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Chapter 1

Fredholm Theory

1.1 Introduction

If k(x,y) is a continuous complex-valued function on [a,b] X [a,b] then K : Cla,b] —
Cla, b] defined by

b
(K )(x) = / Kz, y) f(y)dy

is a compact operator. The classical Fredholm integral equations is

b
A (x) - / ka9 f(w)dy = g(z), a<z<b,

where g € Cla,b], A is a parameter and f is the unknown. Using I to be the identity
operator on Cla,b], we can recast this equation into the form (A — K)f = g. Thus
we are naturally led to study of operators of the form T' = AI — K on any Banach
space X. Riesz-Schauder theory concentrates attention on these operators of the
form T'= A — K, XA # 0, K compact. The Fredholm theory concentrates attention
on operators called Fredholm operators, whose special cases are the operators \I —
K. After we develop the “Fredholm Theory”, we see the following result. Suppose
k(z,y) € Cla,b] x Cla,b] (or L?[a,b] x L?*[a,b]). The equation

b
(@) - / k(e ) f()dy = g(2), A 40 (L1)

has a unique solution in Ca,b] for each g € Cl[a,b] if and only if the homogeneous
equation

b
M) - / k(o) (g)dy =0, A#£0 (1.2)

has only the trivial solution in Cfa,b]. Except for a countable set of A, which has
zero as the only possible limit point, equation (I0) has a unique solution for every
g € Cla,b]. For A # 0, the equation () has at most a finite number of linear
independent solutions.
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1.2 Preliminaries

Let X and Y be complex Banach spaces. Write B(X,Y) for the set of bounded linear
operators from X to Y and abbreviate B(X, X) to B(X). If T' € B(X) write p(T) for
the resolvent set of T ; o(T) for the spectrum of T'; wo(T") for the set of eigenvalues
of T.

We begin with:

Definition 1.2.1. Let X be a normed space and let X* be the dual space of X. If
Y is a subset of X, then

L={feX*: flz)=0forallzecY}={fecX*:Y C f10)}
is called the annihilator of Y. If Z is a subset of X* then
.J-Z:{Z‘GX: f(x):()fol-aufez}: ﬂ f*l
fez

is called the back annihilator of Z.
Even if Y and Z are not subspaces, and Y+ and .- Z are closed subspaces.

Lemma 1.2.2. Let Y)Y’ C X and Z,Z' C X*. Then
(a) Y C.4(YH), ZC(T2)*;
MYCY = (Y)rcYt;, ZcZ = HZ)c.tz;
() (F(Y )t =Y+, () =" Z;
(@) {0} =x*, x+={0}, H{0}=X.

Proof. This is straightforward. O

Theorem 1.2.3. Let M be a subspace of X. Then
(a) X*/MJ_ o~ M*,'
(b) If M is closed then (X/M)" = M*;
(c) A (M*)=clM.

Proof. See [Gd, p.25]. O

Theorem 1.2.4. If T € B(X,Y) then
(a) T(X)* = (T)(0);
(b) T (X) = (T H0));
(c) T7H0) C LT*( ")
(d) el T*(Y*) C T7H0)*.
Proof. See [Gd, p.59). O
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Theorem 1.2.5. Let X and Y be Banach spaces and T € B(X,Y). Then the fol-
lowings are equivalent:

(a) T has closed range;

(b) T* has closed range;

(c) T*(Y*) =T~ 1(0)*;

(d) T(X) = .H(T*~1(0)).

Proof. (a) < (d): From Theorem 4 (b).
(a) = (c): Observe that the operator T" : X/T~1(0) — TX defined by

r+T710)— Tz
is invertible by the Open Mapping Theorem. Thus we have
710t = (X/T7H0)) = (TX) = T*(Y").
(c) = (b): This is clear because T1(0)~ is closed.
(b) = (a): Observe that if T} : X — cl(TX) then T7 : (c1TX)* — X* is one-one.

Since T*(Y™*) = ran Ty, T} has closed range. Therefore T} is bounded below, so that
Ty is open; therefore TX is closed. O

Definition 1.2.6. If T € B(X,Y), write

a(T) :=dimT~(0) and B(T)=dimY/cl(TX).

Theorem 1.2.7. If T € B(X,Y) has a closed range then
a(T*) = B(T) and o(T) = B(T*).
Proof. This follows form the following observation:
T710) = (TX)* = (Y/TX) 2Y/TX

and
T7H0) = (T71(0))* = X*/T~1(0)*: = X*/T*(Y™).
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1.3 Definitions and Examples

In the sequel X and Y denote complex Banach spaces.

Definition 1.3.1. An operator T' € B(X,Y) is called a Fredholm operator it TX
is closed, a(T) < oo and B(T) < co. In this case we define the index of T by the
equality

index (T) := o(T) — B(T).

In the below we shall see that the condition “ T'X is closed ” is automatically fulfilled
it B(T") < o0.

Example 1.3.2. If X and Y are both finite dimensional then any operator T €
B(X,Y) is Fredholm and

index(T) = dim X — dimY :
indeed recall the “rank theorem”
dim X = dim 77(0) + dim T'X,
which implies

index(T) = dim 77 (0) — dimY/TX
=dimX —dim7TX — (dimY — dim7TX)
=dim X — dim Y.

Thus in particular, if 7' € B(X) with dim X < oo then T is Fredholm of index zero.

Example 1.3.3. If K € B(X) is a compact operator then T'= I — K is Fredholm of
index 0. This follows from the Fredholm theory for compact operators.

Example 1.3.4. If U is the unilateral shift operator on 2, then
indexU =—1 and indexU* = —1.

With U and U*, we can build a Fredholm operator whose index is equal to an arbitrary
prescribed integer. Indeed if

fUp 0.2 2 2 2
T{O (ﬁ4.£®£ 202

then T is Fredholm, o(T") = ¢q, B(T") = p, and hence indexT = g — p.

10
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1.4 Operators with Closed Ranges

If T € B(X,Y), write
dist (z, T7'(0)) = inf{||z —y||: Ty =0} for each z € X. (1.3)
If T € B(X,Y), we define

~(T) = inf{c >0: ||Tz|| > cdist (z, T71(0)) for each z € X} :
we call v(T) the reduced minimum modulus of T'.

Theorem 1.4.1. If T € B(X,Y) then
T(X) is closed < ~(T) > 0.

Proof. Consider X = X/T~ ( ) and thus X is a Banach space with norm ||z][ =
dist (z, T71(0)). Define T:X =Y by T2 = Tz. Then T is one-one and T( ) =
T(X).

(=) Suppose TX is closed and thus 7 : X — TX is bijective. By the Open
Mapping Theorem T is invertible with inverse 7-1. Thus

7] = |73]] > ——[#]] = ——dist (&, T~(0).
||T gl =1
which implies that v(T) = IIT ik 0.

(<) Suppose ¥(T') > 0. Let Tz, — y. Then by the assumption ||Tx,| >
v(T) ||znl||, and hence, ||Tz, — Txp|l > Y(T)||Zn — Tm||, which implies that ()

is a Cauchy sequence in X. Thus T, — T € X because X is complete. Hence
Tz, =T7, — T% = Tx; therefore y = Tx. O

Theorem 1.4.2. If there is a closed subspace Yy of Y for which T(X)®Y) is closed
then T has closed range.

Proof. Define Ty : X x Yy = Y by
To(z,y0) = Tz + yo.
The space X x Yj is a Banach space with the norm defined by

(2, yo) || = [l + [lyoll-
Clearly, Ty is a bounded linear operator and ran (Tp) = T(X) @ Yy, which is closed
by hypothesis. Moreover, ker (Tp) = T71(0) x {0}. Theorem 2T asserts that there
exists a ¢ > 0 such that
[|Tx|| = ||To(z,0)|| > cdist ((m,O), kerT0> = cdist (x,Tfl(O)),

which implies that T'(X) is closed. O

11
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Corollary 1.4.3. If T € B(X,Y) then
T(X) is complemented = T(X) is closed.

In particular, if B(T) < oo then T(X) is closed.

Proof. If T(X) is complemented then we can find a closed subspace Yy for which
T(X)® Yy =Y. Theorem &3 says that T'(X) is closed. O

To see the importance of Corollary 223, note that for a subspace M of a Banach
space Y,
Y = M &Y, does not imply that M is closed.

Take a non-continuous linear functional f on Y and put M = ker f. Then there
exists a one-dimensional subspace Yy such that Y = M @ Yy (recall that Y/ker (f)
is one-dimensional). But M = ker f cannot be closed because f is continuous if and
only if f71(0) is closed.

Consequently, we don’t guarantee that
dim (Y/M) < oo = M is closed. (1.4)

However Corollary 23 asserts that if M is a range of a bounded linear operator
then (IA) is true. Of course, it is true that

M is closed, dim(Y/M) < oo = M is complemented.

Theorem 1.4.4. Let T € B(X,Y). If T maps bounded closed sets onto closed sets
then T has closed range.

Proof. Suppose T(X) is not closed. Then by Theorem T2 there exists a sequence
{z,} such that
Tz, —0 and dis(2,, T7'(0)) =1.

For each n choose z, € T71(0) such that ||z, — z,|| < 2. Let V:=cl{z, — 2, : n=
1,2,...}. Since V is closed and bounded in X, T(V) is closed in Y by assumption.
Note that Ta,, = T(zn, —2,) € T(V). So0 € T(V) (Txz, — 0 € T(V)) and thus there
exists u € V. NT~1(0). From the definition of V it follows that

1
[|u = (Tng — 2no)l] < 3 for some ny,

which implies that
dis (z,,,, T7(0)) <

DN | =

This contradicts the fact that dist (z,,, T7(0)) = 1 for all n. Therefore T(X) is
closed. O

12
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Theorem 1.4.5. Let K € B(X). If K is compact then T = I — K has closed range.
Proof. Let V' be a closed bounded set in X and let

y= lim (I — K)z,, wherex, V. (1.5)
n—oo
We have to prove that y = (I — K)zo for some g € V. Since V is bounded and K
is compact the sequence { Kx,} has a convergent subsequence {Kz,,}. By (ICH), we
see that

zo = lim z,, = lim ((/ — K)xp, + Kz,,) exists.
1— 00 71— 00

But then y = (I — K)zp € (I — K)V; thus (I — K)V is closed. Therefore by Theorem
23, I — K has closed range. O

Corollary 1.4.6. If K € B(X) is compact then I — K is Fredholm.

Proof. From Theorem 41 we see that (I — K)(X) is closed. Since z € (I — K)~1(0)
implies * = K, the identity operator acts as a compact operator on (I — K)~1(0);
thus a(f — K) < oco. To prove that B(I — K) < oo, recall that K* : X* — X* is also
compact. Since (I — K)(X) is closed it follows from Theorem 274 that

B(I—-K)=a(l—-K") < .

13
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1.5 The Product of Fredholm Operators

Let T € B(X,Y). Suppose T~1(0) and T(X) are complemented by subspaces X,
and Yp; i.e.,

X=T"'0)® X, and Y =T(X)& Y.
Define T : Xo x Yy — Y by

T(x0,Y0) = Two + Yo

The space X x Yy is a Banach space with the norm defined by ||(z,y)|| = ||=|| + ||y]]

and T is a bijective bounded linear operator. We call T the bijection associated with
T. If T is Fredholm then such a bijection always exists and Yj is finite dimensional.
If we identify Xo = X x {0} then the operator Ty : Xo — Y defined by

Tol‘ =Tx
is a common restriction of T and T to Xy (= Xo x {0}).
Note that
7,\,1 = .

(b) If T : X/T~(0) — TX then T = T.

Lemma 1.5.1. Let T € B(X,Y) and M C X with codin M =n < co. Then
T is Fredholm <= Ty :=T|p is Fredholm,

in which case, indexT" = index Ty + n.

Proof. Tt suffices to prove the lemma for n = 1. Put X := M @ span{x;}. We
consider two cases:
(Case 1) Assume Tzy ¢ To(M). Then TX = ToM @ span{Tz1} and T-1(0) =
T, (0). Hence
B(Ty) =BT)+1 and oa(Tp) =a(T). (1.6)

(Case 2) Assume Tz € To(M). Then TX = TyM, and hence there exists u € M
such that Ty = Tou. Thus T~1(0) = T, *(0) @ span {x; — u}. Thus

B(Ty) = B(T) and «oTp) = o(T) — 1. (L.7)
From (@) and (IZ2) we have the result. O

Theorem 1.5.2. (Index Product Theorem) If T'€ B(X,Y) and S € B(Y, Z) then

S and T are Fredholm — ST is Fredholm with
index (ST) = index S + index T

14
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Proof. Let T be a bijection associated with T, Xo, and Yp: ie., X = T10) & X,
and Y = T(X) & Y,. Suppose Ty := T|x,. Since T is invertible, ST is invertible and
index (ST) = index S. By identifying X, and X x {0}, we see that ST is a common
restriction of ST and ST to Xj. By Lemma T3, ST is Fredholm and

index (ST) = index (STp) + dim X/ X
= index(ST) — dim (XO x Yo/ Xo X {0}) + a(T)

= indexS — dim Yy + (7))
= indexS — B(T) + a(T)
= index S + index T

O

The converse of Theorem A3 is not true in general. To see this, consider the
following operators on £2:

T(le,xg, 3, .. ) = (0, 1, 0, o, 0, T3, .. )
S(.’Iﬁl,wg, T3, .. ) = (56'2,.1‘47.’176, . )
Then T ad S are not Fredholm, but ST = I. However, if ST = T'S then we have
ST is Fredholm — S and T are both Fredholm

because T~1(0) € (ST)~1(0) and (ST)(X) = TS(X) C T(X).

Remark 1.5.3. For a time being, a Fredholm operator of index 0 will be called a
Weyl operator. Then we have the following question: Is there implication that if
ST =TS then

S, T are Weyl <= ST is Weyl?

Here is the answer. The forward implication comes from the “Index Product Theo-
rem” without commutativity condition. However the backward implication may fail
even with commutativity condition. To see this, let

U o0 I 0
T[O I} and S{O U*}’

where U is the unilateral shift on /5. Evidently,

. . Uu o
index (ST) = index {0 U*}

= indexU + index U™
p— O7

but S and T are not Weyl.

15
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1.6 Perturbation Theorems

We begin with:

Theorem 1.6.1. Suppose T € B(X,Y) is Fredholm. If S € B(X,Y) with ||S|| <
~(T) then T + S is Fredholm and

(i) a(T+S) < o(T);

(i) BT + ) < B(T);

(iii) index (T'+ S) = index T'.

Proof. Let X = T1(0) & Xo and Y = T(X) & Y;. Suppose T is the bijection with
T, Xy and Yy. Put R=T 4+ S and define

E XoxYy—>Y by E(l‘o,yo) = Rz + Yo.

By definition, T(xo, yo) = T'zg + yo. Since T is invertible and

L 1
1T = R|| < |IT = R[[ = [|S]| <~(T) = =k

we have that R is also invertible. Note that Ry : Xo — Y defined by
Ror = Rx
is a common restriction of R and R to Xo. By Lemma 5, R is Fredholm and

index R = index Ry + a(T)
= index R — B(T) + o(T)
= indexT
which proves (iii). The invertibility of R implies that Xo N R~1(0) = {0}. Thus we

have
a(R) <dim X/Xy = a(T),

which proves (i). Note that (ii) is an immediate consequence of (i) and (iii). O

The first part of Theorem G asserts that

the set of Fredholm operators forms an open set.

Theorem 1.6.2. Let T, K € B(X,Y). Then

T is Fredholm, K is compact = T + K 1is Fredholm with
index (T'+ K) = index T.

16
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Proof. Let X = T71(0) & Xo and Y = T(X) & Yy. Define T, K : Xo x Yy — Y by

T(zo,y0) = Txo +yo, K(wo,%0) = Kzo + yo.

Therefore K is compact since K is compact and dim Yy < co. From (T + K)(z, 0) =
(T + K)zy and Lemma 51 it follows that

T + K is Fredholm <— T + K is Fredholm.
But T is invertible. So L o
T+K=T(+T'K).

Observe that 71K is compact. Thus by Corollary I8, [ + T—'K is Fredholm.
Hence T'+ K is Fredholm.

To prove the statement about the index consider the integer valued function
F(\) := index (T'+ AK). Applying Theorem G to 7'+ AK in place of T shows that
f is continuous on [0, 1]. Consequently, f is constant. In particular,

indexT = f(0) = f(1) = index (T + K).

O
Corollary 1.6.3. If K € B(X) then
K is compact = I — K is Fredholm with index (I — K) = 0.
Proof. Apply the preceding theorem with 7' = I and note that index I = 0. O

17
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1.7 The Calkin Algebra

We begin with:
Theorem 1.7.1. IfT € B(X,Y) then
T is Fredholm <= 35 € B(Y,X) such that I — ST and I —TS are finite rank.
Proof. (=) Suppose T Fredholm and let
X=T"'0)® X, and Y =T(X)& Y.
Define Ty := T|x,. Since Tp is one-one and Tp(Xo) = T(X) is closed
Tyt T(X) — X is invertible.

Put S := T, 'Q, where Q : Y — T(X) is a projection. Evidently, S(Y) = X and
S71(0) = Y. Furthermore,

I — ST is the projection of X onto T71(0)
I — TS is the projection of Y onto Yj.

In particular, I — ST and I — T'S are of finite rank.
(<) Assume ST =1 — K; and TS = I — Ky, where K1, K are finite rank. Since

T710) c (ST)"'(0) and (TS)X C T(X),

we have
oT) < a(ST)=a(l — K1) <0
B(T) < B(TS) = B(I — K3) < o0,
which implies that T is Fredholm. O

Theorem 71 remains true if the statement “I — ST and I — T'S are of finite
rank” is replaced by “I — ST and I — TS are compact operators.” In other words,

T is Fredholm <= T is invertible modulo compact operators.

Let K (X) be the space of all compact operators on X. Note that K (X) is a closed
ideal of B(X). On the quotient space B(X)/K(X), define the product

[S][T] = [ST], where [S] is the coset S+ K(X).

The space B(X)/K(X) with this additional operation is an algebra, which is called
the Calkin algebra, with identity [I].

18
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Theorem 1.7.2. (Atkinson’s Theorem) Let T' € B(X). Then
T is Fredholm <= [T is invertible in B(X)/K(X).
Proof. (=) If T is Fredholm then
3.5 € B(X) such that ST — I and T'S — I are compact.

Hence [S][T] = [T][S] = [I], so that [S] is the inverse of [T] in the Calkin algebra.
(«=) It [S][T] = [T[S] = [I] then

ST =1—-K; and TS=1- Ko,

where K1, Ko are compact operators. Thus T is Fredholm. O]

Let T € B(X). The essential spectrum o.(T) of T is defined by
0e(T)={A€C: T — Al is not Fredholm}

We thus have
0e(T) = op(x)/x(x)(T + K(X)).

Evidently o.(T) is compact. If dim X = oo then
0o(T) # 0 (because B(X)/K(X) # 0).
In particular, Theorem G implies that

0.(T) =0.(T+ K) forevery K € K(X).

Theorem 1.7.3. If T € B(X,Y) then
T is Weyl <= 3 a finite rank operator F such that T + F is invertible.
Proof. (=) Let T be Weyl and put
X=T"'0)® X, and Y =T(X)& Y.
Since indexT = 0, it follows that
dim 771(0) = dim Yy,

Thus there exists an invertible operator Fy : T~1(0) — Yy. Define F := Fy(I — P),
where P is the projection of X onto Xy. Obviously, T'+ F' is invertible.

(<) Assume S = T+ F is invertible, where F is of finite rank. By Theorem 652,
T is Fredholm and indexT = index S = 0. O

19
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The Weyl spectrum, w(T), of T € B(X) is defined by
w(T) = {)\ €C: T — A is not Weyl}

Evidently, w(T) is compact and in particular,

w(T) = ﬂ o(T+ K).
K compact

Definition 1.7.4. An operator T € B(X,Y) is said to be regular if there is T" €
B(Y, X) for which
T=TT'T; (1.8)

then T” is called a generalized inverse of T. We can always arrange

T =T'TT : (1.9)
indeed if (I8) holds then

T"=TTI" = TT'T and T'=T"TT".

If 77 satisfies (I¥) and () then it will be called a generalized inverse of T in the
strong sense. Also T' € B(X,Y) is said to be decomposably regular if there exists
T" € B(Y, X) such that

T=TT'T and T’ is invertible.

The operator S := Tole, which was defined in the proof of Theorem I, is a
generalized inverse of in the strong sense. Thus we have

T is Fredholm <= [ —T'T and I — T'T" are finite rank.
Generalized inverses are useful in solving linear equations. Suppose T” is a gen-
eralized inverse of T. If Tx = y is solvable for a given y € Y, then T"y is a solution

(not necessary the only one). Indeed,

Tx =y is solvable = 3 z( such that Tzg =y
= TTy=TT'Txg=Txo=1y.

Theorem 1.7.5. If T € B(X,Y), then

T is reqular <= T=1(0) and T(X) are complemented.
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Proof. (<) If X = Xo® T~ 1(0) and Y = Yy ® T(X) then 77 : Y — X defined by
T'(Txo + yo) = w9, Where 29 € Xg and yo € Yy
is a generalized inverse of T because for zg € Xy and z € T_I(O),
TT'T(zg+ 2) =TT (Tzo) = Txg = T(z0 + 2).

(=) Assume T" is a generalized inverse of T: TT'T = T. Obviously, TT" and T'T
are both projections. Also,

T(X)=TT'T(X)C TT'(X) C T(X);
T710) € (I"T)~H(0) < (TT'T)~(0) = T~ 1(0),

which gives
TT'(X)=T(X) and (T'T)"'(0) =T"%(0),

which implies that 7-1(0) and T(X) are complemented. O

Corollary 1.7.6. If T € B(X,Y) then

T is Fredholm =—> T 1s regular.

Theorem 1.7.7. If T € B(X,Y) is Fredholm with T = TT'T, then T’ is also
Fredholm with
index (T") = —index (7).

Proof. We first claim that
ST is Fredholm = (S Fredholm <= T Fredholm) : (1.10)
indeed,
ST is Fredholm = I — (ST)(ST) € Ko and I — (ST)(ST)' € Ko,
which implies
T is Fredholm <= [ —T(ST)'S € Ky <= S is Fredholm.
Thus by (II), 7" is Fredholm and by the index product theorem,

index (T') = index (TT'T) = index (T) + index (T") + index (T').
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Theorem 1.7.8. If T € B(X,Y) is Fredholm with generalized inverse T' € B(Y, X)
in the strong sense then

index (T') = dim 7~ *(0) — dim (7")~*(0).
Proof. Observe that
(T")71(0) = (TT")"1(0) = X/TT'(X) = X/T(X),

which gives that 8(T) = o(T"). O

Theorem 1.7.9. If T € B(X,Y) is Fredholm with generalized inverse T' € B(Y, X),
then
index (T) = trace (TT" —T'T).

Proof. If T = TT'T is Fredholm then
I —T'T and I —TT" are both finite rank.

Observe that

dim (I —T'T)(X) = dim (T'T) " (0) = dim T~ *(0) = o(T);
dim (I — TT')(Y) = dim (TT")"*(0) = dim X/TT'(Y) = dim X/T(X) = B(T).
Thus we have
trace (I'T" — T'T) = trace (I = T'T) — (I — TT"))
trace (I —T'T) — trace (I — TT")
rank (I — T'T)(X) — dim (I — TT")(X)

a(T) = B(T)
= index (T).
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1.8 The Punctured Neighborhood Theorem

If T € B(X,Y) then
(a) T is said to be upper semi-Fredholm if T'(X) is closed and o(T) < oo;
(b) T is said to be lower semi-Fredholm if T(X) is closed and B(T) < co.

(¢c) T is said to be semi-Fredholm if it is upper or lower semi-Fredholm.

Theorem TG remains true for semi-Fredholm operators. Thus we have:

Lemma 1.8.1. Suppose T € B(X,Y) is semi-Fredholm. If ||S|| < v(T) then
(i) T + S has a closed range;
(ii) (T4 S) < a(T), B(T+S) <B(T);
(iii) index (T'+ S) = index T'.

Proof. This follows from a slight change of the argument for Theorem LG O

We are ready for the punctured neighborhood theorem; this proof is due to Harte
and Lee [HaLll.

Theorem 1.8.2. (Punctured Neighborhood Theorem) If T' € B(X) is semi-Fredholm
then there exists p > 0 such that o(T —XI) and S(T — AI) are constant in the annulus
0 < [N <p.

Proof. Assume that T is upper semi-Fredholm and «(T") < oo. First we argue

(T —A)~H0) C () T™(X) =: T>(X). (1.11)

D)

n=1

Indeed,

z€ (T —N)"'0) = Tz = Az, and hence r € T(X)
= Note that \v = Tz € T(TX) = T*(X)
= By induction, z € T"(X) for all n.

Next we claim that
T°°(X) is closed:

indeed, since T™ is upper semi-Fredholm for all n, T"(X) is closed and hence T°°(X)
is closed. B

If S commutes with T, so that also S(T°°(X)) C T*°(X), we shall write S :
T°(X) — T°°(X). We claim that

T :T®(X) — T°°(X) is onto. (1.12)
To see this, let y € T°°(X) and thus

Iz, € T"(X) such that Tz, =y (n=1,2,...).
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Since T~1(0) is finite dimensional and T"(X) D T"* (X)),
Ing € N such that T71(0)NT™(X) =T 0)NT"(X) for n > ny.
From the fact that 7" (X) C 7™ (X), we have
Ty — Tpy €ETHO)NT™(X) =T H0)NT™(X) C T™(X).
Hence

Tng € [ T"(X) =T>(X) and Tz, =y,

n>ngo

which says that T is onto. This proves (). Now observe

1 ~
dim (T — M)"5(0) = dimT — A\ (0) = indexT — M\ = index T : (1.13)

the first equality comes from (), the second equality follows from the fact that

Jé] (mf ) < B(T) = 0 by Lemma [CZT, and the third equality follows the observation
that 7 is semi-Fredholm. Since the right-hand side of (CI3) is independent of A,
a(T — M) is constant and hence also is S(T — AI).

If instead 5(T) < oo, apply the above argument with 7*. O

Theorem 1.8.3. Define
U .= {)\ eC: T— X is semi—Fredholm}.

Then
(i) U is an open set;

(ii) If C is a component of U then on C, with the possible exception of isolated
points,

a(T — M) and B(T — AI) have constant values ny and ng, respectively.
At the isolated points,

a(T—=A)>ny and B(T — M) > ns.
Proof. (i) For A € U apply Lemma 81 to T — A in place of T

(ii) The component C' is open since any component of an open set in C is open.
Let a(M\g) = n1 be the smallest integer which is attained by

a(A)=a(T —AI) onC.
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Suppose a(\') # n;. Since C is connected there exists an arc I' lying in C' with
endpoints A\g and \’. It follows from Theorem X2 and the fact that C is open that
for each p € T, there exists an open ball S(u) in C such that

a(\) is constant on the set S(p) with the point p deleted.

Since I' is compact and connected there exist points A, Ao, -, A\, = X on I' such
that

S(No0), S(A1)y..., S(An) cover T and  S(A)NSNy1) #0 (0<i<n-—1) (1.14)

We claim that a(X\) = a(Ag) on all of S(Ag). Indeed it follows from the Lemma TR
that
a(N) < a(Ng) for X sufficiently close to Ag.

Therefore, since a(\g) is the minimum of a(\) on C,
a(X) = a(Ng) for X sufficiently close to Ag.

Since a(\) is constant for all A # A\ in S(Ag), which is a(Ag). Now a()) is constant
on the set S(A;) with the point A; deleted (1 < i < n). Hence it follows from (1)
and the observation a(X) = a(Ag) for all A € S(Ag) that a(N) = a(Ag) for all A # N
in S(A) and a()\’) > n;. The result just obtained can be applied to the adjoint. This
completes the proof. O
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1.9 The Riesz-Schauder (or Browder) Theory

An operator T' € B(X) is said to be quasinilpotent if
I — 0
and is said to be nilpotent if
T" =0 for some n.
An example for quasinilpotent but not nilpotent:
T:0* —

T2 T3

T(.’I?17.’172,£E3,...) — (O,x1,7, 3 ,)

An example for quasinilpotent but neither nilpotent nor compact:
T=Toh:Cal® — ol

where
Ty : (1,29, x3,...) — (0,21,0,23,0,25,...)

Ty : (x1,22,23,...) — (0,21, —

Remember that if T € B(X) we define Ly, Ry € B(B(X)) by

Lr(S):=TS and Rr(S):=ST forSe B(X).

Lemma 1.9.1. We have:
(a) Ly is 1-1 <= T is 1-1;
(b) Ryr is 1-1 <= T is dense;
(¢) Ly is bounded below <= T is bounded below;
(d) Rr is bounded below <= T is open.

Proof. See [Be3].

Theorem 1.9.2. If T € B(X), then
(a) T is nilpotent => T is neither 1-1 nor dense;
(b) T is quasinilpotent = T is neither bounded below nor open.
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Proof. By Lemma [,

(a) T is nilpotent = T =0#T"
= Ly and Ry are not 1-1
— T is not 1-1 and not dense.

(b) T is quasinilpotent => Ve > 0, 3n € N such that ||T”H% >e> ||T"+1||n%1
= || Lo(T)|| = |Re(T™)|| < |77
= L and Ry are not bounded below
= T is not bounded below and not open.

We would remark that
{quasinilpotents} C B~ (X).
Observe that quasinilpotents of finite rank or cofinite rank are nilpotents.

