thus the second assertion immediately follows. Finally, observe that the preceding
argument also establish the remaining assertions.

Remark 4.5.4. (a) From Theorem 4.5.3 we note that the subnormality of an ex-
tension of a recursive shift is independent of its length if the length is bigger than
1.

(b) In Theorem 4.5.3, “[k+1
2 ]” can not be relaxed to “[k2 ]”. For example consider

the following weight sequences:

(i) α :
√

1
2 , (
√

3
2 ,
√
3,
√

10
3 ,
√

17
5 )∧ with φ0 = 0;

(ii) α′ :
√

1
2 ,
√

3
2 , (

√
3,
√

10
3 ,
√

17
5 )∧.
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Observe that α equals α′. Then a straightforward calculation shows thatWα (and
henceWα′) is 2-hyponormal but not 3-hyponormal (and hence, not subnormal). Note
that k = 3 and n = 1 in (i) and k = 2 and n = 2 in (ii).

(c) The second assertion of Theorem 4.5.3 does not imply that if rank(α0, · · · , αk) =
i then (4.28) holds in general. Theorem 4.5.3 says only that when Wα is ([k+1

2 ] + 1)-
hyponormal (n = 1), i-hyponormality and subnormality coincide, and that when Wα

is ([k+1
2 ] + 2)-hyponormal (n > 1), (i+ 1)-hyponormality and subnormality coincide.

For example consider the weight sequence

α̂ ≡ (
√
2,
√
3,

√
10

3
,

√
17

5
, 2)∧ with φ0 = 0 (here φ1 = 0 also).

Since (
√
2,
√
3,
√

10
3 ,
√

17
5 ) ⊂ (

√
2,
√
3,
√

10
3 )∧, we can see that rank(α) = 2. Put

β ≡ 1, (
√
2,
√
3,

√
10

3
,

√
17

5
, 2)∧.

If (4.28) held true without assuming (4.27), then 2-hyponormality would imply sub-
normality for Wβ . However, a straightforward calculation shows that Wβ is 2-
hyponormal but not 3-hyponormal (and hence not subnormal): in fact, detA(n, 2) = 0
for all n ≥ 0 except for n = 2 and detA(2, 2) = 160 > 0, while since

φ3 = −α
2
3α

2
4(α

2
5 − α2

4)

α2
4 − α2

3

= −102 and φ4 =
α2
4(α

2
5 − α2

3)

α2
4 − α2

3

= 34

(so that α6 =
√
φ4 − φ3

α2
5
=
√

17
2 ), we have that

detA(1, 3) = det


1 2 6 20
2 6 20 68
6 20 68 272
20 68 272 2312

 = −3200 < 0.

(d) On the other hand, Theorem 4.5.3 does show that if α ≡ (α0, · · · , αk) is such
that rank(α) = i andWα̂ is subnormal with associated Berger measure µ, thenWα̂ has
an n-step (i+1)-hyponormal extension Wxn,··· ,x1,α̂ (n ≥ 2) if and only if 1

tn ∈ L1(µ),

xj+1 =

[
φ0

γ
(j)
i−1 − φi−1γ

(j)
i−2 − · · · − φ1γ

(j)
0

] 1
2

(0 ≤ j ≤ n− 2),

and

xn ≤

[
φ0

γ
(n−1)
i−1 − φi−1γ

(n−1)
i−2 − · · · − φ1γ

(n−1)
0

] 1
2

,

where φ0, · · · , φi−1 denote the coefficients of recursion in (α0, · · · , α2i−2)
∧ and γ

(j)
m

(0 ≤ m ≤ i− 1) are the moments corresponding to the weight sequence

(xj , · · · , x1, α0, · · · , αk−j)∧ with γ
(0)
m = γm.
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We now observe that the determination of k-hyponormality and subnormality
for canonical perturbations of recursive shifts falls within the scope of the theory of
extensions.

Corollary 4.5.5. Let α ≡ {αn}∞n=0 = (α0, · · · , αk)∧. If Wα′ is a perturbation of Wα

at the j-th weight then

Wα′ is subnormal ⇐⇒

{
Wα′ is ([k+1

2 ] + 1)-hyponormal (j = 0)

Wα′ is ([k+1
2 ] + 2)-hyponormal (j ≥ 1)

.

Proof. Observe that if j = 0 then α′ = x, (α1, · · · , αk+1)
∧ and if instead j ≥ 1 then

α′ = α0, · · · , αj−1, x, (αj+1, · · · , αj+k+1)
∧. Thus the result immediately follows from

Theorem 4.5.3.

In Corollary 4.5.5, we showed that if α(x) is a canonical rank-one perturbation
of a recursive weight sequence then subnormality and k-hyponormality for the cor-
responding shift coincide. We now consider a converse - an “extremality” problem:
Let α(x) be a canonical rank-one perturbation of a weight sequence α. If there exists
k ≥ 1 such that (k+1)-hyponormality and k-hyponormality for the corresponding shift
Wα(x) coincide, does it follow that α(x) is recursively generated ?

In [CuF3], the following extremality criterion was established.

Lemma 4.5.6. (Extremality Criterion) [CuF3, Theorem 5.12, Proposition 5.13] Let
α be a weight sequence and let k ≥ 1.

(i) If Wα is k-extremal (i.e., detA(j, k) = 0 for all j ≥ 0) then Wα is recursive
subnormal.

(ii) If Wα is k-hyponormal and if detA(i0, j0) = 0 for some i0 ≥ 0 and some
j0 < k then Wα is recursive subnormal.

In particular, Lemma 4.5.6 (ii) shows that ifWα is subnormal and if detA(i0, j0) =
0 for some i ≥ 0 and some j ≥ 0 then Wα is recursive subnormal.

We now answer the above question affirmatively.

Theorem 4.5.7. Let α ≡ {αn}∞n=0 be a weight sequence and let αj(x) be a canonical
perturbation of α in the j-th weight. Write

Hk := {x ∈ R+ : Wαj(x) is k-hyponormal}.

If Hk = Hk+1 for some k ≥ 1 and x ∈ Hk, then αj(x) is recursively generated, i.e.,
Wαj(x) is recursive subnormal.

Proof. Suppose Hk = Hk+1 and let Hk := supx Hk. To avoid triviality we assume
αj−1 < x < αj+1.

Case 1 (j = 0): In this case, clearly H2
k is the nonzero root of the equation

detA(0, k) = 0 and for x ∈ (0,Hk], Wα0(x) is k-hyponormal. By assumption Hk =
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Hk+1, so Wα0(Hk+1) is (k+1)-hyponormal. The result now follows from Lemma 4.5.6
(ii).

Case 2 (j ≥ 1): Let Ax(n, k) denote the Hankel matrix corresponding to αj(x).
Since Wαj(x) is (k + 1)-hyponormal for x ∈ Hk, we have that Ax(n, k + 1) ≥ 0 for all
n ≥ 0 and all x ∈ Hk. Observe that if n ≥ j + 1 then

Ax(n, k) = α2
0 · · ·α2

j−1 x
2

 γ̃n−j−1 . . . γ̃n−j−1+k

...
...

γ̃n−j−1+k . . . γ̃n−j−1+2k

 ,
where γ̃∗ denotes the moments corresponding to the subsequence αj+1, αj+2, · · · .
Therefore for n ≥ j + 1, the positivity of Ax(n, k) is independent of the values of
x > 0. This gives

Wαj(x) is k-hyponormal ⇐⇒ Ax(n, k) ≥ 0 for all n ≤ j.

Write

H
(i)
k :=

{
x : detAx(i, k) ≥ 0 and αj−1 < x < αj+1

}
(0 ≤ i ≤ j)

and

H
(i)
k = sup

x
H

(i)
k (0 ≤ i ≤ j).

Since detAx(i, k) is a polynomial in x we have detA
H

(i)
k

(i, k) = 0. Observe that

∩ji=0H
(i)
k = Hk and sup

0≤i≤j
H

(i)
k = Hk.

Since by [CuL2, Theorem 2.11], Hk is a closed interval, it follows that Hk ∈ Hk. Say,

Hk = H
(p)
k for some 0 ≤ p ≤ j. Then detA

H
(p)
k

(p, k) = 0 and W
α(H

(p)
k )

is (k + 1)-

hyponormal. Therefore it follows from Lemma 4.1 (ii) thatWα is recursive subnormal.
This completes the proof.

We conclude this section with two corollaries of independent interest.

Corollary 4.5.8. With the notations in Theorem 4.5.7, if j ≥ 1 and Hk = Hk+1 for
some k, then Hk is a singleton set.

Proof. By [CuL2, Theorem 2.2],

H∞ := {x ∈ R+ :Wαj(x) is subnormal}

is a singleton set. By Theorem 4.5.7, we have that Hk = H∞.
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Corollary 4.5.9. If Wα is a nonrecursive shift with weight sequence α = {αn}∞n=0

and if α(x) is a canonical rank-one perturbation of α, then for every k ≥ 1 there
always exists a gap between k-hyponormality and (k + 1)-hyponormality for Wα(x).
More concretely, if we let

Hk := {x :Wα(x) is k-hyponormal}

then {Hk}∞k=1 is a strictly decreasing nested sequence of closed intervals in (0,∞)
except when the perturbation occurs in the first weight. In that case, the intervals are
of the form (0,Hk].

Proof. Straightforward from Theorem 4.5.7.

We now illustrate our result with some examples. Consider

α(y, x) :
√
y,
√
x, (

√
a,
√
b,
√
c)∧ (a < b < c).

Without loss of generality, we assume a = 1. Observe that

H2(1,
√
b,
√
c) =

√
bc− b2

1 + bc− 2b
and

(
H2(

√
x, 1,

√
b)
)2

=
x(b− 1)

(x− 1)2 + (b− 1)
:= f(x).

According to Theorem ??, Wα(y,x) is 2-hyponormal if and only if 0 < x ≤
√

bc−b2
1+bc−2b

and 0 < y ≤ f(x). To completely describe the region

R := {(x, y) : Wα(y,x) is 2-hyponormal},

we study the graph of f . Observe that

f ′(x) =
(b− 1)(b− x2)

(b− 2x+ x2)2
> 0 and f ′′(x) =

2(b− 1)(2b− 3bx+ x3)

(b− 2x+ x2)3
.

Note that b − 2x + x2 = (b − 1) + (1 − x)2 > 0 and f ′(
√
b) = 0. To consider the

sign of f ′′, we let g(x) := 2b − 3bx + x3. Then g′(
√
b) = 0, g(1) = −b + 1 < 0, and

g′′(x) > 0 (x > 0). Hence there exists x0 ∈ (0, 1) such that f ′′(x0) = 0, f ′′(x) > 0 on
0 < x < x0, and f

′′(x) < 0 on x0 < x ≤ 1. We investigate which of the two values x0
or H̃ := H2(1,

√
b,
√
c)2 is bigger. By a simple calculation, we have

g(H̃) =
(−1 + b)b · g1(b, c)
(1− 2b+ bc)3

,

where

g1(b, c) = −(2− 10b+ 17b2 − 11b3 + b4 + 3bc− 9b2c+ 9b3c− 3b3c2 + b2c3).

For notational convenience we let b := 1 + h, c := 1 + h+ k. Then

g1(b, c) = 2h5 + (3h3 + 3h4)k + (−1− 2h− h2)k3.
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If h is sufficiently small (i.e., b is sufficiently close to 1), then g1 < 0, i.e., H̃ > x0.

If k is sufficiently small (i.e., b is sufficiently close to c), then g1 > 0, i.e., H̃ < x0.

Thus, if H̃ ≤ x0, then f is convex downward on x ≤ H̃. If H̃ > x0, then (x0, f(x0))
is an inflection point. Thus, f is convex downward on 0 < x < x0 and convex
upward on x0 < x ≤ H̃. Moreover, Wα(y,x) is 2-hyponormal if and only if (x, y) ∈
{(x, y)|0 ≤ y ≤ f(x), 0 < x ≤ H̃}, and Wα(y,x) is k-hyponormal (k ≥ 3) if and only

if (x, y) ∈ {(H̃, y)|0 ≤ y ≤ f(x)}.

Example 4.5.10. (b = 2, c = 3)

f(x) =
x

1 + (1− x)2
.

Notice that f is convex in this case.

Example 4.5.11. (b = 11
10 , c = 10)

f(x) =
x

11− 20x+ 10x2
.

In this case, f has an inflection point at x ≈ 0.633892.
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4.6 The Completion Problem

We begin with:

Definition 4.6.1. Let α : α0, · · ·αm, (m ≥ 0) be an initial segment of positive
weights and letϖ = {ϖn}∞n=0 be a bounded sequence. We say thatWϖ is a completion
of α if

ϖn = αn (0 ≤ n ≤ m)

and we write α ⊆ ϖ.

The completion problem for a property (P ) entails finding necessary and sufficient
conditions on α to ensure the existence of a weight sequence ϖ ⊃ α such that

Wα satisfies (P ).

In 1966, Stampfli [Sta3] showed that for arbitrary α0 < α1 < α2, there exists a

subnormal shift Wα whose first three weights are α0, α1, α2 ; he also proved that
given four or more weights it may not be possible to find a subnormal completion.

Theorem 4.6.2. [CuF3]
(a)(Minimality of Norm)

||Wα̂|| = inf

{
∥Wω∥ : α ⊆ ω and Wω is subnormal

}
.

(b) (Minimality of Moments) If α ⊆ ω and Wω is subnormal then∫
tndµα̂(t) ≤

∫
tndµω(t) (n ≥ 0).

Proof. See [CuF3].

Theorem 4.6.3. (Subnormal Completion Problem) [CuF3] If α : α0, α1, · · · , αm (m ≥
0) is an initial segment then the followings are equivalent:

(i) α has a subnormal completion.

(ii) α has a recursively generated subnormal completion.

(iii) The Hankel matrices

A(k) :=


γ0 γ1 · · · γk
γ1 γk+1

...
...

γk γk+1 · · · γ2k

 and B(l − 1) :=


γ1 γ2 · · · γ2
γ1 γl+1

...
...

γl γl+1 · · · γ2l


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are both positive
(
k =

[
m+1
2

]
, l =

[
m
2

]
+ 1
)
and the vector γk+1

...
γ2k+1

 (
resp.

γk+1

...
γ2k

)
is in the range of A(k) (resp. B(l − 1)) when m is even (resp. odd).

Theorem 4.6.4. (k-Hyponormal Completion Problem) [CuF3] If α : α0, α1 · · · , α2m (m ≥
1) is an initial segment then for 1 ≤ k ≤ m, the followings are equivalent:

(i) α has k-hyponormal completion.

(ii) The Hankel matrix

A(j, k) :=

 γj · · · γj+k
...

...
γj+k · · · γj+2k


is positive for all j, 0 ≤ j ≤ 2m− 2k + 1 and the vectorγ2m−k+2

...
γ2m+1


is in the range of A(2m− 2k + 2, k − 1).

Theorem 4.6.5. (Quadraically Hyponormal Completion Problem) Let m ≥ 2 and
let α : α0 < α1, · · · < αm be an initial segment. Then the followings are equivalent:

(i) α has a quadratically hyponormal completion.

(ii) Dm−1(t) > 0 for all t ≥ 0.

Moreover, a quadratically hyponormal completion ω of L can be obtained by

ω : α0, α1, · · · , αm−2 (αm−1, αm, αm+1)
∧,

where αm+1 is chosen sufficiently large.

Proof. First of all, note that Dm−1(t) > 0 for all t ≥ 0 if and only if dn(t) > 0
for all t ≥ 0 and for n = 0, · · · ,m − 1; this follows from the Nested Determinants
Test (see [12, Remark 2.4]) or Choleski’s Algorithm (see [CuF2, Proposition 2.3]). A
straightforward calculation gives

d0(t) = α2
0 + α2

0α
2
1 t

d1(t) = α2
0(α

2
1 − α2

0) + α2
0α

2
1(α

2
2 − α2

0) t + α2
0α

4
1α

2
2 t

2

d2(t) = α2
0(α

2
1 − α2

0)(α
2
2 − α2

1) + α2
0α

2
2(α

2
1 − α2

0)(α
2
3 − α2

1) t

+ α2
0α

2
1α

2
2

{
α2
3(α

2
2 − α2

0)− α2
1(α

2
1 − α2

0)

}
t2 + α2

0α
4
1α

2
2(α

2
2α

2
3 − α2

1α
2
0) t

3,
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which shows that all coefficients of di (i = 0, 1, 2) are positive, so that di(t) > 0 for
all t ≥ 0 and i = 0, 1, 2.

Now suppose α has a quadratically hyponormal completion. Then evidently,
dn(t) ≥ 0 for all t ≥ 0 and all n ≥ 0. In view of the propagation property, {αn}∞n=m
is strictly increasing. Thus dn(0) = u0 · · ·un =

∏n
i=0(α

2
i − α2

i−1) > 0 for all n ≥ 0.
If dn0(t0) = 0 for some t0 > 0 and the first such n0 > 0 (3 ≤ n0 ≤ m − 1), then
(1.6) implies that 0 ≤ dn0+1(t0) = −|rn0(t0)|2dn0−1(t0) ≤ 0, which forces rn0(t0) = 0,
so that αn0+1 = αn0−1, a contradiction. Therefore dn(t) > 0 for all t ≥ 0 and for
n = 0, · · · ,m− 1. This proves the implication (i) ⇒ (ii).

For the reverse implication, we must find a bounded sequence {αn}∞n=m+1 such
that dn(t) ≥ 0 for all t ≥ 0 and all n ≥ 0. Suppose dn(t) > 0 for all t ≥ 0 and for
n = 0, · · · ,m− 1. We now claim that there exists a constant Mk > 0 for which

dk−1(t)

dk(t)
≤Mk for all t ≥ 0 and for k = 1, · · · ,m− 1.

Indeed, since dk−1(t)
dk(t)

is a continuous function of t on [0, ∞), and deg (dk−1) < deg (dk),

it follows that

max
t∈[0,∞)

dk−1(t)

dk(t)
≤ max

{
1, max

t∈[0, ξ]

dk−1(t)

dk(t)

}
=:Mk,

where ξ is the largest root of the equation dk−1(t) = dk(t). Now a straightforward
calculation shows that

dm(t) = qm(t)dm−1(t)− |rm−1(t)|2dm−2(t)

=

[
um +

(
vm − wm−1

dm−2(t)

dm−1(t)

)
t

]
dm−1(t) .

So if we write em(t) := vm − wm−1
dm−2(t)
dm−1(t)

, then by (3.1), em(t) ≥ vm − wm−1Mm−1.

Now choose αm+1 so that vm − wm−1Mm−1 > 0, i.e.,

α2
m+1 > max

{
α2
m,

α2
m−1

α2
m

[
M (α2

m − α2
m−2)

2 + α2
m−2

]}
,

where M := maxt∈[0,∞)
dm−2(t)
dm−1(t)

. Then em(t) ≥ 0 for all t ≥ 0, so that

dm(t) = (um + em(t) t)dm−1(t) ≥ umdm−1(t) > 0.

Therefore, dm−1(t) ≤ dm(t)
um

. With αm+2 to be chosen later, we now consider dm+1.
We have

dm+1(t) = qm+1(t)dm(t)− |rm(t)|2dm−1(t)

≥ 1

um

[
umqm+1(t)− |rm(t)|2

]
dm(t)

=
1

um

[
umum+1 + (umvm+1 − wm)t

]
dm(t)

= um+1dm(t) +
t

um
(umvm+1 − wm) dm(t).

149



CHAPTER 4. WEIGHTED SHIFTS

Write fm+1 := umvm+1−wm. If we choose αm+2 such that fm+1 ≥ 0, then dm+1(t) ≥
0 for all t > 0. In particular we can choose αm+2 so that fm+1 = 0. i.e., umvm+1 =
wm, or

α2
m+2 :=

α2
m(α2

m+1 − α2
m−1)

2 + α2
m−1α

2
m(α2

m − α2
m−1)

α2
m+1(α

2
m − α2

m−1)
,

or equivalently,

α2
m+2 := α2

m+1 +
α2
m−1(α

2
m+1 − α2

m)2

α2
m+1(α

2
m − α2

m−1)
.

In this case, dm+1(t) ≥ um+1 dm(t) ≥ 0. Repeating the argument (with αm+3 to be
chosen later), we obtain

dm+2(t) = qm+2(t)dm+1(t)− |rm+1(t)|2dm(t)

≥ 1

um+1

[
um+1qm+2(t)− |rm+1(t)|2

]
dm+1(t)

=
1

um+1

[
um+1um+2 + (um+1vm+2 − wm+1) t

]
dm+1(t)

= um+2 dm+1(t) +
t

um+1
(um+1vm+2 − wm+1) dm+1(t).

Write fm+2 := um+1vm+2 − wm+1. If we choose αm+3 such that fm+2 = 0, i.e.,

α2
m+3 := α2

m+2 +
α2
m(α2

m+2 − α2
m+1)

2

α2
m+2(α

2
m+1 − α2

m)
,

then dm+2(t) ≥ um+2 dm+1(t) ≥ 0. Continuing this process with the sequence {αn}∞n=m+2

defined recursively by

φ1 :=
α2
m(α2

m+1 − α2
m−1)

α2
m − α2

m−1

, φ0 := −
α2
m−1α

2
m(α2

m+1 − α2
m)

α2
m − α2

m−1

and
α2
n+1 := φ1 +

φ0

α2
n

(n ≥ m+ 1),

we obtain that dn(t) ≥ 0 for all t > 0 and all n ≥ m + 2. On the other hand, by
an argument of [Sta3, Theorem 5], the sequence {αn}∞n=m+2 is bounded. Therefore,
a quadratically hyponormal completion {αn}∞n=0 is obtained. The above recursive
relation shows that the sequence {αn}∞n=m+2 is obtained recursively from αm−1, αm
and αm+1, that is, {αn}∞n=m−1 = (αm−1, αm, αm+1)

∧. This completes the proof.

Given four weights α : α0 < α1 < α2 < α3, it may not be possible to find
a 2-hyponormal completion. In fact, by the preceding criterion for subnormal and
k-hyponormal completions, the following statements are equivalent:

(i) α has a subnormal completion;
(ii) α has a 2-hyponormal completion;
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(iii) det

γ0 γ1 γ2
γ1 γ2 γ3
γ2 γ3 γ4

 ≥ 0.

By contrast, a quadratically hyponormal completion always exists for four weights.

Corollary 4.6.6. For arbitrary α : α0 < α1 < α2 < α3, there always exists a
quadratically hyponormal completion ω of α.

Proof. In the proof of Theorem 4.6.5, we showed that dn(t) > 0 for all t ≥ 0 and for
n = 0, 1, 2. Thus the result immediately follows from Theorem 4.6.5.

Remark. To discuss the hypothesis α0 < α1 < · · · < αm in Theorem 4.6.5, we consider
the case where α : α0, α1, · · · , αm admits equal weights:

(i) If α0 < α1 = · · · = αm then there exists a trivial quadratically hyponormal
completion (in fact, a subnormal completion) ω : α0 < α1 = · · · = αn = αn+1 = · · · .

(ii) If {αn}mn=0 is such that αj = αj+1 for some j = 1, 2, · · · ,m− 1, and αj ̸= αk
for some 1 ≤ j, k ≤ m, then by the propagation property there does not exist any
quadratically hyponormal completion of α.

(iii) If α0 = α1, the conclusion of 4.6.5 may fail: for example, if α : 1, 1, 2, 3
then dn(t) > 0 for all t ≥ 0 and for n = 0, 1, 2, whereas α admits no quadratically
hyponormal completion because we must have α2

2 < 2.
Problem. Given α : α0 = α1 < α2 < · · · < αm, find necessary and sufficient conditions
for the existence of a quadratically hyponormal completion ω of α.

In [CuJ], related to the above problem, weighted shifts of the form 1, (1,
√
b,
√
c)∧

have been studied and their quadratic hyponormality completely characterized in
terms of b and c.

Remark. In Theorem 4.6.5, the recursively quadratically hyponormal completion
requires a sufficiently large αm+1. One might conjecture that if the quadratically
hyponormal completion of α : α0 < α1 < α2 < · · · < αm exists, then

ω : α0, · · · , αm−3, (αm−2, αm−1, αm)∧

is such a completion. However, if α :
√

9
10 ,

√
1,
√
2,
√
3 then ω :

√
9
10 , (

√
1,
√
2,
√
3)∧

is not quadratically hyponormal (by [CuF3, Theorem 4.3]), even though by Corollary
4.6.6 a quadratically hyponormal completion does exist.

We conclude this section by establishing that for five or more weights, the gap
between 2-hyponormal and quadratically hyponormal completions can be extremal.

Proposition 4.6.7. For a < b < c, let η : (
√
a,
√
b,
√
c)∧ be a recursively generated

weight sequence, and consider α(x) :
√
a,
√
b,
√
c,
√
x, η4 (five weights). Then

(i) α has a subnormal completion ⇐⇒ x = η3;
(ii) α has a 2-hyponormal completion ⇐⇒ x = η3;
(iii) α has a quadratically hyponormal completion ⇐⇒ c < x < η24.
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Proof. Assertions (i) and (ii) follow from the argument used in the proof of ??. For
assertion (iii), observe that by Theorem 3.1, α has a quadratically hyponormal com-
pletion if and only if d3(t) > 0 for all t ≥ 0. Without loss of generality, we write
a = 1, b = 1 + r, c = 1 + r + s, and x = 1 + r + s + u (r > 0, s > 0, u > 0). A
straightforward calculation using Mathematica shows that the Maclaurin coefficients
c(3, i) of d3(t) are given by

c(3, 0) = rsu;

c(3, 1) = s3(r + s)(1 + r + s+ u)(r + r2 + 2rs+ s2)−1;

c(3, 2) = (1 + r + s)(s4 + rsu+ 4r2su+ 5r3su+ 2r4su+ 2rs2u+ 7r2s2u+ 5r3s2u

+ 2s3u+ 4rs3u+ 4r2s3u+ s4u+ rs4u+ r2u2 + 2r3u2 + r4u2 + 3r2su2

+ 3r3su2 + 2rs2u2 + 3r2s2u2 + s3u2 + rs3u2)(r + r2 + 2rs+ s2)−1;

c(3, 3) = (1 + r)(r + s)(1 + r + s)(1 + r + s+ u)(r2s2 + r3s2 + s3 + 2rs3

+ 2r2s3 + s4 + rs4 + r2u+ 2r3u+ r4u+ 3r2su+ 3r3su+ 2rs2u+ 3r2s2u

+ s3u+ rs3u)(r2 + r3 + 2r2s+ rs2)−1; and

c(3, 4) = (1 + r)2(1 + r + s)(r + r2 + 2s+ 2rs+ s2 + u+ ru+ su)(r2s+ 2r3s+ r4s

+ rs2 + 4r2s2 + 3r3s2 + s3 + 3rs3 + 3r2s3 + s4 + rs4 + r2u+ 2r3u+ r4u

+ 3r2su+ 3r3su+ 2rs2u+ 3r2s2u+ s3u+ rs3u)(r2 + r3 + 2r2s+ rs2)−1.

This readily shows that for c < x < α2
4, all Maclaurin coefficients of d3(t) are positive,

so that d3(t) > 0 for all t ≥ 0. Moreover if x = c or α2
4 then Theorem 1.2 shows that

no quadratically hyponormal completion exists. This proves assertion (iii).
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4.7 Comments and Problems

Problem 4.1. Let Tx be a weighted shift with weights α ≡ {αn} given by

α : x,

√
2

3
,

√
3

4
,

√
4

5
, · · · .

Describe the set {x : Tx is cubically hyponormal}. More generally, describe {x :
Tx is weakly k-hyponormal}.

Problem 4.2. Let T be the weighted shift with weights α ≡ {αn} given by

α0 = α1 ≤ α2 ≤ α3 ≤ · · · .

If T is cubically hyponormal, is α flat?

Problem 4.3. (Minimality of Weights Problem) If α : α0, α1, · · · , α2k admits a
subnormal completion and if α ⊆ ω with Wω subnormal, does it follow that

αn ≤ ωn for all n ≥ 0 ?

A combination of Theorem 4.6.2 (a) and (b) show that αn ≤ ωn for 0 ≤ n ≤ 2k + 1
and also for large n.

Problem 4.4. Given α : α0 = α1 < α2 < · · · < αm, find necessary and sufficient
conditions for the existence of a quadratically hyponormal completion ω of α.

In [CuF2] it was shown that

∃ 1 < b < c such that W1(1,
√
b,
√
c)∧

is quadratically hyponormal. In fact, it was shown that if we write

H2 := {(b, c) :W1(1,
√
b,
√
c)∧ is quadratically hyponormal}

then
H2 := {(b, c) : b(bc− 1) + b(b− 1)(c− 1)K − (b− 1)2K2 ≥ 0},

where

K =
b(c− 1)2

(
b(c− 1) +

√
b2(c− 1)2 − 4b(b− 1)(c− b)

)
2(b− 1)2(c− b)

.

Problem 4.5. Does there exists 1 < b < c such that W1,(1,
√
b,
√
c)∧ is cubically

hyponormal ? More generally, describe the set

{(b, c) :W1,(1,
√
b,
√
c)∧ is cubically hyponormal}.
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We remember the following question (Due to P. Halmos):

Whether every polynomially hyponormal operator is subnormal ?

In 1993, R. Curto and M. Putinar [CP2] have answered it negatively:

There exits a polynomially hyponormal operator which is not 2-hyponormal.

In 1989, S. M. McCullough and V. Paulsen [McCP] proved the following: Every
polynomially hyponormal operator is subnormal if and only if every polynomially hy-
ponormal weighted shift is subnormal.

However we did not find a concrete example of such a weighted shift:

Problem 4.6. Find a weighted shift which is polynomially hyponormal but not sub-
normal.

Problem 4.7. Does there exists a polynomially hyponormal weighted shift which is
not 2-hyponormal ?

Let B1 be the weighted shift whose weight are given by

√
x,

√
2

3
,

√
5

4
,

√
4

5
, · · ·

Let B2 be the weighted shift whose weight are given by√
1

2
,
√
x,

√
3

4
,

√
4

5
, · · ·

A straightforward calculation shows that

B1 subnormal ⇐⇒ 0 < x ≤ 1

2
;

B1 2-hyponormal ⇐⇒ 0 < x ≤ 9

16
;

B1 quadratically hyponormal ⇐⇒ 0 < x ≤ 2

3
;

B2 subnormal ⇐⇒ x =
2

3
;

B2 2-hyponormal ⇐⇒ x ∈

[
63−

√
129

80
,
24

35

]
.

We conjecture that

9

16
< sup{x : B1 is polynomially hyponormal}

24

35
< sup{x : B2 is polynomially hyponormal}
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Problem 4.8. Is the above converse true ?

We here suggest related problems:
Problem 4.9.

(a) Does there exists a Toeplitz operator which is polynomially hyponormal but not
subnormal ?

(b) Classify the polynomially hyponormal operators with finite rank self commuta-
tors.

(c) Is there an analogue of Berger’s theorem for polynomially hyponormal weighted
shift ?

An operator T ∈ B(H) is called M -hyponormal if

∃M > 0 such that ||(T −λ)∗x|| ≤M ||(T −λ)x|| for any λ ∈ C and for any x ∈ H.

If M ≤ 1 then M -hyponormality ⇒ hyponormality. It was shown [HLL] that it
T ≡Wα is a weighted shift with weight sequence α then

α is eventually increasing =⇒ T is hyponormal.

We wonder if the converse is also true.

Problem 4.10. (M-hyponormality of weighted shifts) Does it follow that

Wα is M -hyponormal =⇒ α is eventually increasing ?

Problem 4.11 (Perturbations of weighted shifts) Let α be a strictly increasing weighted
sequence.

(a) If Wα is k-hyponormal, dose it follow that Wα is weakly k-hyponormal under
small perturbations of the weighted shifts ?

(b) Does it follow that the polynomiality of the weighted shifts is stable under small
perturbations of the weighted sequence ?

It was shown [CuL5] that the answer to Problem 4.10 (a) is affirmative if k = 2.
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Chapter 5

Toeplitz Theory

5.1 Preliminaries

5.1.1 Fourier Transform and Beurling’s Theorem

A trigonometric polynomial is a function p ∈ C(T) of the form
∑n
k=−n akz

k. It was
well-known that the set of trigonometric polynomials is uniformly dense in C(T) and
hence is dense in L2(T). In fact, if en := zn, (n ∈ Z) then {en : n ∈ Z} forms
an orthonormal basis for L2(T). The Hardy space H2(T) is spanned by {en : n =
0, 1, 2, · · · }. Write H∞(T) := L∞(T) ∩H2(T). Then H∞ is a subalgebra of L∞.

Let m :=the normalized Lebesgue measure on T and write L2 := L2(T). If f ∈ L2

then the Fourier transform of f , f̂ : Z → C, is defined by

f̂(n) ≡ ⟨f, en⟩ =
∫
T
fzndm =

1

2π

∫ 2π

0

f(t)e−intdt,

which is called the n-th Fourier coefficient of f . By Parseval’s identity,

f =
∞∑

n=−∞
f̂(n)zn,

which converges in the norm of L2. This series is called the Fourier series of f .

Proposition 5.1.1. We have:

(i) f ∈ L2 ⇒ f̂ ∈ ℓ2(Z);
(ii) If V : L2 → ℓ2(Z) is defined by V f = f̂ then V is an isomorphism.
(iii) If W = Nm on L2 then VWV −1 is the bilateral shift on ℓ2(Z).
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Proof. (i) Since by Parseval’s identity,
∑

|f̂(n)|2 = ||f ||2 <∞, it follows f̂ ∈ ℓ2(Z).
(ii) We claim that ||V f || = ||f ||: indeed, ||V f ||2 = ||f̂ ||2 =

∑
|f̂(n)|2 = ||f ||2. If

f = zn then

f̂(k) =

{
0 if k ̸= n

1 if k = n,

so that f̂ is the n-th basis vector in ℓ2(Z). Thus ranV is dense and hence V is an
isomorphism.

(iii) If {en} is an orthonormal basis for ℓ2(Z) then by (ii), V zn = en. Thus
VWzn = V (zn+1) = en+1 = UV zn.

If T ∈ B(H), write LatT for the set of all invariant subspaces for T , i.e.,

LatT := {M ⊂ H : TM ⊂ M}.

Theorem 5.1.2. If µ is a compactly supported measure on T and M ∈ LatNµ then

M = ϕH2 ⊕ L2(µ|∆),

where ϕ ∈ L∞(µ) and ∆ is a Borel set of T such that ϕ|∆ = 0 a.e. and |ϕ|2µ =
m(:=the normalized Lebesgue measure).

Proof. See [Con3, p.121].

Now consider the case where µ = m (in this case, Nµ is the bilateral shift). Observe

ϕ ∈ L2, |ϕ|2m = m =⇒ |ϕ| = 1 a.e.,

so that there is no Borel set ∆ such that ϕ|∆ = 0 and m(∆) ̸= 0. Therefore every
invariant subspace for the bilateral shift must have one form or the other. We thus
have:

Corollary 5.1.3. If W is the bilateral shift on L2 and M ∈ LatW then

either M = L2(m|∆) or M = ϕH2

for a Borel set ∆ and a function ϕ ∈ L∞ such that |ϕ| = 1 a.e.

Definition 5.1.4. A function ϕ ∈ L∞ [ϕ ∈ H∞] is called a unimodular [inner]
function if |ϕ| = 1 a.e.

The following theorem has had an enormous influence on the development in
operator theory and function theory.

Theorem 5.1.5 (Beurling’s Theorem). If U is the unilateral shift on H2 then

LatU = {ϕH2 : ϕ is an inner function}.
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Proof. Let W be the bilateral shift on L2. If M ∈ LatU then M ∈ LatW . By
Corollary 5.1.3, M = L2(m|∆) or M = ϕH2, where ϕ is a unimodular function.
Since U is a shift, ∩

UnM ⊂
∩
UnH2 = {0},

so the first alternative is impossible. Hence ϕH2 = M ⊂ H2. Since ϕ = ϕ · 1 ∈ M, it
follows ϕ ∈ L∞ ∩H2 = H∞.
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5.1.2 Hardy Spaces

If f ∈ H2 and f(z) =
∑∞
n=0 anz

n is its Fourier series expansion, this series converges
uniformly on compact subsets of D. Indeed, if |z| ≤ r < 1, then

∞∑
n=m

|anzn| ≤

( ∞∑
n=m

|an|2
) 1

2
( ∞∑
n=m

|z|2n
) 1

2

≤ ||f ||2

( ∞∑
n=m

r2n

) 1
2

.

Therefore it is possible to identify H2 with the space of analytic functions on the unit
disk whose Taylor coefficients are square summable.

Proposition 5.1.6. If f is a real-valued function in H1 then f is constant.

Proof. Let α =
∫
fdm. By hypothesis, we have α ∈ R. Since f ∈ H1, we have∫

fzndm = 0 for n ≥ 1. So
∫
(f − α)zndm = 0 for n ≥ 0. Also,

0 =

∫
(f − α)zndm =

∫
(f − α)z−ndm (n ≥ 0),

so that
∫
(f − α)zndm = 0 for all integers n. Thus f − α annihilates all the trigono-

metric polynomials. Therefore, f − α = 0 in L1.

Corollary 5.1.7. If ϕ is inner such that ϕ = 1
ϕ ∈ H2 then ϕ is constant.