Definition 1.9.3. An operator T € B(X) is said to be quasipolar [polar, resp.] if
there is a projection P commuting with 7" for which 7" has a matrix representation

=[5 a7 - [0

where T is invertible and T% is quasinilpotent [nilpotent, resp.]

Definition 1.9.4. An operator T € B(X) is said to be simply polar if there is
T" € B(X) for which
T=TT'T with TT' =TT

Proposition 1.9.5. Simply polar operators are decomposably regular.
Proof. Assume T = TT'T with TT' =T'T. Then

=T +1-T'T) = {T:TT”T

(T")"L =T+ (1-T'T)

Theorem 1.9.6. If T € B(X) then

T is quasipolar but not invertible <= 0 € isoo(T)
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Proof. (=) If T is quasipolar we may write
o] [P(X) P(X)
=[5 a7 - [F0)

where T3 is invertible and 75 is quasinilpotent. Thus for sufficiently small A # 0,
Ty — A and T5 — A are both invertible, which implies that 0 € iso o (7))

(<) If 0 € isoo(T), construct open discs Dy and Dy such that D; contains 0, Do
contains the spectrum o(T) and Dy N Dy = 0. If we define f : Dy U Dy — C by
setting

0 on D1

f = { 1 on Dy
then f is analytic on D; U Dy and f(A\)? = f(A). Observe that

1

P=Po, = f(T) = 5= [ (=1)tay

and PT = TP. Thus we may write

T = ﬁl 192] :P(X)® P7Y0) — P(X)a® P Y0),

where o(T1) = o(T)\{0} and o(Tz) = {0}. Therefore T is invertible and T3 is

quasinilpotent; so that T' is quasipolar.
O

Theorem 1.9.7. If T € B(X) then

T is simply polar <= T(X)=T*X), T *(0)=T"2(0)

Proof. (=) Observe

T(X)=TT'T(X)=T*T'(X) CT*(X) CTX;
T1(0) = (TT'T)~1(0) = (T'T%)~}(0) 2 T-2(0) 2 T~(0).
(<) () zeTXNT10) = =Ty for somey € X and Tz =0
= T?y=0 = yeT720)=T"10)

= Ty=0 = =0,
which gives TX NT~1(0) = {0}.

ii) By assumption, T(T'(X)) = T(X). Let Ty := T|pcx), so that T1(X) =
T%(X)=T(X). Thus for all z € X,

Jy € T(X) such that Tae = Ty = Ty.
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Define z = x — y, and hence z € T71(0). Thus X = T(X) + T~%(0). In particular,
T(X) is closed by Theorem 272, so that

X =T(X)o T 0).
Therefore we can find a projection P € B(X) for which
P(X)=T(X) and P~ 0)=T"*(0).

<[ %)~ 175

We thus write

0 0| |P7Y0) P~Y0)
where T} is invertible because Ty := T|rx is 1-1 and onto since T(X) = T?(X). If
we put
;[T o
= { 0 0]’

then TT'T =T and

o e [T O] [T O] [T 0] _
TT_TT_[O o/ o o= |0 of=F

which says that T is simply polar.

Theorem 1.9.8. If T € B(X) then
T is polar <= T" is simply polar for some n € N

T, 0

0 T2] with 7T} invertible and

Proof. (=) If T is polar then we can write T' = [

Ts nilpotent. So T" = Fg)l
" 0
0 I

8], where n is the nilpotency of T5. If we put S =

}, then T"ST™ =T™ and ST" =1T"S.

(<) If T™ is simply polar then X = T"(X) & T~ "(0). Observe that since T" is
simply polar we have

T(T"X) =T""(X) D T*(X) =T™(X)
T(T7"(0)) € T~"*}(0) € T~"(0)

Thus we see that T'|7n(xy is 1-1 and onto, so that invertible. Thus we may write
Tl 0 n —-n n -n
T= 0 T T X)e T ™(0) — THX)® T "(0),

where Ty = T'|pn(x) is invertible and Ty = T'|p-n (g is nilpotent with nilpotency n.
Therefore T is polar. [
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The following is an immediate result of Theorem IS :
Corollary 1.9.9. If T € B(X) then
T is polar <= ascent (T') = descent (T') < o0
Corollary 1.9.10. If S, T € B(X) with ST =TS, then
S and T are polar = ST is polar.
Proof. Suppose S"(X) = S"*1(X) and T"(X) = T"*1(X). Then

(ST)mn+1(X) _ Smn+1Tmn+1 (X) _ Smn+1Tmn(X) _ Tmnsmn—i—l(X)
=TS (X) = (ST)"™(X)

Similarly,

(ST)™P=1(0) = (ST)™(0).
O

Definition 1.9.11. An operator T € B(X) is called a Browder (or Riesz-Schauder)
operator if T is Fredholm and quasipolar.

If T is Fredholm then by the remark above Definition T3,
T is quasipolar <= T is polar.

Thus we have
T is Browder <= T is Fredholm and polar.

Theorem 1.9.12. If T € B(X), the following are equivalent:
(a) T is Browder, but not invertible;
(b) T is Fredholm and 0 € isoo(T);
(¢) T is Weyl and 0 € isoo(T);
(d) T is Fredholm and ascent (T') = descent (T') < oco.

Proof. (a) < (b) : Theorem ICIH
(b) < (c¢) : From the continuity of the index
(b) < (d) : From Corollary I"I4. O

Theorem 1.9.13. If K € B(X), then

K is compact = I + K is Browder.
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Proof. From the spectral theory of the compact operators,
—1€isoo(K) (infact, A\ #0 = X ¢ acco(K)),
which gives
0€isoo(I + K).

From Corollary 28, [ + K is Fredholm. Now Theorem [CITI2 says that I + K is
Browder.
O

Theorem 1.9.14. (Riesz-Schauder Theorem). If T € B(X) then
T is Browder <= T = S+ K, where S is invertible and K is compact with SK = K S.

Proof. (=) If T is Browder then it is polar, so that we can write

oo
=% o)

where T} is invertible and T3 is nilpotent. Since T is Fredholm, T5 is also Fredholm.

If we put
|7y 0 10 0
S_{O I] and K_[O Tl—I}’

then evidently 75 — I is of finite rank. Thus S is invertible and K is of finite rank.
Further,
T=S+K and SK=KS.

(<) Suppose T = S + K and SK = KS. Since, by Theorem [CITL3, [ + S~'K
is Browder, so that I + S~'K is Fredholm and polar. Therefore, by Theorem -5
and Corollary 910, T = S(I + S~1K) is Fredholm and polar, and hence Browder.
Here, note that S and I + S~!K commutes. O

Remark 1.9.15. If S, T'€ B(X) and ST =TS then
(a) S, T are Browder <= ST is Browder;
(b) S is Browder and T is compact = S + T is Browder.

Example 1.9.16. There exists a Weyl operator which is not Browder.

U 0
Proof. PutT = 0 U

T is Fredholm and indexT = indexU + indexU* = 0, which says that T is Weyl.
However, o(T) = {A € C: |\| <1} ; so that 0 ¢ isoo(T), which implies that T is not
Browder.

(2002 — (?®0?, where U is the unilateral shift. Evidently,

O
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1.10 Essential Spectra

If T € B(X) we define:

(a) The essential spectrum of T := 0.(T) = {A € C: T — AI is not Fredolm}
(b) The Weyl spectrum of T := w(T) = {A € C: T — A is not Weyl}
(¢) The Browder spectrum of T := o,(T) = {A € C: T — Al is not Browder}

Evidently, 0.(T), w(T) and o4(T) are all compact;
0.(T) Cw(T) C op(T);
these are nonempty if dim X = oc.

Theorem 1.10.1. If T € B(X) then
(@) o(T) = 0e(T) Uop(T) Uocom(T);
(b) o(T) = w(T) U (0p(T) 1 Geom(T))
(c) op(T) = 0.(T) U acco(T),
where Teom(T) :={\ € C: T — X does not have dense range}.

Proof. Immediate follow from definitions.

Definition 1.10.2. We shall write
Pyo(T) =isoo(T)\o.(T)

for the Riesz points of o(T). Evidently, A € Pyo(T') means that T — Al is Browder,

but not invertible.

Lemma 1.10.3. If Q is locally connected and H, K C €, then
OK CHUisoK — K CnHUiso K

Proof. See [Hard].

Theorem 1.10.4. If T € B(X) then
(a) do(T)\oe(T') C isoo(T);
(b) o(T) € noe(T) U Poo(T)

Proof. (a) This is an immediate consequence of the Punctured Neighborhood The-

orem.
(b) From (a) and Lemma 103,
o(T) Cnoe(T)Uisoo(T)
=noe(T) U Pyo(T)

by the fact that if A ¢ no.(T) and A € isoo(T), then T'— Al is Fredholm and

A €isoo(T) thus T — Al is Browder.
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1.11 Spectral Mapping Theorems

Recall the Calkin algebra B(X)/K(X). The Calkin homomorphism 7 is defined by

71 B(X) — B(X)/K(X)
7(T) =T + K(X).

Evidently, by the Atkinson’s Theorem,
T is Fredholm <= w(T) is invertible.
Theorem 1.11.1. If T € B(X) and f is analytic in a neighborhood of o(T), then
floe(T)) = oe(f(T))
Proof. Since f(n(T)) = f(T + K(X)) = f(T) + K(X) = «(f(T)) it follows that
floe(T)) = flo(w(T))) = o(f(x(T))) = o(x(f(T))) = oe(f(T)).
O
Theorem 1.11.2. If T € B(X) and f is analytic in a neighborhood of o(T'), then
flon(T)) = oo (f(T))
Proof. Since by the analyticity of f, f(acc K) = acc f(K), it follows that

f(ou(T)) = f(oe(T)
= [(0e(T)) U f(acca(T))
= 0e(f(T)) Vacco(f(T))
= o (f(T)).

Uacco(T))

Theorem 1.11.3. IfT € B(X) and p is a polynomial then
w(p(T)) € p(w(T)).
Proof. Let p(z) = ap + a1z + -+ + anz™ ; thus p(z) = ¢o(z — a1) - -+ (2 — ). Then
p(T) =co(T —arl) - (T — a,I).

We now claim that

0¢pw(T) = co(z—a1) - (z—a,)#0 foreach A € w(T)
= A#aq; foreach A ew(T)
= T — ol is Weyl foreachi=1,2,...n
= co(T —arl) - (T — o) is Weyl
— 0 ¢ w(p(T))
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In fact, we can show that w(f(T)) C f(w(T)) for any analytic function f in a
neighborhood of o (7).

The inclusion of Theorem [CITT-3 may be proper. For example, if U is the unilateral
shift, consider

C[U+T
T{ .

0 . 92 2 2 2
U*_I}.e o2 — (2or.

Then
wT)=0c(T)={2z€C:[1+2|<1}U{zeC:1—2 <1}

Let p(z) = (2+1)(z — 1). Then
p(w(T)) is a cardioid containing 0.
Therefore 0 € p(w(T)). However

p(T):(T+I)(T—I):{U+21 OHU 0 }

0 u*| |0 U*—=2I|’
so that index (p(T)) = index U* + index U = 0, which implies 0 ¢ w(p(T)). Therefore

p(w(T)) & w(p(T)).
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1.12 The Continuity of Spectra

Let 0, be a sequence of compact subsets of C.

(a) The limit inferior, liminf o,,, is the set of all A € C such that every neighborhood
of A\ has a nonempty intersection with all but finitely many o,,.

(b) The limit superior, limsup o, is the set of all A € C such that every neighbor-
hood of X intersects infinitely many o,,.

(¢) Ifliminf o, = limsup o, then lim o, is said to be exist and is the common limit.

A mapping T on B(X) whose values are compact subsets of C is said to be upper
semi-continuous at T when

T, — T = limsupT(T,) C T(T)
and to be lower semi-continuous at T when
T, — T = T(T) Climinf T(T,).

If 7 is both upper and lower semi-continuous, then it is said to be continuous.

Example 1.12.1. The spectrum o : T — o(T') is not continuous in general: for
example, if
_[U su-Uur)
T, = { i

then o(T,) = 0D, o(T) =D, and T,, — T.

| e

0 U~

Proposition 1.12.2. ¢ is upper semi-continuous.

Proof. Suppose T"™ — T and A € limsup o(T;,). Then there exists A, € limsup o(T5,)
so that A,, — A. Since T),, — Ay, I is singular and T},, — A\, I — T — AI, it follows
that T — AI is singular; therefore A € o(T). O

Theorem 1.12.3. o is continuous on the set of all hyponormal operators.

Proof. Let T,,, T be hyponormal operators such that 7" — T in norm. We want to
prove that
o(T) C liminf o(T},).

Assume A ¢ liminf o(7},). Then there exists a neighborhood N(A) of A such that it
does not intersect infinitely many o (7},). Thus we can choose a subsequence {7}, } of
{T,,} such that for some ¢ > 0,

dist ()\, o(Ty, )) > e.
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Since T, is hyponormal, it follows that

1 1
dist\, 0(T,,)) =  mi _ _
st o(Tn)) = min_ |l max g [T, — N1
n€a((Tny —2) 1)

where the second equality follows from the observation

o(T™h) = {1 = U(T)}

z

because if f(z) = 1 then o(T!) = o(f(T)) = f(o(T)) = {1 : z € o(T)} and the last

equality uses the fact that (7, — AI)~! is normaloid. So [|(T,,, — A)7!|| < 1. We
thus have

1T — A — (T~ AD) Y| = (T, M)l{(Tnk A~ (T, — M)} (T ADY

< (T = AD)THE Ty = Tl (T, = AD T

1
< g”Tnz - Tnk H

Since T, — T, it follows that {(T},, — M)~} converges, to some operator B, say.

Therefore
(T — M\I)B = lim(T},,, — AI) - lim(T},, — )™+

=1im(T},, — MN)(Tp, — AN)™' = 1.
Similarly, B(T'— AI) = 1 and hence A ¢ o(T). O

Lemma 1.12.4. Let A be a commutative Banach algebra. If x € A is not invertible
and ||y — z|| < €, then there exists A such that y — X\ is not invertible and |A| < €.

Proof. Since x is not invertible, it generates an ideal = A. Thus there exists a maximal
ideal M containing . So 2z € M = z is not invertible. Since A/M = F, \-1 € y+M
for some y. Thus y —A-1 € M. Since © € M we have y —xz — A-1 € M, so that
A €o(y—x). Finally, |A| < |y —z| <e. O

Theorem 1.12.5. If in a Banach algebra A, r; — x and x;x = xx; for all i, then
limo(z;) = o(x).

Proof. Let B be the algebra generated by 1, x, and x;. Then (z—u)~! and (x; —pu)~!
are commutative whenever they exist. Let A € o(x), i.e., x — A is not invertible. By

Lemma ICIT24, there exists N such that
1> N = o(xz; — A) N NA(0) # 0.
So 0 € liminfo(x; — A), or A € liminf o(x;), so that

o(z) Climinf o(z;) C limsupo(z;) C o(x).
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Theorem 1.12.6. w is upper semi-continuous.
Proof. We want to prove that
limsupw(T,) Cw(T) T, —T.
Let A ¢ w(T), so T — A is Weyl. Since the set of Weyl operators forms an open set,
I n > 0such that |[T— A -S| <n = S is Weyl.
Let N be such that

(T = AI) = (T,, — AI)|| < g for n > N.

Let V.= B(\;3). Thenfor pe€V, n> N,
(T = M) = (T — p)|| < m,

so that T,, — pl is Weyl, which implies that A ¢ limsup w(7},). O

Theorem 1.12.7. Let T,, —» T. If T,,7 =TT, for all n, then limw(T,) = w(T).

Proof. In view of Theorem T2, it suffices to show that

w(T) C liminf w(7T,) (1.15)
Observe that «(T,,)w(T) = «(T)m(T;,) and hence by Theorem TIZH, limo.(7T,) =
0.(T). Towards (IIHF), suppose A ¢ liminfw(T;,). So there exists a neighborhood
V(z) which does not intersect infinitely many w(T5,). Since o.(T},) C w(T},), V does
not intersect infinitely many o.(T,), i.e., A € limo.(7,) = 0.(T). This shows that
T — A is Fredholm. By the continuity of index, T'— A\l is Weyl, i.e., A ¢ w(T). O
Theorem 1.12.8. If S and T are commuting hyponormal operators then

S, T are Weyl <= ST is Weyl.

Hence if f is analytic in a neighborhood of o(T), then

Proof. See [LeLl2]. O
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1.13 Comments and Problems

Let H be an infinite dimensional separable Hilbert space. An operator T' € B(H)
is called @ Riesz operator if o.(T) = 0. If T € B(H) then the West decomposition
theorem [Wed| says that

T is Riesz <— T = K + @ with compact K and quasinilpotent Q:

this is equivalent to the following: if Qp(m) and Q¢ () denote the sets of quasinilpo-
tents of B(H) and C'(H), respectively, then

7 (Qpm)) = Qom)s (1.16)

where C(H) = B(H)/K(H) is the Calkin algebra and 7 denotes the Calkin homo-
morphism. It remains still open whether the West decomposition theorem survives
in the Banach space setting.

Problem 1.1. Is the equality (IIA) true if H is a Banach space ¢
Suppose A is a Banach algebra with identity 1: we shall write A~! for the invertible
group of A and A;! for the connected components of the identity in A='. Tt was [Har3]

known that
Agt i=Exp(A) = {e“e? .- . k€N, ¢; € A}.

Evidently, Exp (A) is open, relatively closed in A~!, connected and a normal sub-
group. Write
k(A) ;== A~ /Exp (A)

for the abstract index group. The exponential spectrum e(a) of a € A is defined by
ela):={AeC: a—A¢Exp(A)}.

Clearly,
§ O¢(a) C o(a) C €(a).

If A = B(H) then €¢(a) = o(a). We have known that o(ab) \ {0} = o(ba) \ {0}.
However we were not able to answer to the following:

Problem 1.2. If A is a Banach algebra and a,b € A, does it follow that

€(ab) \ {0} = €(ba) \ {0} 7
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Chapter 2

Weyl Theory

2.1 Introduction

In 1909, writing about differential equations, Hermann Weyl noticed something about
the essential spectrum of a self adjoint operator on Hilbert space: when you take it
away from the spectrum, you are left with the isolated eigenvalues of finite multiplicity.
This was soon generalized to normal operators, and then to more and more classes of
operators, bounded and unbounded, on Hilbert and on Banach spaces.

The spectrum o(T') of a bounded linear operator T on a complex Banach space
X is of course the set of those complex numbers for which T — Al does not have an
everywhere defined two-sided inverse: this concept extends at once to the spectrum
o4(a) of a Banach algebra element a € A. Thus the Fredholm essential spectrum
0.(T) is the spectrum of the coset T'+ K (X) of the operator T € B(X) in the Calkin
algebra B(X)/K(X). Equivalently A € C is excluded from the spectrum o(7T) if
and only if operator T — Al is one one and onto, and is excluded from the essential
spectrum o, (7)) if and only if the operator T — AI has finite dimensional null space
and range of finite co dimension.

The Fredholm essential spectrum is contained in the larger Weyl spectrum, which
also includes points A € C for which T'— A is Fredholm but with non zero index: the
two finite dimensions involved are unequal. Equivalently, T'— A\ ¢ B(X)~! + K(X)
cannot be expressed as the sum of an invertible and a compact operator. What is
relevant here is that for self adjoint and more general normal operators the Weyl
and the Fredholm spectra coincide: every normal Fredholm operator has index zero.
Thus while the original Weyl observation of 1909 may have seemed to subtract the
Fredholm essential spectrum from the spectrum, it can equally be interpreted as
subtracting the Weyl essential spectrum. For non normal operators it is this modified
version that seems to be the property that is of interest. For a linear operator on
a Banach space the most obvious points of its spectrum are the eigenvalues mo(T),
collecting A € C for which T'— AT fails to be one-one. As is familiar from matrix
theory, in finite dimensions this is all of the spectrum. In a sense therefore Weyl’s
theorem seems to be suggesting that for nice operators the spectrum splits into a
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finite dimensional component and a component modulo finite dimensions. Weyl’s
theorem asks not just that the spectrum split into Fredholm spectra and eigenvalues:
it wants the spectrum to divide into Weyl spectrum and eigenvalues which are both
topologically isolated in the spectrum, and geometrically of finite multiplicity, with
finite dimensional eigenspaces.
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2.2 Weyl’s Theorem

If T € B(X) write mos(T) for the eigenvalues of finite multiplicity; mo;(T") for the
eigenvalues of infinite multiplicity; N(T') and R(T') for the null space and the range of
T, respectively. If we write iso K = K \ acc K, and 9 K for the topological boundary
of K, and

moo(T) :={A €isoo(T): 0 < dim N(T — AI) < oo} (2.1)

for the isolated eigenvalues of finite multiplicity, and ([Hard))
poo(T) := o(T) \ ov(T) (2.2)

for the Riesz points of o(T), then by the punctured neighborhood theorem, i.e.,

is00(T) \ 0o(T) = is0o(T) \ w(T) = poo(T) C 700 (T). (2.3)

H. Weyl [We] examined the spectra of all compact perturbations T+ K of a single
hermitian operator 7' and discovered that A € o(T + K) for every compact operator
K if and only if X is not an isolated eigenvalue of finite multiplicity in o(7"). Today
this result is known as Weyl’s theorem: that is, we say that Weyl’s theorem holds for
T € B(X) if there is equality

o(T) \ w(T) = 700 (T). (2.4)

In this section we explore the class of operators satisfying Weyl’s theorem.

If T € B(X), write r(T) for the spectral radius of T'. It is familiar that r(T") < [|T/.
An operator T is called normaloid if r(T) = ||T|| and isoloid if isoo(T) C mo(T). If X
is a Hilbert space, an operator T € B(X) is called reduction-isoloid if the restriction
of T to any reducing subspace is isoloid.

Let X be a Hilbert space and suppose that T' € B(X) is reduced by each of its
finite-dimensional eigenspaces. If

N — \/{N(T — M) : X em(T)},

then M reduces T'. Let Ty := T|M and Ty := T|9M*. Then we have ([Be2, Proposition
4.1]) that

(i) Ty is a normal operator with pure point spectrum;
(i) mo(T1) = mos(T);
(111) O'(Tl) = Cl’/To(Tl);
(iv) mo(T2) = mo(T) \ mos (T') = moi(T).
In this case, S.Berberian ([Be?, Definition 5.4]) defined

7(T) := o(T>) Uaccmor(T). (2.5)
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We shall call 7(T') the Berberian spectrum of T'. S. Berberian has also shown that 7(7")
is a nonempty compact subset of o(7"). We can, however, show that Weyl spectra,
Browder spectra, and Berberian spectra all coincide for operators reduced by each of
its finite-dimensional eigenspaces:

Theorem 2.2.1. If X is a Hilbert space and T € B(X) is reduced by each of its
finite-dimensional eigenspaces then

7(T) = w(T) = o3(T). (2.6)

Proof. Let 9 be the closed linear span of the eigenspaces N(T' — AI) (A € mos(T))
and write
Ty :=TM and Ty :=T|M*.

From the preceding arguments it follows that T3 is normal, mo(Th) = mos(T) and
mof(T2) = 0. For (Z8) it will be shown that

w(T) € 7(T) € ou(T) (2.7)

and
op(T) Cw(T). (2.8)

For the first inclusion of (224) suppose A € o(T) \ 7(T"). Then T> — AI is invertible
and A € isomo(T1). Since also mo(Th) = mos(T1), we have that X € moo(7%). But since
Ty is normal, it follows that 77 — Al is Weyl and hence so is T — AI. This proves
the first inclusion. For the second inclusion of (272) suppose A € o(T) \ 0(T"). Thus
T — Al is Browder but not invertible. Observe that the following equality holds with
no other restriction on either R or S:

op(R®S) =0p(R)Uop(S) for each R € B(X;) and S € B(X3). (2.9)

Indeed if A € isoo(R @ S) then A is either an isolated point of the spectra of direct
summands or a resolvent element of direct summands, so that if R — Al and S — Al
are Fredholm then by (E33), ) is either a Riesz point or a resolvent element of direct
summands, which implies that o,(R) U 0p(S) C 0p(R @ S), and the reverse inclusion
is evident. From this we can see that 77 — Al and 175 — Al are both Browder. But
since mos(T2) = @, it follows that 75 — A is one-one and hence invertible. Therefore
X € moo(T1) \ 0(T3), which implies that A ¢ 7(T'). This proves the second inclusion of
(222). For (231) suppose A € o(T) \w(T') and hence T'— AI is Weyl but not invertible.
Observe that if X; is a Hilbert space and if an operator R € B(X;) satisfies the
equality w(R) = g¢(R), then

w(R®S) =w(R)Uw(S) for each Hilbert space X5 and S € B(X3) : (2.10)
this follows from the fact that the index of a direct sum is the sum of the indices
index(R@ S — A @ 1)) =index (R — AI) + index (S — AI)

whenever A ¢ 0.(R® S) = 0.(R) Uo.(S). Since T; is normal, applying the equality
(Em) to Ty in place of R gives that Ty — Al and To — Al are both Weyl. But since
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mof(T2) = 0, we must have that 75 — I is invertible and therefore A € o(T7) \ w(T71).
Thus from Weyl’s theorem for normal operators we can see that A € mo(71) and
hence A € isoo(T1) N p(Tz), which by (23), implies that A ¢ o3,(T"). This proves (E3)
and completes the proof. O

As applications of Theorem P21 we will give several corollaries below.

Corollary 2.2.2. If X is a Hilbert space and T € B(X) is reduced by each of its
finite-dimensional eigenspaces then o(T) \ w(T) C mo(T).

Proof. This follows at once from Theorem 2. O

Weyl’s theorem is not transmitted to dual operators: for example if T : 2 — ¢? is
the unilateral weighted shift defined by

1

T =
€n nt

T En+1 (n>0), (2.11)

then o(T") = w(T) = {0} and mpo(T) = (), and therefore Weyl’s theorem holds for T,
but fails for its adjoint T*. We however have:

Corollary 2.2.3. Let X be a Hilbert space. If T € B(X) is reduced by each of its
finite-dimensional eigenspaces and isoc(T) = 0, then Weyl’s theorem holds for T and
T*. In this case, o(T) = w(T).

Proof. 1f isoo(T) = 0, then it follows from Corollary 222 that o(7T") = w(T), which
says that Weyl’s theorem holds for 7. The assertion that Weyl’s theorem holds for
T* follows from noting that o(T)* = (o(T)) , w(T*) = (w(T)) and mo(T™*) =
(7T00(T))7 = @ D

In Corollary P23, the condition “isoo(T') = (" cannot be replaced by the condi-
tion “mpo(T) = (”: for example consider the operator T' defined by (EI).

Corollary 2.2.4. ([Bell, Theorem]) If X is a Hilbert space andT € B(X) is reduction-
isoloid and is reduced by each of its finite-dimensional eigenspaces then Weyl’s theorem
holds for T.

Proof. In view of Corollary B2, it suffices to show that moo(T) C o(T) \ w(T).
Suppose A € moo(T'). Then with the preceding notations, A € moo(71) N [iso o(Tz) U
p(Tg)] . If A € isoo(T%), then since by assumption T3 is isoloid we have that A € mo(T%)
and hence A € mor(T2). But since mor(T2) = 0, we should have that A ¢ isoo(T%).
Thus A € moo(T1) N p(T2). Since Ty is normal it follows that 77 — AT is Weyl and so
is T'— AI; therefore A € o(T') \ w(T). O

Since hyponormal operators are isoloid and are reduced by each of its eigenspaces,
it follows from Corollary EZZ4 that Weyl’s theorem holds for hyponormal operators.
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If the condition “reduction-isoloid” is replaced by “isoloid” then Corollary 2224
may fail: for example, consider the operator T' = T; & 15, where T} is the one-
dimensional zero operator and T, is an injective quasinilpotent compact operator.

If X is a Hilbert space, an operator T' € B(X) is said to be p-hyponormal if
(T*T)P — (TT*)P > 0 (cf. [A1],[Ch3]). If p =1, T is hyponormal and if p = §, T is

semi-hyponormal.
Corollary 2.2.5. [CIO] Weyl’s theorem holds for every p-hyponormal operator.

Proof. This follows from the fact that every p-hyponormal operator is isoloid and is
reduced by each of its eigenspaces ([Ch3]). O

L. Coburn [Cd, Corollary 3.2] has shown that if T € B(X) is hyponormal and
mo0(T) = 0, then T is extremally noncompact, in the sense that

T = [l=(T)I,

where 7 is the canonical map of B(X) onto the Calkin algebra B(X)/K(X). His
proof relies upon the fact that Weyl’s theorem holds for hyponormal operators, and
hence o(T) = w(T) since moo(T') = . Now we can strengthen the Coburn’s argument
slightly:

Corollary 2.2.6. If T € B(X) is normaloid and moo(T) = 0, then T is extremally
noncompact.

Proof. Since o(T') C nw(T)Upgo(T) for any T € B(X), we have that no(T)\nw(T) C
mo0(T). Thus by our assumption, o (T) = nw(T). Therefore we can argue that for
each compact operator K € B(X),

IT|[ = 7(T) = ro(T) = ro(T+ K) < (T + K) < ||T + K],
where 7, (T") denotes the “Weyl spectral radius”. This completes the proof. O
Note that if T € B(X) is normaloid and mpo(7") = 0§, then Weyl’s theorem may

fail for T'; for example take X = {5 & ¥ly and T = U & U*, where U is the unilateral
shift.

We next consider Weyl’s theorem for Toeplitz operators.