Proof. By hypothesis, ϕ+ϕ and ϕ−ϕ
i are real-valued functions in H2. By Proposition

5.1.6, they are constant, so is ϕ.

The proof of the following important theorem uses Beurling’s theorem.

Theorem 5.1.8 (The F. and M. Riesz Theorem). If f is a nonzero function in H2,

then m

(
{z ∈ ∂D : f(z) = 0}

)
= 0. Hence, in particular, if f, g ∈ H2 and if fg = 0

a.e. then f = 0 a.e. or g = 0 a.e.

Proof. Let △ be a Borel set of ∂D and put

M := {h ∈ H2 : h(z) = 0 a.e. on △}.

Then M is an invariant subspace for the unilateral shift. By Beurling’s theorem,
if M ̸= {0}, then there exists an inner function ϕ such that M = ϕH2. Since
ϕ = ϕ · 1 ∈ M, it follows ϕ = 0 on △. But |ϕ| = 1 a.e., and hence M = {0}.

A function f in H2 is called an outer function if

H2 =
∨

{znf : n ≥ 0}.

So f is outer if and only if it is a cyclic vector for the unilateral shift.
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Theorem 5.1.9 (Inner-Outer Factorization). If f is a nonzero function in H2, then

∃ an inner function ϕ and an outer function g in H2 such that f = ϕg.

In particular, if f ∈ H∞, then g ∈ H∞.

Proof. Observe M ≡
∨
{znf : n ≥ 0} ∈ LatU . By Beurling’s theorem,

∃ an inner function ϕ s.t. M = ϕH2.

Let g ∈ H2 be such that f = ϕg. We want to show that g is outer. Put N ≡
∨
{zng :

n ≥ 0}. Again there exists an inner function ψ such that N = ψH2. Note that

ϕH2 :=
∨

{znf : n ≥ 0} =
∨

{znϕg : n ≥ 0} = ϕψH2.

Therefore there exists a function h ∈ H2 such that ϕ = ϕψh so that ψ = h ∈ H2.
Hence ψ is a constant by Corollary 5.1.7. So N = H2 and g is outer. Assume f ∈ H∞

with f = ϕg. Thus |g| = |f | a.e. on ∂D, so that g must be bounded, i.e., g ∈ H∞.
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5.1.3 Toeplitz Operators

Let P be the orthogonal projection of L2(T) ontoH2(T). For φ ∈ L∞(T), the Toeplitz
operator Tφ with symbol φ is defined by

Tφf = P (φf) for f ∈ H2.

Remember that {zn : n = 0, 1, 2, · · · } is an orthonormal basis for H2. Thus if
φ ∈ L∞ has the Fourier coefficients

φ̂(n) =
1

2π

∫ 2π

0

φzndt,

then the matrix (aij) for Tφ with respect to the basis {zn : n = 0, 1, 2, · · · } is given
by:

aij = (Tφz
j , zi) =

1

2π

∫ 2π

0

φzi−jdt = φ̂(i− j).

Thus the matrix for Tφ is constant on diagonals:

(aij) =


c0 c−1 c−2 c−3 · · ·
c1 c0 c−1 c−2 · · ·
c2 c1 c0 c−1 · · ·
c3 c2 c1 c0 · · ·
...

. . .
. . .

. . .
. . .

 , where cj = φ̂(j) :

Such a matrix is called a Toeplitz matrix.

Lemma 5.1.10. Let A ∈ B(H2). The matrix A relative to the orthonormal basis
{zn : n = 0, 1, 2, · · · } is a Toeplitz matrix if and only if

U∗AU = A, where U is the unilateral shift.

Proof. The hypothesis on the matrix entries aij = ⟨Azj , zi⟩ of A if and only if

ai+1,j+1 = aij (i, j = 0, 1, 2, · · · ). (5.1)

Noting Uzn = zn+1 for n ≥ 0, we get

(5.1) ⇐⇒ ⟨U∗AUzj , zi⟩ = ⟨AUzj , Uzi⟩ = ⟨Azj+1, zi+1⟩ = ⟨Azj , zi⟩, ∀ i, j
⇐⇒ U∗AU = A.

Remark.AU = UA ⇔ A is an analytic Toeplitz operator (i.e., A = Tφ with φ ∈ H∞).

Consider the mapping ξ : L∞ → B(H2) defined by ξ(φ) = Tφ. We have:
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Proposition 5.1.11. ξ is a contractive ∗-linear mapping from L∞ to B(H2).

Proof. It is obvious that ξ is contractive and linear. To show that ξ(φ)∗ = ξ(φ), let
f, g ∈ H2. Then

⟨Tφf, g⟩ = ⟨P (φf), g⟩ = ⟨φf, g⟩ = ⟨f, φg⟩ = ⟨f, P (φg)⟩ = ⟨f, Tφg⟩ = ⟨T ∗
φf, g⟩,

so that ξ(φ)∗ = T ∗
φ = Tφ = ξ(φ).

Remark. ξ is not multiplicative. For example, TzTz ̸= I = T1 = T|z|2 = Tzz. Thus ξ
is not a homomorphism.

In special cases, ξ is multiplicative.

Proposition 5.1.12. TφTψ = Tφψ ⇐⇒ either ψ or φ is analytic.

Proof. (⇐) Recall that if f ∈ H2 and ψ ∈ H∞ then ψf ∈ H2. Thus, Tψf = P (ψf) =
ψf . So

TφTψf = Tφ(ψf) = P (φψf) = Tφψf, i.e., TφTψ = Tφψ.

Taking adjoints reduces the second part to the first part.
(⇒) From a straightforward calculation.

Write Mφ for the multiplication operator on L2 with symbol φ ∈ L∞. The

essential range of φ ∈ L∞ ≡ R(φ) :=the set of all λ for which µ

(
{x : |f(x) − λ| <

ϵ}
)
> 0 for any ϵ > 0.

Lemma 5.1.13. If φ ∈ L∞(µ) then σ(Mφ) = R(φ).

Proof. If λ /∈ R(φ) then

∃ ε > 0 such that µ

(
{x : |φ(x)− λ| < ε}

)
= 0, i.e., |φ(x)− λ| ≥ ϵ a.e. [µ].

So

g(x) :=
1

φ(x)− λ
∈ L∞(X,µ).

Hence Mg is the inverse of Mφ − λ, i.e., λ /∈ σ(Mφ). For the converse, suppose
λ ∈ R(φ). We will show that

∃ a sequence {gn} of unit vectors ∈ L2 with the property ||Mφgn − λgn|| → 0,

showing that Mφ − λ is not bounded below, and hence λ ∈ σ(Mφ). By assumption,
{x ∈ T : |φ(x)− λ| ≤ 1

n} has a positive measure. So we can find a subset

En ⊆
{
x ∈ T : |φ(x)− λ| ≤ 1

n

}
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satisfying 0 < µ(En) <∞. Letting gn :=
χEn√
µ(En)

, we have that

∣∣(φ(x)− λ)gn(x)
∣∣ ≤ 1

n
|gn(x)|,

and hence ||(φ− λ)gn||L2 ≤ 1
n −→ 0.

Proposition 5.1.14. If φ ∈ L∞ is such that Tφ is invertible, then φ is invertible in
L∞.

Proof. In view of Lemma 5.1.13, it suffices to show that

Tφ is invertible =⇒ Mφ is invertible.

If Tφ is invertible then

∃ ε > 0 such that ||Tφf || ≥ ε||f ||, ∀f ∈ H2.

So for n ∈ Z and f ∈ H2,

||Mφ(z
nf)|| = ||φznf || = ||φf || ≥ ||P (φf)|| = ||Tφf || ≥ ε||f || = ε||znf ||.

Since {znf : f ∈ H2, n ∈ Z} is dense in L2, it follows ||Mφg|| ≥ ε||g|| for g ∈
L2. Similarly, ||Mφf || ≥ ε||f || since T ∗

φ = Tφ is also invertible. Therefore Mφ is
invertible.

Theorem 5.1.15 (Hartman-Wintner). If φ ∈ L∞ then

(i) R(φ) = σ(Mφ) ⊂ σ(Tφ)

(ii) ||Tφ|| = ||φ||∞ (i.e., ξ is an isometry).

Proof. (i) From Lemma 5.1.13 and Proposition 5.1.14.

(ii) ||φ||∞ = supλ∈R(φ)|λ| ≤ supλ∈σ(Tφ)|λ| = r(Tφ) ≤ ||Tφ|| ≤ ||φ||∞.

From Theorem 5.1.15 we can see that

(i) If Tφ is quasinilpotent then Tφ = 0 because R(φ) ⊆ σ(Tφ) = {0} ⇒ φ = 0.

(ii) If Tφ is self-adjoint then φ is real-valued because R(φ) ⊆ σ(Tφ) ⊆ R.

If S ⊆ L∞, write T (S) := the smallest closed subalgebra of L(H2) containing
{Tφ : φ ∈ S}.

If A is a C∗-algebra then its commutator ideal C is the closed ideal generated by
the commutators [a, b] := ab − ba (a, b ∈ A). In particular, C is the smallest closed
ideal in A such that A/C is abelian.
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Theorem 5.1.16. If C is the commutator ideal in T (L∞), then the mapping ξc
induced from L∞ to T (L∞)/C by ξ is a ∗-isometrical isomorphism. Thus there is a
short exact sequence

0 −→ C −→ T (L∞) −→ L∞ −→ 0.

Proof. See [Do1].

The commutator ideal C contains compact operators.

Proposition 5.1.17. The commutator ideal in T (C(T)) = K(H2). Hence the com-
mutator ideal of T (L∞) contains K(H2).

Proof. Since Tz is the unilateral shift, we can see that the commutator ideal of
T (C(T)) contains the rank one operator T ∗

z Tz − TzT
∗
z . Moreover, T (C(T)) is irre-

ducible since Tz has no proper reducing subspaces by Beurling’s theorem. Therefore
T (C(T)) contains K(H2). Since Tz is normal modulo a compact operator and gen-
erates the algebra T (C(T)), it follows that T (C(T))/K(H2) is commutative. Hence
K(H2) contains the commutator ideal of T (C(T)). But since K(H2) is simple (i.e., it
has no nontrivial closed ideal), we can conclude that K(H2) is the commutator ideal
of T (C(T)).

Corollary 5.1.18. There exists a ∗-homomorphism ζ : T (L∞)/K(H2) −→ L∞

such that the following diagram commutes:

T (L∞)
π //

ρ
$$J

JJ
JJ

JJ
JJ

T (L∞)/K(H2)

ζwwppp
ppp

ppp
pp

L∞(T)

Corollary 5.1.19. Let φ ∈ L∞. If Tφ is Fredholm then φ is invertible in L∞.

Proof. If Tφ is Fredholm then π(Tφ) is invertible in T (L∞)/K(H2), so φ = ρ(Tφ) =
(ζ ◦ π)(Tφ) is invertible in L∞.

From Corollary 5.1.18, we have:

(i) ||Tφ|| ≤ ||Tφ + K|| for every compact operator K because ||Tφ|| = ||φ||∞ =
||ζ(Tφ +K)|| ≤ ||Tφ +K||.

(ii) The only compact Toeplitz operator is 0 because ||K|| ≤ ||K +K|| ⇒ K = 0.

Proposition 5.1.20. If φ is invertible in L∞ such that R(φ) ⊆ the open right half-
plane, then Tφ is invertible.
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Proof. If ∆ ≡ {z ∈ C : |z − 1| < 1} then there exists ϵ > 0 such that ϵR(φ) ⊆
∆. Hence ||ϵφ − 1|| < 1, which implies ||I − Tϵφ|| < 1. Therefore Tϵφ = ϵTφ is
invertible.

Corollary 5.1.21 (Brown-Halmos). If φ ∈ L∞, then σ(Tφ) ⊆ convR(φ).

Proof. It is sufficient to show that every open half-plane containing R(φ) contains
σ(Tφ). This follow at once from Proposition 5.1.20 after a translation and rotation of
the open half-plane to coincide with the open right half-plane.

Proposition 5.1.22. If φ ∈ C(T) and ψ ∈ L∞ then

TφTψ − Tφψ and TψTφ − Tψφ are compact.

Proof. If ψ ∈ L∞, f ∈ H2 then

TψTzf = TψP (zf) = Tψ(zf − f̂(0)z)

= PMψ

(
zf − f̂(0)z

)
= P (ψzf)− f̂(0)P (ψz)

= Tψzf − f̂(0)P (ψz),

which implies that TψTz−Tψz is at most a rank one operator. Suppose TψTzn −Tψzn
is compact for every ψ ∈ L∞ and n = 1, · · · , N . Then

TψTzN+1 − TψzN+1 = (TψTzN − TψzN )Tz + (TψzNTz − T(ψzN )z),

which is compact. Also, since TψTzn = Tψzn (n ≥ 0), it follows that TψTp − Tψp
is compact for every trigonometric polynomial p. But since the set of trigonometric
polynomials is dense in C(T) and ξ is isometric, we can conclude that TψTφ − Tψφ is
compact for ψ ∈ L∞ and φ ∈ C(T).

Theorem 5.1.23. T (C(T)) contains K(H2) as its commutator and the sequence

0 −→ K(H2) −→ T (C(T)) −→ C(T) −→ 0

is a short exact sequence, i.e., T (C(T))/K(H2) is ∗-isometrically isomorphic to C(T).

Proof. By Proposition 5.1.22 and Corollary 5.1.18.

Proposition 5.1.24. [Co] If φ ̸= 0 a.e. in L∞, then

either kerTφ = {0} or kerT ∗
φ = {0}.
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Proof. If f ∈ kerTφ and g ∈ kerT ∗
φ, i.e., P (φf) = 0 and P (φg)=0, then

φf ∈ zH2 and φg ∈ zH2.

Thus φfg, φgf ∈ zH1 and therefore φfg = 0. If neither f nor g is 0, then by F. and
M. Riesz theorem, φ = 0 a.e. on T, a contradiction.

Corollary 5.1.25. If φ ∈ C(T) then Tφ is Fredholm if and only if φ vanishes nowhere.

Proof. By Theorem 5.1.23,

Tφ is Fredholm ⇐⇒ π(Tφ) is invertible in T (C(T))/K(H2)

⇐⇒ φ is invertible in C(T).

Corollary 5.1.26. If φ ∈ C(T), then σe(Tφ) = φ(T).

Proof. σe(Tφ) = σ(Tφ +K(H2)) = σ(φ) = φ(T).

Theorem 5.1.27. If φ ∈ C(T) is such that Tφ is Fredholm, then

index (Tφ) = −wind (φ).

Proof. We claim that if φ and ψ determine homotopic curves in C \ {0}, then

index (Tφ) = index (Tψ).

To see this, let Φ be a constant map from [0, 1]× T to C \ {0} such that

Φ(0, eit) = φ(eit) and Φ(1, eit) = ψ(eit).

If we set Φλ(e
it) = Φ(λ, eit), then the mapping λ 7→ TΦλ

is norm continuous and
each TΦλ

is a Fredholm operator. Since the map index is continuous, index(Tφ) =
index(Tψ). Now if n = wind(φ) then φ is homotopic in C \ {0} to zn. Since
index (Tzn) = −n, we have that index (Tφ) = −n.

Theorem 5.1.28. If U is the unilateral shift on H2 then comm(U) = {Tφ : φ ∈
H∞}.

Proof. It is straightforward that UTφ = TφU for φ ∈ H∞, i.e., {Tφ : φ ∈ H∞} ⊂
comm(U). For the reverse we suppose T ∈ comm(U), i.e., TU = UT . Put φ := T (1).
So φ ∈ H2 and T (p) = φp for every polynomial p. If f ∈ H2, let {pn} be a sequence
of polynomials such that pn → f in H2. By passing to a subsequence, we can assume
pn(z) → f(z) a.e. [m]. Thus φpn = T (pn) → T (f) in H2 and φpn → φf a.e. [m].
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Therefore Tf = φf for all f ∈ H2. We want to show that φ ∈ L∞ and hence φ ∈ H∞.
We may assume, without loss of generality, that ||T || = 1. Observe

T kf = φkf for f ∈ H2, k ≥ 1.

Hence ||φkf ||2 ≤ ||f ||2 for all k ≥ 1. Taking f = 1 shows that
∫
|φ|2kdm ≤ 1 for all

k ≥ 1. If ∆ := {z ∈ ∂D : |φ(z)| > 1} then
∫
∆
|φ|2kdm ≤ 1 for all k ≥ 1. If m(∆) ̸= 0

then
∫
∆
|φ|2kdm → ∞ as k → ∞, a contradiction. Therefore m(∆) = 0 and hence φ

is bounded. Therefore T = Tφ for φ ∈ H∞.

D. Sarason [Sa] gave a generalization of Theorem 5.1.28.

Theorem 5.1.29 (Sarason’s Interpolation Theorem). Let

(i) U =the unilateral shift on H2;
(ii) K := H2 ⊖ ψH2 (ψ is an inner function);
(iii) S := PU |K, where P is the projection of H2 onto K.

If T ∈ comm(S) then there exists a function φ ∈ H∞ such that T = Tφ|K with
||φ||∞ = ||T ||.

Proof. See [Sa].
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5.2 Hyponormality of Toeplitz operators

An elegant and useful theorem of C. Cowen [Cow3] characterizes the hyponormality
of a Toeplitz operator Tφ on the Hardy space H2(T) of the unit circle T ⊂ C by
properties of the symbol φ ∈ L∞(T). This result makes it possible to answer an
algebraic question coming from operator theory – namely, is Tφ hyponormal ? - by
studying the function φ itself. Normal Toeplitz operators were characterized by a
property of their symbol in the early 1960’s by A. Brown and P.R. Halmos [BH], and
so it is somewhat of a surprise that 25 years passed before the exact nature of the
relationship between the symbol φ ∈ L∞ and the positivity of the selfcommutator
[T ∗
φ, Tφ] was understood (via Cowen’s theorem). As Cowen notes in his survey paper

[Cow2], the intensive study of subnormal Toeplitz operators in the 1970’s and early
80’s is one explanation for the relatively late appearance of the sequel to the Brown-
Halmos work. The characterization of hyponormality via Cowen’s theorem requires
one to solve a certain functional equation in the unit ball of H∞. However the
case of arbitrary trigonometric polynomials φ, though solved in principle by Cowen’s
theorem, is in practice very complicated. Indeed it may not even be possible to find
tractable necessary and sufficient conditions for the hyponormality of Tφ in terms of
the Fourier coefficients of φ unless certain assumptions are made about φ. In this
chapter we present some recent development in this research.

5.2.1 Cowen’s Theorem

In this section we present Cowen’s theorem. Cowen’s method is to recast the operator-
theoretic problem of hyponormality of Toeplitz operators into the problem of finding
a solution of a certain functional equation involving its symbol. This approach has
been put to use in the works [CLL, CuL1, CuL2, CuL3, FL1, FL2, Gu1, HKL1, HKL2,
HwL3, KL, NaT, Zh] to study Toeplitz operators.

We begin with:

Lemma 5.2.1. A necessary and sufficient condition that two Toeplitz operators com-
mute is that either both be analytic or both be co-analytic or one be a linear function
of the other.

Proof. Let φ =
∑
i αiz

i and ψ =
∑
j βjz

j . Then a straightforward calculation shows
that

TφTψ = TψTφ ⇐⇒ αi+1β−j−1 = βi+1α−j−1 (i, j ≥ 0).

Thus either α−j−1 = β−j−1 = 0 for j ≥ 0, i.e., φ and ψ are both analytic, or
αi+1 = βi+1 = 0 for i ≥ 0, i.e., φ and ψ are both co-analytic, or there exist i0, j0
such that αi0+1 ̸= 0 and α−j0−1 ̸= 0. So for the last case, if the common value of
β−j0−1/α−j0−1 and βi0+1/αi0+1 is denoted by λ, then

βi+1 = λαi+1 (i ≥ 0) and β−j−1 = λα−j−1 (j ≥ 0).

Therefore, βk = λαk (k ̸= 0).
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Theorem 5.2.2 (Brown-Halmos). Normal Toeplitz operators are translations and
rotations of hermitian Toeplitz operators i.e.,

Tφ normal ⇐⇒ ∃ α, β ∈ C, a real valued ψ ∈ L∞ such that Tφ = αTψ + β1.

Proof. If φ =
∑
i αiz

i, then

φ =
∑
i

αi z
i =

∑
i

α−iz
i.

So if φ is real, then αi = α−i. Thus no real φ can be analytic or co-analytic unless
φ is a constant. Write Tφ = Tφ1+iφ2 , where φ1, φ2 are real-valued. Then by Lemma
5.2.1, TφTφ = TφTφ iff Tφ1Tφ2 = Tφ2Tφ1 iff either φ1 and φ2 are both analytic or φ1

and φ2 are both co-analytic or φ1 = αφ2 + β (α, β ∈ C). So if φ ̸= a constant, then
φ = αφ2 + β + iφ2 = (α+ i)φ2 + β.

For ψ ∈ L∞, the Hankel operator Hψ is the operator on H2 defined by

Hψf = J(I − P )(ψf) (f ∈ H2),

where J is the unitary operator from (H2)⊥ onto H2 :

J(z−n) = zn−1 (n ≥ 1).

Denoting v∗(z) := v(z), another way to put this is that Hψ is the operator on H2

defined by
< zuv, ψ >=< Hψu, v

∗ > for all v ∈ H∞.

If ψ has the Fourier series expansion ψ :=
∑∞
n=−∞ anz

n, then the matrix of Hψ is
given by

Hψ ≡


a−1 a−2 a−3 · · ·
a−2 a−3

a−3
. . .

...
. . .

 .
The following are basic properties of Hankel operators.

1. H∗
ψ = Hψ∗ ;

2. HψU = U∗Hψ (U is the unilateral shift);
3. KerHψ = {0} or θH2 for some inner function θ (by Beurling’s theorem);
4. Tφψ − TφTψ = H∗

φHψ;
5. HφTh = Hφh = T ∗

h∗Hφ (h ∈ H∞).

We are ready for:

Theorem 5.2.3 (Cowen’s Theorem). If φ ∈ L∞ is such that φ = g + f (f, g ∈ H2),
then

Tφ is hyponormal ⇐⇒ g = c+ Thf

for some constant c and some h ∈ H∞(D) with ||h||∞ ≤ 1.

170



CHAPTER 5. TOEPLITZ THEORY

Proof. Let φ = f + g (f, g ∈ H2). For every polynomial p ∈ H2,

⟨(T ∗
φTφ − TφT

∗
φ)p, p⟩ = ⟨Tφp, Tφp⟩ − ⟨T ∗

φp, T
∗
φp⟩

= ⟨fp+ Pgp, fp+ Pgp⟩ − ⟨Pfp+ gp, Pfp+ gp⟩
= ⟨fp, fp⟩ − ⟨Pfp, Pfp⟩ − ⟨gp, gp⟩+ ⟨Pgp, Pgp⟩
= ⟨fp, (I − P )fp⟩ − ⟨gp, (I − p)gp⟩
= ⟨(I − P )fp, (I − P )fp⟩ − ⟨(I − P )gp, (I − P )gp⟩
= ||Hfp||

2 − ||Hgp||2.

Since polynomials are dense in H2,

Tφ hyponormal ⇐⇒ ||Hgu|| ≤ ||Hfu||, ∀u ∈ H2 (5.2)

Write K := cl ran(Hf ) and let S be the compression of the unilateral shift U to K.
Since K is invariant for U∗ (why: HfU = U∗Hf ), we have S∗ = U∗|K. Suppose Tφ is
hyponormal. Define A on ran(Hf ) by

A(Hfu) = Hgu. (5.3)

Then A is well defined because by (5.3)

Hfu1 = Hfu2 =⇒ Hf (u1 − u2) = 0 =⇒ Hg(u1 − u2) = 0.

By (5.2), ||A|| ≤ 1, so A has an extension to K, which will also be denoted A. Observe
that

HgU = AHfU = AU∗Hf = AS∗Hf and HgU = U∗Hg = U∗AHf = S∗AHf .

Thus AS∗ = S∗A on K since ranHf is dense in K, and hence SA∗ = A∗S. By
Sarason’s interpolation theorem,

∃ k ∈ H∞(D) with ||k||∞ = ||A∗|| = ||A|| s.t. A∗ = the compression of Tk to K.

Since T ∗
kHf = HfTk∗ , we have that K is invariant for T ∗

k = Tk, which means that A
is the compression of Tk to K and

Hg = TkHf (by (5.3)). (5.4)

Conversely, if (5.4) holds for some k ∈ H∞(D) with ||k||∞ ≤ 1, then (5.2) holds for
all u, and hence Tφ is hyponormal. Consequently,

Tφ hyponormal ⇐⇒ Hg = TkHf .

But Hg = TkHf if and only if ∀ u, v ∈ H∞,

⟨zuv, g⟩ = ⟨Hgu, v
∗⟩ = ⟨TkHfu, v

∗⟩ = ⟨Hfu, kv
∗⟩

= ⟨zuk∗v, f⟩ = ⟨zuv, k∗f⟩ = ⟨zuv, Tk∗f⟩.

Since
∨
{zuv : u, v ∈ H∞} = zH2, it follows that

Hg = TkHf ⇐⇒ g = c+ Thf for h = k∗.
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Theorem 5.2.4 (Nakazi-Takahashi Variation of Cowen’s Theorem). For φ ∈ L∞,
put

E(φ) := {k ∈ H∞ : ||k||∞ ≤ 1 and φ− kφ ∈ H∞}.

Then Tφ is hyponormal if and only if E(φ) ̸= ∅.

Proof. Let φ = f + g ∈ L∞ (f, g ∈ H2). By Cowen’s theorem,

Tφ is hyponormal ⇐⇒ g = c+ Tkf

for some constant c and some k ∈ H∞ with ||k||∞ ≤ 1. If φ = kφ+h (h ∈ H∞) then
φ − kφ = g − kf + f − kg ∈ H∞. Thus g − kf ∈ H2, so that P (g − kf) = c (c = a
constant), and hence g = c+ Tkf for some constant c. Thus Tφ is hyponormal. The
argument is reversible.

172



CHAPTER 5. TOEPLITZ THEORY

5.2.2 The Case of Trigonometric Polynomial Symbols

In this section we consider the hyponormality of Toeplitz operators with trigonometric
polynomial symbols. To do this we first review the dilation theory.

If B =

[
A ∗
∗ ∗

]
, then B is called a dilation of A and A is called a compression of B.

It was well-known that every contraction has a unitary dilation: indeed if ||A|| ≤ 1,
then

B ≡
[

A (I −AA∗)
1
2

(I −A∗A)
1
2 −A∗

]
is unitary.

On the other hand, an operator B is called a power (or strong) dilation of A if Bn

is a dilation of An for all n = 1, 2, 3, · · · . So if B is a (power) dilation of A then B

should be of the form B =

[
A 0
∗ ∗

]
. Sometimes, B is called a lifting of A and A is

said to be lifted to B. It was also well-known that every contraction has a isometric
(power) dilation. In fact, the minimal isometric dilation of a contraction A is given
by

B ≡


A 0 0 0 · · ·

(I −A∗A)
1
2 0 0 0 · · ·

0 I 0 0 · · ·
0 0 I 0 · · ·
...

...
...

. . .

 .

We then have:

Theorem 5.2.5 (Commutant Lifting Theorem). Let A be a contraction and T be a
minimal isometric dilation of A. If BA = AB then there exists a dilation S of B
such that

S =

[
B 0
∗ ∗

]
, ST = TS, and ||S|| = ||B||.

Proof. See [GGK, p.658].

We next consider the following interpolation problem, called the Carathéodory-
Schur Interpolation Problem (CSIP).

Given c0, · · · , cN−1 in C, find an analytic function φ on D such that

(i) φ̂(j) = cj (j = 0, · · · , N − 1);

(ii) ||φ||∞ ≤ 1.

The following is a solution of CSIP.
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Theorem 5.2.6.

CSIP is solvable ⇐⇒ C ≡



c0

c1 c0 O
c2 c1 c0
...

...
. . .

. . .

cN−1 cN−2 · · · c1 c0

 is a contraction.

Moreover, φ is a solution if and only if Tφ is a contractive lifting of C which commutes
with the unilateral shift.

Proof. (⇒) Assume that we have a solution φ. Then the condition (ii) implies

Tφ =


φ0

φ1 φ0 O
φ2 φ1 φ0

...
...

. . .
. . .

 (φj := φ̂(j))

is a contraction because ||Tφ|| = ||φ||∞ ≤ 1. So the compression of Tφ is also con-
tractive. In particular, 

φ0

φ1 φ0 O
...

...
. . .

φn−1 φn−2 · · · φ0


must have norm less than or equal to 1 for all n. Therefore if CSIP is solvable, then
||C|| ≤ 1.

(⇐) Let

C ≡



c0

c1 c0 O
c2 c1 c0
...

...
. . .

. . .

cN−1 cN−2 · · · c1 c0

 with ||C|| ≤ 1

and let

A :=


0
1 0

1 0
. . .

. . .

1 0

 : CN → CN .

Then A and C are contractions and AC = CA. Observe that the unilateral shift U
is the minimal isometric dilation of A (please check it!). By the Commutant Lifting
Theorem, C can be lifted to a contraction S such that SU = US. But then S is an

174



CHAPTER 5. TOEPLITZ THEORY

analytic Toeplitz operator, i.e., S = Tφ with φ ∈ H∞. Since S is a lifting of C we
must have

φ̂(j) = cj (j = 0, 1, · · · , N − 1).

Since S is a contraction, it follows that ||φ||∞ = ||Tφ|| ≤ 1.

Now suppose φ is a trigonometric polynomial of the form

φ(z) =

N∑
n=−N

anz
n (aN ̸= 0).

If a function k ∈ H∞(T) satisfies φ− kφ ∈ H∞ then k necessarily satisfies

k
N∑
n=1

anz
−n −

N∑
n=1

a−nz
−n ∈ H∞. (5.5)

From (5.5) one compute the Fourier coefficients k̂(0), · · · , k̂(N − 1) to be k̂(n) =
cn (n = 0, 1, · · · , N − 1), where c0, c1, · · · , cN−1 are determined uniquely from the
coefficients of φ by the following relation

c0
c1
...
...

cN−1

 =


a1 a2 a3 · · · aN
a2 a3 . . . ·
a3 . . . · · ·
... · · · O
aN



−1


a−1

a−2

...

...
a−N

 . (5.6)

Thus if k(z) =
∑∞
j=0 cjz

j is a function in H∞ then

φ− kφ ∈ H∞ ⇐⇒ c0, c1, · · · , cN−1 are given by (5.6).

Thus by Cowen’s theorem, if c0, c1, · · · , cN−1 are given by (5.6) then the hyponor-
mality of Tφ is equivalent to the existence of a function k ∈ H∞ such that{

k̂(j) = cj (j = 0, · · · , N − 1)

||k||∞ ≤ 1,

which is precisely the formulation of CSIP. Therefore we have:

Theorem 5.2.7. If φ(z) =
∑N
n=−N anz

n, where aN ̸= 0 and if c0, c1, · · · , cN−1 are
given by (5.6) then

Tφ is hyponormal ⇐⇒ C ≡



c0

c1 c0 O
c2 c1 c0
...

...
. . .

. . .

cN−1 cN−2 · · · c1 c0

 is a contraction.
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5.2.3 The Case of Rational Symbols

A function φ ∈ L∞ is said to be of bounded type (or in the Nevanlinna class) if there
are functions ψ1, ψ2 in H∞(D) such that

φ(z) =
ψ1(z)

ψ2(z)

for almost all z in T. Evidently, rational functions in L∞ are of bounded type.
If θ is an inner function, the degree of θ, denoted by deg(θ), is defined by the

number of zeros of θ lying in the open unit disk D if θ is a finite Blaschke product of
the form

θ(z) = eiξ
n∏
j=1

z − βj

1− βjz
(|βj | < 1 for j = 1, · · · , n),

otherwise the degree of θ is infinite. For an inner function θ, write

H(θ) := H2 ⊖ θH2.

Note that for f ∈ H2,

⟨[T ∗
φ, Tφ]f, f⟩ = ||Tφf ||2 − ||Tφf ||2 = ||φf ||2 − ||Hφf ||2 − (||φf ||2 − ||Hφf ||2)

= ||Hφf ||2 − ||Hφf ||2.

Thus we have

Tφ hyponormal ⇐⇒ ||Hφf || ≥ ||Hφf || (f ∈ H2).

Now let φ = g + f ∈ L∞, where f and g are in H2. Since HφU = U∗Hφ (U =the
unilateral shift), it follows from the Beurling’s theorem that

kerHf = θ0H
2 and kerHg = θ1H

2 for some inner functions θ0, θ1.

Thus if Tφ is hyponormal then since ||Hfh|| ≥ ||Hgh|| (h ∈ H2), we have

θ0H
2 = kerHf ⊂ kerHg = θ1H

2, (5.7)

which implies that θ1 divides θ0, so that θ0 = θ1θ2 for some inner function θ2.

On the other hand, note that if f ∈ H2 and f is of bounded type, i.e., f = ψ2/ψ1

(ψi ∈ H∞), then dividing the outer part of ψ1 into ψ2 one obtain f = ψ/θ with θ
inner and ψ ∈ H∞, and hence f = θψ. But since f ∈ H2 we must have ψ ∈ H(θ).
Thus if f ∈ H2 and f is of bounded type then we can write

f = θψ (θ inner, ψ ∈ H(θ)). (5.8)

Therefore if φ = g + f is of bounded type and Tφ is hyponormal then by (5.7) and
(5.8), we can write

f = θ1θ2a and g = θ1b,

where a ∈ H(θ1θ2) and b ∈ H(θ1).

We now have:
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Lemma 5.2.8. Let φ = g + f ∈ L∞, where f and g are in H2. Assume that

f = θ1θ2a and g = θ1b (5.9)

for a ∈ H(θ1θ2) and b ∈ H(θ1). Let ψ := θ1PH(θ1)(a) + g. Then Tφ is hyponormal if
and only if Tψ is.

Proof. This assertion follows at once from [Gu2, Corollary 3.5].

In view of Lemma 5.2.8, when we study the hyponormality of Toeplitz operators
with bounded type symbols φ, we may assume that the symbol φ = g+ f ∈ L∞ is of
the form

f = θa and g = θb, (5.10)

where θ is an inner function and a, b ∈ H(θ) such that the inner parts of a, b and θ
are coprime.

On the other hand, let f ∈ H∞ be a rational function. Then we may write

f = pm(z) +
n∑
i=1

li−1∑
j=0

aij
(1− αiz)li−j

(0 < |αi| < 1),

where pm(z) denotes a polynomial of degree m. Let θ be a finite Blaschke product of
the form

θ = zm
n∏
i=1

(
z − αi
1− αiz

)li
.

Observe that
aij

1− αiz
=

αiaij
1− |αi|2

( z − αi
1− αiz

+
1

αi

)
.

Thus f ∈ H(zθ). Letting a := θf , we can see that a ∈ H(zθ) and f = θa. Thus if
φ = g + f ∈ L∞, where f and g are rational functions and if Tφ is hyponormal, then
we can write

f = θa and g = θb

for a finite Blaschke product θ with θ(0) = 0 and a, b ∈ H(θ).

Now let θ be a finite Blaschke product of degree d. We can write

θ = eiξ
n∏
i=1

Bni
i , (5.11)

where Bi(z) := z−αi

1−αiz
, (|αi| < 1), ni ≥ 1 and

∑n
i=1 ni = d. Let θ = eiξ

∏d
j=1Bj

and each zero of θ be repeated according to its multiplicity. Note that this Blaschke
product is precisely the same Blaschke product in (5.11). Let

ϕj :=
dj

1− αjz
Bj−1Bj−2 · · ·B1 (1 ≤ j ≤ d),
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where ϕ1 := d1(1− α1z)
−1 and dj := (1− |αj |2)

1
2 . It is well known that {ϕj}d1 is an

orthonormal basis for H(θ) (cf. [FF, Theorem X.1.5]). Let φ = g + f ∈ L∞, where
g = θb and f = θa for a, b ∈ H(θ) and write

C(φ) := {k ∈ H∞ : φ− kφ ∈ H∞}.

Then k is in C(φ) if and only if θb− kθa ∈ H2, or equivalently,

b− ka ∈ θH2. (5.12)

Note that θ(n)(αi) = 0 for all 0 ≤ n < ni. Thus the condition (5.12) is equivalent to
the following equation: for all 1 ≤ i ≤ n,



ki,0
ki,1
ki,2
...

ki,ni−2

ki,ni−1


=



ai,0 0 0 0 · · · 0
ai,1 ai,0 0 0 · · · 0
ai,2 ai,1 ai,0 0 · · · 0
...

. . .
. . .

. . .
. . .

...

ai,ni−2 ai,ni−3
. . .

. . . ai,0 0
ai,ni−1 ai,ni−2 . . . ai,2 ai,1 ai,0



−1 

bi,0
bi,1
bi,2
...

bi,ni−2

bi,ni−1


, (5.13)

where

ki,j :=
k(j)(αi)

j!
, ai,j :=

a(j)(αi)

j!
and bi,j :=

b(j)(αi)

j!
.