The Hilbert space L?(T) has a canonical orthonormal basis given by the trigono-
metric functions e, (z) = 27, for all n € Z, and the Hardy space H?(T) is the closed
linear span of {e, : n = 0,1,...}. An element f € L? is referred to as analytic if
f € H? and coanalytic if f € L2c H?. If P denotes the projection operator L? — H?,
then for every ¢ € L*°(T), the operator T,, on H? defined by

T,g = P(pg) forall g € H? 2.12
%]

is called the Toeplitz operator with symbol .
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Theorem 2.2.7. [Cd] Weyl’s theorem holds for every Toeplitz operator T,.

Proof. It was known [WiZ| that o(T,) is always connected. Since there are no
quasinilpotent Toeplitz operators except 0, o(T,,) can have no isolated eigenvalues
of finite multiplicity. Thus Weyl’s theorem is equivalent to the fact that

o(T,) = w(T,). (2.13)

Since T, — M = T,_», it suffices to show that if T, is Weyl then T, is invertible.
If T, is not invertible, but is Weyl then it is easy to see that both T, and T3 = T
must have nontrivial kernels. Thus we want to show that this can not happen, unless
¢ = 0 and hence T, is the non-Weyl operator.

Suppose that there exist nonzero functions ¢, f, and g (¢ € L and f,g € H?)
such that T, f = 0 and T5g = 0. Then P(¢f) = 0 and P(@g) = 0, so that there exist
functions h, k € H? such that

/hd@z/dezO and ¢f =h, pg=Fk.

Thus by the F. and M. Riesz’s theorem, ¢, f, g, h, k are all nonzero except on a set
of measure zero. We thus have that f/g = h/k pointwise a.e., so that fk = gh a.e.,
which implies gh = 0 a.e. Again by the F. and M. Riesz’s theorem, we can conclude
that either g = 0 a.e. or h = 0 a.e. This contradiction completes the proof. O

We review here a few essential facts concerning Toeplitz operators with continuous
symbols, using [DoT] as a general reference. The sets C(T) of all continuous complex-
valued functions on the unit circle T and H*°(T) = LN H? are Banach algebras, and
it is well-known that every Toeplitz operator with symbol ¢ € H* is subnormal. The
C*-algebra 2 generated by all Toeplitz operators T, with ¢ € C(T) has an important
property which is very useful for spectral theory: the commutator ideal of 2 is the
ideal K(H?) of compact operators on H2. As C(T) and /K (H?) are *-isomorphic
C*-algebras, then for every ¢ € C(T),

T, is a Fredholm operator if and only if ¢ is invertible (2.14)
indexT, = —wn(yp) , (2.15)
0e(Tp) = o(T) | (2.16)

where wn(y) denotes the winding number of ¢ with respect to the origin. Finally,
we make note that if ¢ € C(T) and if f is an analytic function defined on an open
set containing o(T,,), then f oy € C(T) and f(T,) is well-defined by the analytic
functional calculus.

We require the use of certain closed subspaces and subalgebras of L°°(T), which
are described in further detail in [Do2] and Appendix 4 of [Ni]. Recall that the
subspace H*(T) + C(T) is a closed subalgebra of L>°. The elements of the closed
selfadjoint subalgebra QC', which is defined to be

QC = (H>™(T) + C(T)) N (H>=(T) + C(T)) ,
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are called quasicontinuous functions. The subspace PC' is the closure in L>°(T) of
the set of all piecewise continuous functions on T. Thus ¢ € PC if and only if it is
right continuous and has both a left- and right-hand limit at every point. There are
certain algebraic relations among Toeplitz operators whose symbols come from these
classes, including

TyT, — Ty, € K(H?) for every ¢ € H*(T) + C(T) and ¢ € L=(T),  (2.17)
and
the commutator [Ty, Ty] is compact for every ¢,v € PC'. (2.18)

We add to these relations the following one.

Lemma 2.2.8. If T, is a Toeplitz operator with quasicontinuous symbol ¢, and if
feH(o(T,)), then Ttop — f(Ty) is a compact operator.

Proof. Assume that ¢ € QC. Recall from [Dol, p.188] that if v € H>* + C(T),
then Ty, is Fredholm if and only if 4 is invertible in H> 4 C(T). Therefore for every
A & a(T,), both o— X and ¢ — X are invertible in H> +C(T); hence, (¢ —\)~! € QC.
Using this fact together with (E20) we have that, for v € L> and A\, u € C,

TLP_NT/(/)T(wf)\)fl — T(gp,u)w(@,)\)fl S K(HQ) whenever A é U(Ttp) .

The arguments above extend to rational functions to yield: if r is any rational function
with all of its poles outside of o(T,,), then r(T,) — To, € K(H?). Suppose that f
is an analytic function on an open set containing o(7,,). By Runge’s theorem there
exists a sequence of rational functions r,, such that the poles of each r,, lie outside of
o(T,) and r,, = f uniformly on o(T,). Thus r,(T,) — f(T;,) in the norm-topology of
L(H?). Furthermore, because 7, 0 ¢ — f o uniformly, we have T}, o, — Tfo, in the
norm-topology. Hence, Tto, — f(T,) = lim (Trnow — rn(Tw)), which is compact. O

Lemma 228 does not extend to piecewise continuous symbols ¢ € PC, as we
cannot guarantee that T} — T,,» € K(H?) for each n € Z*. For example, if o(e?) =
XT, — XT_, Where xt, and x_ are characteristic functions of, respectively, the upper
semicircle and the lower semicircle, then T£ — I is not compact.

Corollary 2.2.9. If T, is a Toeplitz operator with quasicontinuous symbol ¢, then
for every f € H(o(Ty,)),

1. w(f(Ty)) = 0(Tfop), and

2. f(T,) is essentially normal and is unitarily equivalent to a compact perturbation
of f(T,)® Moy, where Myo, is the operator of multiplication by foy on L*(T).

Proof. Because the Weyl spectrum is stable under the compact perturbations, it fol-
lows from Lemma 2228 that w(f(T,)) = w(Ttop) = 0(Tfo,), which proves statement
(1). To prove (2), observe that because QC is a closed algebra, the composition of the
analytic function f with ¢ € QC produces a quasicontinuous function f o ¢ € QC.
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Moreover, by (212), every Toeplitz operator with quasicontinuous symbol is essen-
tially normal. The (normal) Laurent operator My., on L*(T) has its spectrum con-
tained within the spectrum of the (essentially normal) Toeplitz operator T,,. Thus
there is the following relationship involving the essentially normal operators f(T,)
and Mo, ® f(T,):

oe(f(T,) ® Myoy) = 0e(f(T,)) and SP(f(T,)) = SP(f(T,) @ Myoy),

where SP(T') denotes the spectral picture of an operator T. (The spectral picture
SP(T) is the structure consisting of the set o.(T'), the collection of holes and pseudo-
holes in 0. (7T'), and the Fredholm indices associated with these holes and pseudoholes.)
Thus it follows from the Brown-Douglas-Fillmore theorem [P€] that f(T,) is compa-
lent to f(T,) @ Myo,, in the sense that there exists a unitary operator W and a
compact operator K such that W (f(T,) & Mo, )W* + K = f(T,). O

Corollary 29 (1) can be viewed as saying that o(f(T,)) \ 0(Tfo,) consists of
holes with winding number zero.
We consider the following question ([Oh2]):

if T, is a Toeplitz operator, then does Weyl’s theorem hold for ng ? (2.19)

To answer the above question, we need a spectral property of Toeplitz operators with
continuous symbols.

Lemma 2.2.10. Suppose that ¢ is continuous and that f € H(o(T,)). Then

o(Trop) € f(0(Ty)) (2.20)
and equality occurs if and only if Weyl’s theorem holds for f(T).

Proof. By Corollary 2229, 0(Tfo,) = w(f(T,)) € o(f(Ty)) = f(o(T,)). Because
o(T,) is connected, so is f(o(T,)) = o(f(T,)); therefore the set moo(f(Ty)) is
empty. Again by Corollary 229, w(f(Ty)) = 0(Tfo,) and so w(f(T,)) = o(f(T,)) \
moo(f(T,)) if and only if 0(Ttep) = f(o(Ty))- O

If  is not continuous, it is possible for Weyl’s theorem to hold for some f(T,)
without o(Tfo,) being equal to f(o(T,)). One example is as follows. Let p(e??) =

e's (0 <6 < 2m), a piecewise continuous function. The operator T, is invertible but
T,> is not; hence 0 € o(Ty2) \ {o(T},)}*. However w(T2) = o(T7), and moo(T7) is
empty (see Figure 2); therefore Weyl’s theorem holds for T, z.

We can now answer the question (ZI9): the answer is no.

Example 2.2.11. There exists a continuous function ¢ € C(T) such that o(T,2) #

{o(T)}?.
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Proof. Let ¢ be defined by

, —e210 1 1 <6<
o) =4 G, T 0=
e~ -1 (w<0<2m).

The orientation of the graph of ¢ is shown in Figure 3. Evidently, ¢ is continuous and,
in Figure 3, ¢ has winding number +1 with respect to the hole of C; the hole of Cs
has winding number —1. Thus we have 0.(T,,) = ¢(T) and o(T,,) = conv ¢(T). On the
other hand, a straightforward calculation shows that »?(T) is the Cardioid r = 2(1 +
cos ). In particular, ¢*(T) traverses the Cardioid once in a counterclockwise direction
and then traverses the Cardioid once in a clockwise direction. Thus wn(¢? — ) =0
for each A in the hole of ©?(T). Hence T2y is a Weyl operator and is, therefore,
invertible for each X in the hole of »*(T). This implies that o(T}z2) is the Cardioid
r =2(1+ cos 6). But because {o(T,)}? = {conv(T)}? = {(r,0) : r < 2(1 + cos 0)},
it follows that o(T,2) # {o(T})}>. O

We next consider Weyl’s theorem through the local spectral theory. Local spectral
theory is based on the existence of analytic solutions f : U — X to the equation
(T'— M) f(A) = z on an open subset U C C, for a given operator ' € B(X) and a
given element € X. We define the spectral subspace as follows: for a closed set
F cCC,let

Xr(F):={zx e X : (T — A)f(\) =z has an analytic solution f: C\ F — X}.

We say that T € B(X) has the single valued extension property (SVEP) at A\g € C
if for every neighborhood U of Ao, f = 0 is the only analytic solution f : U — X
satisfying (T'— AI) f(A) = 0. We also say that T has the SVEP if T has this property
at every A € C. The local spectrum of T" at x is defined by

or(x) = (C\U{(T—)\I)f()\) = z has an analytic solution f : U — X on the open subset U C (C}.

If T has the SVEP then Xp(F) ={z € X : op(x) C F}.

The following lemma gives a connection of the SVEP with a finite ascent property.

Lemma 2.2.12. [Em] If T € B(X) is semi-Fredholm then

T has the SVEP at 0 <= T has a finite ascent at 0.

The finite dimensionality of Xr({\}) is necessary ad sufficient for ' — AI to be
Fredholm whenever A is an isolated point of the spectrum.

Lemma 2.2.13. [Af] Let T € B(X). If A € isoo(T) then

A o.(T) < Xr({\}) is finite dimensional.

48



CHAPTER 2. WEYL THEORY

Theorem 2.2.14. If T € B(X) has the SVEP then the following are equivalent:
(a) Weyl’s theorem holds for T;
(b) R(T — M) is closed for every A € moo(T);
(¢) Xr({\}) is finite dimensional for every A € moo(T).

Proof. (a) = (b): Evident.

(b) = (a): I X € o(T) \ w(T') then by Lemma E2T2, T'— AI has a finite ascent.
Thus T — Al is Browder and hence A € mpo(7T). Conversely, if A € mpo(T) then by
assumption 7' — AI is Browder, so A € o(T) \ w(T).

(b) & (c¢): Immediate from Lemma P2T3. O

An operator T € B(X) is called reguloid if each isolated point of spectrum is a
regular point, in the sense that there is a generalized inverse:

A €iso o(T) = T — A = (T — AI)Sx(T — M) with S, € B(X).

It was known [Hard] that if T" is reguloid then R(T'— ) is closed for each A € iso o(T').
Also an operator T € B(X) is said to satisfy the growth condition (Gy), if for all
AeC\o(T)

(T — A1) 7Y |dist (X, o(T)) < 1.

Lemma 2.2.15. If T € B(X) then
(G1) = reguloid = isoloid. (2.21)

Proof. Recall ([Hard, Theorem 7.3.4]) that if T'— AI has a generalized inverse and
it A\ € 0o(T) is in the boundary of the spectrum then 7' — Al has an invertible
generalized inverse. If therefore T is reguloid and A\ € isoo(T") then T'— AI has an
invertible generalized inverse, and hence ([Har4, (3.8.6.1)])

N(T — ) = X/R(T — \I).

Thus if N(T'— M) = {0} then T'— AI is invertible, a contradiction. Therefore A is
an eigenvalue of T', which proves the second implication of (22211). Towards the first
implication we may write T in place of T'— AI and hence assume A\ = 0: then using
the spectral projection at 0 € C we can represent T as a 2 X 2 operator matrix:

[T 0
[0 1)

where o(Tp) = {0} and o(T1) = o(T) \ {0}. Now we can borrow an argument of J.
Stampfli ([Stal, Theorem C]): take 0 < e < 1dist(0, (7)) \ {0}) and argue

1
Ty = 2T — zI)"dz,

27 |z|=e

using the growth condition (G1) to see that

1 _ 11
1Toll < 5 [ BT =) o] < 5 -ectme =, (2:22)
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which tends to 0 with e. It follows that T, = 0 and hence that

0 O . |00
T = [0 Tl] =TST with S = [0 Tl_l}

has a generalized inverse. O

Corollary 2.2.16. If T € B(X) is requloid and has the SVEP then Weyl’s theorem
holds for T.

Proof. Immediate from Theorem PZ°2XT4. O

Lemma 2.2.17. Let T € B(X). If for any A € C, Xp({\}) is closed then T has the
SVEP.

Proof. This follows from [Ai, Theorem 2.31] together with the fact that

Xr({A}) = {z € X : lim [|(T —AD)"z w =0}
O
Corollary 2.2.18. If T € B(X) satisfies
Xr({\}) = N(T — XI) for every A € C, (2.23)

then T has the SVEP and both T and T are requloid. Thus in particular if T satisfies
(223) then Weyl’s theorem holds for T.

Proof. If T satisfies the condition (2223) then by Lemma 72T, T has the SVEP. The
second assertion follows from [AJ, Theorem 3.96]. The last assertion follows at once
from Corollary 2Z27T8. O

An operator T' € B(X) is said to be paranormal if
||[Tz||* < ||T?%z||||z|| for every z € X.

It was well known that if T € B(X) is paranormal then the following hold:

(a) T is normaloid;

(b) T has finite ascent;

(c) if  and y are nonzero eigenvectors corresponding to, respectively, distinct
nonzero eigenvalues of T, then ||z|| < ||z + y|| ([ChR), Theorem 2,6])
In particular, p-hyponormal operators are paranormal (cf. [FT1Y]). An operator T €
B(X) is said to be totally paranormal if T — M is paranormal for every A € C.
Evidently, every hyponormal operator is totally paranormal. On the other hand,
every totally paranormal operator satisfies (2223): indeed, for every 2 € X and X € C,

||(T—)\I)"a:|\% > |[(T — Az|| for every n € N.
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So if z € Xp({A\}) then ||(T' — AI)"z||= — 0 as n — oo, so that & € N(T — \),
which gives Xr({A\}) € N(T — AI). The reverse inclusion is true for every operator.
Therefore by Corollary 22718 we can conclude that Weyl’s theorem holds for totally
paranormal operators. We can prove more:

Theorem 2.2.19. Weyl’s theorem holds for paranormal operators on a separable
Banach space.

Proof. Tt was known [ChR] that paranormal operators on a separable Banach space
have the SVEP. So in view of Theorem PZZZTI4 it suffices to show that R(T — AI)
is closed for each A\ € mo(T"). Suppose A € mpo(T). Using the spectral projection
P =& [ (A = T)"'dX, where B is an open disk of center A which contains no
other points of o(T"), we can represent T as the direct sum

T =T &Ts, whereo(Ty)={\} and o(T) =a(T) \ {\}.

If A = 0 then T} is a quasinilpotent paranormal operator, so that 73 = 0. If A £ 0
write Ty = %Tl. Then T4 is paranormal and o(T4) = {1}. Since T4 is invertible we
have that T4 and T are paranormal, and hence normaloid. So ||Ta|| = ||T;'|| = 1
and hence

|zl| = [|T5 Tazl|| < ||Tazl| < [l

which implies that T4 and T' 21 are isometries. Also since T4 — 1 is a quasinilpotent
operator it follows that T4 = I, and hence T; = AI. Thus we have that T — \[ =
0@ (T5 — AI) has closed range. This completes the proof. O

Does Wey!’s theorem hold for paranormal operators on an arbitrary Banach space?
Paranormal operators on an arbitrary Banach space may not have the SVEP. So the
proof of Theorem EZZT9 does not work for arbitrary Banach spaces. In spite of it
Weyl’s theorem holds for paranormal operators on an arbitrary Banach space. To see
this recall the reduced minimum modulus of T is defined by

[|T]|

¥(T) := inf dist (z, N(T) (x ¢ N(T)).

It was known [Gd] that y(7T") > 0 if and only if T has closed range.

Theorem 2.2.20. Weyl’s theorem holds for paranormal operators on a Banach space.

Proof. The proof of Theorem 2219 shows that with no restriction on X, mpo(T") C
o(T) \ w(T) for every paranormal operator ' € B(X). Thus we must show that
o(T)\ w(T) Cisoo(T). Suppose A € o(T) \ w(T). If A =0 then T is Weyl and has
finite ascent. Thus T is Browder, and hence 0 € isoo(T). If A # 0 and A ¢ isoo(T)
then we can find a sequence {\,} of nonzero eigenvalues such that A, — A. By the
property (c) above Theorem 2219,

dist (az)\n, N(T — )\I)) >1 for each unit vector x, € N(T — A\, I).

51



CHAPTER 2. WEYL THEORY

We thus have

(T =ADzal|  _ [An = Al
dist (zy,, N(T — X)) dist(zy,, N(T — X))

— 0,

which shows that v(T'— AI) = 0 and hence T'— AI does not have closed range, a
contradiction. Therefore A € isoo(T"). This completes the proof. O

52



CHAPTER 2. WEYL THEORY

2.3 Spectral Mapping Theorem for the Weyl spec-
trum

Let & denote the set, equipped with the Hausdorff metric, of all compact subsets
of C. If  is a unital Banach algebra then the spectrum can be viewed as a func-
tion o : A — &, mapping each T € 2 to its spectrum o (7). It is well-known that
the function o is upper semicontinuous, i.e., if T;, — T then limsupo(T,,) C o(T)
and that in noncommutative algebras, o does have points of discontinuity. The work
of J. Newburgh [N€] contains the fundamental results on spectral continuity in gen-
eral Banach algebras. J. Conway and B. Morrel [CoM)| have undertaken a detailed
study of spectral continuity in the case where the Banach algebra is the C*-algebra
of all operators acting on a complex separable Hilbert space. Of interest is the iden-
tification of points of spectral continuity, and of classes € of operators for which o
becomes continuous when restricted to €. In [BGY], the continuity of the spectrum
was considered when restricted to certain subsets of the entire manifold of Toeplitz
operators. The set of normal operators is perhaps the most immediate in the latter
direction: o is continuous on the set of normal operators. As noted in Solution 104 of
[Ha3], Newburgh’s argument uses the fact that the inverses of normal resolvents are
normaloid. This argument can be easily extended to the set of hyponormal operators
because the inverses of hyponormal resolvents are also hyponormal and hence nor-
maloid. Although p-hyponormal operators are normaloid, it was shown [HwL1] that
o is continuous on the set of all p-hyponormal operators.

We now examine the continuity of the Weyl spectrum in pace of the spectrum.
In general the Weyl spectrum is not continuous: indeed, it was in [BGS] that the
spectrum is discontinuous on the entire manifold of Toeplitz operators. Since the
spectra and the Weyl spectra coincide for Toeplitz operators, it follows at once that
the weyl spectrum is discontinuous.

However the Weyl spectrum is upper semicontinuous.
Lemma 2.3.1. The map T — w(T) is upper semicontinuous.

Proof. Let A € w(T). Since the set of Weyl operators forms an open set, there exists
d > 0 such that if S € B(X) and ||[T — Al — S|| < 6 then S is Weyl. So there exists
an integer N such that || — Al — (T, — M)|| < § for n > N. Let V be an open
(6/2)-neighborhhod of A\. We have, for y € V and n > N,

1T = A = (T, — pI)|| <,

so that T,, — ul is Weyl. This shows that A ¢ limsupw(7,). Thus limsupw(7},,) C
w(T). O

Lemma 2.3.2. [N€, Theorem 4] If {T},},, is a sequence of operators converging to an
operator T and such that [T,,,T)] is compact for each n, then limo.(T,) = 0.(T).
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Proof. Newburgh’s theorem is stated as follows: if in a Banach algebra A, {a;}; is a
sequence of elements commuting with ¢ € A and such that a; — a, then lim o(a;) =
o(a). If m denotes the canonical homomorphism of B(X) onto the Calkin algebra
B(X)/K(X), then the assumptions give that «(T},,) — #(T) and [r(T,),n(T)] = 0
for each n. Hence, lim o(n(T},)) = o(7(T)); that is, limo.(T},) = o(T). O

Theorem 2.3.3. Suppose that T, T, € B(X), forn € Z*, are such that T,, converges
toT. If [T,,,T] € K(X) for each n, then

lim w(f(Ty)) = w(f(T)) for every f € H(a(T)). (2.24)

Remark. Because T,, — T, by the upper-semicontinuity of the spectrum, there is
a positive integer N such that o(T;,) C V whenever n > N. Thus, in the left-hand
side of (2Z24) it is to be understood that n > N.

Proof. If T,, and T' commute modulo the compact operators then, whenever 7), * and
T~ exist, T,,, T, T, * and T~ all commute modulo the compact operators. Therefore
r(T,) and r(T) also commute modulo K (X) whenever r is a rational function with no
poles in ¢(T) and n is sufficiently large. Using Runge’s theorem we can approximate
f on compact subsets of V by rational functions r who poles lie off of V. So there
exists a sequence of rational functions r; whose poles lie outside of V and r; — f
uniformly on compact subsets of V. If n > N, then by the functional calculus,

f(Tn).f(T) - f(T)f(Tn) = h?l (Ti(Tn)ri(T) - Ti(T)ri(Tn»v

which is compact for each n. Furthermore,

1/(To) — F(D)]| = ||—/f T, — (A= T)Y) dA|

21

- ﬂ“ ) max | fN)] - max [[(A =T) ™ = (A=T) 7],

where I' is the boundary of V' and #(I") denotes the arc length of I'. The right-
hand side of the above inequality converges to 0, and so f(T3,) — f(T'). By Lemma
223, lim o.(f(T,,)) = oe(f(T)). The arguments used by J.B. Conway and B.B.
Morrel in Proposition 3.11 of [CoM|] can now be used here to obtain the conclusion

lim w(f (1)) = w(f(T))- H
In general there is only inclusion for the Weyl spectrum:
Theorem 2.3.4. If T € B(X) then
w(p(T)) Cp(w(T)) for every polynomial p.

Proof. We can suppose p is nonconstant. Suppose A ¢ pw(T). Writing p(u) — A =
a(p — pa)(p — p2) - -+ (b — pin), we have

P(T) = AL = (T = 1)+ (T = ). (2.25)

For each i, p(u;) = A & pw(T), so that u; ¢ w(T), i.e., T — p;I is weyl. Tt thus follows
from (E223) that p(T") — AI is Weyl since the product of Weyl operators is Weyl. [
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In general the spectral mapping theorem is liable to fail for the Weyl spectrum:

Example 2.3.5. Let T = U @ (U* + 2I), where U is the unilateral shift on {3, and
let p(A) :== A(A = 2). Then 0 € p(w(T)) but 0 ¢ w(p(T)).

Proof. Observe p(T) = T(T —2I) = [U @ (U* + 2I)][(U — 2I) ® U*]. Since U is
Fredholm of index —1, and since U* + 2 and U — 21 are invertible it follows that T’
and T — 21 are Fredholm of indices —1 and +1, respectively. Therefore p(T') is Weyl,
so that 0 ¢ w(p(T')), while 0 = p(0) € p(w(T)). O

Lemma 2.3.6. If T € B(X) is isoloid then for every polynomial p,

p(a(T) \ moo(T)) = o(p(T)) \ oo (p(T))-

Proof. We first claim that with no restriction on T,

a(p(T)) \ moo (p(T')) C p(o(T') \ w00 (T))- (2.26)

Let A € o(p(T)) \ moo(p(T)) = p(a(T)) \ moo(p(T")). There are two cases to consider.

Case 1. X\ ¢ isop(o(T)). In this case, there exists a sequence () in p(a(T")) such
that A\, — A. So there exists a sequence () in o(T") such that p(pn) = A — A
This implies that (u,) contains a convergent subsequence and we may assume that
lim p, = po. Thus A = lim p(p,) = p(po). Since pg € o(T) \ moo(T'), it follows that
A € p(a(T) \ moo(T)).

Case 2. X € isop(o(T)). In this case either A is not an eigenvalue of p(T') or it
is an eigenvalue of infinite multiplicity. Let p(T) — Al = ao(T — paI) -+ (T — pn1).
If X\ is not an eigenvalue of p(T") then none of pi,--- , u, can be an eigenvalue of T
and at least one of yy,--- , py is in o(T). Therefore A € p(o(T') \ moo(T)). If X is an
eigenvalue of p(T') of infinite multiplicity then at least one of u1,--- , un, say p1, is
an eigenvalue of T' of infinite multiplicity. Then pq € o(T) \ moo(T) and p(p1) = A,
so that A € p(o(T) \ moo(T")). This proves (E228). For the reverse inclusion of (E228),
we assume A € p(o(T) \ moo(T)). Since p(o(T)) = o(p(T)), we have A € o(p(T)). If
possible let A € moo(p(T)). So A € isoo(p(T)). Let

p(T) = M = ao(T — L) (T — pnl). (2.27)

The equality (22Z1) shows that if any of pq,---,p, is in o(T) then it must be an
isolated point of o(T) and hence an eigenvalue since T is isoloid. Since A is an
eigenvalue of finite multiplicity, any such g must be an eigenvalue of finite multiplicity
and hence belongs to mpo(7"). This contradicts the fact that A € p(o(T) \ mo0(T)).
Therefore A\ ¢ mpo(T") and

p(a(T) \ moo(T)) € o(p(T)) \ moo(p(T))-
O
Theorem 2.3.7. If T € B(X) is isoloid and Weyl’s theorem holds for T then for
every polynomial p, Weyl’s theorem holds for p(T) if and only if p(w(T')) = w(p(T)).
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Proof. By Lemma P38, p(a(T) \ moo(T)) = o(p(T)) \ moo(p(T)). If Weyl’s theorem
holds for T then w(T) = o(T) \ moo(T"), so that

p(w(T)) = p(a(T) \ moo(T')) = o (p(T)) \ w0 (p(T))-

The result follows at once from this relationship. O

Example 2.3.8. Theorem EZ374 may fail if 7" is not isoloid. To see this define 77 and
Ty on £2? by
T]_(.’IJ]_,.’I)Q, o ) = (1‘1,0,332/2,.'113/2, o )

and
To(z1,22,---) = (0,21/2,29/3,3/4,- - ).

Let T:=Ty® (Ta —I) on X = (> ® (. Then
o(T)={1}U{z: 2| <1/2} U{-1}, meo(T) = {1},

and
W(T) = {=:|2] < 1/2} U {1},

which shows that Weyl’s theorem holds for T'. Let p(t) = t2. Then

o(p(T)) ={z:|2[ < 1/4F U {1}, moo(p(T)) = {1}
and
w(p(T)) ={z:[z] < 1/4} U{1}.

Thus 1 € p(a(T) \ mo(T)), but 1 ¢ o (p(T)) \ moo(p(T))- Also w(p(T)) = p(w(T)) but
Weyl’s theorem does not hold for p(T").

Theorem 2.3.9. If p(w(T)) = w(p(T)) for every polynomial p, then f(w(T)) =
w(f(T)) for every f € H(o(T)).

Proof. Let (p,(T)) be a sequence of polynomials converging uniformly in a neighbor-
hood of o(T') to f(t) so that p,(T") — f(T). Since f(T) commutes with each p,(T),
it follows from Theorem =33 that

w(f(T)) = limw(pn(T)) = limpn (w(T)) = f(w(T)).

[

Theorem 2.3.10. If T € B(X) then the following are equivalent:
index(T — M) index(T — uI) > 0 for each pair A, p € C\ o.(T); (2.28)
F(@(T)) = w(f(T)) for every | € H(o(T). (2.20)
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Proof. The spectral mapping theorem for the Weyl spectrum may be rewritten as
implication, for arbitrary n € N and A € C™,

(T = MI)(T —=XI)--- (T — A\ I) Weyl = T — \;I Weyl for each j =1,2,--- ,n.
(2.30)
Now if index(T' — zI) > 0 on C\ 0.(T) then we have

> index(T— A1) = index [ [(T—A;1) = 0 = index(T = X\;1) =0 (j = 1,2, ,n),

j=1 j=1
and similarly if index (T' — 2I) < 0 off 0. (T"). If conversely there exist A, p for which
index(T'— AI) = —m < 0 < k = index(T — ul) (2.31)

then
(T — AND*(T — pl)™ (2.32)

is a Weyl operator whose factors are not Weyl. This together with Theorem P34
proves the equivalence of the conditions (E28) and (2229). O

Corollary 2.3.11. If X is a Hilbert space and T € B(X) is hyponormal then

fw(T)) =w(f(T)) for every f € H(a(T)). (2.33)
Proof. Immediate from Theorem 2=3T0 together with the fact that if 7" is hyponormal
then index (T'— AI) < 0 for every A € C\ o.(T). O

Corollary 2.3.12. Let T € B(X). If

(i) Weyl’s theorem holds for T;

(ii) T is isoloid;

(iii) T satisfies the spectral mapping theorem for the Weyl spectrum,
then Weyl’s theorem holds for f(T) for every f € H(o(T)).

Proof. A slight modification of the proof of Lemma PZ38 shows that if 7" is isoloid
then

F(o(T)\ m0o(T)) = a(f(T)) \ moo(f(T)) for every f € H(o(T)).
It thus follows from Theorem 7R and Corollary P23 11 that

a(f(1)) \ moo(f(T)) = f(o(T) \ moo(T)) = f(w(T)) = w(f(T)),
which implies that Weyl’s theorem holds for f(T'). O

Corollary 2.3.13. IfT € B(X) has the SVEP then

w(f(T)) = f(w(T)) for every f € H(o(T)).
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Proof. f A ¢ 0.(T) then by Lemma 22T, T — A has a finite ascent. Since if
S € B(X) is Fredholm of finite ascent then index (S) < 0: indeed, either if S has
finite descent then S is Browder and hence index (S) = 0, or if S does not have finite
descent then

nindex (S) = dim N(S™) — dim R(S™)* — —oco as n — oo,

which implies that index (S) < 0. Thus we have that index (T — AI) < 0. Thus T
satisfies the condition (E=28), which gives the result. O

Theorem 2.3.14. If T € B(X) satisfies
Xr({\}) = N(T — XI) for every A € C,
then Weyl’s theorem holds for f(T) for every f € H(o(T)).

Proof. By Corollary ZZT8, Weyl’s theorem holds for 7', T is isoloid, and 7" has the
SVEP. In particular by Corollary EZ3T3, T satisfies the spectral mapping theorem for
the Weyl spectrum. Thus the result follows from Corollary 22312, O
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2.4 Perturbation Theorems

In this section we consider how Weyl’s theorem survives under “small” perturbations.
Weyl’s theorem is transmitted from 7' € B(X) to T'— K for commuting nilpotents
K € B(X) To see this we need:

Lemma 2.4.1. If T € B(X) and if N is a quasinilpotent operator commuting with
T then w(T + N) = w(T).

Proof. It suffices to show that if 0 ¢ w(7T') then 0 ¢ w(T' + N). Let 0 ¢ w(T) so that
0 ¢ o(n(T)). For all A € C we have o(m(T+AN)) = o(n(T)). Thus 0 ¢ o(7(T+AN))
for all A € C, which implies T'+ AN is a Fredholm operator forall A € C. But since
T is Weyl, it follows that T + N is also Weyl, that is, 0 ¢ w(T + N). O

Theorem 2.4.2. Let T € B(X) and let N be a nilpotent operator commauting with
T. If Weyl’s theorem holds for T then it holds for T + N.

Proof. We first claim that
7o (T' + N) = moo(T). (2.34)

Let 0 € mpo(T') so that ker (T') is finite dimensional. Let (T4 N)x = 0 for some z # 0.
Then Tz = —Nx. Since T commutes with N it follows that

Ty =(—1)"N™z for every m € N. (2.35)

Let n be the nilpotency of N, i.e., n be the smallest positive integer such that N™ = 0.
Then by (2238) we have that for some r with 1 <r <n, 7"z = 0 and then 7" 'z €
N(T). Thus N(T + N) C N(T"1). Therefore N(T + N) is finite dimensional. Also
if for some x (# 0) Tz = 0 then (T + N)"z = 0, and hence 0 is an eigenvalue of
T + N. Again since o(T + N) = o(T) it follows that 0 € mge(T' + N). By symmetry
0 € moo(T + N) implies 0 € mo(T), which proves (E23). Thus we have

w(T+ N)=w(T) (by Lemma 22T)
=0(T) \ mo(T) (since Weyl’s theorem holds for T')
= U(T+N)\7T00<T+N),
which shows that Weyl’s theorem holds for 7'+ N. O

Theorem 2272 however does not extend to quasinilpotents: let
Q : (l’l,l'g,xg, te ) = (%1'2, %xl’n %xlla o ) on 52

and set on 2 @ (2,

S ) 220
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Evidently K is quasinilpotent commutes with 7: but Weyl’s Theorem holds for T
because

o(T) = w(T) = {0,1} and mo(T) = 0, (2.37)
while Weyl’s Theorem does not hold for 7'+ K because

o(T+ K)=w(T + K)={0,1} and moo(T + K) = {0}. (2.38)

But if K is an injective quasinilpotent operator commuting with 7" then Weyl’s
theorem is transmitted from 7" to T + K.

Theorem 2.4.3. If Weyl’s theorem holds for T € B(X) then Weyl’s theorem holds
for T+ K if K € B(X) is an injective quasinilpotent operator commuting with T .

Proof. First of all we prove that if there exists an injective quasinilpotent operator
commuting with T, then

T is Weyl = T is injective. (2.39)

To show this suppose K is an injective quasinilpotent operator commuting with 7.
Assume to the contrary that 7' is Weyl but not injective. Then there exists a nonzero
vector x € X such that Tx = 0. Then by the commutativity assumption, TK"z =
K"Tx = 0 for every n = 0,1,2,---, so that K"z € N(T) for every n = 0,1,2,---

We now claim that {K™z}22  is a sequence of linearly independent vectors in X.
To see this suppose cox + c; Kz + -+ + ¢, K"z = 0. We may then write ¢, (K —
M) (K — A I)x = 0. Since K is an injective quasinilpotent operator it follows
that (K — A1) --- (K — A1) is injective. But since x # 0 we have that ¢, = 0. By an
induction we also have that ¢,,_1 = -+ = ¢; = ¢g = 0. This shows that { K2}, is a
sequence of linearly independent vectors in X. From this we can see N(T') is infinite-
dimensional, which contradicts to the fact that T' is Weyl. This proves (2239). From
(2239) we can see that if Weyl’s theorem holds for T" then mo(7T") = ). We now claim
that moo(T + K) = (). Indeed if X € mpo(T + K), then 0 < dim N(T 4+ K — AI) < oo,
so that there exists a nonzero vector z € X such that (T'4+ K — AI)z = 0. But
since K commutes with 7'+ K — AI, the same argument as in the proof of (E239)
with T'+ K — AI in place of T shows that N(T + K — AI) is infinite-dimensional, a
contradiction. Therefore moo(T + K) = () and hence Weyl’s theorem holds for T+ K
because w(T) = w(T + K) with w = o,w. O

In Theorem P23, “quasinilpotent” cannot be replaced by “compact”. For example
consider the following operators on ¢2 @ ¢2:

0 1

[N

<)
N
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where () is an injective compact quasinilpotent operator on 2. Observe that Weyl’s
theorem holds for 7', K is an injective compact operator, and TK = KT. But

oc(T+K)={0,1} =w(T+ K) and m(T+ K) = {1},

which says that Weyl’s theorem does not hold for T+ K.

On the other hand, Weyl’s theorem for T is not sufficient for Weyl’s theorem for
T + F with finite rank F. To see this, let X = ¢2 and let T, F € B(X) be defined by

T(l‘1,$2,$3,"') = (O,$1/2,$2/37"')

and
F(m17$2)m3?-..) = (07 _$1/270a07"')'

since the point spectrum of T' is empty it follows Weyl’s theorem holds for T'. Also
F' is a nilpotent operator. Since 0 € moo(T + F) Nw(T + F'), it follows that Weyl’s
theorem fails for T+ F.

Lemma 2.4.4. Let T € B(X). If F € B(X) is a finite rank operator then
dimN(T) < 0 < dimN(T + F) < cc.
Further if TF = FT then
acco(T) =acco(T + F).

Proof. This follows from a straightforward calculation. O

Theorem 2.4.5. Let T € B(X) be an isoloid operator and let F' € B(X) be a finite
rank operator commuting with T. If Weyl’s theorem holds for T then it holds for
T+ F.

Proof. We have to show that A € o(T + F) \w(T + F) if and only if A € woo(T + F).
Without loss of generality we may assume that A = 0. We first suppose that 0 €
o(T+ F)\w(T + F) and thus T + F' is Weyl but not invertible. It suffice to show
that 0 € isoo(T + F). Since T is Weyl and Weyl’s theorem holds for T', it follows
that 0 € p(T) or 0 € isoo(T). Thus by Lemma 244, 0 ¢ acco(T + F). But since
T + F is not invertible we have that 0 € isoo(T + F).

Conversely, suppose that 0 € moo(T + F). We want to show that T + F is Weyl.
By our assumption, 0 € isoo(T + F) and 0 < dim N(T + F') < co. By Lemma P24,
we have

0¢acco(T) and dim N(T) < co. (2.40)

If T is invertible then it is evident that T+ F' is Weyl. If T" is not invertible then by
the first part of (EZ20) we have 0 € isoo(T). But since T is isoloid it follows that T is
not one-one, which together with the second part of (E220) gives 0 < dim N(T) < oo.
Since Weyl’s theorem holds for T it follows that 7" is Weyl and so is T' + F. O
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Example 2.4.6. There exists an operator T € B(X) and a finite rank operator
F € B(X) commuting with T such that Weyl’s theorem holds for T but it does not
hold for T + F.

Proof. Define on (2@ ¢, T:=I® S and F = K ©0, where S : £2 — (? is an injective
quasinilpotent operator and F : £2 — ¢2 is defined by

F(xy,x9,23,-+) = (—21,0,0,---).
Then F is of finite rank and commutes with 7T'. It is easy to see that
o(T) = w(T) = {0,1} and mo(T) = 0,
which implies that Weyl’s theorem holds for 7. We however have
o(T+F)=w(T+F)={0,1} and my(T + F)={0},

which implies that Weyl’s theorem fails for T" + F'. O

Theorem P43 may fail if “finite rank” is replaced by “compact”. In fact Weyl’s
theorem may fail even if K is both compact and quasinilpotent: for example, take
T =0 and K the operator on {5 defined by K (1,22, ) = (%, %, 5, +). We will
however show that if “isoloid” condition is strengthened slightly then Weyl’s theorem
is transmitted from T to T+ K if K is either a compact or a quasinilpotent operator

commuting with 7. To see this we observe:
Lemma 2.4.7. If K € B(X) is a compact operator commuting with T € B(X) then
moo(T + K) C isoa(T) U p(T).
Proof. See [HanL2]. O
An operator T' € B(X) will be said to be finite-isoloid if isoo(T) € mor(T).
Evidently finite-isoloid = isoloid. The converse is not true in general: for example,

take T'= 0. In particular if o(T") has no isolated points then T is finite-isoloid. We
now have:

Theorem 2.4.8. Suppose T € B(X) is finite-isoloid. If Weyl’s theorem holds for T
then Weyl’s theorem holds for T + K if K € B(X) commutes with T and is either
compact or quasinilpotent.

Proof. First we assume that K is a compact operator commuting with 7. Suppose
Weyl’s theorem holds for 7. We first claim that with no restriction on 7',

o(T+ K)\w(T + K) C moo(T + K). (2.41)

For (221), it suffices to show that if A € (T + K) \w(T + K) then A € isoo(T + K).
Assume to the contrary that A € acco(T' + K). Then we have that A € 0,(T + K) =
op(T), so that A € 0.(T) or A € acco(T'). Remember that the essential spectrum and
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the Weyl spectrum are invariant under compact perturbations. Thus if A € o.(T)
then A € 0.(T + K) C w(T + K), a contradiction. Therefore we should have that
A € acco(T). But since Weyl’s theorem holds for T and A ¢ w(T + K) = w(T), it
follows that A € moo(T"), a contradiction. This proves (22211). For the reverse inclusion
suppose A € moo(T + K). Then by Lemma P74, either A € isoo(T) or A € p(T). If
A € p(T) then evidently T+ K — Al is Weyl, i.e., A ¢ w(T+K). If instead A € isoo(T)
then A\ € moo(T') whenever T is finite-isoloid. Since Weyl’s theorem holds for T, it
follows that A ¢ w(T') and hence A ¢ w(T + K). Therefore Weyl’s theorem holds for
T+ K.

Next we assume that K is a quasinilpotent operator commuting with 7. Then by
Lemma 22, w(T) = w(T + Q) with w = o,w. Suppose Weyl’s theorem holds for
T. Then

c(T+K)\w(T+K)=0(T)\w(T) =m(T) Cisoc(T) =isoc(T + K),

which implies that o(T + K) \ w(T + K) C moo(T + K). Conversely, suppose A €
moo(T + K). If T is finite-isoloid then A € isoo(T + K) = isoo(T) C mos(T). Thus
A€ m(T) =0(T)\w(T) =0(T + K) \w(T + K). This completes the proof. O

Corollary 2.4.9. Suppose X is a Hilbert space and T' € B(X) is p-hyponormal. If
T satisfies one of the following:

(i) isoo(T) = 0;

(ii) T has finite-dimensional eigenspaces,
then Weyl’s theorem holds for T+ K if K € B(X) is either compact or quasinilpotent
and commutes with T.

Proof. Observe that each of the conditions (i) and (ii) forces p-hyponormal operators
to be finite-isoloid. Since by Corollary 223 Weyl’s theorem holds for p-hyponormal
operators, the result follows at once from Theorem PZR. O

In the perturbation theory the “commutative” condition looks so rigid. Without
the commutativity, the spectrum can however undergo a large change under even rank
one perturbations. In spite of it, Weyl’s theorem may hold for (non-commutative)
compact perturbations of “good” operators. We now give such a perturbation theo-
rem. To do this we need:

Lemma 2.4.10. If N € B(X) is a quasinilpotent operator commauting with T € B(X)
modulo compact operators (i.e., TN — NT € K(X)) then 0.(T + N) = 0.(T) and
w(T+ N) =w(T).

Proof. Immediate from Lemma 22271, O

Theorem 2.4.11. Suppose T € B(X) satisfies the following:
(i) T is finite-isoloid;
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(ii) o(T) has no “holes” (bounded components of the complement), i.e., o(T) =
no(T);

(iii) o(T) has at most finitely many isolated points;

(iv) Weyl’s theorem holds for T.
If K € B(X) is either compact or quasinilpotent and commutes with T modulo com-
pact operators then Weyl’s theorem holds for T + K.

Proof. By Lemma P21, we have that o.(T + K) = 0.(T) and w(T + K) = w(T).
Suppose Weyl’s theorem holds for T and A € o(T + K) \ w(T + K). We now claim
that A € isoo(T + K). Assume to the contrary that A € acco(T + K). Since
A ¢ w(T+ K) =w(T), it follows from the punctured neighborhood theorem that
A ¢ 0o(T + K). Also since the set of all Weyl operators forms an open subset of
B(X), we have that A € int (6(T + K) \ w(T + K)). Then there exists € > 0 such
that {u € C: |u—A| <€} Cint (o(T+ K)\w(T+K)), and hence {u € C: |[u—A| <
e} Nw(T) = 0. But since

0o(T+K)\isoo(T+K) Co.(T+K)=0.(T),

it follows from our assumption that

{neC:lp—A<e Cint (o(T + K) \w(T + K))
Cn(0o(T+K)\isoo(T + K))
Cnoe(T) Sno(T) =o(T),
which implies that {u € C: |u— A < €} C o(T) \ w(T). This contradicts to Weyl’s

theorem for T. Therefore A € isoo(T + K) and hence o(T + K) \ w(T + K) C
moo(T + K). For the reverse inclusion suppose A € moo(T + K). Assume to the
contrary that A € w(T + K) and hence A € w(T'). Then we claim A ¢ 9 o(T). Indeed
if A € isoo(T) then by assumption A € mo(7'), which contradicts to Weyl’s theorem
for T. If instead A € acco(T) NI o(T) then since isoo(T) is finite it follows that

A€ acc (00(T)) C acco (T) = accoo(T + K),

which contradicts to the fact that A € isoo (T + K). Therefore A ¢ 9o (T'). Also since
A €isoo(T + K), there exists € > 0 such that

{peC:0<|p—A<e Cao(T)Np(T+ K),

sothat {x € C: 0 < |p—A| < e} Nw(T) = B, which contradicts to Weyl’s theorem for
T. Thus A € o(T + K) \w(T + K) and therefore Weyl’s theorem holds for T+ K. O

If, in Theorem P11, the condition “o(7") has no holes” is dropped then Theorem
P11 may fail even though 7' is normal. For example, if on /5 & {5

T= (YT and K= (81407)

where U is the unilateral shift on £, then T' is unitary (essentially the bilateral shift)

with o(T) = T, K is a rank one nilpotent, and Weyl’s theorem does not hold for
T-K.
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Also in Theorem P, the condition “isoo(T) is finite” is essential in the cases
where K is compact. For example, if on /5

To To Tz X
T(xhx%"'):('Th?za?s?”') and Q(xlax%"'):(?27337141"')7
we define K := —(T + Q). Then we have that (i) T is finite-isoloid; (ii) o(T) has

no holes; (iii) Weyl’s theorem holds for T'; (iv) isoo(T) is infinite; (v) K is compact
because T and @ are both compact; (vi) Weyl’s theorem does not hold for T + K
(=-@Q).

Corollary 2.4.12. If o(T) has no holes and at most finitely many isolated points
and if K is a compact operator then Weyl’s theorem is transmitted from T to T + K.

Proof. Straightforward from Theorem PZA7TTI. O

Corollary 212 shows that if Weyl’s theorem holds for 7" whose spectrum has no
holes and at most finitely many isolated points then for every compact operator K,
the passage from o(T") to o(T + K) is putting at most countably many isolated points
outside o(T) which are Riesz points of o(T + K). Here we should note that this
holds even if T is quasinilpotent because for every quasinilpotent operator T' (more
generally, “Riesz operators”), we have

o(T'+K) Cnoe(T+ K)Upoo(T' + K) =10e(T) Upoo(T + K) = {0} Upoo(T + K).
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2.5 Weyl’s theorem in several variables

In this section we consider Weyl’s theorem from multivariable operator theory. Let
‘H be a complex Hilbert space and write B(#) for the set of bounded linear operators
acting on H. Let T'= (T1,--- ,T;,) be a commuting n-tuple of operators in B(H), let
Ale] = {A*[eq, -+, en]}2_, be the exterior algebra on n generators (e; Aej = —e; Ae;
for all 4,5 = 1,--- ,n) and write A(H) := Ale] ® H. Let A(T) : A(H) — A(H) be
defined by (cf. [Cul], [Harl], [Har4], [Tal])

n

AD)(woz) =Y (e Aw) @ Tz, (2.42)

i=1
The operator A(T') in (E22) can be represented by the Koszul complex for T

A 2T Dy gy 0,  (243)

0 —— AO(3) 202

where A¥(H) is the collection of k-forms and A*(T) = A(T)|zx(3). For n = 2, the
Koszul complex for T' = (T1,T») is given by

0 H H 0

H

E] [H] [-T> 7]

Evidently, A(T)? = 0, so that ran A(T) C ker A(T), or equivalently, ran A*=1(T) C
ker A*(T) for every k = 0,--- ,n, where, for notational convenience, A~*(7T') := 0 and
A™(T) = 0. For the representation of A(T), we may put together its odd and even
parts, writing

)= [y AT (0] [m00)

where

= @ AP(H), AY(T)= @ AP(T) with * = even, odd.
P 1S * P 1S *
Write
H*(T) := ker A*(T) /ran A*~1(T) (k=0,---,n),

which is called the k-th cohomology for the Koszul complex A(T). We recall ([Cul],
[Hard], [Tal]) that T is said to be Taylor invertible if ker A(T') = ran A(T) (in other
words, the Koszul complex (EZ3) is exact at every stage, i.e., H*(T) = {0} for
every k = 0,---,n) and is said to be Taylor Fredholm if ker A(T')/ran A(T') is finite
dimensional (in other words, all cohomologies of (E23) are finite dimensional). If
T = (T1,---,T,) is Taylor Fredholm, define the index of T by

index (T') = Euler(0, A" 1(T), - - - Z 1)*dim H*(T),
k=0
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where Euler(+) is the Euler characteristic of the Koszul complex for T. We shall
write op(T') and or, (T) for the Taylor spectrum and Taylor essential spectrum of T
respectively: namely,

or(T)={A € C": T — X is not Taylor invertible};
or,(T) ={A € C": T — X is not Taylor Fredholm}.

Following to R. Harte [Har4, Definition 11.10.5], we shall say that T = (T1,--- ,T},)
is Taylor Weyl if T is Taylor Fredholm and index(7T") = 0. The Taylor Weyl spectrum,
or, (T), of T is defined by

or, (T)={A € C": T — X is not Taylor Weyl}.
It is known ([Har4, Theorem 10.6.4]) that or, (T) is compact and evidently,
oT, (T) - O'Tw(T> C O‘T<T).

On the other hand, “Weyl’s theorem” for an operator on a Hilbert space is the state-
ment that the complement in the spectrum of the Weyl spectrum coincides with the
isolated eigenvalues of finite multiplicity. In this note we introduce the joint version
of Weyl’s theorem and then examine the classes of n-tuples of operators satisfying
Weyl’s theorem.

The spectral mapping theorem is liable to fail for op, (1) even though T =
(Th,---,T,) is a commuting n-tuple of hyponormal operators (remember [LeL] that
if n = 1 then every hyponormal operator enjoys the spectral mapping theorem for the
Weyl spectrum). For example, let U be the unilateral shift on ¢2 and T := (U, U).
Then a straightforward calculation shows that op, (T) = {(\A) : |A] = 1}. If
f: C? — C!is the map f(21,22) = 21 + 22 then o, f(T) = o, (2U) = {2X :
N <1} € for, (T) ={2X:|\| = 1}. If instead f: C' — C? is the map f(z) = (2, 2)
then o7, f(U) = {(\,A) : [A =1} 2 for, (U) = {(A\,A) : |A| < 1}. Therefore or, (T)
satisfies no way spectral mapping theorem in general.

The Taylor Weyl spectrum however satisfies a “subprojective” property.:

Lemma 2.5.1. IfT = (T1,--- ,T,) is a commuting n-tuple then o, (T) C [[;_, o1.(T}).
Proof. This follows at once from the fact (cf. [Cul, p.144]) that every commuting

n-tuple having a Fredholm coordinate has index zero. O

On the other hand, M. Cho and M. Takaguchi [ChT] have defined the joint Weyl
spectrum, w(T), of a commuting n-tuple 7' = (T1,--- ,T;,) by

w(T) = ﬂ{aT(T +K): K=(Ky,-,K,) is an n-tuple of compact operators
and T+ K = (T1 + K1, , T, + K,,) is commutative. }
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A question arises naturally: For a commuting n-tuple T, does it follow that o1, (T) =
w(T)? If n =1 then op, (T) and w(T") coalesce: indeed, T is Weyl if and only if T is
a sum of an invertible operator and a compact operator.

We first observe:

Lemma 2.5.2. If T = (T1,--- ,T},) is a commuting n-tuple then
or, (T) C w(T). (2.44)

Proof. Write Ko(T) := A°4(T) + A®v*®(T)*. Then it was known that (cf. [Cul],
[Hard], [Va])

T is Taylor invertible [Taylor Fredholm] <= K (T') is invertible [Fredholm] (2.45)

and moreover index(T) = index(Ko(T)). If A = (A1, -, ) ¢ w(T) then there
exists an n-tuple of compact operators K = (Ki,---,K,) such that T+ K — X is
commutative and Taylor invertible. By (223), Ko (T + K — \) is invertible. But since
Ko(T+ K —\)— Ko(T — \) is a compact operator it follows that Ko(7T — A) is Weyl,
and hence, by (223), T — X is Taylor Weyl, i.e., A ¢ o7, (T). O

The inclusion (ZZ4) cannot be strengthened by the equality. R. Gelca [Ge] showed
that if S is a Fredholm operator with index(S) # 0 then there do not exist compact
operators K7 and K3 such that (T"+ K7, K») is commutative and Taylor invertible.
Thus for instance, if U is the unilateral shift then w(U,0) € o1, (U,0).

We introduce an interesting notion which commuting n-tuples may enjoy.

A commuting n-tuple T' = (11, - - ,T,) is said to have the quasitriangular property
if the dimension of the left cohomology for the Koszul complex A(T — \) is greater
than or equal to the dimension of the right cohomology for A(T' — A) for all A =
(A, ) € C™ e,

dim H™(T — \) < dim H(T — \) forall A= (Ay, -+, \,) € C™. (2.46)

Since H(T —\) = kerA®(T'— X) = (i, ker (T; — \;) and H"(T'— \) = kerA™(T —
A)/ranA" (T — \) = (ranA™ (T — )\))J' =~ N, ker (T; — \;)*, the condition (240)
is equivalent to the condition

dim ﬂ ker (T; — \;)* < dim ﬂ ker (T; — A;).
i=1 i=1

If n = 1, the condition (248) is equivalent to the condition dim (T'— \)*~1(0) <
dim (T — A)71(0) for all A € C, or equivalently, the spectral picture of T’ contains
no holes or pseudoholes associated with a negative index, which, by the celebrated
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theorem due to Apostol, Foias and Voiculescu, is equivalent to the fact that T is
quasitriangular (cf. [Pe, Theorem 1.31]). Evidently, every commuting n-tuple of
quasitriangular operators has the quasitriangular property. Also if a commuting n-
tuple T = (11, - - ,T,) has a coordinate whose adjoint has no eigenvalues then T" has
the quasitriangular property.

As we have seen in the above, the inclusion (2724) cannot be reversible even though
T = (T1,---,T,) is a doubly commuting n-tuple (i.e., [I;,T;] = T;T; = T;T; = 0
for all i # j) of hyponormal operators. On the other hand, R. Curto [Cul, Corollary
3.8] showed that if T = (Ty,---,T,) is a doubly commuting n-tuple of hyponormal
operators then

T is Taylor invertible [Taylor Fredholm] <= Z T;T; is invertible [Fredholm].
i=1

(2.47)

On the other hand, many authors have considered the joint version of the Browder
spectrum. We recall ([BDW], [CuD], [Dal], [Da2], [Har4], [JeL], [Sn]) that a com-
muting n-tuple T = (T1,--- ,T,) is called Taylor Browder if T is Taylor Fredholm
and there exists a deleted open neighborhood Ny of 0 € C™ such that T'— X is Taylor
invertible for all A € Ny. The Taylor Browder spectrum, or,(T), is defined by

or,(T)={X € C": T — X is not Taylor Browder}.

Note that or, (T') = o7, (T') Uacc op(T), where acc(-) denotes the set of accumulation
points. We can easily show that

or,(T) C o1, (T). (2.48)

Indeed, if A ¢ o, (T') then T'— X is Taylor Fredholm and there there exists § > 0 such
that T — A — p is Taylor invertible for 0 < |u| < §. Since the index is continuous it
follows that index(T" — A) = 0, which says that A\ ¢ op, (T), giving (ZZR).

T = (11, - ,T,) is a commuting n-tuple, we write mpo(7T) for the set of all
isolated points of o (T") which are joint eigenvalues of finite multiplicity and write
R(T) = isoor(T) \ or,(T) for the Riesz points of or(T). By the continuity of the
index, we can see that R(T") = isoor(T) \ or, (T).

Lemma 2.5.3. If T = (T4, ---,Ty,) is a commuting n-tuple then w(T) C o, (T).

Proof. Suppose without loss of generality that 0 ¢ o, (T'). Then T is Taylor invertible
and 0 € isoor(T). So there exists a projection P € B(H) satisfying that

(i) P commutes with T; (i =1,--- ,n);

(i) or(T|p)) = {0} and o0 (T|(1-p)3)) = or(T) \ {0};

(iii) P is of finite rank
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(see [Ta2, Theorem 4.9]). Put Q = (P,--- , P). Evidently, 0 ¢ o7 (T + Q)|(1—p)(n))-
Since a commuting quasinilpotent perturbation of an invertible operator is also invert-
ible, it follows that 0 ¢ o7 ((T4+Q)|p(x)). Butsince or(T) = or(T+Q)|(1-pyn)) U or ((T+
Q)|p(2)), we can conclude that 7'+ @ is Taylor invertible. So 0 ¢ w(T'). O

“Weyl’s theorem” for an operator on a Hilbert space is the statement that the com-
plement in the spectrum of the Weyl spectrum coincides with the isolated eigenvalues
of finite multiplicity. There are two versions of Weyl’s theorem in several variables.

ItT = (T, - ,T,) is a commuting n-tuple then we say that Weyl’s theorem (1)
holds for T if

or(T) \ moo(T) = o1, (T) (2.49)
and that Weyl’s theorem (II) holds for T if

or(T) \ moo(T) = w(T). (2.50)

The notion of Weyl’s theorem (IT) was first introduced by M. Cho and M. Tak-
aguchi [ChT]. We note that

Weyl’s theorem (I) = Weyl’s theorem (II). (2.51)

Indeed, since or, (T) C w(T), it follows that if or(T) \ meo(T) C or,(T), then
or(T) \ moo(T) C w(T). Now suppose or, (T) C or(T) \ moo(T). So if X € mo(T)
then T' — X is Taylor Weyl, and hence Taylor Browder. By Lemma 4, A ¢ w(T).
Therefore w(T') C op(T) \ 7oo(T), and so Weyl’s theorem (II) holds for T, which gives

But the converse of (E751) is not true in general. To see this, let T := (U, 0), where
U is the unilateral shift on ¢2. Then

(a) op(T) = clD x {0};

(b) 71 (T) = 0D x {0};

(¢) w(T) =clD x {0};

(d) moo(T') =0,
where D is the open unit disk. So Weyl’s theorem (II) holds for 7" while Weyl’s theo-
rem (I) fails even though T is a doubly commuting n-tuple of hyponormal operators.