Conversely, if k ∈ H∞ satisfies the equality (5.13) then k must be in C(φ). Thus k
belongs to C(φ) if and only if k is a function in H∞ for which

k(j)(αi)

j!
= ki,j (1 ≤ i ≤ n, 0 ≤ j < ni), (5.14)

where the ki,j are determined by the equation (5.13). If in addition ||k||∞ ≤ 1 is
required then this is exactly the classical Hermite-Fejér Interpolation Problem (HFIP).
Therefore we have:

Theorem 5.2.9. Let φ = g + f ∈ L∞, where f and g are rational functions. Then
Tφ is hyponormal if and only if the corresponding HFIP (5.14) is solvable.

Now we can summarize that tractable criteria for the hyponormality of Toeplitz
operators Tφ are accomplished for the cases where the symbol φ is a trigonometric
polynomial or a rational function via solutions of some interpolation problems.

We conclude this section with:

Problem 5.1. Let φ ∈ L∞ be arbitrary. Find necessary and sufficient conditions,
in terms of the coefficients of φ, for Tφ to be hyponormal. In particular, for the cases
where φ is of bounded type.
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5.3 Subnormality of Toeplitz operators

The present chapter concerns the question: Which Toeplitz operators are subnormal ?
Recall that a Toeplitz operator Tφ is called analytic if φ is in H∞, that is, φ is
a bounded analytic function on D. These are easily seen to be subnormal: Tφh =
P (φh) = φh =Mφh for h ∈ H2, whereMφ is the normal operator of multiplication by
φ on L2. P.R. Halmos raised the following problem, so-called the Halmos’s Problem
5 in his 1970 lectures “Ten Problems in Hilbert Space” [Ha1], [Ha2]:

Is every subnormal Toeplitz operator either normal or analytic ?

The question is natural because the two classes, the normal and analytic Toeplitz
operators, are fairly well understood and are obviously subnormal.

5.3.1 Halmos’s Problem 5

We begin with a brief survey of research related to P.R. Halmos’s Problem 5.

In 1976, M. Abrahamse [Ab] gave a general sufficient condition for the answer to
the Halmos’s Problem 5 to be affirmative.

Theorem 5.3.1 (Abrahamse’s Theorem). If

(i) Tφ is hyponormal;
(ii) φ or φ is of bounded type;
(iii) ker[T ∗

φ, Tφ] is invariant for Tφ,

then Tφ is normal or analytic.

Proof. See [Ab].

On the other hand, observe that if S is a subnormal operator onH and ifN := mne (S)
then

ker[S∗, S] = {f : < f, [S∗, S]f >= 0} = {f : ||S∗f || = ||Sf ||} = {f : N∗f ∈ H}.

Therefore, S(ker[S∗, S]) ⊆ ker[S∗, S].

By Theorem 5.3.1 and the preceding remark we get:

Corollary 5.3.2. If Tφ is subnormal and if φ or φ is of bounded type, then Tφ is
normal or analytic.

Lemma 5.3.3. A function φ is of bounded type if and only if kerHφ ̸= {0}.
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Proof. If kerHφ ̸= {0} then since Hφf = 0 ⇒ (1− P )φf = 0 ⇒ φf = Pφf := g, we
have

∃ f, g ∈ H2 s.t. φf = g.

Hence φ = g
f . Remembering that if 1

φ ∈ L∞ then φ is outer if and only if 1
φ ∈ H∞

and dividing the outer part of f into g gives

φ =
ψ

θ
(ψ ∈ H∞, θ inner).

Conversely, if φ = ψ
θ (ψ ∈ H∞, θ inner), then θ ∈ kerHφ because φθ = ψ ∈ H∞ ⇒

(1− P )φθ = 0 ⇒ Hφθ = 0.

From Theorem 5.3.1 we can see that

φ =
ψ

θ
(θ, ψ inner), Tφ subnormal ⇒ Tφ normal or analytic (5.15)

The following proposition strengthen the conclusion of (5.15), whereas weakens
the hypothesis of (5.15).

Proposition 5.3.4. If φ = ψ
θ (θ, ψ inner) and if Tφ is hyponormal, then Tφ is

analytic.

Proof. Observe that

1 = ||θ|| = ||P (θ)|| = ||P (φθφ)|| = ||P (φψ)||

= ||Tφ(ψ)|| ≤ ||Tφ(ψ)|| = ||P (ψ
2

θ
)|| ≤ ||ψ

2

θ
|| = 1,

which implies that ψ2

θ ∈ H2, so θ divides ψ2. Thus if one choose ψ and θ to be

relatively prime (i.e., if φ = ψ
θ is in lowest terms), then θ is constant. Therefore Tφ

is analytic.

Proposition 5.3.5. If A is a weighted shift with weights a0, a1, a2, · · · such that

0 ≤ a0 ≤ a1 ≤ · · · < aN = aN+1 = · · · = 1,

then A is not unitarily equivalent to any Toeplitz operator.

Proof. Note that A is hyponormal, ||A|| = 1 and A attains its norm. If A is unitarily
equivalent to Tφ then by a result of Brown and Douglas [BD], Tφ is hyponormal and

φ = ψ
θ (θ, ψ inner). By Proposition 5.3.4, Tφ ≡ Tψ is an isometry, so a0 = 1, a

contradiction.

Recall that the Bergman shift (whose weights are given by
√

n+1
n+2 ) is subnormal.

The following question arises naturally:

Is the Bergman shift unitarily equivalent to a Toeplitz operator ? (5.16)
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An affirmative answer to the question (5.16) gives a negative answer to Halmos’s
Problem 5. To see this, assume that the Bergman shift S is unitarily equivalent to
Tφ, then

R(φ) ⊆ σe(Tφ) = σe(S) = the unit circle T.

Thus φ is unimodular. Since S is not an isometry it follows that φ is not inner.
Therefore Tφ is not an analytic Toeplitz operator.

To answer the question (5.16) we need an auxiliary lemma:

Lemma 5.3.6. If a Toeplitz operator Tφ is a weighted shift with weights {an}∞n=0

with respect to the orthonormal basis {en}∞n=0, i.e.,

Tφen = anen+1 (n ≥ 0) (5.17)

then e0(z) is an outer function.

Proof. By Coburn’s theorem, kerTφ = {0} or kerT ∗
φ = {0}. The expression (5.17)

gives e0 ∈ kerT ∗
φ, and hence kerTφ = {0}. Thus an > 0 (n ≥ 0). Write

e0 := gF, where g is inner and F is outer.

Because T ∗
φe0 = 0, we get

T ∗
φF = Tφ(ge0) = TgTφe0 = TgT

∗
φe0 = 0.

Note that dimkerT ∗
φ = 1. So we have F = ce0 (c =a constant), so that g is a constant,

and hence e0 is an outer function.

Theorem 5.3.7 (Sun’s Theorem). Let T be a weighted shift with a strictly increasing
weight sequence {an}∞n=0. If T ∼= Tφ then

an =
√
1− α2n+2 ||Tφ|| (0 < α < 1).

Proof. Assume T ∼= Tφ. We assume, without loss of generality, that ||T || = 1 (so
an < 1). Since T is a weighted shift, σe(T ) = {z : |z| = 1}. Since R(φ) ⊂ σe(Tφ), it
follows that |φ| = 1, i.e., φ is unimodular. By Lemma 5.3.6,

∃ an orthonormal basis {en}∞n=0 such that (5.17) holds.

Expression (5.17) can be written as follows:{
φen = anen+1 +

√
1− a2n ηn

φen+1 = anen +
√

1− a2n ξn
(5.18)

where ηn, ξn ∈ (H2)⊥ and ||ηn|| = ||ξn|| = 1. Since {φen}∞n=0 is an orthonomal system
and an < 1, we have

< ηℓ, ηk >=< ξℓ, ξk >=

{
0, ℓ ̸= k

1, ℓ = k
(5.19)
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From (5.18) we have

en = φ
(
anen+1 +

√
1− a2n ηn

)
= a2nen + an

√
1− a2n ξn +

√
1− a2n φηn. (5.20)

Then (5.20) is equivalent to

φηn = −anξn +
√
1− a2n en. (5.21)

Set dn := ηn
t and ρn := ξn

t (|t| = 1). Then () is equivalent to

φdn = −anρn +
√
1− a2n

en
t
. (5.22)

Since en
t ∈ (H2)⊥ and {dn}∞n=0 is an orthonormal basis for H2, we can see that{

||Tφd0|| = a0 = inf ||x||=1||Tφx|| = ||Tφe0||
||Tφdℓ|| = aℓ = ||Tφeℓ|| .

(5.23)

Then (5.17) and (5.23) imply

dn = rnen (|rn| = 1). (5.24)

Substituting (5.24) into (5.23) and comparing it with (5.18) gives

anen+1 +
√
1− a2n ηn = φen = −an

rn
ρn +

√
1− a2n
rn

en
t
,

which implies {
−rnρn = en+1

rn
en
t = ηn .

(5.25)

Therefore (5.18) is reduced to:{
φen = anen+1 +

√
1− a2n rn

en
t

φen+1 = anen −
√
1− a2n rn

en+1

t

(5.26)

Put e−(n+1) :=
en
t ∈ (H2)⊥ (n ≥ 0). We now claim that

φe0 = re−1 (|r| = 1) : (5.27)

indeed, Tφ

(
φe0
t

)
= P ( e0t ) = 0, so e0 = rφe0t for |r| = 1, and hence φe0 = re−1. From

(5.26) we have

φe0 = a0e1 + r0

√
1− a20 e−1 = a0e1 + r0 r

√
1− a20 φe0, (5.28)

or, equivalently, (
φ− r0 r

√
1− a20 φ

)
e0 = a0e1. (5.29)
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Write

ψ ≡ φ− r0 r
√
1− a20 φ. (5.30)

Evidently,
V := {x ∈ H2 : ψx ∈ H2}

is not empty. Moreover, since V is invariant for U , it follows from Beurling’s theorem
that

V = χH2 for an inner function χ.

Since e0 ∈ V and e0 is an outer function, we must have χ = 1. This means that
ψ = ψ · 1 ∈ H2. Therefore ψe1 = Tψe1 ∈ H2. On the other hand, by (5.26),

ψe1 =

(
φ− r0 r

√
1− a20 φ

)
e1

= a1e2 + r1

√
1− a21e−2 − r0 r

√
1− a20

(
a0e0 −

√
1− a20 r0 e−2

)
= a1e2 − r0 ra0

√
1− a21 e0 +

(
r1

√
1− a21 + r r0

2 (1− a21)

)
e−2.

Thus we have

r1

√
1− a21 + r r0

2(1− a20) = 0

So,
√
1− a21 = 1 − a20, i.e., a1 =

√
1− (1− a20)

2. If we put α2 ≡ 1 − a20, i.e.,

a0 = (1− α2)
1
2 then a1 = (1− α4)

1
2 . Inductively, we get an = (1− α2n+2)

1
2 .

Corollary 5.3.8. The Bergman shift is not unitarily equivalent to any Toeplitz op-
erator.

Proof. n+1
n+2 ̸= 1− α2n+2 for any α > 0.

Lemma 5.3.9. The weighted shift T ≡ Wα with weights αn ≡ (1 − α2n+2)
1
2 (0 <

α < 1) is subnormal.

Proof. Write rn := α2
0α

2
1 · · ·α2

n−1 for the moment of W . Define a discrete measure µ
on [0, 1] by

µ(z) =

{
Π∞
j=1(1− α2j) (z = 0)

Π∞
j=1(1− α2j) α2k

(1−α2)···(1−α2k)
(z = αk; k = 1, 2, · · · ).

Then rn =
∫ 1

0
tndµ. By Berger’s theorem, T is subnormal.

Corollary 5.3.10. If Tφ ∼= a weighted shift, then Tφ is subnormal.
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Remark 5.3.11. If Tφ ∼= a weighted shift, what is the form of φ ? A careful analysis
of the proof of Theorem 5.3.7 shows that

ψ = φ− αφ ∈ H∞.

But

Tψ = Tφ − αT ∗
φ =



0 −αa0
a0 0 −αa1

a1 0 −αa2

a2 0
. . .

. . .
. . .



=



0 −α
1 0 −α

1 0 −α

1 0
. . .

. . .
. . .

+K (K compact)

∼= Tz−αz +K.

Thus ran (ψ) = σe(Tψ) = σe(Tz−αz) = ran(z−αz). Thus ψ is a conformal mapping of
D onto the interior of the ellipse with vertices ±i(1+α) and passing through ±(1−α).
On the other hand, ψ = φ− αφ. So αψ = αφ− α2φ, which implies

φ =
1

1− α2
(ψ + αψ).

We now have:

Theorem 5.3.12 (Cowen and Long’s Theorem). For 0 < α < 1, let ψ be a conformal
map of D onto the interior of the ellipse with vertices ±i(1−α)−1 and passing through
±(1 + α)−1. Then Tψ+αψ is a subnormal weighted shift that is neither analytic nor
normal.

Proof. Let φ = ψ + αψ. Then φ is a continuous map of D onto D with wind(φ) = 1.
Let

K := 1− TφTφ = Tφφ − TφTφ = H∗
φHφ,

which is compact since φ is continuous. Now φ− αφ = (1− α2)ψ ∈ H∞, so Hψ = 0
and hence, Hφ = αHφ. Thus

K = H∗
φHφ = α2H∗

φHφ = α2(1− TφTφ),

so that
KTφ = α2(1− TφTφ)Tφ = α2Tφ(1− TφTφ) = α2TφK.

By Coburn’s theorem, kerTφ = {0} or kerTφ = {0}. But since

ind(Tφ) = −wind(φ) = −1,
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it follows

kerTφ = {0} and dim kerTφ = 1.

Let e0 ∈ kerTφ and ||e0|| = 1. Write

en+1 :=
Tφen

||Tφen||
.

We claim that Ken = α2n+2en: indeed, Ke0 = α2(1 − TφTφ)e0 = α2e0 and if we
assume Kej = α2j+2ej then

Kej+1 = ||Tφej ||−1(KTφej) = ||Tφej ||−1(α2TφKej) = ||Tφej ||−1(α2j+4Tφej) = α2j+4ej+1.

Thus we can see that{
α2, α4, α6, · · · are eigenvalues of K ;

{en}∞n=0 is an orthonormal set since K is self-adjoint.

We will then prove that {en} forms an orthonormal basis for H2. Observe

tr(H∗
φHφ) = the sum of its eigenvalues.

Thus

∞∑
n=0

α2n+2 ≤ tr(H∗
φHφ) = ||Hφ||22 (|| · ||2 denotes the Hilbert-Schmidt norm).

(5.31)
Since ψ ∈ H∞, we have

||Hφ||22 = ||Hψ + αHψ||
2
2 = α2||Hψ||

2
2 = α2tr(H∗

ψ
Hψ) = α2tr [Tψ, Tψ]

≤ α2

π
µ(σ(Tψ)) =

α2

π
µ(ψ(D)) =

α2

1− α2
,

which together with (5.31) implies that

∑
α2n+2 ≤ ||Hφ||22 ≤ α2

1− α2
=

∞∑
n=0

α2n+2,

so tr(H∗
φHφ) =

∑∞
n=0 α

2n+2, which say that {α2n+2}∞n=0 is a complete set of non-
zero eigenvalues for K ≡ H∗

φHφ and each has multiplicity one. Now, by Beurling’s
theorem,

kerK = kerH∗
φHφ = kerHφ = bH2, where b is inner or b = 0.

Since KTφ = α2TφK, we see that

f ∈ kerK ⇒ Tφf ∈ kerK
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So, since b ∈ kerK, it follows

Tφb = bφ−Hφb = bφ ∈ kerK,

which means that bφ = bh for some h ∈ H2. Since φ /∈ H2 it follows that b = 0 and
kerK = 0. Thus 0 is not an eigenvalue. Therefore {en}∞n=0 is an onthonormal basis
for H2. Remember that Tφen = ||Tφen||en+1. So we can see that Tφ is a weighted
shift with weights {||Tφen||}. Since

α2n+2en = Ken = (1− TφTφ)en,

we have
(1− α2n+2)en = TφTφen,

so that
1− α2n+2 = ⟨(1− α2n+2)en, en⟩ = ⟨TφTφen, en⟩ = ||Tφen||2.

Thus the weights are (1 − α2n+2)
1
2 . By Lemma 5.3.9, Tφ is subnormal. Evidently,

φ /∈ H∞ and Tφ is not normal since ran(φ) is not contained in a line segment.

Corollary 5.3.13. If φ = ψ + αψ is as in Theorem 5.3.12, then neither φ nor φ is
bounded type.

Proof. From Abrahamse’s theorem and Theorem 5.3.12.

We will present a couple of open problems which are related to the subnormality
of Toeplitz operators. They are of particular interest in operator theory.

Problem 5.2. For which f ∈ H∞, is there λ (0 < λ < 1) with Tf+λf subnormal
?

Problem 5.3. Suppose ψ is as in Theorem 5.3.12 (i.e., the ellipse map). Are there
g ∈ H∞, g ̸= λψ + c, such that Tψ+g is subnormal ?

Problem 5.4. More generally, if ψ ∈ H∞, define

S(ψ) := {g ∈ H∞ : Tψ+g is subnormal }.

Describe S(ψ). For example, for which ψ ∈ H∞, is it balanced?, or is it convex?, or
is it weakly closed? What is extS(ψ) ? For which ψ ∈ H∞, is it strictly convex ?,
i.e., ∂S(ψ) ⊂ extS(ψ) ?

In general, S(ψ) is not convex. In the below (Theorem 5.3.14), we will show that
if ψ is as in Theorem 5.3.12 then {λ : Tψ+λψ is subnormal} is a non-convex set.

C. Cowen gave an interesting remark with no demonstration in [Cow3]: If Tφ is
subnormal then E(φ) = {λ} with |λ| < 1. However we were unable to decide whether
or not it is true. By comparison, if Tφ is normal then E(φ) = {eiθ}.

Problem 5.5. Is the above Cowen’s remark true ? That is, if Tφ is subnormal, does
it follow that E(φ) = {λ} with |λ| < 1 ?
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If the answer to Problem 5.5 is affirmative, i.e., the Cowen’s remark is true then
for φ = g + f ,

Tφ is subnormal =⇒ g − λf ∈ H2 with |λ| < 1 =⇒ g = λf + c (c a constant),

which says that the answer to Problem 5.3 is negative.

When ψ is as in Theorem 5.3.12, we examine the question: For which λ, is Tψ+λψ
subnormal ?

We then have:

Theorem 5.3.14. Let λ ∈ C and 0 < α < 1. Let ψ be the conformal map of the disk
onto the interior of the ellipse with vertices ±(1 + α)i passing through ±(1− α). For

φ = ψ + λψ, Tφ is subnormal if and only if λ = α or λ = αkeiθ+α
1+αk+1eiθ

(−π < θ ≤ π).

To prove Theorem 5.3.14, we need an auxiliary lemma:

Proposition 5.3.15. Let T be the weighted shift with weights

w2
n =

n∑
j=0

α2j .

Then T + µT ∗ is subnormal if and only if µ = 0 or |µ| = αk (k = 0, 1, 2, · · · ).

Proof. See [CoL].

Proof of Theorem 5.3.14. By Theorem 5.3.12, Tψ+αψ
∼= (1− α2)

3
2T , where T is a

weighted shift of Proposition 5.3.15. Thus Tψ ∼= (1− α2)
1
2 (T − αT ∗), so

Tφ = Tψ + λT ∗
ψ
∼= (1− α2)

1
2 (1− λα)

(
T +

λ− α

1− λα
T ∗
)
.

Applying Proposition 5.3.15 with λ−α
1−λα in place of µ gives that for k = 0, 1, 2, · · · ,∣∣∣∣ λ− α

1− λα

∣∣∣∣ = αk ⇐⇒ λ− α

1− λα
= αkeiθ

⇐⇒ λ− α = αkeiθ − λαk+1eiθ

⇐⇒ λ(1 + αk+1eiθ) = α+ αkeiθ

⇐⇒ λ =
α+ αkeiθ

1 + αk+1eiθ
(−π < θ ≤ π)

�
However we find that, surprisingly, some analytic Toeplitz operators are unitarily

equivalent to some non-analytic Toeplitz operators. So C. Cowen noted that subnor-
mality of Toeplitz operators may not be the wrong question to be studying.
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Example 5.3.16. Let ψ be the ellipse map as in the example of Cowen and Long.
Then

Tψ ∼= Tφ with φ =
i e−

iθ
2 (1 + α2eiθ)

1− α2

(
ψ +

αeiθ + α

1 + α2eiθ
ψ

)
(−π < θ ≤ π)

Proof. Note that

T ∼= e
iθ
2 T and T + λT ∗ ∼= e

iθ
2 T + λe−

iθ
2 T ∗.

Thus we have

Tψ ∼= (1− α2)
1
2 (T − αT ∗)

∼= (1− α2)
1
2 i(T + αT ∗)

∼= (1− α2)
1
2 ie−

iθ
2 (T + αeiθT ∗)

∼= (1− α2)−1ie−
iθ
2

(
Tψ + αTψ + αeiθ(Tψ + αTψ)

)
∼= (1− α2)−1i e−

iθ
2 T(1+α2eiθ)ψ+α(1+eiθ)ψ (−π < θ < π)

∼=
i e−

iθ
2 (1 + α2eiθ)

1− α2
T
ψ+ αeiθ+α

1+α2eiθ
ψ

(−π < θ ≤ π).
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5.3.2 Weak Subnormality

Now it seems to be interesting to understand the gap between k-hyponormality and
subnormality for Toeplitz operators. As a candidate for the first question in this line
we posed the following ([CuL1]):

Problem 5.7. Is every 2-hyponormal Toeplitz operator subnormal ?

In [CuL1], the following was shown:

Theorem 5.3.17. [CuL1] Every trigonometric Toeplitz operator whose square is
hyponormal must be normal or analytic. Hence, in particular, every 2-hyponormal
trigonometric Toeplitz operator is subnormal.

It is well known ([Cu1]) that there is a gap between hyponormality and 2–hyponormality
for weighted shifts. Theorem 5.3.17 also shows that there is a big gap between hy-
ponormality and 2-hyponormality for Toeplitz operators. For example, if

φ(z) =
N∑

n=−m
anz

n (m < N)

is such that Tφ is hyponormal then by Theorem 5.3.17, Tφ is never 2-hyponormal

because Tφ is neither analytic nor normal (recall that if φ(z) =
∑N
n=−m anz

n is such
that Tφ is normal then m = N (cf. [FL1])).

We can extend Theorem 5.3.17 First of all we observe:

Proposition 5.3.18. [CuL2] If T ∈ L(H) is 2-hyponormal then

T
(
ker [T ∗, T ]

)
⊆ ker [T ∗, T ]. (5.32)

Proof. Suppose that [T ∗, T ]f = 0. Since T is 2-hyponormal, it follows that (cf. [CMX,
Lemma 1.4])

|⟨[T ∗2, T ]g, f⟩|2 ≤ ⟨[T ∗, T ]f, f⟩⟨[T ∗2, T 2]g, g⟩ for all g ∈ H.

By assumption, we have that for all g ∈ H, 0 = ⟨[T ∗2, T ]g, f⟩ = ⟨g, [T ∗2, T ]∗f⟩, so
that [T ∗2, T ]∗f = 0, i.e., T ∗T 2f = T 2T ∗f . Therefore,

[T ∗, T ]Tf = (T ∗T 2 − TT ∗T )f = (T 2T ∗ − TT ∗T )f = T [T ∗, T ]f = 0,

which proves (5.32).

Corollary 5.3.19. If Tφ is 2-hyponormal and if φ or φ̄ is of bounded type then Tφ
is normal or analytic, so that Tφ is subnormal.

Proof. This follows at once from Abrahamse’s theorem and Proposition 5.3.18.
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Corollary 5.3.20. If Tφ is a 2-hyponormal operator such that E(φ) contains at least
two elements then Tφ is normal or analytic, so that Tφ is subnormal.

Proof. This follows from Corollary 5.3.19 and the fact ([NaT, Proposition 8]) that if
E(φ) contains at least two elements then φ is of bounded type.

From Corollaries 5.3.19 and 5.3.20, we can see that if Tφ is 2-hyponormal but not
subnormal then φ is not of bounded type and E(φ) consists of exactly one element.

For a strategy to answer Problem 5.7 we will introduce the notion of “weak sub-
normality,” which was introduced by R. Curto and W.Y. Lee [CuL2]. Recall that
the operator T is subnormal if and only if there exist operators A and B such that

T̂ :=

[
T A
0 B

]
is normal, i.e.,


[T ∗, T ] := T ∗T − TT ∗ = AA∗

A∗T = BA∗

[B∗, B] +A∗A = 0.

(5.33)

We now introduce:

Definition 5.3.21. [CuL2] An operator T ∈ B(H) is said to be weakly subnormal if
there exist operators A ∈ L(H ′, H) and B ∈ L(H ′) such that the first two conditions

in (5.33) hold: [T ∗, T ] = AA∗ and A∗T = BA∗. The operator T̂ is said to be a
partially normal extension of T .

Clearly,

subnormal =⇒ weakly subnormal =⇒ hyponormal. (5.34)

The converses of both implications in (5.34) are not true in general. Moreover, we
can easily see that the following statements are equivalent for T ∈ B(H):

(a) T is weakly subnormal;

(b) There is an extension T̂ of T such that T̂ ∗T̂ f = T̂ T̂ ∗f for all f ∈ H;

(c) There is an extension T̂ of T such that H ⊆ ker [T̂ ∗, T̂ ].

Weakly subnormal operators possess the following invariance properties:

(i) (Unitary equivalence) if T is weakly subnormal with a partially normal exten-
sion ( T A

0 B ) then for every unitary U ,
(
U∗TU U∗A

0 B

)
(=
(
U∗ 0
0 I

)
( T A
0 B ) ( U 0

0 I )) is a
partially normal extension of U∗TU , i.e., U∗TU is also weakly subnormal.

(ii) (Translation) if T ∈ L(H) is weakly subnormal then T − λ is also weakly sub-

normal for every λ ∈ C: indeed if T has a partially normal extension T̂ then

T̂ − λ := T̂ − λ satisfies the properties in Definition 5.3.21.
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(iii) (Restriction) if T ∈ L(H) is weakly subnormal and ifM ∈ LatT then T |M is also

weakly subnormal because for a partially normal extension T̂ of T , T̂ |M := T̂
still satisfies the required properties.

How does one find partially normal extensions of weakly subnormal operators ?
Since weakly subnormal operators are hyponormal, one possible solution of the equa-
tion AA∗ = [T ∗, T ] is A := [T ∗, T ]

1
2 . Indeed this is the case.

Theorem 5.3.22. [CuL2] If T ∈ B(H) is weakly subnormal then T has a partially

normal extension T̂ on K of the form

(3.2.6.1) T̂ =

[
T [T ∗, T ]

1
2

0 B

]
on K := H⊕H.

The proof of Theorem 5.3.22 will make use of the following elementary fact.

Lemma 5.3.23. If T is weakly subnormal then

T (ker [T ∗, T ]) ⊆ ker [T ∗, T ].

Proof. By definition, there exist operators A and B such that [T ∗, T ] = AA∗ and
A∗T = BA∗. If [T ∗, T ]f = 0 then AA∗f = 0 and hence A∗f = 0. Therefore

[T ∗, T ]Tf = AA∗Tf = ABA∗f = 0,

as desired.

Definition 5.3.24. Let T be a weakly subnormal operator on H and let T̂ be a par-
tially normal extension of T on K. We shall say that T̂ is a minimal partially normal
extension of T if K has no proper subspace containing H to which the restriction of
T̂ is also a partially normal extension of T . We write T̂ := m.p.n.e.(T ).

Lemma 5.3.25. Let T be a weakly subnormal operator on H and let T̂ be a partially
normal extension of T on K. Then T̂ = m.p.n.e.(T ) if and only if

K =
∨{

T̂ ∗nh : h ∈ H, n = 0, 1
}
. (5.35)

Proof. See [CuL2].

It is well known (cf. [Con2, Proposition II.2.4]) that if T is a subnormal operator
on H and N is a normal extension of T then N is a minimal normal extension of T
if and only if

K =
∨

{T̂ ∗nh : h ∈ H, n ≥ 0}.

Thus if T is a subnormal operator then T may have a partially normal extension
different from a normal extension. For, consider the unilateral (unweighted) shift U+

acting on ℓ2(Z+). Then m.n.e. (U+) = U , the bilateral shift acting on ℓ2(Z), with
orthonormal basis {en}∞n=−∞. It is easy to verify that m.p.n.e. (U+) = U |L, where
L :=< e−1 > ⊕ ℓ2(Z+).

191



CHAPTER 5. TOEPLITZ THEORY

Theorem 5.3.26. Let T ∈ B(H).

(i) If T is 2-hyponormal then [T ∗, T ]
1
2T [T ∗, T ]−

1
2 |Ran[T∗,T ] is bounded;

(ii) T is (k + 1)-hyponormal if and only if T is weakly subnormal and T̂ :=
m.p.n.e.(T ) is k-hyponormal.

Proof. See [CJP, Theorems 2.7 and 3.2].

In 1966, Stampfli [Sta3] explicitly exhibited for a subnormal weighted shift A0 its
minimal normal extension

N :=


A0 B1 0

A1 B2

A2
. . .

0
. . .

 , (5.36)

where An is a weighted shift with weights {a(n)0 , a
(n)
1 , · · · }, Bn := diag{b(n)0 , b

(n)
1 , · · · },

and these entries satisfy:

(I) (a
(n)
j )2 − (a

(n)
j−1)

2 + (b
(n)
j )2 ≥ 0 (b

(0)
j = 0 for all j);

(II) b
(n)
j = 0 =⇒ b

(n)
j+1 = 0;

(III) there exists a constant M such that |a(n)j | ≤M and |b(n)j | ≤M for n = 0, 1, · · ·
and j = 0, 1, · · · , where

b
(n+1)
j := [(a

(n)
j )2 − (a

(n)
j−1)

2 + (b
(n)
j )2]

1
2 and a

(n+1)
j := a

(n)
j

b
(n+1)
j+1

b
(n+1)
j

(if b
(n)
j0

= 0, then a
(n)
j0

is taken to be 0).

We will now discuss analogues of the preceding results for k-hyponormal operators.
Our criterion on k-hyponormality follows:

Theorem 5.3.27. An operator A0 ∈ B(H0) is k-hyponormal if and only if the fol-
lowing three conditions hold for all n such that 0 ≤ n ≤ k − 1:

(In) Dn ≥ 0;

(IIn) An−1(kerDn−1) ⊆ kerDn−1 (n ≥ 1);

(IIIn) D
1
2
n−1An−1D

− 1
2

n−1|Ran (Dn−1) (n ≥ 1) is bounded,

where

D0 := [A∗
0, A0], Dn+1 := Dn|Hn+1 + [A∗

n+1, An+1], Hn+1 := ran (Dn)

and An+1 denotes the bounded extension of D
1
2
nAnD

− 1
2

n to ran (Dn)(= Hn+1) from
Ran (Dn).
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Proof. Suppose A0 is k-hyponormal. We now use induction on k. If k = 2 then A0 is

2-hyponormal, and so D0 := [A∗
0, A0] ≥ 0. By Theorem 5.3.26 (i), D

1
2
0 A0D

− 1
2

0 |ran (D0)

is bounded. Let A1 be the bounded extension of D
1
2
0 A0D

− 1
2

0 from Ran (D0) to H1 :=

Ran (D0) and D1 := D0|H1 + [A∗
1, A1]. Writing Â0 :=

[
A0 D

1
2
0

0 A1

]
, we have Â0 =

m.p.n.e. (A0), which is hyponormal by Theorem 5.3.26(ii). Thus

[Â0

∗
, Â0] =

[
0 0
0 D0|H1 + [A∗

1, A1]

]
≥ 0.

and hence D1 ≥ 0. Also by [CuL2, Lemma 2.2], A0(kerD0) ⊆ kerD0 whenever A0 is
2-hyponormal. Thus (In), (IIn), and (IIIn) hold for n = 0, 1. Assume now that if A0

is k-hyponormal then (In),(IIn) and (IIIn) hold for all 0 ≤ n ≤ k − 1. Suppose A0 is
(k + 1)-hyponormal. We must show that (In),(IIn) and (IIIn) hold for n = k. Define

S :=



A0 D
1
2
0 0

A1 D
1
2
1

. . .
. . .

. . . D
1
2

k−2

0 Ak−1


:
k−1⊕
i=0

Hi −→
k−1⊕
i=0

Hi.

By our inductive assumption, Dk−1 ≥ 0. Writing T̂ (n) := m.p.n.e.(T̂ (n−1)) when it

exists, we can see by our assumption that S = Â0

(k−1)
: indeed, if

Sl :=



A0 D
1
2
0 0

A1 D
1
2
1

. . .
. . .

. . . D
1
2

l−2

0 Al−1


then since by assumption [S∗

l , Sl] = 0 ⊕ Dl and Al = D
1
2

l−1Al−1D
− 1

2

l−1|Ran (Dl−1), it
follows that Sl is the minimal partially normal extension of Sl−1 (1 ≤ l ≤ k− 1). But
since by our assumption A0 is (k + 1)-hyponormal, it follows from Lemma 5.3.26(ii)

that S is 2-hyponormal. Thus by Theorem 5.3.26(i), [S∗, S]
1
2S[S∗, S]−

1
2 |Ran ([S∗,S]) is

bounded, which says that D
1
2

k−1Ak−1D
− 1

2

k−1|Ran (Dk−1) is bounded, proving (IIIn) for

n = k. Observe that Ak, Hk and Dk are well-defined. Writing Ŝ :=

[
S D

1
2

k−1

0 Ak

]
,

we can see that Ŝ = m.p.n.e.(S), which is hyponormal, again by Theorem 5.3.26(ii).

Thus, since [Ŝ∗, Ŝ] =

[
0 0
0 Dk

]
≥ 0, we have Dk ≥ 0, proving (In) for n = k. On the
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other hand, since S is 2-hyponormal, it follows that S(ker[S∗, S]) ⊆ ker[S∗, S]. Since

[S∗, S] =

[
0 0
0 Dk−1

]
, we have ker [S∗, S] =

⊕k−2
i=0 Hi

⊕
ker (Dk−1). Thus, since



A0 D
1
2
0 0

A1 D
1
2
1

. . .
. . .

. . . D
1
2

k−2

0 Ak−1




H0

H1

...
Hk−2

ker (Dk−1)

 ⊆


H0

H1

...
Hk−2

ker (Dk−1)

 ,

we must have that Ak−1(ker (Dk−1)) ⊆ ker (Dk−1), proving (IIn) for n = k. This
proves the necessity condition.

Toward sufficiency, suppose that conditions (In), (IIn) and (IIIn) hold for all n
such that 0 ≤ n ≤ k − 1. Define

Sn :=



A0 D
1
2
0 0

A1 D
1
2
1

. . .
. . .

. . . D
1
2
n−2

0 An−1


(1 ≤ n ≤ k − 1).

Then Sk−2 is weakly subnormal and Sk−1 = m.p.n.e. (Sk−2). Since, by assump-

tion, Dk−1 ≥ 0, we have [S∗
k−1, Sk−1] =

[
0 0
0 Dk−1

]
≥ 0. It thus follows from

Theorem 5.3.26(ii) that Sk−2 is 2-hyponormal. Note that Sn = m.p.n.e. (Sn−1) for
n = 1, · · · , k−1 (S0 := A0). Thus, again by Theorem 5.3.26(ii), Sk−3 is 3-hyponormal.
Now repeating this argument, we can conclude that S0 ≡ A0 is k-hyponormal. This
completes the proof.

Corollary 5.3.28. An operator A0 ∈ B(H0) is subnormal if and only if the conditions
(In), (IIn), and (IIIn) hold for all n ≥ 0. In this case, the minimal normal extension
N of A0 is given by

N =


A0 D

1
2
0 0

A1 D
1
2
1

A2
. . .

0
. . .

 :
∞⊕
i=0

Hi →
∞⊕
i=0

Hi.
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5.3.3 Gaps between k-Hyponormality and Subnormality

We find gaps between subnormality and k-hyponormality for Toeplitz operators.

Theorem 5.3.29. [Gu2],[CLL] Let 0 < α < 1 and let ψ be the conformal map of the
unit disk onto the interior of the ellipse with vertices ±(1 + α)i and passing through
±(1− α). Let φ = ψ + λψ̄ and let Tφ be the corresponding Toeplitz operator on H2.

Then Tφ is k-hyponormal if and only if λ is in the circle
∣∣∣z − α(1−α2j)

1−α2j+2

∣∣∣ = αj(1−α2)
1−α2j+2

for j = 0, 1, · · · , k − 2 or in the closed disk
∣∣∣z − α(1−α2(k−1))

1−α2k

∣∣∣ ≤ αk−1(1−α2)
1−α2k .

For 0 < α < 1, let T ≡ Wβ be the weighted shift with weight sequence β =
{βn}∞n=0, where (cf. [Cow2, Proposition 9])

βn := (
n∑
j=0

α2j)
1
2 for n = 0, 1, · · · . (5.37)

Let D be the diagonal operator, D = diag (αn), and let Sλ ≡ T +λT ∗ (λ ∈ C). Then
we have that

[T ∗, T ] = D2 = diag (α2n) and [S∗
λ, Sλ] = (1− |λ|2)[T ∗, T ] = (1− |λ|2)D2.

Define

Al := αl T +
λ

αl
T ∗ (l = 0,±1,±2, · · · ).