M. Cho [Ch2] showed that Weyl’s theorem (II) holds for a commuting n-tuple of
normal operators. The following theorem is an extension of this result.

Theorem 2.5.4. Let T = (T4, ,T,) be a doubly commuting n-tuple of hyponormal
operators. If T has the quasitriangular property then Weyl’s theorem (I) holds for T.
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Proof. In [Ch2] it was shown that if T is a doubly commuting n-tuple of hyponormal
operators then w(T') C op(T) \ moo(T"). Then by Lemma 2, o1, (T) C or(T) \ 7o (T).
For the reverse inclusion, we first claim that

01e(T) = o7u(T) = w(T). (2.52)

In view of E52, we need to show that w(T) C or.(T). Suppose without loss of
generality that 0 ¢ ore(T). Thus by (Z47) we have that Y ., T;T; is Fredholm
(and hence Weyl since it is self-adjoint). Let P denote the orthogonal projection
onto ker Z?’:l T;T7. Since P is of finite rank and Weyl-ness is stable under compact
perturbations, we have that Z?zl T;T7 4+nP is Weyl. In particular, a straightforward
calculation shows that Y . ;77 + nP is one-one and therefore Y . | T;TF + nP is
invertible. Since each T; is a hyponormal operator, we have that

Ty n n
ran P = ker [Tl, e ,Tn] L= ﬂ ker T D ﬂ ker T;.
T+ i=1 i=1
n
So if T" has the quasitriangular property then since ran P is finite dimensional, it
follows that . .
ran P = ﬂ ker T; = ﬂ ker T7.
i=1 i=1
SoT;P=PT;=0foralli=1,---,n. Hence we can see that (Ty + P,--- ,T,, + P) is
a doubly commuting n-tuple of hyponormal operators. Thus (Ty + P,--- ,T,, + P) is
Taylor invertible if and only if > T;T* + nP is invertible. Therefore (11, ,T},) +
(P,---, P) is Taylor invertible, and hence 0 ¢ w(T), which proves (Z52). So in view

of (Z82), it now suffices to show that o7 (T') \ moo(T) C o7e(T). To see this we need
to prove that

accor(T) C or.(T). (2.53)
Suppose A = lim A\, with distinct Ay € op(T). Write A := (A1, ,\n) and A\ :=
(Meys o s Ak, ) IEAg € o7e(T) then clearly, A € o7 (T) since o (T) is a closed set. So

we assume A € o7 (T)\ore(T). Then by (222), Y| (T;— Ak, ) (T; — Ak, )* is Fredholm
but not invertible. So there exists a unit vector xj such that (T; — Ag,)*x; = 0 for all
i=1,---,n. If T has the quasitriangular property, it follows that (T; — Ay, )z = 0.
In particular, since the T; are hyponormal, {z)} forms an orthonormal sequence.
Further, we have

n

ST = )aell <) (NT = M)zl + 1k, — )zl )
=1

=1

:Zp‘ki*)\ﬂ‘)o as k — oo.
i=1

Therefore A € o7.(T) (see [Dal, Theorem 2.6] or [Ch2, Theorem 1]), which proves
(E13) and completes the proof. O
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Corollary 2.5.5. A commuting n-tuple of normal operators satisfies Weyl’s theorem
(1) and hence Weyl’s theorem (II).

Proof. Immediate from (2Z51) and P54, O

Corollary 2.5.6. (Riesz-Schauder theorem in several variables) Let T = (Ty,--- ,Ty)
be a doubly commuting n-tuple of hyponormal operators. If T has the quasitriangular

property then
LU(T) =0T, (T)

Proof. In view of refthm5.63, we need to show that op,(T) C w(T). Indeed if
A € op(T)\ w(T) then by (E353), A € isoor(T), and hence T' — A is Taylor-Browder.
(]
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2.6 Comments and Problems

(a) Transaloid and SVEP. For an operator T' € B(X) for a Hilbert space X,
denote W(T) = {(Tz, z) : ||z|| = 1} for the numerical range of T and w(T) =
sup {|A| : A € W(T)} for the numerical radius of T. An operator T is called convezoid
if convo(T) = clW(T') and is called spectraloid if w(T') = r(T") = the spectral radius.
We call an operator T' € B(X) transaloid if T — AI is normaloid for all A € C. It was
well known that

transaloid = convexoid — spectraloid,

(G1) = convexoid and (G;) = reguloid.

We would like to expect that Corollary 2218 remains still true if “reguloid” is
replaced by “transaloid”

Problem 2.1. If T € B(X) is transaloid and has the SVEP, does Weyl’s theorem
hold for T ?

The following question is a strategy to answer Problem 2.1.

Problem 2.2. Does it follow that
transaloid = reguloid?

If the answer to Problem 2.2 is affirmative then the answer to Problem 2.1 is affir-
mative by Corollary ZZ218.

(b) *-paranormal operators. An operator T € B(X) for a Hilbert space X is
said to be *-paranormal if

||[T*z||> < ||T%x||||x|| for every = € X.
It was [AT] known that if T € B(X) is *-paranormal then the following hold:
T is normaloid; (2.54)

N(T — ) € N((T — AI)*). (2.55)

So if T € B(X) is x-paranormal then by (E253), 7' — AI has finite ascent for every
A € C. Thus x-paranormal operators have the SVEP ([Ld]). On the other hand,
by the same argument as the proof of Corollary ?? we can see that if T' € B(X) is
x-paranormal then

a(T)\ w(T) C moo(T). (2.56)
However we were unable to decide:

Problem 2.3. Does Weyl’s theorem hold for x-paranormal operators ¢

The following question is a strategy to answer Problem 2.3.
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Problem 2.4. Is every *-paranormal operator isoloid ¢

If the answer to Problem 2.4 is affirmative then the answer to Problem 2.3 is
affirmative. To see this suppose T € B(X) is *-paranormal. In view of (EBH), it
suffices to show that moo(T) C o(T) \ w(T). Assume A € moo(T). By (E23), T — X[
is reduced by its eigenspaces. Thus we can write

o 0] [N(T =D N(T — AI)
r-M= g g i ank] = we - ane)
Thus T = (% ¢2\;)- We now claim that S is invertible. Assume to the contrary
that S is not invertible. Then 0 € isoo(S) since A € isoo(T'). Thus X € isoc (S + Al).
But since S + Al is also *-paranormal, it follows from our assumption that A is an
eigenvalue of S+ AI. Thus 0 € m(S), which contradicts to the fact that S is one-one.
Therefore S should be invertible. Note that N(T' — AI) is finite-dimensional. Thus
evidently T'— AI is Weyl, so that A € o(T') \ w(T'). This gives a proof.

(c) Subclasses of paranormal operators. An operator T € B(X) for a Hilbert
space X is said to be quasihyponormal ift T*(T*T —TT*)T > 0 and is said to be class
A-operator if [T?| > |T|? (cf. [EIY]). Let T = U |T| be the polar decomposition of
T and T := |T|2U|T|2 be the Aluthge transformation of T' (cf. [AT]). An operator
T € B(X) for a Hilbert space X is called w-hyponormal if |T| > |T| > |T*|. Tt was
well known that

hyponormal = quasihyponormal =—> class A = paranormal (2.57)
hyponormal = p-hyponormal = w-hyponormal = paranormal. (2.58)

Since by Theorem 2220, Weyl’s theorem holds for paranormal operators on an arbi-
trary Banach space, all classes of operators in (2257) and (EZ58) enjoy Weyl’s theorem.

(d) Open problems in multivariable operator theory. It was known that

(i) If (A4, -+, A,) is invertible and (( ‘%1 CBﬁ ) S (‘%" g: )) is invertible then (C1, - -+ , Cy)
is invertible.
(ii) If (Ay,- -+, A,)isinvertible and (Cy,- - , Cy) is invertible then (( ’%1 gi )y (‘%" g: )
is invertible.
Problem 2.5. If (4 B) = ((‘%1 gi) S (AO" g" )), find a necessary and sufficient
condition for (4 B) to be invertible for some B.

If n =1 then it was known that (4 Z) is invertible for some B if and only if
(i) A is left invertible;

(ii) C is right invertible;
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(iii) ran(A4)t = ker (O).

Problem 2.6. What is a kind of several variable version of the Punctured Neighbor-
hood Theorem ¢

The Punctured Neighborhood Theorem says that 9o (T) \ 0.(T) C isoo(T). Our
question is that if T'= (T3, ,T,) then

80’T(T) \O'TG(T) C ( ? ) of O'T(T).

Problem 2.7. (Deformation Problem) Given two Fredholm n-tuples A = (Ay,--- , Ay)
and B = (By,---,By) € F with the same indez, is it always possible to find a con-
tinuous path vy : [0,1] — F such that v(0) = A and v(1) =B ¢

The answer for n =1 is yes. Also if dimH < oo then the answer is yes.

Problem 2.8. If (A1, -+, A,) and (A]fl,~~ , AFn) are Fredholm, does it follow

n

indem(A’fl,-~- JARRY =y Ky, - index(Aq, -+ AR)?

Problem 2.9. If S = (S1,---,Sn) is subnormal (i.e., there exists a commuting n-
tuple N = (Ny,--- , Ny) such that N; = mne(S;)) and N = (Ny,--- ,N,,) = mne(S),
how o7 (S) can be obtained from op(N) ¢

R. Curto and M. Putinar [CP2] showed that
or(N) C or(S) C nor(N).
If n =1 then o(S) is obtained from ¢ (V) y “filling in some holes”.
Problem 2.10. If T = (T4, -+ ,T,,) is commutative then
(i) or(T) C I1j-, o(T;);
(i) If p € poly, then or(p(T)) = p(or(T)).

Let T = (Ty,--- ,Ty) be a hyponormal n-tuple of commuting operators and p € poly,.'.
Does it follow
or(p(T)) =0 = p(T)=07

If n = 1 then the answer is yes: indeed, if o(p(T)) = 0 and hence p(a(T)) = 0
then o(T) is finite, so that T should be normal, which implies that p(7") is normal
and quasinilpotent then p(T) = 0.

75



CHAPTER 2. WEYL THEORY

76



Chapter 3

Hyponormal and Subnormal
Theory

3.1 Hyponormal Operators

An operator A € B(H) is called hyponormal if
[A*, A] = AA — AA* > 0.
Thus if A € B(H) then
A is hyponormal <= ||Ah|| > ||A*h| for all h € H.

If A*A < AA*, or equivalently, ||[A*h| > ||Ah| for all h, then A is called a co-
hyponormal operator. Operators that are either hyponormal or cohyponormal are
called seminormal.

Proposition 3.1.1. Let A € B(H) be a hyponormal operator. Then we have:

(a) If A is invertible then A~ is hyponormal.

(b) A — X is hyponormal for every A € C.

(c) If X € mo(A) and Af = \f then A*f = \f, i.e., ker (A — \) C ker (4 — \)*.
(d) If f and g are eigenvectors corresponding to distinct eigenvalues of A then

fLlg.
(e) If M € Lat A then A|m is hyponormal.

Proof. (a) Recall that if T' is positive and invertible then

T>1=T'<1:
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because if '€ C*(T) = C(X) then T = f > 1= T = § < 1. Since A*A > AA*
and A is invertible,

ATHA*A) (A7 > A7 (AAN) (A =1

— A*A_l(A*)_lA <1

— Afl(A*)fl _ (A*)fl(A*AflA*—lA)Afl < (A*)flAfl

— A~! is hyponormal.

(b) (A=X)(A*=X) = AA* = MA* DA+ |N]? < A*A-DNA* XA+ |A\2 = (A*=X)(A-N).
(c) Immediate from the fact that ||(A* — X)f|| < [|[(A — A)f]|-

(d) Af =Af, Ag = ng = Mf.9) = (Af.9) = (f, A%g) = ([, 119) = ([, 9)-

(e) If M € Lat A then

A= [? IC)] ML is hyponormal
0 < [A%, A] = {[B ]*_ cen s

= [B*,B] >CC* >0
= B is hyponormal.

O

Corollary 3.1.2. If A is hyponormal and A € mo(A) then ker (A — A) reduces A.
Hence if A is a pure hyponormal then mo(A) = 0.

Proof. From Proposition BT(c), if f € ker (A — \) then Af = A\f € ker (A — \) and
A*f = Xf € ker (A—)). O
Proposition 3.1.3. [Sfal] If A is hyponormal then ||A™| = ||A||™, so

Al = v(A), where r(-) denoted the spectral radius,
in other words, A is normaloid.
Proof. Observe
AT £ =< A", A Smc ATAPf AP S [[AAT AT < AT AP )

Hence || A" < [JA" Y| - [JA" Y. We use an induction. Clearly, it is true for n = 1.
Suppose A% = A" for 1 < & < n. Then |A?" = [ A"2 < [[A™+1]] - A"~ =
LA™ (A so AT < AL Also #(A) = lim[|A"]| = || Al O
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Corollary 3.1.4. If A is hyponormal and \ ¢ o(A) then

1

——— =dist (A, 0(A)).
o= Ay~ st (o)
Proof. Observe

[——p !
()‘ - A)_l maxX,eco(A—A)-1 I/-L|

= minuEa(A—A)|p‘| = diSt(Av U(A))

O

Proposition 3.1.5. [Stal] If A is hyponormal then A is isoloid, i.e., isoo(A) C
mo(A). The pure hyponormal operators have no isolated points in their spectrum.

Proof. Replacing A by A — A we may assume that A = 0. Observe that the only
quasinilpotent hyponormal operator is zero. Consider the spectral decomposition of

A:

0 A

Then A; =0, so 0 € mp(A).
The second assertion comes from the fact that ker (A — \) is a reducing subspaces
of a hyponormal operator A. O

A= {Al 0} , where 0(A1) = {0}, o(As) = o(A)\{0}.

Corollary 3.1.6. The only compact hyponormal operator is normal.

Proof. Recall that if K is compact then every nonzero point of o(K) is isolated. So
if K is hyponormal then every eigenspaces reduces K and the restriction of K to
each eigenspace is normal. Consider the restriction of K to the orthogonal comple-
ment of the span of all the eigenvectors. The resulting operator is hyponormal and
quasinilpotent, and hence 0. Therefore K is normal. O

Proposition 3.1.7. Let A be a hyponormal operator. Then we have:

(a) A is invertible <= A is right invertible.

(b) A is Fredholm <= A is right Fredholm.

(c) 0(A) =0.(A) and 0.(A) = 0,c(A).

(d) A is pure, A € 0(A)\o(A) = index (A — \) < —1.

Proof. (a) Observe that

A is right invertible = 3 B such that AB =1

— A is onto and hence ker A* = (ran4)* = {0}
= ker A = {0}
= A is invertible.
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(b) Similar to (a).
(c¢) From (a) and (b).
(d) Observe that
A is pure hyponormal = A — X is pure hyponormal

= ker (A — \) = {0} (by Proposition BIH)

= A — X is not onto since A € o(A)

= index (4 — \) = dim (ker (4 — \)) — dim (ran(4 — \)*)

= —dim (ran(A — )\)l) < —1.
O

Write F denotes the set of Fredholm operators. We here give a direct proof
showing that Weyl’s theorem holds for hyponormal operators.

Proposition 3.1.8. If A € B(H) is hyponormal then
o(A)\w(A) = 700 (A),
where moo(A) = the set of isolated eigenvalues of finite multiplicity.

Proof. (<) If A € mgo(A) then ker (A — ) reduces A. So

A=XPB,

where [ is the identity on a finite dimensional space, B is hyponormal and A ¢ o(B).
So A ¢ w(A).

(=) Suppose A € 0(A4)\w(A), and so A—\ not invertible, Fredholm with index (A—
A) = 0. We may assume A = 0. Since A € F and index A = 0, it follows that 0 is an
eigenvalue of finite multiplicity.

It remains to show that 0 € isoo(A). Observe that

ker (A) C ker (A*) = (ranA)* and 0 = index(A) = dim (ker (4)) — dim (ranA)l) ,

A=0PB,

where B is invertible. Since o(A4) = {0} U o(B), 0 must be an isolated point of
o(A). O

so that ker(A) = (ranA4)*. So

Corollary 3.1.9. If A € B(H) is a pure hyponormal then
|A] < ||A+ K| for every compact operator K.

Proof. Since A is pure, mo(A) = 0. So 0(A) = w(A) = Ngeg ) o(A+ K). Thus for
every compact operator K, 0(A) C 0(A + K). Therefore, ||A|| =7(4) <r(A+ K) <
A+ K]|. O
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3.2 The Berger-Shaw Theorem

If A is a selfadjoint operator then A is said to be absolutely continuous if its scalar-
valued spectral measure is absolutely continuous with respect to the Lebesgue measure
on the line.

Let N = f 2dE(z) be the spectral decomposition of N. A scalar-valued spectral
measure for N is a positive Borel measure y on o(N) such that

WD) =0 < E(A) = 0.

Since W*(N) is an abelian von Neumann algebra, W*(N) has a separating vector e,
ie.,

Aeg =0= A=0for A e W*(N).

Define p on o(N) by
D) = E(A)eol*.

In fact, this p is the unique scalar-valued spectral measure for N.

Theorem 3.2.1. (Putnam, 1963) If S is a pure hyponormal operator and S = A+iB,
where A and B are selfadjoint then A and B are absolutely continuous.

Proof. See [Con?2, p.150]. O

Definition 3.2.2. An operator T' € B(H) is said to be finitely multicyclic if there
exist a finite number of vectors g1, - , ¢ € H such that

H= \/{f(T)gj :1<j<mand f€Rato(T)}.

The vectors g1, , gm are called generating vectors. If T is finitely multicyclic and
m is the smallest number of generating vectors then T is said to be m-multicyclic.

Theorem 3.2.3. (The Berger-Shaw Theorem) If T is an m-multicyclic hyponormal
operator then [T*,T] is a trace class operator and

tr [T, 7] < %Area (o(T)).

This inequality is sharp: indeed, consider the unilateral shift 7"

1
[T*,T] = 0 . o(T)=cD, m=1,
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SO
tr[1%,7) = 1, L Area(o(T)) = — -7 = 1.
™

s

To prove Theorem BZZ3 we need auxiliary lemmas. Recall the Hilbert-Schmidt norm
of X:

N|=

1Xlle = [ 3 (1 X ensen )]
= [Z (X*Xep, en>}

= [tr (X*X)]? .

[N

Lemma 3.2.4. IfT € B(H) and P is a finite rank projection then
tr (P[I", TIP) < | PATP|3,

Proof. Write
T— A B| | ranP . ranP
~|C Pl |ranPt ranPL| "

. |1 0
SlnceP[O 0],

P[T*,T|P = [A*, A] + C*C — BB*.
So by the above remark, tr (P[T*,T]P) = tr[A*, A] + ||C||3 — || B||3. But since 4 is a
finite-dimensional operator,

tr[A*, A] = 0.
Hence tr (P[T*,T|P) < ||C||2 = ||P+TP||3. O

Lemma 3.2.5. If T € B(H) is an m-multicyclic operator then there exists a sequence
{Px} of finite rank projections such that Py 1 1(SOT) and

rank (P,f‘TPk) <m for all k > 1.

Proof. Let g1,--- , gm be the generating vectors for T' and let {)\;} be a countable
dense subset of C\ o(T'); for convenience, arrange {\;} so that each point is repeated
infinitely often. Let P, be the projection of H onto

VAT = x)™ (T =)' 0< 5 <2k, 1<i<m}.
Thus Py is finite rank, P, < Pyy1, and

rank [PkLTPk] <m for all k> 1.
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We should prove that P, — 1(SOT). Since {P;} is increasing, £ = cl{J, ranPy is a
closed linear space. To show that P, — 1(SOT) it suffices to show that £ = H. To
do this, it suffices to show that f(T')£ C L for all f € Rat(o(T)). Since {);} is dense
in o(T)¢, it is only necessary to show that f(T)L C £ when f is a rational function
with poles in {);}. Hence we must show that

TLCL and (T—X\)'LCL.

From the definition of £ we see that these two conditions are equivalent, respectively,
to show that for all 5 > 1:

T(Tj(T ) (T - /\k)lgi> € Lfor0<j<2k; (3.1)

(T — M)t (Tj(T — X))t (T - )\k)_lg,) € Lfor 0 <j<2kandallm. (3.2)
To prove (BOl) we need only consider the case where j = 2k. Now
TFUT — X)) (T = Aar) "' € ranPy,
and A= (T — Agy1) -+ (T — Agg) is a polynomial in T of degree 2k — k. Hence
TR T =)™ (T= ) Hgs = ATPFP(T =)™+ (T — o) 'gs € ranPyy, C L,
which proves (B).

Since (B) implies that £ is an invariant subspace for T', to show (83) it suffices
to show that

(T — M)t ((T M) (T - /\k)_lgi) € L for all m.

Since A, is repeated infinitely often, we may assume m > k + 2. If B = (T —
Ak+1) (T — Am—1), then B is a polynomial in T of degree m + k — 1. Hence

(T—Xp) ! ((T—Al)l . (T—)\k)lg,) =B(T-X\)"' - (T-\n) " 'gs €ranP, C L,
which proves (B32). O
Lemma 3.2.6. If T € B(H) is an m-multicyclic hyponormal operator then

tr [°,T) < m|| T

Proof. By Lemma B™2H, there exists an increasing sequence {Pj} of finite rank pro-
jections such that P T 1(SOT) and rank [PHTP,] < m for all k > 1. Note that

1P TPx|[5 < m| P TP,
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Since { Py} is an increasing sequence,
tI[T*, T] = limktr(Pk [T*, T]Pk)

By Lemma B2 we get

tr [T*,T] < limsup|| P{-T P2 < limsup (m||PlePk||2> <m|T|>

We are ready for:

Proof of the Berger-Shaw Theorem. Let R = ||T|| and put D = B(0; R). If € > 0, let
Dy, -+, D, be pairwise disjoint closed disks contained in D \ ¢(T) such that

Area (D) < Areao(T) + Z Area (D;) +e.
J

If D; = B(a;;r;), this inequality says

TR — WZT‘? < Areao(T) +e.
J

If S is the unilateral shift of multiplicity 1, let S; = (a; + TjS)(m). Now that each S;

is m-multicyclic. Thus
T

Sn

is an m-multicyclic hyponormal operator since the spectra of the operator summands
are pairwise disjoint. Also ||A|| = R. By Lemma BZZH, tr [A*, A] < mR?. But

tr[A*, Al =t [T*,T] + Ztr [S5,5;] = tr [T*,T] —i—er?.
j=1 j=1

Therefore

wtr [T, T] <m 7TR2—7TZ7‘2» Sm(Areaa(T)—l—e).

J
j=1

Since € was arbitrary, the proof is complete.

Theorem 3.2.7. (Putnam’s inequality) If S € B(H) is a hyponormal operator then

1157, ]I < = Avea (o(5))
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Proof. Fix ||f|| <1 and let K = \/{r(s)f : r € Rat (¢(S5))}. If T = S|k then T is an
1-multicyclic hyponormal operator. By the Berger-Shaw theorem and the fact that
[T fI < 1S £, we get

(5™, S1f, £y = ISFI* = 1S* I
<|ITfI1? =T 1
=([T",111. 1)
<tr[T*,T]

< %Area(a(T))

< lArea(o(S)).

™

Since f was arbitrary, the result follows. O

Corollary 3.2.8. If S is a hyponormal operator such that Area (o(S)) =0 then S is
normal.
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3.3 Subnormal Operators

Definition 3.3.1. An operator S on a Hilbert space H is called subnormal if there
exists a Hilbert space K O H and a normal operator N on K such that

NH C H and N|g = S.

The concept of subnormality was introduced in P. Halmos in 1950. Loosely speak-
ing, a subnormal operator is one that has a normal extension. Every isometry is
subnormal (by Wold-von Neumann decomposition).

Proposition 3.3.2. Every subnormal operator is hyponormal.

Proof. If S is subnormal then

J a normal operator N = [g g] .
So
0=N*N - NN*= {[5*,2*;,4,4* A A fé*’BJ )
which implies that [S*,S] = AA* > 0. O

An example of a hyponormal operator that is not subnormal:
A=U"+2U;

then A is hyponormal, but A? is not; so A is not subnormal (To see this use Theorem
3.3.7 below).

Example 3.3.3. Let ;1 be a compactly supported measure on C and define N, on
L*(p) by
Nu.f =zf.

Then N, is normal since N f = zf. If P?(u) is the closure in L?(u) of analytic
polynomials, define S, on Pét(/i) by

Suf ==f.

Then S,, is subnormal and N, is a normal extension of S,,.

Definition 3.3.4. An operator S is called quasinormal if S and S*S commute.
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Proposition 3.3.5. If S = UA is the polar decomposition of S then
S is quasinormal <= UA = AU.

Proof. (<) UA= AU = SA?2 =UA3 = A2UA = A%2S = § is quasinormal.

(=) If S is quasinormal then SA? = A2S (A% = §*S). Thus SA = AS, so
(UA— AU)A = SA— AS =0. Thus UA — AU = 0 on ran A. But if f € (ran A)* =
ker A then since ker A = ker U, we have U f = 0. Therefore UA = AU. O

Proposition 3.3.6. Every quasinormal operator is subnormal.

Proof. Suppose S is quasinormal.

(Case 1: ker S = {0}) If S = UA is the polar decomposition of S then U must
be an isometry. If E = UU* then F is the projection onto ranU. Thus (I — E)U =
U*(I — E) =0. Define V,B € B(H ® H) by

U I-F A 0
e Fs e P
Let N =VB. Since UA = AU and U*A = AU* it follows that N is normal. Since

v=lo Ve =0

we have NH C H and N|g = S.

(Case 2: kerS # {0}) Here kerS = £ C ker S* since S* = AU* = U*A. Let
Sq = (S|£)L. SoS=5®00n L1 @ L =H. Now S*S = 5751 @ 0. Observe 5 is
quasinormal. By Case 1, S; is subnormal and therefore S is subnormal. O

Remember [Con?, p.44] that

S'is pure quasinormal <= S = U®A, where A is a positive operator with ker A = {0}.

If X is a locally compact space, a positive operator-valued measure(POM) on X
is defined by a function @ such that
Q: a Borel set A C X — Q(A), a positive operator, € B(H);
QX) =1
(Q()f, f) is a regular Borel measure on X.

Every spectral measure is a POM. But the converse is false. Let E be a spectral
measure on X with values in B(K), H be a subspace of K and let P be the orthogonal
projection of K onto H. Define

QL) == PE(A) .
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Then @ is a POM with [|Q(A)|| < 1 for all A. But @ is a spectral measure if and
only if P commutes with F(A) for any A.

If @ is a POM and ¢ is a bounded Borel function on X then f ¢d(Q denotes the
unique operator T' defined by the bounded quadratic form

(Tf. ) = / H(@)d(Q()]. f).

Theorem 3.3.7. If S € B(H), the following are equivalent:

(a) S is subnormal.

(b) (Bram-Halmos, 1955/1950) If fo,--- , fn € H then

> (S fr, 8% F5) > 0. (3.3)

jok
(¢) (Embry, 1973) For any fo, -, fn € H

D (SRS ST ) 2 0. (3.4)

j.k
(d) (Bunce and Deddens, 1977) If By, -- , B, € C*(S) then

> B;S*SiB, >0
gk

(e) (Bram, 1955) There is a POM Q supported on a compact subset of C such that

SEem = /E"zmdQ(z) for all m,n > 0. (3.5)

(f) (Embry, 1973) There is a POM Q on some interval [0,a] C R such that

SHen = /t2"dQ(t) for alln > 0.

S

Proof. (a) = (b): Let N = [0

ﬂ }I:II/ be a normal operator on K. If P is the
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projection of K onto H, then S*"f = PN*"f, fe H. If fo,---, f, € H then
D (S fe, S5 ) =) (NI fr, N¥f)
Jik J.k
=Y (NN fi., £)
3.k
= Z (NIN**fi., £3)
= Z (N** fr, N7 f)

2

ZN*kfk
k

So (B33) holds.
(b) = (c): Put gr. = S*fi. Then (833) implies

D (g, SFg5) =Y (ST i, ST ).

Jk 7,k

So (B4) holds.
(c) = (a): See [Con2|.
(b) = (d): If By, , By € C*(S), let fi = By,f. Then

(B3) — <Z B;-*S*ijka,f> >0

g,k
(d) = (b): By Zorn’s lemma,
any operator = @ star-cyclic operator.

So we may assume that S has a star-cyclic vector eg, i.e., assume H = cl [C*(5)eg].
If By,---, B, € C*(S) then (B3) holds for f; = Bpep. Since (B3) holds for a dense
set of vector, (B=3) holds for all vectors.

(a) = (e): Let N = [zdE(z) be the spectral decomposition of N, a normal
extension of S acting on K O H. Let P be the orthogonal projection of K onto H.
Define

Q(A) := PE(A)| g for every Borel subset A of C.
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Then @ is a POM and is supported on o(N). Also for all h € H,

(S*"8™h,h) = (N*"N™h, h)

zZ" 2" d(E(2)h, h)

so that
SFrS™ = /E“zmdQ(z).

(e) = (f): Let Q be the POM hypothesized in (i) and K = supp Q. For a Borel
set A C [0, 00), define

Q+(D) =Q{zeC:|z] € A}

In fact, Q4 (A) = Q(17*A), where 7(2) = |z|. Then Q; is a POM whose support
C [0,a] with @ = max,eck |2|. For any f € H,

[eaiosn = [1aQes. .
(f) = (¢): Fix fo,--- , fn € H and define scalar-valued measures p;; by

k(D) = (Q(A) fj, fr)-
Let p be a positive measure on [0, a] such that p;, < p for any j, k. Let hj, = ds:‘“
(Radon-Nikodym derivative). For each u € C[0,a], p(u) = [udQ defines a bounded
operator and p : C[0,a] — B(H) is a positive linear map. Note that for all w,
(p(u) fj, fe) = [udpjr = [ uh;pdp. Moreover if Xg,- -+, A, € C and w > 0 then

2

> ( / uhjkdu> A= S e ir g = 0.
J

Jik

It follows that (h;k(t));,, is positive (n + 1) X (n + 1) matrix for [u] almost every ¢.
This implies that

3" b6t > 0 ace. [u].
ik
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Therefore
0< / > hipU R dp(t)
j.k
= Z/t2(j+k)dﬂjk(t)
.k
— Z <Sj+kfj, Sj+kfk> 7
.k
so (B3) holds. O

Remark. Without loss of generality we may assume that ||S|| < 1. Let K = H* and
let Ky = the finitely nonzero sequences in K. Let

1 S* S§*2
S S*S  §*2§ ...
M= |S% S§*8? S§*252 ... on K.

S§3  §*g3  Gx2g3

Iff:(foa"'7fna"')6K0then

P [CHNEEDY

J J

< ; l;lsllwllfklﬂ
< zj: [zk: ISIIZH”] [zk: IkaI]2

< (L= [ISI%)72IA1P.

2

k

Since ||S]| < 1, M f € K and M extends to a bounded operator on K. Clearly, M is
hermitian. Note

(MF, Y =Y (57 fr, S* £3).
j.k
So
(B3) holds < M is positive.

A B

Recall the Smul’jan theorem — if M = [B* c

} (A, C hermitian, A invertible), then
M >0+ B*"A"'B<C.
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We thus have that if

S s ... grkg
M = S2 S*SQ S*kSQ

then

52 S*S  §*2g  §*3g9

M>0+= |ga| [s* §2 s ..]< |57 8§78 5957

[ 6*S — §8*  §*25 - §5*2 :
e |9FS7 - S28r §*Ps2 5257 | 5

50,8 (578 (58]
[S*,S2] [5*2,32] [5*3’5,2] )
= |57, [$%2,8%] [5%3,8%] .| =0

Definition 3.3.8. If Ais a C*—algebra, define s € A to be subnormalif 7, a;s*ksjak >
0 for any choice ag, - ,a, € C*(s).

It is easy to see that if A, 5 are C*—algebras and p : A — B is a x*—homomorphism
then p maps subnormal elements of A onto subnormal elements of B. In particular,
it (p, H) is a representation of A, p(s) is a subnormal operator on H whenever S is
a subnormal element of A.

Remark. (Agler [Agd, 1985)’s characterization of subnormal operators) If S is a con-
traction then

S is subnormal <= Z(—l)k (Z) S*k8k >0 for all n > 1.
k=0

Note that if N is a normal extension of S € B(H) to K then
KQ\/{N*kh:heH,k:O,l,2,~-}.
Ifﬁ::\/{N*kh:heH,k:O,l,Z,m} then

L is a reducing subspace for N that contains H.

Thus N|. is also a normal extension of S. Moreover if R is any reducing subspace
for N that contains H then R must contain L.
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Definition 3.3.9. If S is a subnormal operator on H and N is a normal extension
of S to K then N is called a minimal normal extension of S if

K:\/{N*"‘h;heH,kzo}.

Proposition 3.3.10. If S is a subnormal operator then any two minimal normal
extensions are unitarily equivalent.

Proof. For p = 1,2 let N, be a minimal normal extension of S acting on K, O H.
Define U : K1 — K3 by

U (N"h) = N3"h (h € H).

We want to show that U is an isomorphism. If hy,--- ,h,, € H and ng, -+ ;0 >0
then

2
- <Z N3™ hy, ZN;"J'hj>
k j

= (No" hg, No" hj)
7,k

=D (8™, S™hy)

> N3 by
k

= (N1" hy, N1 hy)

which shows that
U

Z ankhk‘| _ ZN;nkhk
k k

is a well defined linear operator from a dense linear manifold in K; onto a dense linear
manifold in K5 and U is an isometry. Also for all h € H, Uh = h. Thus for h € H
and n > 0,

UNi{N{"h =UN{"Sh = N;"Sh = NyN;"h = NyUN;"h,
i.e., UN; = NoU, so that N1 and N> are unitarily equivalent. O
Now it is legitimate to speak of the minimal normal extension of a subnormal

operator. Therefore it is unambiguous to define the normal spectrum of a subnormal
operator S, 0, (5), as the spectrum of its minimal normal extension.
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Proposition 3.3.11. If S is a subnormal operator then the following hold:
(a) (Halmos, 1952) 0,(S) C o(S5).

(b) 0ap(S) C 0,(S) and 9o (S) C 0o, (S).

(¢) (Bram, 1955) IfU is a bounded component of C\c,,(S), then either UNo(S) =0
or U Co(S).

Proof. (a) We want to show that S is invertible = N is invertible.
If N = [ zdE(z) is the spectral decomposition of N, € > 0, and M = E (B(0;¢)) K
then we claim that

INFfII < eIFIl - for k=1,2,3,-

-and f € M.
To see this let A := B(0;¢). Then

NE(A) = /zXA(z)dE(z) = ¢(N), where ¢ = zxA.
We thus have

INE(A) = l6(N)]] < [[4]] = sup|é(2)] = sup{|z] : z € A} <e.
So if f € M then E(A)f = f. Therefore

INfI = INEA)fII < INEQ)ILFIF< el fII-
Soif fe€ M and h € H,

[ = |47, 858 74m)| = (£, N*5*m)| = (N £, 57)|

< [R5 Al < HIALIS T < ST A
Letting £ — oo shows that

e< ——— = (f,h)y =0,
s =

so that H C M. Since M is a reducing subspace for N, N|,;. is a normal extension

of S. By the minimality of N, M = {0} and so N is invertible because N = N, and
lp(x) > € ae.
(b) Observe that

A € 04p(S) = 3 unit vectors h,, € H such that ||(A — S)h,| — 0.
But (A — S)h, = (A — N)h,,.
= 04p(S) C 04p(N) = (N) = 0,(95).

A€ 00(S) = A€ 04p(S) = A€ 0,(5) = A ¢ into,(S) = X € 00,(5).
(c) (Due to S. Parrot) Let U be a bounded component of a,,(S)° and put

Up=U\o(S)and U_ =UnNo(S9).

SoU=U_UU;, U NU_ =0 and Uy is open. By (b), U_ = int 0(5), so that
U_ is open. By the connectedness of U, either Uy =) or U_ =

O

Un
0.
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Corollary 3.3.12. If S is a subnormal operator whose minimal normal extension is
N then
r(8) =I5 = IN]| = r(N).

Proof. Since r(S) < ||S]| < ||N|| = #(N), the result follows from Proposition BZ3T1.
O

Definition 3.3.13. If A € B(H),eq € H, K is a compact subset of C containing
o(A) then eq is called a Rat(K) cyclic vector for A if

{u(A)eo tu € Rat (K)} is dense in H.

An operator is called Rat (K) cyclic if it has a Rat (K) cyclic vector. In the cases
that K = o(S), A is called a rationally cyclic operator.

Recall that eg is a cyclic vector for A (A is a cyclic operator) if {p(A)ey :
p is a polynomial} is dense in H. By Runge’s theorem, eq is cyclic for A < eq is
Rato(A) cyclic for A.

Note that if S is subnormal and N = mme (5) then since (V) C o(.5), it follows
that if K contains o(S) then u(N) is well defined for any U € Rat (K).

Theorem 3.3.14. If S is subnormal and has a Rat (K) cyclic vector ey then there
exists a unique compactly supported measure p on K and an isomorphism U : K —
L?(u) such that

(a) UH = (K, p);

(b) U@o = 1,'

(¢) UNU™t = N,,;

(d) if V = Uly, then V is an isomorphism of H onto R*(K,u) and VSV~ =

Nyl r2 (k) -

Proof. If N = mme (S) then K = \/ {N*"u(N)eg:n > 0,u € Rat (K)}. We claim
that eg is a *—cyclic vector for N. Indeed, let £ =\ {N*"u(N)eg : n,k > 0}. Ev-
idently, £ is a reducing subspace for N. By the Stone-Weierstrass theorem, C'(K)
is the uniformly closed linear span of {Z"z" :n,k >0} . Since Rat (K) C C(K), we
have that w(N)eg € L for every U € Rat (K). Thus H C £. By the minimality of
N we have H = K. Hence ey is a x—cyclic vector for N. Therefore there exists a
compactly supported measure p and an isomorphism

U: K — L*(u) such that Ueg =1 and UNU ' =N,,.

So (b) and (c) hold. Observe U¢(N) = ¢(N,)U for every bounded Borel function
¢. In particular, for u € Rat (K), Uu(S)eg = Uu(N)eg = u(N,)Uey = u(Ny)1 = w.
Taking limits gives (a). The assertion (d) is immediate. The proof of the uniqueness
of p comes from the Stone-Weierstrass theorem. O

95



CHAPTER 3. HYPONORMAL AND SUBNORMAL THEORY

Corollary 3.3.15. An operator S is a cyclic subnormal operator if and only if S = S|,
for some compactly supported measure .

For any compact K, define
R(K) := the uniform closure in C(K) of Rat (K).

Define || f||x = sup,cx|f(2)|. For a subnormal operator S, we may define f(S) for all
functions f € R(0(S)). If f € R(c(5)), f(S) = f(N)|a. So f(S) is subnormal, so
that
a(f(5)) = f(o(9))

[fllocsy = IF DN < NN = 1oy < [ fllocs),
i.e., the map f — f(S) is an isometry from R(c(S)) into B(H). Define, for f €
R(o(5)),

f(S) := the image of f under this isomorphism.
Then

f(IN)H C H, f(N)|a = f(5).

Theorem 3.3.16. If S is subnormal and N = mne (S), and for each f € R(0(S5)),

f(S) = f(N)|g then the map f — f(S) is a multiplicative linear isometry from
R(o(S)) into B(H) that extends the Riesz functional calculus for S. Moreover,

a(f(S5)) = f(o(S)) for f € R(o(S5)).
Proof. See [Con?). O

Lemma 3.3.17. If S is subnormal and o(S) C R then S is hermitian.

Proof. Let N = mne (S), acting on K. By Proposition B3, o(N) C o(S) C R.
Hence N = N*. Then every invariant subspace for N reduces N. In particular, H
reduces N. By the minimality of N, K = H. So S = N and hence S is hermitian. [

Proposition 3.3.18. If S is subnormal and R(o(S)) = C(o(S)) then S is normal.

Proof. Let ¢(z) = Rez and ¢(z) = Im z. By hypothesis, ¢,% € R(c(S)). By Theorem
B33, ¢(S) is subnormal and

a(¢(5)) = ¢(a(S)) C R.

Therefore ¢(S) is hermitian. Similarly, ¥(S) is hermitian. Since ¢ + i) = z, S =
d(S) + ip(S). Since ¢(S)P(S) = ¥ (S5)p(S), it follows S is normal. O

Remark. If o is compact and R(c) = C(0) then o is called thin. It was known [Wed]
that

(i) o is thin = into = (;

(ii) The converse of (i) fails;

(iii) m(o) = 0 = o thin.

96



CHAPTER 3. HYPONORMAL AND SUBNORMAL THEORY

3.4 p-Hyponormal Operators

Recall that the numerical range of T € B(H) is defined by

wir) = { (o) s ol =1

and the numerical radius of T is defined by
w(T) = sup{|)\| A€ W(T)}

It was well-known (cf. [Ha3]) that
(

(a) W(T) is convex (Toeplitz-Haussdorff theorem);
) convo(T) C clW(T);

(b
(c) r(T) = w(T) < |[T]; B )
() dist (o (T)) <IT =27 < dist (\,clw ()

Definition 3.4.1. (a) T is called normaloid if ||T|| = r(T);
(b) T is called spectraloid if w(T) = r(T);
(c) T is called convezxoid if convo(T) = clW(T);
(d) T is called transaloid if T — X is normaloid for any X;
(e) T is siad to satisfy (G;)-condition if

1

N s .
— dist (\, o(T))’

1T =) dist (A, o(T))"

in fact, [|(T — \) 7Y =

(f) T is called paranormal if ||T?x|| > ||Tx||? for any x with ||z|| = 1.

It was well-known that it T is paranormal then
(i) T™ is paranormal for any n;
(ii) T is normaloid;
(iii) 7! is paranormal if it exists;
and that
hyponormal C paranormal C normaloid C spectraloid.

Theorem 3.4.2. If T € B(H) then

(a) T is converoid <= T — X is spectraloid for any A, i.e., w(T — X) =r(T — \);

(b) T is convezoid <= ||(T — \)71|| < TSt o, clon\/a(T)) for any A\ ¢ convo(T).
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Proof. (a) Note that

conv X = the intersection of all disks containing X
= ﬂ{/\: A —p| < sup Iﬂ:ul}-
“ reX

Since cl W(T') is convex,

AW(T) = ﬂ{x; A=l < w(Tﬂ)};

m

conv o (T) = ﬂ{)\ A= pl < r(T—u)}.

m

so the result immediately follows.
(b) (=) Clear from the preceding remark.
(<) Suppose

-1 1
< dist (A, conv (1))

(T — X) for any A ¢ convo(T),

or equivalently,

(T = X\)z|| > Tt oo, Cl()nVa(T)) for any A ¢ convo(T) and ||z|| = 1.

Thus

|IT2]|? — 2Re (Tx, z)X + [A]* > inf <s|2 — 2Re s\ + |)\|2>.

~ seconvo(T)
Taking \ = [A\|e~*?+7)  dividing by |A| and letting A — oo, we have

Re (Tz:,:z:>ew > inf Re (sew) for ||z|| =1,
seconvo(T)

which implies cl W(T') C conv o (T). Therefore cl W(T) = convo(T). O

Corollary 3.4.3. We have:
(a) transaloid = convexoid,
(b) (G1) = convexoid.

Proof. (a) Clear.
(b) (T =N~ =

1 1
dist (», o(T)) < dist (A, conv o(T)) =

Definition 3.4.4. An operator T' € B(H) is said to satisfy the projection property if
Reo(T) = o(ReT), where ReT := (T + T™).
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Theorem 3.4.5. An operator T € B(H) is convezxoid if and only if
Re convo (¢T) = conveo (Re (e”T))  for any 6 € [0,27).
Proof. Observe that

Re (ewconv o(T)) = convo (Re (eieT))
=clW (Re (7))
= Re cl W (eT)
=Re (ewch(T)) .

which implies that convo(T") = cl W(T') and this argument is reversible. O

Example 3.4.6. There exist convexoid operators which are not normaloid and vice
versa. (see [HaZ, Problem 219]).

Example 3.4.7. (An example of a non-convexoid and papranormal operator) Let U
be the unilateral shift on /2, P = diag(1,0,0,...) and put

[u+1 P
T{O 0}

Then o(T) = o(U + 1) U{0} = {A: [A—1] < 1}. Butif z = (—3,0,0,...) and
:

W) > (T (x®y), zdy) =

Y= (@,0,0,...) then

‘zland

<0.

=%

| =

Therefore T is not convexoid, but T is papranormal (see [T. Furuta, Invitation to
Linear operators]).
Definition 3.4.8. An operator T € B(H) is called p-hyponormal if
(T*T)? > (TT*)".
If p =1, T is hyponormal ad if p = is called seminormal. It was known that

1
s, T
27

g-hyponormal = p-hyponormal for p < ¢ by Loner-Heinz inequality.

Theorem 3.4.9. p-hyponormal =—> paranormal.

Proof. See [Axd]. O
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It was also well-known that if 7" is p-hyponormal then
(i) T is normaloid;
(ii) T is reduced by its eigenspaces;
(iii) 7! is paranormal if it exists.

However p-hyponormal operators need not be transaloid. In fact, p-hyponormality is
not translation-invariant. To see this we first recall:

Lemma 3.4.10. If T is p-hyponormal then T™ is £-hyponormal for 0 < p < 1.
Proof. See [AW]. O

Theorem 3.4.11. There exists an operator T satisfying
(i) T is semi-hyponormal;
(ii) T — X is not p-hyponormal for any p > 0 and some X € C.

Proof. Let

S =4U% + U*? +2UU* +2 (U =the unilateral shift on ¢2).

Then we claim that

(a) S is semi-hyponormal;
(b) S — 4 is not p-hyponormal for any p > 0, in fact S — 4 is not paranormal.

Indeed, if we put ¢(z) = 2z + 2~ ! the T}, is hyponormal but Tg is not because Since
Tj = 5, so S is semi-hyponormal. On the other hand, observe that

[1(S —4)eol|* =20 and [|(S —4)%eo|| = V384,

SO
105 = 4)eol|* > [|(S — 4)*eoll,

which is not paranormal. O
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3.5 Comments and Problems

The following problem on p-hyponormal operators remains still open:

Problem 3.1.

(a) Is every p-hyponormal operator convexoid ?
(b) Does every p-hyponormal operator satisfy the (G1 )-condition ?
(¢) Does every p-hyponormal operator satisfy the projection properry ¢

In fact,
Yes to (b) = Yes to (a) = Yes to (c).

It was known that the projection property holds for every hyponormal operator. For
a proof, see [Put?)].

For a partial answer see [M. Cho, T. Huruya, Y. Kim, J. Lee, A note on real parts
of some semi-hyponormal operator.]

It is easily check that every p-hyponormal weighted shift is hyponormal. However
we were unable to answer the following:
Problem 3.2. Is every p-hyponormal Toeplitz operator hyponormal ?

We conclude with a problem of hyponormal operators with finite rank self-commutators.
In general it is quite difficult to determine the subnormality of an operator by def-

inition. An alternative description of subnormality is given by the Bram-Halmos
criterion, which states that an operator 1" is subnormal if and only if

> (T, Ta) >0
,J

for all finite collections zg, 1, - -+, € H ([Bra], [ConT, I1.1.9]). It is easy to see that
this is equivalent to the following positivity test:

T TT ... T*T
S 20 @lk>1). (3.6)

Condition (B®E) provides a measure of the gap between hyponormality and subnor-
mality. An operator T € B(H) is called k-hyponormal if the (k+1) x (k+ 1) operator
matrix in (B8) is positive; the Bram-Halmos criterion can be then rephrased as saying
that T is subnormal if and only if T" is k-hyponormal for every k > 1 ([CNMXI]]). It
now seems to be interesting to consider the following problem:

Which 2-hyponormal operators are subnormal ? (3.7

The first inquiry involves the self-commutator. The self-commutator of an operator
plays an important role in the study of subnormality. B. Morrel [Mai] showed that
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a pure subnormal operator with rank-one self-commutator (pure means having no
normal summand) is unitarily equivalent to a linear function of the unilateral shift.
Morrel’s theorem can be essentially stated (also see [ConZ, p.162]) that if

(i) T is hyponormal;
(ii) [T*,T] is of rank-one; and (3.8)
(iii) ker [T*,T] is invariant for T,

then T'—f3 is quasinormal for some 5 € C. Now remember that every pure quasinormal
operator is unitarily equivalent to U ® P, where U is the unilateral shift and P is
a positive operator with trivial kernel. Thus if [T*,T] is of rank-one (and hence so
is (T — 8)*,(T — B)]), we must have P = « (# 0) € C, so that T — 8 = aU, or
T = aU + B. It would be interesting (in the sense of giving a simple sufficiency for
the subnormality) to note that Morrel’s theorem gives that if T" satisfies the condition
(BR) then T is subnormal. On the other hand, it was shown ([CuLZ, Lemma 2.2])
that if 7" is 2-hyponormal then T'(ker [T*,T]) C ker [T, T]. Therefore by Morrel’s
theorem, we can see that

every 2-hyponormal operator with rank-one self-commutator is subnormal. (3.9)

On the other hand, M. Putinar [Pud] gave a matricial model for the hyponormal
operator T' € B(H) with finite rank self-commutator, in the cases where

Hy = \/ T*k (ran[T*,T]) has finite dimension d and H = T"H,.
k=0 n=0

In this case, if we write

n
H,=G,9G,—1 (n>1) and G, := \/ TFHy (n>0),
k=0
then T has the following two-diagonal structure relative to the decomposition H =
Hy® Hi @ ---:
By, 0 0 0
Ay By 0 0

r=(0 4 B 0 - (3.10)
0 0 A, Bs

where
dim (H,) =dim (H,4+1) =d (n > 0);

[T*,T] = ([Bg, Bo] + AjAo) & 0o
[Brs1, Bata] + Ap 1 Angr = Ap A, (n > 0);
A% Bpy1 = Bu A% (n>0).

(3.11)

We will refer the operator (B0) to the Putinar’s matricial model of rank d. This
model was also introduced in [GuB, Pull, Xi3, [Yal], and etc.
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We here review a few essential facts concerning weak subnormality. Note that
the operator T' is subnormal if and only if there exist operators A and B such that

~ T Al .
T:= [0 B} is normal, i.e.,

[T*,T) := T*T — TT* = AA*
A*T = BA* (3.12)
[B*,B] + A*A =0

The operator T is called a normal extension of T. We also say that T in B(K)
is a minimal normal extension (briefly, m.n.e.) of T' if K has no proper subspace
containing H to which the restriction of T is also a normal extension of 7. It is
known that

T = mne(T) < K:\/{f*"h: heH, n>0},

and the m.n.e.(T") is unique.
An operator T' € B(H) is said to be weakly subnormal if there exist operators
A€ B(H',H) and B € B(H’) such that the first two conditions in (8T2) hold:

[T*,T] = AA* and A*T = BA*, (3.13)

or equivalently, there is an extension T of T such that T*T f= TT* f forall feH.
The operator T is called a partially normal extension (briefly, p.n.e.) of T. We also
say that T in B(K) is a minimal partially normal extension (briefly, m.p.n.e.) of
T if K has no proper subspace containing H to which the restriction of T is also a
partially normal extension of 7. It is known ([CulZ, Lemma 2.5 and Corollary 2.7])
that R R

T= mpne(T) < K= \/{T*"h : he H, n=0, 1},

and the m.p.n.e.(T") is unique. For convenience, if T = m.p.n.e. (T) is also weakly

R

subnormal then we write 72 := T and more generally, (™) := T(n=1)_ which will
be called the n-th minimal partially normal extension of T. It was ([CuLZ], [CIP])
shown that

2-hyponormal = weakly subnormal =—> hyponormal (3.14)

and the converses of both implications in (BId) are not true in general. It was
([CnL2]) known that

Tis weakly subnormal = T'(ker [T, T]) C ker [T*, T (3.15)
and it was ([CIP]) known that if 7 := m.p.n.e.(T) then for any k > 1,

T is (k 4 1)-hyponormal <= T is weakly subnormal and T is k-hyponormal.
(3.16)
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So, in particular, one can see that if T" is subnormal then T is subnormal. It is worth
to noticing that in view of (B1d) and (B13), Morrel’s theorem gives that every weakly
subnormal operator with rank-one self-commutator is subnormal.

We now have

Theorem 3.5.1. Let T € B(H). If

(i) T is a pure hyponormal operator;
(ii) [T*,T] is of rank-two; and
(iii) ker [T*,T] is invariant for T,

then the following hold:

1. If Tlxer [7+,1] has the rank-one self-commutator then T is subnormal;

2. If T|xer (7= 1) has the rank-two self-commutator then T is either a subnormal
operator or the Putinar’s matricial model (8ID) of rank two.

Proof. See [Lel.3]. O

Since the operator (BIU) can be constructed from the pair of matrices {Ag, By},
we know that the pair {4y, By} is a complete set of unitary invariants for the operator
(81M™). Many authors used the following Xia’s unitary invariants {A, C'} to describe
pure subnormal operators with finite rank self-commutators:

A = (T*lran [T*,T])* and C = [T*7T]|ran [T*,T]'

Consequently,
A =By and C =[B, By + A2

We know that given A and C (or equivalently, Ay and By) corresponding to a pure
subnormal operator we can reconstruct 7. Now the following question naturally
arises: “what are the restrictions on matrices Ag and By such that they represent a
subnormal operator ?” In the cases where Ay and By operate on a finite dimensional
Hilbert space, D. Yakubovich [Yall] showed that such a description can be given in
terms of a topological property of a certain algebraic curve, associated with Ay and
By. However there is a subtle difference between Yakubovich’s criterion and the
Putinar’s model operator (B1M0). In fact, in some sense, Yakubovich gave conditions
on Ap and By such that the operator (BI0) can be constructed so that the condition
(BID) is satisfied. By comparison, the Putinar’s model operator (BI0) was already
constructed so that it satisfies the condition (BI). Thus we would guess that if the
operator (B10) can be constructed so that the condition (B) is satisfied then two
matrices {Ap, By} in (2.8) must satisfy the Yakubovich’s criterion. In this viewpoint,
we have the following;:

Conjecture 3.3. The Putinar’s matricial model (BI0) of rank two is subnormal.

An affirmative answer to the conjecture would show that if T is a hyponormal
operator with rank-two self-commutator and satisfying that ker [T*,T] is invariant
for T then T is subnormal. Hence, in particular, one could obtain: FEvery weakly
subnormal operator with rank-two self-commutator is subnormal.
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Chapter 4

Weighted Shifts

4.1 Berger’s theorem

Recall that given a bounded sequence of positive numbers « : «g, a1, ag, - -+ (called
weights), the (unilateral) weighted shift W, associated with « is the operator ¢2(Z.)
defined by

Waen = anentr (n > 0),

where {e,, }22, is the canonical orthonormal basis for £2. Tt is straightforward to check
that
W, is compact <— a,, — 0.

Indeed, W, = UD, where U is the unilateral shift and D is the diagonal operator
whose diagonal entries are «,.

We observe:
Proposition 4.1.1. If T = W, is a weighted shift and w € D then T = wT.
Proof. If Ve, := w"e, for all n then VIT'V* = wT. O]

As a consequence of Proposition BT, we can see that the spectrum of a weighted
shift must be a circular symmetry:

o(Wa) = 0(wWy) = wo(Wy,).
Indeed we have:

Theorem 4.1.2. If T = W, is a weighted shift with weight sequence o = {a, 152
such that a, — oy then

(i) op(T) = 0;

(i) o(T) ={A: [A < oy}

(iil) oe(T) = {A: [N = ay };

(iv) [N < ax = ind(T —A) = —1.

105



CHAPTER 4. WEIGHTED SHIFTS

Proof. The assertion (i) is straightforward. For the other assertions, observe that if
ay = 0 then T is compact and quasinilpotent. If instead a4 > 0 then T — a U
(U :=the unilateral shift) is a weighted shift whose weight sequence converges to 0.
Hence T'— a, U is a compact and hence

0e(T) = oc(aU) = aroc(U) = {A: [A[ = a4 }.
If |\| < ay then T — A is Fredholm and
index (T — \) = index (.U — ) = —1.
In particular, {\ : |A\| < a4} C o(T). By the assertion (i), we can conclude that

oT)={: A <oy} O

Theorem 4.1.3. If T = W, is a weighted shift with weight sequence o = {an, 152
then

af - af

(1,7 = ad — a2

Proof. From a straightforward calculation. O

The moments of W, are defined by

Bo:=1, Bny1 =0y,
but we reserve this term for the sequence v, := 2.
Theorem 4.1.4. (Berger’s theorem) Let T' = W, be a weighted shift with weight
sequence o = {a, } and define the moment of T by
Y0 :=1and v, :=a2at---a2_| (n>1).

Then T is subnormal if and only if there exists a probability measure v on [0, |T||?]
such that

n = t"du(t) (t>1). 4.1
Y /mm (1) (t> 1) (4.1)

Proof. (=) Note that T is cyclic. So if T' is subnormal then T' = S, i.e., there is an
isomorphism U : L?(u) — P?(u1) such that

Uey=1and UTU ' = 5,,.

Observe T™ey = \/Anen, for all n. Also U(T"ey) = Sl}er = Sl’jl =2z". So
[1ePrdn = [10T"eofdn = [ 0GPl =0 [ 1Ven Pl =aUenl] =20
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If v is defined on [0, ||T||?] by

v(A) = ,u({z : |z|2 € A})7

then v is a probability measure and v,, = [ t"dv(t).
(<) If v is the measure satisfying (E1), define the measure p by du(re’?) =
s=dfdu(r). Then we can see that T = S,. O

Example 4.1.5. (a) The Bergman shift B, is the weighted shift with weight sequence
a = {a,} given by
n+1
=4/ > 0).
n 4+ 2 (n20)
2 2

o 2 _
Tn = QpQp - Q1 =

o727

Then B, is subnormal: indeed,

”n+1 n+1

DN | =
[SCIN )

and if we define p(t) = ¢, i.e., du = dt then

1 1
tdu(t) = =
/0 w(t) i it/

(b) If v, : 8,1,1,1,- -+ then W, is subnormal: indeed 7, = 32 and if we define
dp = %51 + (1 — 8%)6¢ then f01 t"du = 5% = .

Remark. Recall that the Bergman space A(D) for D is defined by
AD) := {f :D — C: fis analytic with / |f|2dp < oo}.
D

Then the orthonormal basis for A(D) is given by {e, =v/n+12": n=0,1,2,---}
with dp = 2dA. The Bergman operator T': A(D) — A(D) is defined by

Tf=zf.