It follows that A0 = Sλ and

DAl = Al+1D and A∗
lD = DA∗

l+1 (l = 0,±1,±2, · · · ). (5.38)

Theorem 5.3.30. Let 0 < α < 1 and T ≡ Wβ be the weighted shift with weight
sequence β = {βn}∞n=0, where

βn = (
n∑
j=0

α2j)
1
2 for n = 0, 1, · · · .

Then A0 := T + λT ∗ is k-hyponormal if and only if |λ| ≤ αk−1 or |λ| = αj for some
j = 0, 1, · · · , k − 2.

Proof. Observe that

[A∗
l , Al] = [αlT ∗ + λ

αlT, α
lT + λ

αlT
∗]

= α2l[T ∗, T ]− |λ|2
α2l [T

∗, T ] =
(
α2l − |λ|2

α2l

)
D2.

(5.39)
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Since kerD = {0} and DAn = An+1D, it follows that Hn = H for all n; if we use Al
for the operator An in Theorem 5.3.27 then we have, by (5.39) and the definition of
Dj , that

Dj = Dj−1 + [A∗
j , Aj ] = Dj−2 + [A∗

j−1, Aj−1] + [A∗
j , Aj ] = · · ·

= [A∗
0, A0] + [A∗

1, A1] + · · ·+ [A∗
j , Aj ] = (1− |λ|2)D2 + · · ·+

(
α2j − |λ|2

α2j

)
D2

=

(
1− α2(j+1)

1− α2

)(
1− |λ|2

α2j

)
D2.

By Theorem 5.3.27, A0 is k-hyponormal if and only if Dk−1 ≥ 0 or Dj = 0 for
some j such that 0 ≤ j ≤ k − 2 (in this case A0 is subnormal). Note that Dj = 0 if
and only if |λ| = αj . On the other hand, if Dj > 0 for j = 0, 1, · · · , k − 2, then

Dk−1 =

(
1− α2k

1− α2

)(
1− |λ|2

α2(k−1)

)
D2 ≥ 0

if and only if |λ| ≤ αk−1. Therefore A0 is k-hyponormal if and only if |λ| ≤ αk−1 or
|λ| = αj for some j, j = 0, 1, · · · , k − 2.

We are ready for:

Proof. of Theorem 5.3.29 It was shown in [CoL] that Tψ+αψ̄ is unitarily equivalent

to (1−α2)
3
2T , where T is the weighted shift in Theorem 5.3.30. Thus Tψ is unitarily

equivalent to (1− α2)
1
2 (T − αT ∗), so Tφ is unitarily equivalent to

(1− α2)
1
2 (1− λα)(T +

λ− α

1− λα
T ∗) (cf. [Cow1, Theorem 2.4]).

Applying Theorem 5.3.30 with λ−α
1−λα in place of λ, we have that for k = 0, 1, 2, · · · ,

∣∣∣∣ λ− α

1− λα

∣∣∣∣ ≤ αk ⇐⇒ |λ− α|2 ≤ α2k|1− λα|2

⇐⇒ |λ|2 − α(1− α2k)

1− α2k+2
(λ+ λ̄) +

α2 − α2k

1− α2k+2
≤ 0

⇐⇒
∣∣∣∣λ− α(1− α2k)

1− α2k+2

∣∣∣∣ ≤ αk(1− α2)

1− α2k+2
.

This completes the proof.
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5.4 Comments and Problems

From Corollary 5.3.19 we can see that if Tφ is a 2-hyponormal operator such that φ
or φ̄ is of bounded type then Tφ has a nontrivial invariant subspace. The following
question is naturally raised:

Problem 5.8. Does every 2-hyponormal Toeplitz operator have a nontrivial invari-
ant subspace ? More generally, does every 2-hyponormal operator have a nontrivial
invariant subspace ?

It is well known ([Bro]) that if T is a hyponormal operator such that R(σ(T )) ̸=
C(σ(T )) then T has a nontrivial invariant subspace. But it remains still open whether
every hyponormal operator with R(σ(T )) = C(σ(T )) (i.e., a thin spectrum) has a
nontrivial invariant subspace. Recall that T ∈ B(H) is called a von-Neumann operator
if σ(T ) is a spectral set for T , or equivalently, f(T ) is normaloid (i.e., norm equals
spectral radius) for every rational function f with poles off σ(T ). Recently, B. Prunaru
[Pru] has proved that polynomially hyponormal operators have nontrivial invariant
subspaces. It was also known ([Ag1]) that von-Neumann operators enjoy the same
property. The following is a sub-question of Problem G.

Problem 5.9. Is every 2-hyponormal operator with thin spectrum a von-Neumann
operator ?

Although the existence of a non-subnormal polynomially hyponormal weighted
shift was established in [CP1] and [CP2], it is still an open question whether the im-
plication “polynomially hyponormal ⇒ subnormal” can be disproved with a Toeplitz
operator.

Problem 5.10. Does there exist a Toeplitz operator which is polynomially hyponor-
mal but not subnormal ?

In [CuL2] it was shown that every pure 2-hyponormal operator with rank-one self-
commutator is a linear function of the unilateral shift. McCarthy and Yang [McCYa]
classified all rationally cyclic subnormal operators with finite rank self-commutators.
However it remains still open what are the pure subnormal operators with finite rank
self-commutators.

Now the following question comes up at once:

Problem 5.11. If Tφ is a 2-hyponormal Toeplitz operator with nonzero finite rank
self-commutator, does it follow that Tφ is analytic ?

For affirmativeness to Problem J we shall give a partial answer. To do this we recall
Theorem 15 in [NaT] which states that if Tφ is subnormal and φ = qφ̄, where q is a
finite Blaschke product then Tφ is normal or analytic. But from a careful examination
of the proof of the theorem we can see that its proof uses subnormality assumption
only for the fact that ker [T ∗

φ, Tφ] is invariant under Tφ. Thus in view of Proposition
3.2.2, the theorem is still valid for “2–hyponormal” in place of “subnormal”. We thus
have:
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Theorem 5.4.1. If Tφ is 2–hyponormal and φ = qφ̄, where q is a finite Blaschke
product then Tφ is normal or analytic.

We now give a partial answer to Problem 5.11.

Theorem 5.4.2. Suppose log |φ| is not integrable. If Tφ is a 2–hyponormal operator
with nonzero finite rank self-commutator then Tφ is analytic.

Proof. If Tφ is hyponormal such that log |φ| is not integrable then by an argument
of [NaT, Theorem 4], φ = qφ̄ for some inner function q. Also if Tφ has a finite rank
self-commutator then by [NaT, Theorem 10], there exists a finite Blaschke product
b ∈ E(φ). If q ̸= b, so that E(φ) contains at least two elements, then by Corollary
5.3.20, Tφ is normal or analytic. If instead q = b then by Theorem 5.4.1, Tφ is also
normal or analytic.

Theorem 5.4.2 reduces Problem 5.11 to the class of Toeplitz operators such that
log |φ| is integrable. If log |φ| is integrable then there exists an outer function e such
that |φ| = |e|. Thus we may write φ = ue, where u is a unimodular function. Since
by the Douglas-Rudin theorem (cf. [Ga, p.192]), every unimodular function can be
approximated by quotients of inner functions, it follows that if log |φ| is integrable
then φ can be approximated by functions of bounded type. Therefore if we could
obtain such a sequence ψn converging to φ such that Tψn is 2–hyponormal with finite
rank self-commutator for each n, then we would answer Problem J affirmatively. On
the other hand, if Tφ attains its norm then by a result of Brown and Douglas [BD],

φ is of the form φ = λψθ with λ > 0, ψ and θ inner. Thus φ is of bounded type.
Therefore by Corollary 5.3.20, if Tφ is 2–hyponormal and attains its norm then Tφ is
normal or analytic. However we were not able to decide that if Tφ is a 2–hyponormal
operator with finite rank self-commutator then Tφ attains its norm.
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Chapter 6

A Brief Survey on the
Invariant Subspace Problem

6.1 A Brief History

Let H be a separable complex Hilbert space. If T ∈ L(H) then T is said to have a
nontrivial invariant subspace if there is a subspace M of H such that {0} ≠ M ̸= H
and TM ⊂ M. In this case we can represent T as

T =

[
∗ ∗
0 ∗

]
on M⊕M⊥.

Example 6.1.1. If T has aigenvalue λ, put

Mλ := {x : Tx = λx} ≡ the eigenspace corresponding to λ.

Then evidently TMλ ⊆ Mλ. If T ̸= λ then Mλ is nontrivial.

Invariant Subspace Problem (1932, J. von Neumann) Let X ≡ a Banach space
of dim ≥ 2 and T ∈ B(X ). Does T have a nontrivial invariant subspace ?

Let K(H) be the set of compact operators on H. If K ∈ K(H) has a polar

decompositionK = U |T |, where |T | := (T ∗T )
1
2 and U is a partial isometry, then |T | ∈

K(H) and so has a diagonal matrix diag (λ1, λ2, · · · ) relative to some orthonormal
basis for H. For p ≥ 1 we define

Cp(H) :=

{
K ∈ K(H) :

∞∑
n=1

λpn <∞

}
,
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which is called the Schatten p-ideal. The ideal C1(H) is known as the trace class and
the ideal C2(H) as the Hilbert-Schmidt class.

1984 C.J. Read answered ISP in the negative (for ℓ1).

Comment. However ISP is still open for a separable Hilbert space.

1934 J. von Neumann (unpublished): T ∈ K(H) =⇒ T has n.i.s.

1954 N. Aronszajn and K. Smith (Ann. of Math.): T ∈ K(H) =⇒ T has n.i.s.

1966 A. Bernstein and A. Robinson (Pacific J. of Math.)

T is polynomially compact (i.e., p(T ) is compact for a polynomial p) =⇒ T has n.i.s.

1966 P. Halmos (Pacific J. of Math.) reproved Bernstein-Robinson theorem via
analysis technique.

1973 K. Lomonosov (Funk. Anal. Pril.)

T (̸= λ) commutes with a nonzero compact operator =⇒ T has n.i.s.

1978 S. Brown (Int. Eq. Op. Th.): T is subnormal =⇒ T has n.i.s.

1986 S. Brown, Chevreau, C. Pearcy (J. Funct. Anal.)

||T || ≤ 1, σ(T ) ⊇ T (= the unit circle) =⇒ T has n.i.s.

1987 S. Brown (Ann. of Math.)

T is hyponormal with intσ(T ) ̸= ∅ =⇒ T has n.i.s.

Problem. Prove or disprove ISP for hyponormal operators.
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6.2 Basic Facts

The spectral picture of T ∈ B(H), SP(T ), is the structure consisting of σe(T ), the
collection of holes and pseudoholes in σe(T ), and the indices associated with these
holes and pseudoholes.

IfHi (i = 1, 2) is a separable Hilbert space and Ti ∈ B(Hi), then T1 and T2 are said
to be compalent (notation:T1 ∼ T2) if there exists a unitary operator W ∈ B(H1,H2)
and a compact operator K ∈ K(H2) such that WT1W

∗ +K = T2.

Proposition 6.2.1. The relation of compalence on B(H) is an equivalence relation
and partitions B(H) into equivalence classes.

Definition 6.2.2. An operator T ∈ B(H) is called essentially normal if [T ∗, T ] ∈
K(H), or equivalently, if π(T ) is normal in B(H)/K(H). We write (EN)(H) for the
set of all essentially normal operators in B(H).

Theorem 6.2.3. (BDF Theorem) [BDF] If T ∈ (EN)(H1) and T2 ∈ (EN)(H2) then

T1 ∼ T2 ⇐⇒ SP(T1) = SP(T2).

Suppose there exists a unitary operator W and a compact operator K such that
WT1W

∗+K = T2. If ||K|| < ϵ then T1 and T2 are said to be ϵ-compalent. (Notation:
T1 ∼ T2(ϵ)).

Theorem 6.2.4. [Ber] If N ∈ B(H) is normal then for any ϵ > 0, there exists a
diagonal operator Dϵ such that N ∼ Dϵ(ϵ).
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6.3 Quasitriangular operators

An operator T ∈ B(H) is called quasitriangular if there exists a sequence {Pn} of
projections of finite rank that

Pn → 1 weakly and ||PnTPn − TPn|| → 0.

We write QT (H) for the set of all quasitriangular operators in B(H).

Compact operators are quasitriangular. Indeed, if Pn is a projection such that
Pn → I weakly and K is compact then ||PnKPn −K|| → 0. So

||PnKPn −KPn|| = ||Pn(KPn)Pn − (KPn)|| = ||PnK ′Pn −K ′|| → 0.

A trivial example of a quasitriangular operator is an upper triangular operator: indeed
if Pn denotes the orthogonal projection onto

∨
{e1, · · · , en}, then TPnH ⊂ PnH, so

PnTPn = TPn.

Definition 6.3.1. An operator T ∈ B(H) is called triangular if there exists an
orthonormal basis {en} for H such that T is upper triangular.

Evidently, triangular ⇒ quasitriangular.

Theorem 6.3.2. (P.Halmos, Quasitriangular operators, Acta Sci. Math. (Szeged)
29 (1968), 283–293)

QT (H) is norm closed.

Theorem 6.3.3. normal ⇒ quasitriangular.

Proof. By Theorem 6.2.4, if T is normal then for any ϵ > 0,

T ∼ Dϵ(ϵ) with a diagonal Dϵ,

i.e., WϵTW
∗
ϵ = Dϵ +Kϵ with ||Kϵ|| < ϵ. So, ||T −W ∗

nDnWn|| = ϵ→ 0.

Theorem 6.3.4. (P.Halmos, Quasitriangular operators, Acta Sci. Math. (Szeged)
29 (1968), 283–293)

QT (H) = Triangular + Compact.

Theorem 6.3.5. (R. Douglas and C. Pearcy, A note on quasitriangular operators,
Duke math. J. 37(1970), 177-188)

Similarity preserves quasitriangularity
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Corollary 6.3.6. Compalence preserves quasitriangularity.

Theorem 6.3.7. (AFV Theorem) (Apostol, Foias, and Voiculescu, Some results on
non-quasitriangular operators II, Rev. Roumaine Math. Pure Appl. 18(1973), 159–
181) If T ∈ B(H) then T is quasitriangular if and only if SP(T ) contains no hole or
pseudohole associated with a negative number.

Definition 6.3.8. An operator T ∈ B(H) is said to have a nontrivial hyperinvariant
subspace if there exists a nontrivial closed subspace M such that

T ′M ⊂ M for every T ′ with TT ′ = T ′T.

Definition 6.3.9. An operator T ∈ B(H) is called biquasitriangular if T, T ∗ ∈ B(H).
We write (BQT )(H) for the set of all biquasitriangular operators on H.

Theorem 6.3.10. If T /∈ (BQT )(H) then either T or T ∗ has an eigenvalue and so
T has a nontrivial hyperinvariant subspace.

Proof. We consider T /∈ (QT )(H). By the AFV theorem, there exists λ0 such that
T −λ0 is semi-Fredholm with −∞ ≤ index (T −λ0) < 0. Thus dim ker (T ∗−λ0) > 0,
and hence λ0 is an eugenvalue for T ∗. In fact, M = {x ∈ H : T ∗x = λx} is
hyperinvariant for T ∗. Since λ0 cannot be nonquasitriangular, we have M ̸= H.
Thus M⊥ is a nontrivial hyperinvariant subspace for T .

1973 Berger-Shaw If T is hyponormal and cyclic (i.e., there exists a vector e0 such
that H = cl {p(T )e0 : p = a polynomial} then [T ∗, T ] ∈ C1.

If T is not cyclic, and so

M ≡ cl {p(T )e : e = a vector} ̸= H

then TM ⊆ M.

1979 Voiculescu: Normal ∼= Diagonal normal + C2.

Sub-Conclusion. The only hyponormal operators without known n.i.s. belong to

T ∼= Diagonal normal + Compact with [T ∗, T ] ∈ C1.
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6.4 Operators whose spectra are Carathéodory re-
gions

In this section it is shown that if an operator T satisfies ||p(T )|| ≤ ||p||σ(T ) for every
polynomial p and the polynomially convex hull of σ(T ) is a Carathéodory region
whose accessible boundary points lie in rectifiable Jordan arcs on its boundary, then
T has a nontrivial invariant subspace. As a corollary, it is also shown that if T is
a hyponormal operator and the outer boundary of σ(T ) has at most finitely many
prime ends corresponding to singular points on ∂D and has a tangent at almost every
point on each Jordan arc, then T has a nontrivial invariant subspace.

To prove the main theorem we first review some definitions and auxiliary lemmas.

Let K be a compact subset of C. Write ηK for the polynomially convex hull of K.
The outer boundary of K means ∂(ηK), i.e., the boundary of ηK. If Γ is a Jordan
curve then int Γ means the bounded component of C\Γ. If K is a compact subset of
C then C(K) denotes the set of all complex-valued continuous functions on K; P (K)
for the uniform closure of all polynomials in C(K); R(K) for the uniform closure of
all rational functions with poles off K in C(K); and A(K) for the set of all functions
on K which are analytic on intK and continuous on K. A compact set K is called a
spectral set for an operator T if σ(T ) ⊂ K and ∥f(T )∥ ≤ ∥f∥K for any f ∈ R(K) and
is called a k-spectral set for an operator T if σ(T ) ⊂ K and there exists a constant
k > 0 such that

∥f(T )∥ ≤ k∥f∥K for any f ∈ R(K).

A function algebra on a compact space K is a closed subalgebra A of C(K) that
contains the constant functions and separates the points of K. A function algebra A
on a set K is called a Dirichlet algebra on K if ReA ≡ {Re f : f ∈ A} is dense in
CR(K) which is the set of all real-valued continuous functions on K.

The following lemma will be used for proving our main theorem.

Lemma 6.4.1. [Ag1, Proposition 1] Let T ∈ B(H). Suppose that K is a spectral
set for T and R(K) is a Dirichlet algebra. If T has no nontrivial reducing subspaces
then there exists a norm contractive algebra homomorphism φ : H∞(intK) → B(H)
such that φ(z) = T . Furthermore, φ is continuous when domain and range have their
weak∗ topologies.

We recall [Co] that a Carathéodory domain is an open connected subset of C whose
boundary coincides with its outer boundary. We can easily show that a Carathéodory
domain G is a component of int ηG and hence is simply connected. The notion of a
Carathéodory domain was much focused in giving an exact description of the functions
in P 2(G) ≡ the closure of the polynomials in L2(G): for example, P 2(G) is exactly
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the Bergman space L2
a(G) if G is a bounded Carathéodory domain (cf. [Co, Theorem

8.15]). Throughout this section, a Carathéodory region means a closed set in C whose
interior is a Carathéodory domain.