In this case the matrix (a;;) of the Bergman operator T with respect to the basis
{en=vn+12": n=0,1,2,---} is given by

aij = <T€j, 67;>
=(T\/j+122, Vi+ 12"
= (V/j+ 12T Vit 12"

=vV+DE+ 1)/ Az dp
D
1 2 o )
=VE+D(E+1) = / / AR SR CRS S [ My )
™ Jo 0

:{ =4+
0 (i#j+1):
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therefore

o

N

o

Wi

K’ o
N[V
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4.2 k-Hyponormality

Given an n-tuple T = (T1,...,T,) of operators acting on H, we let
(17, 1] (13,74 -+ [T, 1]
T, T] = [Tf‘iTz] [Tz*sz] [T$?T2]
7T 05T - [T

By analogy with the case n = 1, we shall say that T is (jointly) hyponormal if
[T*, T] > 0.

An operator T € B(H) is called k-hyponormal if (1,T,T?,--- ,T*) is jointly hy-
ponormal, i.e.,

My(T) = ([T*j,Tka

ij=1
[Twajq [IW2311 T [IWkajq
[1’!*7 T2] [T*27 TQ] . [Tbkk7 T2]

= . . . . >0
[T*,Tk] [T*2,Tk] . [T*k7Tk]

An application of Choleski algorithm for operator matrices shows that My (T) > 0 is
equivalent to the positivity of the following matrix

1 T* T*k
T T*T ... T*FT

The Bram-Halmos criterion can be then rephrased as saying that

T is subnormal <= T is k-hyponormal for every k > 1.

Recall ([AfH],[CMXI]],[CaS]) that T is called weakly k-hyponormal if
k .
LS(T,T? -, T") := ZajTj ca=(ay,--,a) €CF
j=1

consists entirely of hyponormal operators, or equivalently, My (T) is weakly positive,
ie.,

)\11’ )\11[,'
<Mk(T) e >ZOV/\1,"';/\k€C-
Akx Akx
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Observe that o o o o
([ONT + -+ XeTE) (T + -+ NT)] 2, @)

[T*aT} [T*QvT] [T*va] A1z AT
<[T*,T2] [T*2,T?] [T** T2]| | Ao )\233>

(4.2)

[T*, 7% [T*2, 7% - [T*F, 7% [Mx] [z

If £k = 2 then T is said to be quadratically hyponormal. If k = 3 then T is said
to be cubically hyponormal. Also T is said to be polynomially hyponormal if p(T) is
hyponormal for every polynomial p € Cl[z].

Evidently, by (272)

k-hyponormal = weakly k-hyponormal.

The classes of (weakly) k-hyponormal operators have been studied in an attempt to
bridge the gap between subnormality and hyponormality ([Cul, Cu3, Cukl, CukY,
CuE3, CLO, Culd, Culd, Col3, CMX|, DPY, McCH]). The study of this gap has been
only partially successful. For example, such a gap is not yet well described for Toeplitz
operators on the Hardy space of the unit circle. For weighted shifts, positive results
appear in [Cul] and [CuF3], although no concrete example of a weighted shift which
is polynomially hyponormal but not subnormal has yet been found (the existence of
such weighted shifts was established in [CP1] and [CP2]).

Theorem 4.2.1. Let T = W, be a weighted shift with weight sequence o = {cu, }5°.
The following are equivalent:

(a) T is k-hyponormal;

(b) For every n > 0, the Hankel matrix

Tn Tn+1 T Undk+1
& Yn+1 Tn+2 Tt Untk+2 ] o
(’Yn+i+j)1'7j:0 = . . . . 18 positive.
Yn+k+1  Vntk+2 0 Ynt2k42
Proof. [Caall, Theorem 4] O

Lemma 4.2.2. Let T = (T1,T») be a pair of operators on H. Then T is (jointly)
hyponormal if and only if

(i) Ty s hyponormal
(ii) To is hyponormal

(i) (T3, Toly, @)* < (T3, Ti]z, 2)((T5, Tely,y) (for any z,y € H).
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Proof. [T*,T] > 0 < <[T*,T*] ( t:; ),( txy >> >0 for any x,y € H and t € R.
Thus

o= ([ el ] () (5))=
([T, Ty, ) + (T3, Toly, y) + 2Re (T3, Tyly, 2) > 0 (1)
=—1If T1 and T, are hyponormal then
(T3, Toly,y) + 2t (T3, Taly, )| + ([TY, Th]w, ) > 0
—D/4= (T3, Thly,«)* — ([T}, Th]e, 2)([T5, Toly, y) <0
= (15, Taly, 2)|” < (17, Tr, 2) (15, Taly, ) (%)

Conversely if (*) holds then
Re <[T2*a Tl]ya ‘T>2 < <[T1*v Tﬂﬂ?, I’><[T2*, TQ}ya y>7

which implies (1) holds. O

Corollary 4.2.3. Let T = (T1,T») be a pair of operators on H. Then T is hyponor-
mal if and only if T1 and Ty are hyponormal and

(T3, 1] = [T{, 1] DIT3, To]
for some contraction D.
Proof. This follows from a theorem of Smul’jan [Smui]:

[AB

B C} >0« A>0, C>0and B=VADVC for some contraction D.

Corollary 4.2.4. Let T = W, be a weighted shift with weight sequence o : oy <
ay < ag < ---. Then the following are equivalent:

(i) T is 2-hyponormal;

.. 2

(i) af i1 (ahin — )" < (afy1 — of) (@b pah 5 — ajap ) for any n > 0;

2

(111) a% (a%Jr2 — a%H) < 04%+2 (a?LH — a%) (ai+3 — ai+2) for any n > 0.
Proof. By Corollary B3,

(T, T?) hyponormal <= [T*z,T] = [T*,T]%E[T*Z,TQ]% for some contraction E.
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Observe that [T*,T] and [T*% T?] are diagonal and that [T*? T] is a backward
weighted shift. It follows that E is a backward weighted shift. So it suffices to
check that (n,n + 1)-entries of E. Now,

<[T*27T]en+1,en> - <[T*,T]%E[T*2,T2]%en+1,en>
- <E[T*2,T2]%en+1, [T*,T]%en>
= <<E[T*2,T2]%en+1, en+1> €n+1, <[T*,T]%en,en> en>
= <[T*2,T2]%en+17en+1> <[T*,T]%en,en> (Eeni1,ent1) -

Thus we can see that such a contraction E exists if and only if

2
(172, Thensa,en )| < AT Tlewsea) (1T, T%ens1, enin) 0> 0

which gives

2 2 22 2 2 2 2 2 2
anJrl (an+2 - an) S (an+1 - an) (an+2an+3 - anan+1)
(@?ap)? < a2a?a? (this holds automatically since a; < ag),

which gives (i) < (ii).
Finally, (iii) is just (ii) suitably rewritten. O
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4.3 The Propagation

We introduce:

Definition 4.3.1. If ap < a; = ag = a3 = --- then (ay,) is said to be flat.

Proposition 4.3.2. If T = W, is a weighted shift with flat weights then T is sub-
normal.

Proof. Without loss of generality we may assume that

(n) 1, 1,1,1,- -+ .
Then v,, = o2 for any n = 0,1,2,---. Put du = a?§; + (1 — a?)dy, where 6, = the
point mass at k. Then fol t"dpy = (1 —a?)-0+a?-1 = a? = ~,. Therefore, T is
subnormal. O

Theorem 4.3.3. Let T be a weighted shift with weight sequence {o, }52 .

(i) [Sta3] Let T be subnormal. Then

Oy = Qg for somen > 0= « is flat

(i) [Cu2] Let W, be 2-hyponormal. Then

Qp = Qg for somen > 0= « is flat.

Proof. (ii) = (i): Obvious.
(ii) Immediate from Corollary B=ZA(ii). O

Lemma 4.3.4. Let T be a weighted shift whose restriction to \/{e1,e2,---} is sub-
normal with associated measure . Then T is subnormal if and only if

(i) + e Ll p), ie., [1dp < oo;
.. -1
(i) o < ([3].)
In particular, T is never subnormal when u(a) > 0.

Proof. Let S := T|\/{e, e,,...}- Then S has weights () := azxq1 (K > 0). So the
corresponding “S numbers” are related by the equation

5k(5)=a1~--ak:% (k=1,2,---).
Qo
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Since Bx(S)? = [t**du, we see that

T is subnormal <= 3 a probability measure v on [0, ||T||] such that

2
%/t2<k+1)dl/(t) — Bk—gl — /Bk(S)Q _ /t2kdu (k > O)

Qg Qg

So t?dv = a3du. Thus
o2
T is subnormal <= dv = A\§y + TOd,u for some A > 0.

Thus
T is subnormal <= {

Theorem 4.3.5. For x > 0, let T, be the weighted shift whose weight sequence is

given by
b 3’ 47 57 67

(a) T, is subnormal <= 0 < x < \/g

k+1

(b) T, is k—hyponormal <= 0 < z < NeTE))

In particular, T, is 2-hyponormal <= 0 <z < %
(¢) T, is quadratically hyponormal <= 0 < x < \/g

Proof. (a) Ty|\/{ey e, } has measure dy = 2tdt. So, + € L'(u) and

1 , 1 1
- =2=z2"<_-_=z<4/-.
tllpr g 2 2
(b) It is sufficient to show that
Yoo 1 2
Mov2 v 20
Y2 Y3 V4

Since

2
’70:17 P)/l:xgu 72233:27 73253:774:51:7
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we have
1 22 22 L1 2
det | 22 %xQ %xz = z%det | 1 % %
2 2
3ot ga? ga? 3 2 5
1 4 3
=22 —— | 20=a< -.
<6Ox2 135) = =1
(c) See [Cu?) O
Let W, be a weighted shift with weights o = {a,,}52,. For s € C, write
D(s) == [(Wa +sW2) W + swg]
and let ) )
@0 % 0 - 0 0
Y @ o0 0
0O m ¢ -+ 0 0
Du(s):=PuD(s)Pa= | . . . | . e
0 0 O Gn—1 Yn—1
L0 0 0 - Y1 gn |
where P, := the orthogonal projection onto the subspace spanned by {eg,--- ,e,},
Qn = Up + |5]?v,
Tn = Sy/Wn,
where
Up = 37,_ O‘%fl
Un = Q00 ) —an 100
Wn = O‘?L(O‘%H —ap_q)%,

and, for notational convenience, a_o = a_1 = 0.
Clearly,

W, is quadratically hyponormal <= D, (s) >0 for any s € C, for any n > 0.
Let d, () = detD,(-). Then d,, satisfies the following 2-step recursive formula:

dO = qo, dl = qoq1 — |"YO|27 dn+2 = Qn+2dn+1 - |7n+l|2dn~

If we let ¢ := |s|?, we observe that d,, is a polynomial in ¢ of degree n + 1. If we write
n+1
dy = e(n,i)t’,
i=0
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then ¢(n, i) satisfy a double-indexed recursive formula, i.e.,

C(l, 1) = U1Vg + V1Ug — Wy

e(n,0) =ug -+ uy

cnyn+1)=vg-- vy

c(n+2,i) = upyoc(n+ 1,4) + vppoc(n + 1,4 — 1) — wpp1c(n, i — 1).

Theorem 4.3.6. (Outer propagation) Let T be a weighted shift with weight sequence
{an}22y. If T is quadratically hyponormal then

Qp = Qpg1 = Qpyo for somen =—> Qp = Qptl = Qpys = Qg =+ -

Proof. We may assume that n = 0 and ag = a3 = as = 1. We want to show that
a3 = 1. A straightforward calculation shows that
do=1+1
dy = t?
dy = (ag —1) t3
ds = (03— 1) (a3af — 1) t*
dy = quds — v3da
= [(ai — ag) +1 (aiag — ag)] (a§ — 1) (agai — 1) th—ta2 (ai - 1)2 (ag - 1) t3.
So

d4 2 2 3
Jim Gr = —ei(ea—1)7 20,

which implies that as = 1. O

Theorem 4.3.7. (Inner Propagation) Let T be a weighted shift with weight sequence
{an}22,. If T is quadratically hyponormal then

Qp = Qpt1 = Qny2 for somen = a1 = = Q.

Proof. Withou loss of generality we may assume n = 2, i.e., as = az3 = a4 = 1. We
want to show that a; = 1. We consider ds. Now,

d3(0) = q3(0)d2(0) = 0 since ¢3(0) = a2 — a3 =0
5(0) = ¢5(0)d2(0) — a3(a3 — ai)?ai(0) = -~ =0
5(0) = 2¢5(0)d5(0) — 2(1 — af)a} (0) = - - = —2a5(1 — o).
Therefore
ds(t) = —ag(1 —a3)3? +--- .
Since d3 > 0 (all ¢ > 0), it follows ay = 1. O
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Theorem 4.3.8. (Propagation of quadratic hyponormality) Let T be a weighted shift
with weight sequence {a,}22 . If T is quadratically hyponormal then

Qp = Qpyq for somen >1 = « is flat, i.e., oy =g =--- .

Proof. Without loss of generality we may assume n = 1 and a3 = ag = 1. We want
to show that ag = 1 or a3 = 1. Then we have

dy(t) = a2ai(ad — 1)(a2 — 1%t + (4, 3)t® + c(4, 4)t* + c(4,5)°,

SO
. dy(2)
Jm —o— = agai(ag —1)(a3 —1)° > 0.
Thus ag = 1 or ag3 = 1, so that three equal weights are present. O

Remark. However the condition “n > 1”7 cannot be relaxed to “n > 0”. For example,
in view of Theorem B=33, if

V3V Ve Vs Ve

then W, is quadratically hyponormal but not subnormal. In fact, W, is not cubically
hyponormal : if we let

c5(t) := det (Ps[(Wy + tW2 + 2W3)*, (W, + tW2 + t2W3)| Ps)

then (t) )
Cs _
S = = 50200 <V

We have a related problem (see Problems 4.1 and 4.2).

Theorem 4.3.9. If W, is a polynomial hyponormal weighted shift with weight se-
quence {a, }2, such that ag = ay then « is flat.

Proof. Without loss of generality we may assume ag = a1 = 1. We claim that if
ag = a; = 1 and W, is weakly k-hyponormal then

(2—ai_,)ai > 1 for all k> 3. (4.3)

For (E23) suppose W, is weakly k-hyponormal. Then T}, := W,, +sWk is hyponormal
for every s € R. For k > 3,

geo O 0 Yk,0 0
0 g1 O 0 Vi1
0 0 gua -~ 0 0
Dy, = P[T}, Ti| P, = : : —_— : .
Yo O 0 qrk—1 0O
0 %1 O 0 Qi k|
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where
T (i e e N
(aj —ag_q) + 87051 Qg - 0 — Q0o r0g)  (J=Kk)
Yk,0 = SCpQiy - - - Oék7204£71
Ve = sarag - o (aj — ag).
Thus

™
vV
o

det D), = (Qk,ka,l - %%,1)(%,1@—1(11@70 - '71370)Qk,k—2q1c7k—3 o gk,2 (
(43.303,1 — ¥3.1)(43.243.0 — V3.0 (

el
Il
w

If g = a1 = 0 and if we let ¢ := s2 then

k—1
= (20} —ai_ja; —1) H af(af —af_y).

=2

. det Dk
lim ———
t—0+  tk

Since det Dy, > 0 it follows that
(2 —aj_1)ai —1>0,
which proves (B33). If lim;_,04 a2 = a then (2 — a?)a—1 >0, i.e.,
(a—1)2<0, ie, a=1.
O

Consider the case of cubic hyponormality. Let W, be a hyponormal weighted shift
with {a, }52,. For s,t € C, let

Cr(8,t) i= Po[(Wo + sW2 +tW2)* Wy + sW2 +tW2]P,.

Then C,(s,t) is a pentadiagonal matrix :

© Y% w 0 0 .0

Yo @@ m vi O 0 o 0

To 1 Q2 Y2 U2 0 0

0 71 7% @G 73 U3 0

Ch(s,t) = 0 )
Un—2
Yn—1
L m Yn—1 dn |

where

= (07, = af 1) + (ahaqn [t + (afed 107 s — 0f a7 saq )t

_ 2 2 \= 2 2 2 9 =
Yo = an(ap g — 1)+ anlagn 1050 — an_j05,_o)st

— 2 2 7
Un = anan+1(an+2 - an—l)t
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and o_1 = a_9 = a—_3 = 0. Then

W, is cubically hyponormal <= det C,,(s,t) > 0 (s,t € C, n > 0).

In particular, if dj := det Ci(s,t) then

Vk—3Vk—2Vk—-3 qk—2Vk—3Vk—2Vk—3
di :(Qk—l - 72)%—1 - (\’Yk—2|2 - 3 )dk_z
kas\ |Vk—3]
_— qrk—37k—3Vk—2Vk—
+ (|Uk—3|2qk72 - 7k737k727}k73>dk73 + "Uk74|2(|vlc73|2 - 37|wj |22 3>dk74
-3

|Uk—4|2|vk—2|2'Yk—3"Yk—2Uk—3dk s
[vie—3|? -

_|_
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4.4 The Perturbations

Recall the Bram-Halmos criterion for subnormality, which states that an operator T'
is subnormal if and only if

Z(Tixj,zji) >0

,J
for all finite collections xg, x1,- -,z € H, or equivalently,
I T ... T*
T T*T ... T*T
>0 (all k > 1). (4.4)
Tk T*Tk .. T*kTk

Condition (B3) provides a measure of the gap between hyponormality and sub-
normality. In fact, the positivity condition (E3) for k¥ = 1 is equivalent to the hy-
ponormality of T, while subnormality requires the validity of (24) for all k. Let
[A, B] := AB — BA denote the commutator of two operators A and B, and define T
to be k-hyponormal whenever the k x k operator matrix

My(T) := ([T, T j= (4.5)
is positive. An application of the Choleski algorithm for operator matrices shows that
the positivity of (B73) is equivalent to the positivity of the (k+ 1) x (k + 1) operator
matrix in (E2); the Bram-Halmos criterion can be then rephrased as saying that T is
subnormal if and only if 7" is k-hyponormal for every k > 1.

Recall also that T € £(H) is said to be weakly k-hyponormal if

k
LS(T,T?,---,T") := ZajTj ca=(ag, - ,a;) €CF
j=1

consists entirely of hyponormal operators, or equivalently, My (T) is weakly positive,
ie.,
)\01’ )\01’
(Mp(T) | = |, | ) =0 for x € H and Ao, -+ , A\, € C. (4.6)

)\kl‘ )\kl‘

If k£ =2 then T is said to be quadratically hyponormal, and if k = 3 then T is said to
be cubically hyponormal. Similarly, T € B(H) is said to be polynomially hyponormal
if p(T) is hyponormal for every polynomial p € C[z]. It is known that k-hyponormal
= weakly k-hyponormal, but the converse is not true in general.

In the present section we renew our efforts to help describe the gap between sub-
normality and hyponormality, with particular emphasis on polynomial hyponormality.
We focus on the class of unilateral weighted shifts, and initiate a study of how the
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above mentioned notions behave under finite perturbations of the weight sequence.
We first obtain three concrete results:

(i) the subnormality of W, is never stable under nonzero finite rank perturbations
unless the perturbation is confined to the zeroth weight;

(ii) 2-hyponormality implies positive quadratic hyponormality, in the sense that
the Maclaurin coefficients of D,,(s) := det P, [[W,, + sW2)*, W, + sW2] P, are non-
negative, for every n > 0, where P, denotes the orthogonal projection onto the basis
vectors {eg, - ,en}; and

(iii) if « is strictly increasing and W, is 2-hyponormal then for o/ a small pertur-
bation of «, the shift W,  remains positively quadratically hyponormal.

Along the way we establish two related results, each of independent interest:

(iv) an integrality criterion for a subnormal weighted shift to have an n-step sub-
normal extension; and

(v) a proof that the sets of k-hyponormal and weakly k-hyponormal operators are
closed in the strong operator topology.

C. Berger’s characterization of subnormality for unilateral weighted shifts states
that W, is subnormal if and only if there exists a Borel probability measure p sup-
ported in [0, ||[W,||?], with |[W,||? € supp u, such that

Yn = /t"d,u(t) for all n > 0.

Given an initial segment of weights « : ag, -+ - ay, the sequence a € £>°(Z;) such
that & : a; (1 =0,--- ,m) is said to be recursively generated by « if there exists r > 1
and g, - ,pr—1 € R such that

Yrgr = P0Vn + -+ @r—1Yntr—1 (all n > 0),
where 9 = 1, 7, = a2---a2_, (n > 1). In this case, W5 with weights @ is said to
be recursively generated. If we let

g(t) =" = (pr—at" " -+ o)

then g has r distinct real roots 0 < sg < -+ < s,._1. Then W5 is a subnormal shift
whose Berger measure u is given by

1= p0Bsy -+ Pr_16s 1,

where (po, -+, pr—1) is the unique solution of the Vandermonde equation
1 1 1 Po Yo
S0 S1 Sr—1 P1 el
SO_1 571"—1 5::% Pr—1 Tr—1
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For example, given ag < a1 < ao, W(ao/m\%) is the recursive weighted shift whose

weights are calculated according to the recursive relation

9 1
a1 =1+ Yo 5
n

2 2 2 2 2 2 2

a7 (0 —x a7 (s, —x . .
-1z 1 1§ 2 D and 1 = 7%. In this case, W, —— _ is subnor-
aj—ag ai—ag (vo,a1,02)

mal with 2-atomic Berger measure. Write W (oo ariecs) for the weighted shift whose

where g =

weight sequence consists of the initial weight x followed by the weight sequence of

(av0,01,02)

By the Density Theorem ([C1iE2, Theorem 4.2 and Corollary 4.3]), we know that
if W, is a subnormal weighted shift with weights @ = {«a,} and ¢ > 0, then there
exists a nonzero compact operator K with ||K|| < e such that W, + K is a recursively
generated subnormal weighted shift; in fact W, + K = Wa/(;) for some m > 1, where
al™ g, -+, am. The following result shows that K cannot generally be taken to
be finite rank.

Theorem 4.4.1. (Finite Rank Perturbations of Subnormal Shifts) If W, is a subnor-
mal weighted shift then there exists no nonzero finite rank operator F(# cPie,}) such
that Wy, + F' is a subnormal weighted shift. Concretely, suppose W, is a subnormal
weighted shift with weight sequence a = {a, }22 o and assume o' = {al,} is a nonzero
perturbation of a in a finite number of weights except the initial weight; then Wy is
not subnormal.

We next consider the selfcommutator [(W,, + s W2)*, W, +sW?2]. Let W, be a
hyponormal weighted shift. For s € C, we write

D(s) := [(Wy + s W2H*, W, + s W2

and we let
_qo o 0 ... 0 0
ro 1 T 0 0
0 " Q2 N 0 0
Dp(s) = P [(WatsW2) \ Wot+sW2 P, = | . . | | : N INCN)
0 0 O Gn—1 Tn—1
10 0 0 Tnel  Gn |
where P, is the orthogonal projection onto the subspace generated by {eg,:-- ,en},

In = Upn + |s]?v,

T 1= $y/Wn

Up = a2 —a2_, (4.8)
Up = Q00 L) — Op 10y

Wn, = 0‘%(0‘314-1 - 0‘%—1)27
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and, for notational convenience, a_9 = a_; = 0. Clearly, W, is quadratically hy-
ponormal if and only if D,,(s) > 0for all s € C and alln > 0. Let d,,(+) := det (D, (+)).
Then d,, satisfies the following 2—step recursive formula:

do=qo, di=qoq1 — |rol®, dni2= Gni2dni1 — |Tni1]’dn-

If we let ¢ := |s|?, we observe that d, is a polynomial in t of degree n + 1, and if
we write d, = Z;’:()l c(n,i)t!, then the coefficients c(n,i) satisfy a double-indexed

recursive formula, namely

C(TL + 2ai) = Un4-2 C(n + 1ai) + Un42 C(n + lvi - 1) — Wn+1 C(n»i - 1)7 (4 9)
c(n,0) =ug-up, cn,n+1)=wvy- vy, ¢c(1,1)=wuvg+viup— Wy '

(n>0,i>1). We say that W, is positively quadratically hyponormal if ¢(n,i) > 0
for every n > 0, 0 < i < n+ 1. Evidently, positively quadratically hyponormal —>
quadratically hyponormal. The converse, however, is not true in general.

The following theorem establishes a useful relation between 2-hyponormality and
positive quadratic hyponormality.

Theorem 4.4.2. Let a = {a,}22, be a weight sequence and assume that Wy, is 2-
hyponormal. Then W, is positively quadratically hyponormal. More precisely, if W,
is 2-hyponormal then

e(n,i) > vp-- Vi1l Up m>0,0<i<n+1) (4.10)

In particular, if o is strictly increasing and W, is 2-hyponormal then the Maclaurin
coefficients of d,,(t) are positive for all n > 0.

If W, is a weighted shift with weight sequence a = {a,}%2, then the moments
of W, are usually defined by By := 1, Bnt1 := @B, (n > 0); however, we prefer to
reserve this term for the sequence v, := 32 (n > 0). A criterion for k-hyponormality
can be given in terms of these moments ([CuZ, Theorem 4]): if we build a (k + 1) x
(k + 1) Hankel matrix A(n;k) by

Tn Tn+1 s Untk
Amsky o= [ FE T T s ),
Int+k  Intk+1 oo Vnd2k
then
W, is k-hyponormal <= A(n;k) >0 (n>0). (4.11)

In particular, for « strictly increasing, W, is 2-hyponormal if and only if
Tn Yn+1  Tn+2

det |Yn+1 Ynt2 Ynts| >0 (n>0). (4.12)
Tn+2  Tn+3  Tn+d
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One might conjecture that if W, is a k-hyponormal weighted shift whose weight
sequence is strictly increasing then W, remains weakly k-hyponormal under a small
perturbation of the weight sequence. We will show below that this is true for k = 2

(7D-

In [CuE3, Theorem 4.3], it was shown that the gap between 2-hyponormality and
quadratic hyponormality can be detected by unilateral shifts with a weight sequence
o :\/z,(\/a,Vb,\/c)". In particular, there exists a maximum value Hy = Hy(a,b, c)
of x that makes W JE(VaB SN 2-hyponormal; Hs is called the modulus of 2-
hyponormality (cf. citeCuF3). Any value of x > Hs yields a non-2-hyponormal
weighted shift. However, if x — Hy is small enough, W V7 (VAN is still quadrati-
cally hyponormal. The following theorem shows that, more generally, for finite rank
perturbations of weighted shifts with strictly increasing weight sequences, there al-
ways exists a gap between 2-hyponormality and quadratic hyponormality.

Theorem 4.4.3. (Finite Rank Perturbations of 2-hyponormal Shifts) Let oo = {a,, }22
be a strictly increasing weight sequence. If W, is 2-hyponormal then W, remains pos-
itively quadratically hyponormal under a small nonzero finite rank perturbation of «.

We are ready for:

Proof of Theorem F-Z-1. It suffices to show that if T is a weighted shift whose re-
striction to \/{en, ent1,---} (n > 2) is subnormal then there is at most one «,,_1 for
which T is subnormal.

Let W = Tl\/{e,_1.ensensr,-} a0d S = Tl/qe, enpr, -}, Where n > 2. Then
W and S have weights ap(W) := agin—1 and ag(S) := agsn (kK > 0). Thus the
corresponding moments are related by the equation

Y1 (W)
(S) = a2 vy = 220
n—1

We now adapt the proof of [CnZ, Proposition 8]. Suppose S is subnormal with asso-

2
ciated Berger measure p. Then 74(S) = fOHTH t* dy. Thus W is subnormal if and
only if there exists a probability measure v on [0, ||T'||?] such that

1

2
Qn1

[Eals [Eals
/ " du(t) = / thdu(t) for all k >0,
0 0

2
n—1

which readily implies that tdv = o _; du. Thus W is subnormal if and only if the

formula )

Q1
d
‘ H

defines a probability measure for some A > 0, where Jy is the point mass at the

origin. In particular + € L'(x) and p({0}) = 0 whenever W is subnormal. If we

repeat the above argument for W and V' := T'|y/¢e,, _,, ..}, then we should have

dv:= X0 +

€n—1,"
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that v({0}) = 0 whenever V is subnormal. Therefore we can conclude that if V is
subnormal then A = 0, and hence

dy = Y11y
v= .
;oK
Thus we have
[T ri? 4
1= [ wm =i, [ .
0 t
so that
, 1712 -t
Ay 1 = / ;d/’[’(t) 5
0
which implies that «,_; is determined uniquely by {a,,@,t1, -} whenever T is
subnormal. This completes the proof. O

Theorem B says that a nonzero finite rank perturbation of a subnormal shift is
never subnormal unless the perturbation occurs at the initial weight. However, this is
not the case for k-hyponormality. To see this we use a close relative of the Bergman

shift B, (whose weights are given by a = { ZE 150 ); it is well known that By is

subnormal.

Example 4.4.4. For x > 0, let T, be the weighted shift whose weights are given by

n+1

1
ag = \/;, ap =+, and «, = (n>2).
n

Then we have:

(i)
T, is subnormal <= x = %’-
(i)

T, is 2-hyponormal <= $3=¥129 < g < 21

Proof. Assertion (i) follows from Theorem BZ. For assertion (ii) we use (E12): T,
is 2-hyponormal if and only if

1 1 . . s
det | 3 gﬂ? §3: >0 and det gz §z 52| =0,
5 1
556 gJC E'r gI‘ TOx Zx
or equivalently, % <z< %. -

For perturbations of recursive subnormal shifts of the form W( VaBAAN subnor-
mality and 2-hyponormality coincide.
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Theorem 4.4.5. Let o = {0, }32, be recursively generated by \/a, Vb, \/c. If Ty is
the weighted shift whose weights are given by o @ g, ,Qj—1,\/T,Qjt1,- -, then
we have

=a?  ifj>1;

T, is subnormal <= T, is 2-hyponormal <= T o
r<a if 7 =0.