We note that the boundary of a bounded Carathéodory domain need not be a
Jordan arc. A simple example is a Cornucopia, which is an open ribbon G that winds
about the unit circle so that each point of ∂D belongs to ∂G. In this case, ∂G is
not a Jordan curve because every point c of ∂D is not an accessible boundary point,
in the sense that it cannot be joined with an arbitrary point of the domain G by a
continuous curve that entirely lies in G except for the end point c. Of course, ∂G\∂D
is a Jordan arc. In particular, ∂D is called a prime end of a Cornucopia G (for the
definition of prime ends, see [Go, p.39]). We note that if φ is a conformal map from
D onto G then φ can be extended to a homeomorphism from clD\{one point on ∂D}
onto G ∪ (∂G \ ∂D) (cf. [Go, pp.40-44]).

If f is a conformal mapping of D onto the inside of a Jordan curve Γ, then f has
a continuous one-to-one extension up to ∂ D and when thus extended takes ∂ D onto
Γ. If Γ has a tangent at a point, we have:

Lemma 6.4.2. (Lindelöf theorem)[Ko, p.40] Let G be a simply connected domain
bounded by a Jordan curve Γ and 0 ∈ Γ. Suppose that f maps D conformally onto G
and f(1) = 0. If Γ has a tangent at 0, then for a constant c,

arg f(z)− arg (1− z) → c for |z| < 1, z → 1.

Note that Lemma 6.4.2 says that the conformal images of sectors in D with their
vertices at 1 are asymptotically like sectors in G of the same opening with their
vertices at 0.

We can extend Lemma 6.4.2 slightly.

Lemma 6.4.3. (An extension of Lindelöf theorem) Let G be a simply connected
domain and suppose a conformal map φ : D → G can be extended to a homeomorphism

φ̃ : clD \
{
zi ∈ ∂D : i ∈ N

}
→ G ∪

{
Ji : i ∈ N

}
,

where the Ji are Jordan arcs on ∂ G. If 0 ∈ J1, φ̃
−1(0) = 1 /∈ cl {zi : i ∈ N}, and J1

has a tangent at 0, then for a constant c,

argφ(z)− arg (1− z) → c for |z| < 1, z → 1.

Proof. Consider open disks Di = Di(zi, ri) (i = 1, 2, · · · ), where ri is chosen so that
1 ̸∈ clDi. Let D = D\ ∪∞

i=1 clDi. Then D is simply connected. So by Riemann’s
mapping theorem there exists a conformal map ψ from D onto D such that ψ(0) = 0
and ψ(1) = 1. Then φ ◦ ψ is a conformal map from D onto a simply connected
domain bounded by a Jordan curve. Clearly, the Jordan curve has a tangent at
φ ◦ ψ(1) = φ(1) = 0. Note that 1 − ψ is a conformal map from D onto 1 −D. Also
∂(1−D) is a Jordan curve and ∂(1−D) has a tangent at 1−ψ(1) = 0. Now applying
Lemma 6.4.2 with φ ◦ ψ and 1− ψ gives the result.
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Applying Lemma 6.4.2, we can show the following geometric property of a bounded
Carathéodory domain whose accessible boundary points lie in rectifiable Jordan arcs
on its boundary. The following property was proved for the open unit disk in [Ber].
But our case is little subtle. The following lemma plays a key role in proving our
main theorem.

Lemma 6.4.4. Let G be a bounded Carathéodory domain whose accessible boundary
points lie in rectifiable Jordan arcs on its boundary. If a subset Λ ⊂ G is not domi-
nating for G, i.e., there exists h ∈ H∞(G) such that ∥h∥G > sup

λ∈Λ
|h(λ)|, then we can

construct two rectifiable simple closed curves Γ and Γ′ satisfying

(i) Γ and Γ′ are exterior to each other;

(ii) Γ (resp. Γ′) meets a Jordan arc J (resp. J ′) at two points, where J ⊂ ∂G (resp.
J ′ ⊂ ∂G);

(iii) Γ and Γ′ cross Jordan arcs along line segments which are orthogonal to the
tangent lines of the Jordan arcs;

(iv) Γ ∩ Λ = ϕ and Γ′ ∩ Λ = ϕ.

Proof. Let φ be a conformal map from D onto the domain G. Then it is well known
(cf. [Go, pp. 41-42]) that there exists a one-one correspondence between points on
∂D and the prime ends of the domain G and that every prime end of G contains no
more than one accessible boundary point of G. Since G is a simply connected domain,
the map φ−1 can be extended to a homeomorphism which maps a Jordan arc γ on
∂G, no interior point of which is a cluster point for ∂G \ γ, onto an arc on ∂D (cf.
[Go, p.44, Theorem 4’]). But since by our assumption, every accessible boundary
point of ∂G lies in a Jordan arc of ∂G and the set of all points on ∂D corresponding
to accessible boundary points of ∂G is dense in ∂D (cf. [Go, p.37, Theorem 1]), it
follows that every prime end which contains no accessible boundary point of ∂G must
be corresponded to an end point of an arc on ∂D corresponding to a Jordan arc on
∂G or a limit point of a sequence of disjoint Jordan arcs on ∂D. Thus the points on
∂D corresponding to the prime ends which contain no accessible boundary points of
∂G form a countable set. Now let V be the set of ‘singular’ points, that is, points on
∂D corresponding to the prime ends which contain no accessible boundary points of
∂G. Then V is countable and the map φ can be extended to a homeomorphism from
clD \ V onto G ∪

{
Ji : i = 1, 2, · · ·

}
, where the Ji are rectifiable Jordan arcs on ∂G.

We denote this homeomorphism by still φ. Then we claim that

Λ′ = φ−1(Λ) is not dominating for D. (6.1)

Indeed, by our assumption, ∥h∥G > supλ∈Λ |h(λ)| for some h ∈ H∞(G). Since ∥h∥G =
∥h ◦ φ∥D and φ is conformal on D, we have that h ◦ φ ∈ H∞(D). Also, since

sup
λ∈Λ

|h(λ)| = sup
λ∈Λ′

|h(φ(λ))| = sup
λ∈Λ′

|(h ◦ φ)(λ)|,
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it follows that

∥h ◦ φ∥D > sup
λ∈Λ′

|(h ◦ φ)(λ)|,

giving ([?]). Write

ω :=

{
λ ∈ ∂D : λ is not approached nontangentially by points in Λ′

}
.

Remember that S ≡ {αn} ⊂ D is dominating for D if and only if almost every point
on ∂D is approached nontangentially by points of S (cf. [BSZ, Theorem 3]). It thus
follows that ω has a positive measure. We put

W :=
{
x ∈ Ji : Ji does not have a tangent at x for i = 1, 2, · · ·

}
.

Then W has measure zero since the Ji are rectifiable and every rectifiable Jordan arc
has a tangent almost everywhere. Now let W ′ = φ−1(W ). Also W ′ has measure zero.
Let θ be a fixed angle with 3

4π < θ < π and let Aλ be the sector whose vertex is λ
and whose radius is rλ, of opening θ. Then for each λ ∈ ω we can find a rational
number rλ ∈ (0, 1) such that the sector Aλ contains no point in Λ′. Write

ω̃ ≡ ω \ (V ∪W ′).

Since ω̃ has a positive measure and hence it is uncountable, there exist a rational
number r ∈ (0, 1) and an uncountable set ω′ ⊂ ω̃ such that r = rλ for all λ ∈ ω′.
Clearly, we can find distinct points λ1, λ2, λ3, λ4 in ω′ such that

Aλ1 ∩Aλ2 ̸= ϕ and Aλ3 ∩Aλ4 ̸= ϕ.

We can thus construct two rectifiable arcs Γ◦
1 and Γ◦

2 in clD such that

Γ◦
1 ∩ D ⊂ Aλ1

∪Aλ2 , Γ◦
1 ∩ T = {λ1, λ2}

and

Γ◦
2 ∩ D ⊂ Aλ3 ∪Aλ4 , Γ◦

2 ∩ T = {λ3, λ4}.

Let ηi := φ(λi) for i = 1, . . . , 4. Then, since φ is a homeomorphism, ηi’s are distinct.
Also, each ηi is contained in a Jordan arc of ∂G. Let Bi := φ(Aλi). Then, since
3
4π < θ < π, we can, by Lemma 6.4.3, find a line segment li ⊂ Bi which is orthogonal
to the tangent line at ηi. Let Li := φ−1(li). Then, by cutting off the end parts of

Γ◦
1 and Γ◦

2 and joining Li’s, we can construct two new rectifiable arcs Γ̃◦
1 and Γ̃◦

2. Let

Γ̃ := φ(Γ̃◦
1) and Γ̃′ := φ(Γ̃◦

2). Since G is a Carathéodory domain and the end parts

of Γ̃ and Γ̃′ are line segments, by extending straightly the end parts of Γ̃ and Γ̃′ in
the unbounded component of C\clG, we can construct two Jordan curves Γ̂ and Γ̂′

whose end parts cross the boundary of G through line segments. Therefore, by joining
end points of Γ̂ (resp., the end points of Γ̂′) by a rectifiable arc in the unbounded
component, we can find a simple closed rectifiable curve Γ (resp., Γ′) satisfying the
given conditions.
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We are ready for proving:

Theorem 6.4.5. Let T ∈ B(H) be such that ∥p(T )∥ ≤ ∥p∥σ(T ) for every polynomial
p. If ησ(T ) is a Carathéodory region whose accessible boundary points lie in rectifiable
Jordan arcs on its boundary, then T has a nontrivial invariant subspace.

Proof. To investigate the invariant subspaces, we may assume that T has no non-
trivial reducing subspace and σ(T ) = σap(T ), where σap(T ) denotes the approximate
point spectrum of T . Since the complement of ησ(T ) is connected, we have that by
Mergelyan’s theorem, R(ησ(T )) = P (ησ(T )). We thus have

∥f(T )∥ ≤ ∥f∥ησ(T ) for any f ∈ R(ησ(T )),

which says that ησ(T ) is a spectral set for T . On the other hand, we note that
R(ησ(T )) (= P (ησ(T ))) is a Dirichlet algebra. Thus if σ(T ) ̸⊂ cl (int ησ(T )), then
it follows from a theorem of J. Stampfli [St, Proposition 1] that T has a nontriv-
ial invariant subspace. So we may, without loss of generality, assume that σ(T ) ⊂
cl (int ησ(T )). In this case we have that ησ(T ) = cl (int ησ(T )). Hence int ησ(T ) is a
Carathéodory domain.

Now since ησ(T ) is a spectral set, R(ησ(T )) is a Dirichlet algebra, and T has
no nontrivial reducing subspaces, it follows from Lemma 6.4.1 that there exists an
extension of the functional calculus of T to a norm contractive algebra homomorphism

ϕ : H∞(int ησ(T )) → B(H). (6.2)

Moreover, ϕ is weak∗-weak∗ continuous. Let 0 < ε < 1
2 . Consider the following set:

Λ(ε) =

{
λ ∈ int ησ(T ) : ∃ a unit vector x such that ∥(T − λ)x∥ < ε dist

(
λ, ∂(ησ(T ))

)}
.

There are two cases to consider.

Case 1: Λ(ε) is not dominating for int ησ(T ). Since int ησ(T ) is a Carathéodory
domain, we can find two rectifiable simple closed curves Γ and Γ′ satisfying the con-
ditions given in Lemma 6.4.4; in particular, Γ ∩ Λ(ϵ) = ∅ and Γ′ ∩ Λ(ϵ) = ∅. Let

Γ ∩ ∂(ησ(T )) = {λ1, λ2} and Γ′ ∩ ∂(ησ(T )) = {λ3, λ4}.

Since σ(T ) = σap(T ), it is clear that Λ(ε) ⊃ int ησ(T ) ∩ σ(T ). So T − λ is invertible
for any λ in Γ\{λ1, λ2} and Γ′\{λ3, λ4}. If λ ∈ Γ\ησ(T ), then since the functional
calculus in (6.2) is contractive, we have

∥(λ− T )−1∥ ≤ sup

{
1

|λ− µ|
: µ ∈ int ησ(T )

}
=

1

dist(λ, ∂ (ησ(T ))
.

Let λ ∈ Γ ∩ int ησ(T ). Since Γ ∩ Λ(ε) = ∅, we have that for any unit vector x,

∥(T − λ)x∥ ≥ ε dist (λ, ∂(ησ(T ))),
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which implies that

∥(λ− T )−1∥ ≤ 1

ε dist (λ, ∂(ησ(T )))
.

On the other hand, Since ∂(ησ(T )) has a tangent at λi, it follows that in a sufficiently
small neighborhood Ni of λi, ∂(ησ(T )) lies in a double-sector Ai of opening 2θi
(0 < θi <

π
2 ) for each i = 1, 2. But since Γ is a line segment in a sufficiently small

neighborhood of each λi (i = 1, 2), it follows that if λ ∈ Ni ∩ Γ, then

|λ− λi|
dist (λ, ∂(ησ(T )))

≤ |λ− λi|
dist (λ, Ai)

=
1

cos θi
=: c.

We thus have

∥(λ− λ1)(λ− λ2)(λ− T )−1∥ ≤ c

ε
|λ− λ2| ≤M on N1 ∩ Γ,

which says that Sλ ≡ (λ− λ1)(λ− λ2)(λ− T )−1 is bounded on N1 ∩ Γ. Also Sλ has
at most two discontinuities on Γ. So the following operator A is well-defined ([Ap1]):

A :=
1

2πi

∫
Γ

(λ− λ1)(λ− λ2)(λ− T )−1dλ.

Now, using the argument of [Ber, Lemma 3.1]), we can conclude that ker(A) is a
nontrivial invariant subspace for T .

Case 2: Λ(ε) is dominating for int ησ(T ). In this case, we can show that ϕ is
isometric, i.e.,

∥h(T )∥ = ∥h∥int ησ(T ) for all h ∈ H∞(int ησ(T )),

by using the same argument as the well-known method due to Apostol (cf. [Ap1]),
in which it was shown that the Sz.-Nagy-Foias calculus is isometric. Now consider a
conformal map φ : D → int ησ(T ) and then define the function ψ by

ψ = φ−1 : int ησ(T ) → D.

Then ψ ∈ H∞(int ησ(T )). Define A := ψ(T ). Then A is an absolutely continuous
contraction with norm 1. Thus we can easily show that

∥h(A)∥ = ∥h∥D for any h ∈ H∞(D).

Thus if λ0 ∈ T, then

lim
λ→λ0,|λ|>1

||(A− λ)−1|| = lim
λ→λ0,|λ|>1

||(z − λ)−1||D = ∞,

which implies that A − λ0 is not invertible, so that we get T ⊂ σ(A). Since every
contraction whose spectrum contains the unit circle has a nontrivial invariant subspace
([BCP2]), A has a nontrivial invariant subspace. On the other hand, since T ∈
weak∗-cl {p(A) : p is a polynomial}, we can conclude that T has a nontrivial invariant
subspace.
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A simple example for the set satisfying ||p(T )|| ≤ ||p||σ(T ) for every polynomial p
is the set of ‘polynomially normaloid’ operators, in the sense that p(T ) is normaloid
(i.e., norm equals spectral radius) for every polynomial p. Indeed if p(T ) is normaloid
then ||p(T )|| = supλ∈σ(p(T )) |λ| = ||p||σ(T ) by the spectral mapping theorem.

Remark. We were unable to decide whether in Theorem 6.4.5, the condition “||p(T )|| ≤
||p||σ(T )” can be relaxed to the condition “||p(T )|| ≤ k ||p||σ(T ) for some k > 0”. How-
ever we can prove that if T ∈ B(H) is such that ||p(T )|| ≤ k ||p||σ(T ) for every
polynomial p and some k > 0 and if the outer boundary of σ(T ) is a Jordan curve
then T has a nontrivial invariant subspace. This is a corollary of the theorem of C.
Ambrozie and V. Müller [AM, Theorem A]. The proof goes as follows. Since ∂ (ησ(T ))
is a Jordan curve, then by Carathéodory’s theorem on extensions of the conformal
representations, a conformal map φ : int ησ(T ) → D can be extended to a homeomor-
phism ψ : ησ(T ) → clD. Since C \ ησ(T ) is connected, we can find polynomials pn
such that pn → ψ uniformly on ησ(T ). Since the spectrum function σ : B(H) → C is
upper semi-continuous, it follows that

ψ(∂(ησ(T ))) ⊂ ψ(σ(T )) = lim sup pn(σ(T )) = lim supσ(pn(T )) ⊂ σ(ψ(T )).

But since ψ is a homeomorphism we have that ∂D ⊂ σ(ψ(T )). By our assumption we
can also see that

||(p ◦ ψ)(T )|| ≤ k ||p ◦ ψ||int ησ(T ) = k ||p||D for every polynomail p,

which says that ψ(T ) is a polynomially bounded operator. Therefore by the theorem
of C. Ambrozie and V. Müller[AM], ψ(T ) has a nontrivial invariant subspace. Hence
we can conclude that T has a nontrivial invariant subspace.

We conclude with a result on the invariant subspaces for hyponormal operators
(this applies, in particular, to the case when ησ(T ) is the closure of a Cornucopia).

Corollary 6.4.6. Let T ∈ B(H) be a hyponormal operator. If the outer boundary
of σ(T ) has at most finitely many prime ends corresponding to singular points on
∂D and has a tangent at almost every point on each Jordan arc, with respect to a
conformal map from D onto int ησ(T ), then T has a nontrivial invariant subspace.

Proof. Suppose that

∥h∥int ησ(T ) = sup
{
|h(λ)| : λ ∈ σ(T ) ∩ int ησ(T )

}
for all h ∈ H∞(int ησ(T )). Then σ(T ) ∩ int ησ(T ) is dominating for int ησ(T ). Thus
by the well-known theorem due to S. Brown [Br2, Theorem 2], T has a nontrivial
invariant subspace. Suppose instead that

∥h∥int ησ(T ) > sup
{
|h(λ)| : λ ∈ σ(T ) ∩ int ησ(T )

}
for some h ∈ H∞(int ησ(T )). By an analysis of the proof of Lemma 6.4.4, we can
construct two rectifiable curves Γ and Γ′ satisfying the conditions (i) - (iv). Let
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Γ∩∂ησ(T ) = {λ1, λ2} and Γ′∩∂ησ(T ) = {λ3, λ4}. Since T is a hyponormal operator,
we have

∥(λ− T )−1∥ =
1

dist(λ, σ(T ))
on λ ∈

(
Γ\{λ1, λ2}

)
∪
(
Γ′\{λ3, λ4}

)
.

Now the same argument as in Case 1 of the proof of Theorem 6.4.5 shows that T has
a nontrivial invariant subspace.
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[Go] S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966

[GL] B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra,
Math. Ann. 192(1972), 17-32

[GGK] I. Gohberg, S. Goldberg, and M.A. Kaashoek, Classes Linear Operators, II,
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