Proof. Since « is recursively generated by \/a, /b, /¢, we have that at =a, o} =
b, a2 =c,

5 b(c? —2ac+ ab)

5 bc® —4dabc? + 2ab%c + a?be — a?b? + a®c?
o =
3 cb—a)

d —
ane o (b—a)(c® — 2ac + ab)

(4.13)
Case 1 (j = 0): It is evident that T, is subnormal if and only if z < a. For
2-hyponormality observe by (B11) that T is 2-hyponormal if and only if

1 T bx
det |z bx bex | >0,
br bex  a3bex

or equivalently, z < a.

Case 2 (j > 1): Without loss of generality we may assume that j =1 and a = 1.
Thus o1 = /2. Then by Theorem EZ, T, is subnormal if and only if x = b. On the
other hand, by (E12), T, is 2-hyponormal if and only if

1 1 T 1 T cr
det |1 = ecx | >0 and det |z ¢z aZex | >0.
T cx ddex cr alcx aiajer

Thus a direct calculation with the specific forms of a3, ay given in (BI3) shows that

T, is 2-hyponormal if and only if (z — b) (x — %) < 0 and = < b. Since

b< %, it follows that T}, is 2-hyponormal if and only if x = b. This completes
the proof. O

With the notation in (E8), we let
D = Up Upt1 — Wy (n>0).
We then have:

Lemma 4.4.6. If a = {a,}32,, is a strictly increasing weight sequence then the
following statements are equivalent:

(i)
W, is 2-hyponormal;
(i)

Oé%+1(un+1 + Upi2)? < Unp1Vnsz (M >0);
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(iii)
ai Un+2

< Un+41
Qg o Unis

< o (m=0);
(iv)

Pn>0 (n>0)

Proof. This follows from a straightforward calculation.

We are ready for:
Proof of Theorem F-Z-3. If « is not strictly increasing then « is flat, by the argument
of [Cu2, Corollary 6], i.e., ag = a3 = ag = ---. Then

2 2.4 =3
af + |s|“a S«
Dn(s) = 0 SC|t3| 0 |S|2361 EBooo

+1
2ico

so that u, > 0, v, > 0 and w, > 0 for all n > 0. Recall that if we write d,(t) :=

(cf. (E2D)), so that (M) is evident. Thus we may assume that « is strictly increasing,
c(n,i)t* then the c(n,i)’s satisfy the following recursive formulas (cf. (E9))

c(n+2,i) = upt2c(n+1,49) +vptac(n+1li—1) —wppre(n,i—1) (n >0, 1<i<n).

(4.14)
Also, ¢(n,n+1) =g v, (again by (E9) and p, := upvp+1 — w, > 0 (n > 0), by
Lemma B=28. A straightforward calculation shows that
do(t) = ug + vo t;

di(t) = uouy + (vous + po) t + vovy t7;

da(t) = uguiug + (vouruz + ugpy + uzpo) t + (Voviuz + vop1 + vapo) 2 + voviva 7.

(4.15)
Evidently,
c(n,i)>0 (0<n<2 0<i<n+1). (4.16)
Define
B(n,i) :=c(n,i) —vg -+ Vi—1U; + - - Up (n>1,1<i<n).
For every n > 1, we now have
Ug Uy >0 (i=0)
e(n,i) = Qquo - vi_1U;- U, + B(n,i) (1<i<n) (4.17)
v Uy >0 i=n+1).

For notational convenience we let 8(n,0) := 0 for every n > 0.
Claim 1. Forn > 1,

c(n,n) >upc(n—1,n)>0

Proof of Claim 1. We use mathematical induction. For n = 1,
c(1,1) = vous +po > wy C(O7 1) >0,
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and
cln+1,n+1)=upy1cn,n+ 1) +v,11 c(n,n) —wpe(n — 1,n)
> uprr1ce(n,n+ 1)+ vpp1 une(n —1,n) —w, e(n — 1,n)  (by inductive hypothesis)
= tpt1¢(n,n+1) +pyc(n—1,n)
> Upt1c(n,n+ 1),
which proves Claim 1.

Claim 2. Forn > 2,
B(n, i) >u, Bf(n—1,i) >0 (0<i<n-—1). (4.18)

Proof of Claim 2. We use mathematical induction. If n =2 and 7 = 0, this is trivial.
Also,

B(2,1) = ugp1 +uz po = ug p1 +uz B(1,1) > uz B(1,1) > 0.
Assume that (B718) holds. We shall prove that

Bn+1,14) > upt1 B(n,i) >0 (0 <i<n).

For,
Bn+1,i) +vo - vio1U; - Unt1 = c(n + 1,1) (by (E12))
= Upt16(n, i) + vpp1e(n,i — 1) —wpe(n — 1,4 — 1)
= Upy1 <B(n,i) + Vo VUG un>
+ Unt1 (ﬁ(nﬂ' —1) 4w vi—oui—q-- Un)
— Wy <ﬁ(n — 10 —1) 4wy vi—oUi—y - 'Un1>7

so that
B(n+1,i) = upy18(n, i) + vpp18(n,i — 1) —wp,B(n—1,i — 1)

+ V0 Vi—2Ui—1t Up—1 (Unvn,+1 - wn)
= Upt18(n, 1) + vpy18(n,i — 1) —w,B(n— 1,1 — 1) + (vo - - - Vi—2Ui—1 * " Un—1) Pn
> Up18(n, i) + vprunB(n —1,i — 1) —w,B(n—1,i — 1)
(by the inductive hypothesis and Lemma BZ0;
observe that i — 1 < n — 1, so (EIR) applies)
= Up418(n,9) +pp B(n — 1,0 — 1)
> Uny1 B(n, i),
which proves Claim 2.

By Claim 2 and (EI1), we can see that ¢(n,i) > 0foralln >0and 1 <i<n-1.
Therefore (B1M), (714), Claim 1 and Claim 2 imply

e(n, i) > Vo Vi—1U; e Uy (n>0,0<i<n+1).
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This completes the proof. O
To prove Theorem B-473 we need:

Lemma 4.4.7. ([CuF3, Lemma 2.3]) Let o = {a,}22 be a strictly increasing weight
sequence. If Wy, is 2-hyponormal then the sequence of quotients

O, = L (n>0)
Un+4-2
is bounded away from 0 and from oc. More precisely,
Wall2\?
1<0, < n (”a”) for sufficiently large n.
u2 Qo

In particular, {u,}22 is eventually decreasing.

We are ready for:

Proof of Theorem FZ-3. By Theorem B2, W, is strictly positively quadratically
hyponormal, in the sense that all coefficients of d,,(t) are positive for all n > 0. Note
that finite rank perturbations of « affect a finite number of values of u,,, v, and w,.
More concretely, if o’ is a perturbation of « in the weights {ag, - - - , an}, then uy,, vy,
wy, and p, are invariant under o for n > N + 3. In particular, p, > 0 for n > N + 3.

Claim 1. Forn >3, 0<i<n+1,

n

e(n,i) =upc(n —1,4) + pp_1c(n —2,i — 1) —i—Zpk_g ij clk—3,i—n+k—2)
k=4 j=k

+ Un U3 Pientl,

(4.19)
where
0 (i<n-1)
UoP1 (i=n-1)
Pi—n+1 = .
Vop1 + V2P0 (i=n)
VU1 V2 (i=n+1)

(cf. [CuE3, Proof of Theorem 4.3]).
Proof of Claim 1. We use induction. For n =3, 0 <1 <4,

c(3,i) =uzc(2,4) +vse(2, i —1) —woe(l,i—1)
= uzc(2,1) + v <u2 c(li—1)4+wvace(l, i —2) —wyc(0, i — 2)> —wgc(l,i—1)
=uzc(2,7) + pae(l,i—1) +vg (vz e(l,i—2) —wy (0,4 — 2))
= us 6(277’) + P2 C(LZ. - 1) + U3 pi—2,
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where by (13),

0 (i < 2)
o UopP1 (7, = 2)
pPi—2 = .
vop1 +v2po (i =3)
VoV1V2 (Z = 4)

Now,

C(n =+ 17i) = Un-&-lc(n»i) + Un+1c(nvi - ]-) - wnc(n —-1,i— ]-)

= Upy1¢(n, 1) + Vpt (unc(n —1,i—1)+pp_1c(n—2,i—2)

+Zpk_2 ij c(k3,in+k3)+vn~~~v3pi_n) —wpe(n—1,i—1)
k=4 j=k
= Upy1c(n, i) + ppe(n — 1,0 — 1) + vpp1pn_1c(n — 2,7 — 2)

+ Unt1 Zpk—z H vj | ek —=3,i—n+k—3)+vup1-v3pin
=4 i=k

(by inductive hypothesis)

n+1 n+1
= Upy1c(n, i) + ppe(n — 1,0 — 1) + Zpk,g H vj | e(k—3,i—n+k—3)
k=4 j=k

+ Ung1 - U3Pi—n,
which proves Claim 1.

Write ul,, v, w.,,Ph, P, and (-, ) for the entities corresponding to o/. If p,, > 0
for every n = 0,--- , N+2, then in view of Claim 1, we can choose a small perturbation
such that p/, > 0 (0 < n < N + 2) and therefore ¢(n,i) > 0 for all n > 0 and
0 < i <n+1, which implies that W, is also positively quadratically hyponormal. If
instead p, = 0 for some n = 0,--- , N 4 2, careful inspection of (EZT9) reveals that
without loss of generality we may assume pg = --- = py42 = 0. By Theorem B2,
we have that for a sufficiently small perturbation o’ of «,

d(n,i)>0 0<n<N+2 0<i<n+1) and d(n,n+1)>0 (n>0). (4.20)
Write

Un
an:; (n:2,3,)
n
Claim 2. {k,}5%, is bounded.
Proof of Claim 2. Observe that
2.2 2 2
- Un QO g — O 10 o
LA 2 2
Un Qp — Qg
2 2 2
_ A2 2 2 “'n+1 Ay 2 An—1 )
7O‘n+an 1+an 2 2 +an—1 2 _ 2
n QA1 an Ap—1
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Therefore if W, is 2-hyponormal then by Lemma B4, the sequences

2 2\ °° 2 2 oo
an+1 ™ Qp_ 1 — 0y o

2 2 and 2 2
an — Q1) ,—9 Qp — Qg n=2

are both bounded, so that {k,}52 5 is bounded. This proves Claim 2.

Write k := sup,, k,. Without loss of generality we assume k < 1 (this is possible
from the observation that ca induces {c?k, }). Choose a sufficiently small perturbation
o’ of a such that if we let

N+4 N+3
h:= su o v | k=3, ) +viig-vs ol 4.21
0§6§N+21?0§m§1 ’;4 Pr—2 };[k i ( ) N+3 3P ( )
then
1

(this is always possible because by Theorem B2, we can choose a sufficiently small
|p}| such that

CI(N+3,i) >V0cVi—1Uj - UN43 —€ and |h| < (1—k>(’l}0-~-’l}i,1’ui"-’U,N+3—€)
for any small € > 0).

Claim 3. For j >4 and 0 <i < N + 7,
C/(N—Fj, ’L) > UN+j"'UN+4< N+3 Zk‘n ) (423)

Proof of Claim 3. We use induction. If j = 4 then by Claim 1 and (£221),

(N +4, i) =uy 4 (N +3,0) + pyysc (N +2,i— 1)

N+4 N+3
+ Vg Zp;_Q H vj | (k=31 = N4k —6) + v,y V30;_(nya)
k=4 j=k

> Uy 4€ (N 4 3,4) + plyya (N + 2,0 — 1) — vy 4h
> un4a((N +3,1) — knyah)
> unia(c (N +3,i) — kh)

because uy, 4 = UNt4, Vyyy = UNya and ply s = pnys > 0. Now suppose (EZ3)
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holds for some j > 4. By Claim 1, we have that for j > 4,
(N+] +1 7’) *UN+]+1C (N+]7 )+pN+j (N+] - ]-a 1= 1)

N+j+1 N4j+1
+ Z p%,z H 'U.;‘ C/(k_gil_N+k_]_3)+v§V+j+lngif(N+J)
_U’N+]+lc (N+]? )+pN+j (N+]_1al_1)
N+j+1 N+j+1
+ > | ] v dk=3i-N+k—j-3)
k=N+5 =k
N+4 N+j+1
+ Zp%_Q H Vi | (k=3,i = N+k—j—3)+VNnpit1 V30— (Ntj)

Since p), = p, > 0for n > N 4+ 3 and ¢/(n,£) > 0 for 0 < n < N + j by the inductive
hypothesis, it follows that

N+j+1 N+j+1
PrjeN+j=1i=1)+ Y pho | J] vf | ¢/ (k=3,i=N+k—j—3) >0. (4.24)
k=N+5 =

By inductive hypothesis and (E=24),
(N +j+1,7)

N+4 N+j+1
> Uy 1€ (N +7, 0 —|—Z:p§C 5 H vi | €(k=3,i=N+k—3j—3)+Uniji1 V30 (N4)
=k

Z UN4j+1UN+j " UN+4 < (N +3,14 Zk" )

N+4 N+3
/ A / . . ! /AN
+ UN4j+1UN+j ** UN44 Z Pr—2 H v; | (k=3 i=N+k—j—3)+Unis V30 (nij)

k=4 j=k
7—3

/

> UN4j+1UN+j ** UN+4 (C (N +3,4) Z k™ h) — UN4j+1UN+j """ UN+44 P

n=1

7—3
U UNA U4 <c’(N—|—3 =Y Kh = kngjgikneg kv h)

n=1

Jj—2
2 UN+j+1UN+j " UN+4 ( d(N+3,i) — Z k"h) ,
n=1
which proves Claim 3.

Since Zi:l k™ < 137 for every j > 1, it follows from Claim 3 and (222) that

d(N+j,i)>0 forj>4and0<i<N+j. (4.25)
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It thus follows from (E=20) and (E=2H) that ¢/(n,4) > 0 foreveryn > 0and 0 < i < n+1.
Therefore W, is also positively quadratically hyponormal. This completes the proof.
O

Corollary 4.4.8. Let W, be a weighted shift such that a;_1 < «; for some j > 1,
and let T, be the weighted shift with weight sequence

Qg 0, QG 1, T, Q1" .

Then {x : T, is 2-hyponormal} is a proper closed subset of {x : T, is quadratically hyponormal}
whenever the latter set is non-empty.

Proof. Write
H, := {z : T, is 2-hyponormal}.

Without loss of generality, we can assume that Hy is non-empty, and that j = 1.
Recall that a 2-hyponormal weighted shift with two equal weights is of the form
Qp=a1 =g =+ 0rag<aq =a=a3=---. Let x,, := inf Hy. By Proposition
B4T4 below, T, is hyponormal. Then z,, > ap. By assumption, z,, < as. Thus
QQ, T, 2, Q3, - -+ is strictly increasing. Now we apply Theorem EZ=3 to obtain x’
such that oy < 2’ < z,, and T, is quadratically hyponormal. However T, is not
2-hyponormal by the definition of x,,. The proof is complete. O

The following question arises naturally:

Question. Let « be a strictly increasing weight sequence and let k > 3. If W, is a
k-hyponormal weighted shift, does it follow that W, is weakly k-hyponormal under a
small perturbation of the weight sequence ?

Let a : ag,a1, -+ be a weight sequence, let z; > 0 for 1 < i < n, and let
(T, - T1)Q: Ty, ,T1,Qp, 1, -+ be the augmented weight sequence. We say that
Wiz, - .x1)a is an extension (or n-step extension) of W,. Observe that

W(a:n,n. ,xl)al\/{e”,enJrl,__, } = W,.

The hypothesis F' # ¢ P,y in Theorem BT is essential. Indeed, there exist in-
finitely many one-step subnormal extension of a subnormal weighted shift whenever
one such extension exists. Recall ([Cu2, Proposition 8]) that if W, is a weighted shift
whose restriction to \/{e1, ez, -} is subnormal with associated measure p, then W,
is subnormal if and only if

(i) § € L' (n); )

(i) of < (Illlergw) -
Also note that there may not exist any one-step subnormal extension of the subnormal
weighted shift: for example, if W, is the Bergman shift then the corresponding Berger

1

measure is (t) = t, and hence ; is not integrable with respect to u; therefore W,

does not admit any subnormal extension. A similar situation arises when p has an
atom at {0}.

More generally we have:
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Theorem 4.4.9. (Subnormal Extensions) Let W, be a subnormal weighted shift
with weights « @ ag,aq,--- and let p be the corresponding Berger measure. Then
Wiz, z1)a 8 subnormal if and only if

(i) 7 € L'(p);

1
1 2
(i) %(”H) for1<j<n-—1;

HHHLl(H)
1
=t il \”
(iil) @, < | Ao
HW”LI(“)
In particular, if we put
Si={(w1, - ,2,) ER" : Wiy . 21)a 1 subnormal}

then either S = () or S is a line segment in R™.

Proof. Write W; := W, .. en)alVienjienjir,3 (1 < J < n) and hence W, =
Wiz, a1)a- By the argument used to establish ( .2) we have that T is subnormal
with associated measure v, if and only if

(i) 7 € Lt (u); 1
. _
(ii) dvy = ﬁidu, or equivalently, 2% = (fOHW“” %d,u(t)) .

Inductively W,,_; is subnormal with associated measure v,,_; if and only if

(i) W,,—2 is subnormal;
(ii) tnlfl € Ll(ﬂ)§
@2 Onvvau2 S du(t)

22 _ i .
(ili) dvp—1 = =5>dvp g = - - - = ““5—+d, or equivalently, 2 = m.

Therefore W,, is subnormal if and only if
(i) W,,—1 is subnormal;
(ii) 7 € L (p);

1 -1 [1Wall?
. [[Well? [[Weall? x Jo et du(t)
(i) 22 < (Jo" " ) = (fy ) =

Corollary 4.4.10. If W, is a subnormal weighted shift with associated measure (i,
there exists an n-step subnormal extension of W, if and only Zf Loe Li(p).

Corollary 4.4.11. A recursively generated subnormal shift with @y # 0 admits an
n-step subnormal extension for every n > 1.

Proof. The assumption about ¢ implies that the zeros of g(t) are positive, so that
so > 0. Thus for every n > 1, tin is integrable with respect to the corresponding
Berger measure 1 = ppds, + -+ + pr—10s,_,. By Corollary I, there exists an
n-step subnormal extension. O
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We need not expect that for arbitrary recursively generated shifts, 2-hyponormality
10 /17

and subnormality coincide as in Theorem BE273. For example, if « : \/g AV, (\/g, \/; , g)/\
then by (E12) and Theorem B2,
(i) T, is 2-hyponormal <= 4 — /6 < z < 2;
(ii) Ty is subnormal <= = = 2.
A straightforward calculation shows, however, that T, is 3-hyponormal if and only if
x = 2; for,

1 1 Ly 3g
A(0;3) = > {x §x 50 >0 & =2
I éx 5 5¢ 17x| — =<
s Sr 17x 58z

This behavior is typical of general recursively generated weighted shifts: we show in
[CJL] that subnormality is equivalent to k-hyponormality for some k > 2.

Next, we will show that canonical rank-one perturbations of k-hyponormal weighted
shifts which preserve k-hyponormality form a convex set. To see this we need an aux-
iliary result.

Lemma 4.4.12. Let I ={1,--- ,n} x {1,--- ,n} and let J be a symmetric subset of
I. Let A= (a;j) € M,,(C) and let C = (¢;5) € M, (C) be given by

cy=4cm T a)ed (c > 0).
Qij if (i,j)el\J
If A and C are positive semidefinite then B = (b;;) € M, (C) defined by
by =40 T EIES e or 1)
@ij if (4,7)el\J

is also positive semidefinite.

Proof. Without loss of generality we may assume ¢ > 1. If b = 1 or b = ¢ the assertion
is trivial. Thus we assume 1 < b < ¢. The result is now a consequence of the following
observation. If [D]; jy denotes the (i, j)-entry of the matrix D then

{c—b(A_'_b—lC)} (1 Ee)ay i Ga)ed
c—1 c=b Jen e 1+g%;)aij if (4,7) € I\ J
{baij if (i,7) € J

aij if (i,5)eI\J
= [B]

4,5)
which is positive semidefinite because positive semidefinite matrices in M, (C) form
a cone. O
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An immediate consequence of Lemma BEZT7 is that positivity of a matrix forms
a convex set with respect to a fixed diagonal location; i.e., if

* %k
A, = |*x x *
* % %

then {z : A, is positive semidefinite} is convex.

We now have:

Theorem 4.4.13. Let o = {a,}22 be a weight sequence, let k > 1, and let j > 0.
Define aY)(z) : ag, - - - L0 1, X, Oy, - - . Assume Wy, is k-hyponormal and define

Qkd =z Woi) (z) 18 k-hyponormal}.
Then QFJ is a closed interval.

Proof. Suppose x1, 72 € QX9 with 21 < @5, Then by ([?]), the (k+1) x (k+1) Hankel
matrix

In Tn+1 s Tn+k
Tn+l  In+42 cor Yntk+1
Ag (k)= | " (n>0; i=1,2)
Yn+k  Yn+k+1 oo Tn42k

is positive, where A, corresponds to a)(z;). We must show that ta;+(1—t)zy € Q87
(0<t<1),ie,

Atml—i-(l—t)zg (n, k) 2 0 (n 2 O, 0<t< 1)

Observe that it suffices to establish the positivity of the 2k Hankel matrices corre-
sponding to o) (tzy + (1 — t)zo) such that tz; + (1 — )z, appears as a factor in at
least one entry but not in every entry. A moment’s thought reveals that without loss
of generality we may assume j = 2k. Observe that

Ay (nik) = Az, (s k) = (7 — 23) H(ns )
for some Hankel matrix H(n;k). For notational convenience, we abbreviate A, (n; k)
as A,. Then

2 Ay, + (1 =) Ap, +26(1 —1)A fzrzy for 0<n <2k

At 1 (1—t)zy = 2
tzr+(1—t)z2 (t—i—(l—t)%) Ag, forn > 2k + 1.

Since A, > 0, A;, > 0 and A\/m have the form described by Lemma BZZ7T2
and since x1 < /T1T2 < X2 it follows from Lemma EZ T2 that Am > 0. Thus
evidently, Ay, y(1-)z, > 0, and therefore txy + (1 —t)xs € QFJ. This shows that

QFJ is an interval. The closedness of the interval follows from Proposition EZ14
below. 0

136



CHAPTER 4. WEIGHTED SHIFTS

In [CP1] and [CPZ], it was shown that there exists a non-subnormal polynomially
hyponormal operator. Also in [McCP], it was shown that there exists a non-subnormal
polynomially hyponormal operator if and only if there exists one which is also a
weighted shift. However, no concrete weighted shift has yet been found. As a strategy
for finding such a shift, we would like to suggest the following:

Question Does it follow that the polynomial hyponormality of the weighted shift is
stable under small perturbations of the weight sequence ?

If the answer to the above question were affirmative then we would easily find
a polynomially hyponormal non-subnormal (even non-2-hyponormal) weighted shift;

for example, if
a:l,+/x, \[ H \/

and Ty, is the weighted shift associated with «, then by Theorem B=273, T, is subnormal
& x = 2, whereas T}, is polynomially hyponormal < 2 — §; < z < 2 4 d5 for some
01,02 > 0 provided the answer to the above question is yes; therefore for sufficiently

small € > 0,
10 17
VZHe (V35"

would induce a non-2-hyponormal polynomially hyponormal weighted shift.

The answer to the above question for weak k-hyponormality is negative. In fact
we have:

Proposition 4.4.14. (i) The set of k-hyponormal operators is sot-closed.
(ii) The set of weakly k-hyponormal operators is sot-closed.

Proof. Suppose T, € L(#H) and T,, — T in sot. Then, by the Uniform Boundedness
Principle, {||T,|}, is bounded. Thus T;*T) — T*'T7 in sot for every i,j, so that
My, (T,)) = My(T) in sot (where M (T') is as in (B33). (i) In this case My (T,) > 0 for
all n, so My(T) > 0, i.e., T is k-hyponormal.

(ii) Here, My(T;,) is weakly positive for all n. By (£3), My (T) is also weakly
positive, i.e., T is weakly k-hyponormal. O
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4.5 The Extensions

In [Sta3], J. Stampfli showed that given a : \/a, Vb, /¢ with 0 < a < b < ¢, there
always exists a subnormal completion of a, but that for a : \/a, Vb, Ve, Vd (a<b<
¢ < d) such a subnormal completion may not exist.

There are instances where k-hyponormality implies subnormality for weighted
shifts. For example, in [CE3], it was shown that if a(z) : /z, (Va, Vb, V/¢)" (a <
b < ¢) then Wy, is 2-hyponormal if and only if it is subnormal: more concretely,
W () is 2-hyponormal if and only if

ab(c —b)
(b—a)2+b(c—0b)’

Va < Hy(va, Vb, /c) = \/

in which case W) is subnormal. In this section we extend the above result to weight
sequences of the form « : @y, -, z1, (g, -+ , )" with 0 < g < -+ < ag. We here
show:

Extensions of Recursively Generated Weighted Shifts.

Ifa: x,, - 21, (0, - ,ax)" then
W, is ([EH] + 1)-hyponormal (n=1)
W, is subnormal <= e
Wo is ([%5] + 2)-hyponormal ~ (n > 1).

In particular, the above theorem shows that the subnormality of an extension of
the recursive shift is independent of its length if the length is bigger than 1.

Given an initial segment of weights

Q Qp, Q2 (kZO)a

suppose & = (ag, -+ ,agx)", 1.e., & is recursively generated by a. Write

Tn

Vi = (0<n<k+1).

Yn+k
Then {vo,---,Viy1} is linearly dependent in R¥*1. Now the rank of « is defined
by the smallest integer ¢ (1 < ¢ < k + 1) such that v; is a linear combination of
vg, -+ ,Vi—1. Since {vg,---,v;_1} is linearly independent, there exists a unique i-

tuple ¢ = (o, -+ ,pi—1) € R such that v; = pgvo + -+ + p;_1V;_1, or equivalently,
Vi = Cic1Vi—1 o woyi—e (< j < k4,

which says that (ag,- -, ax4;) is recursively generated by (ag,- -, ;). In this case,
W, is said to be i-recursive (cf. [CuE3, Definition 5.14]).

We begin with:
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Lemma 4.5.1. ([CuE2, Propositions 2.3, 2.6, and 2.7]) Let A, B € M,(C), A,B €
My41(C) (n > 1) be such that

A

Il
| —|
b
| I
)
S
IS
ol
Il
| —|
*
o *
—_ 1

Then we have:

(i) If A > 0 and if A is a flat extension of A (i.e., mnkN(fl) = rank(A)) then A > 0;

(ii) If A > 0 and f~1~2 0 then det(A) = 0 implies det(A) = 0;
(iii) If B > 0 and B > 0 then det(B) = 0 implies det(B) = 0.

Lemma 4.5.2. If a = (ag,- -+ ,ax)" then

k
Wy, is subnormal <= W, is ([5] + 1)-hyponormal. (4.26)
In the cases where W, is subnormal and i := rank(a), then we have that o =
(ag, -+, azi—2)".

Proof. We only need to establish the sufficiency condition in (B=28). Let ¢ := rank(c).
Since W, is i-recursive, [CuE3, Proposition 5.15] implies the subnormality of W,
follows after we verify that A(0,4 —1) > 0 and A(1,i —1) > 0. Now observe that
i—1<[£]+1and

.k A(j,i—1) = )
A+ =000 ] -0,
so the positivity of A(0,7 — 1) and A(1,i — 1) is a consequence of the positivity
of the ([£] + 1)-hyponormality of W,. For the second assertion, observe that if
i := rank(a) then det A(n,7) = 0 for all n > 0. By assumption A(n,i+ 1) > 0,
so by Lemma B7571 (ii) we have det A(n,i+ 1) = 0, which says that (ag, -+, a2,-1) C
(g, ,a9i_2)". By iteration we obtain (ayg, - ,ax) C (qg, - ,@22)", and there-
fore (g, , o) = (@, -+ ,a2;—2)". This proves the lemma. O

In what follows, and for notational convenience, we shall set z_; := «; (0<j<k).

Theorem 4.5.3. (Subnormality Criterion) If «: zp, -+ ,x1, (g, -+ ,ax)” then
Wa . k+1 1)-h I -1
W, is subnormal <= " ([kil] +1)-hyponorma (n (4.27)
Wy is ([*3=] + 2)-hyponormal (n>1)
Furthermore, in the cases where the above equivalence holds, if rank(«g, -+ ,ax) =i
then
W, is i-h l =1
Wy is subnormal <= Z.S Z, yponorma (n (4.28)
Wy, is (i + 1)-hyponormal (n>1)
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In fact,
1 = Hi(oo, -+, agi—2)
Tpo1 = Hi(xpn—2, -+, ,02i_n)
Ty < Hi(Tp—1,- , Q2i—n—1),

where H; is the modulus of i-hyponormality (cf. [CnE3, Proposition 3.4 and (3.4)]),
i.e.,
H;(a) :=sup{z > 0: Wy is i-hyponormal}.

Therefore, Wo, = W (w1, czin_1)" -

Proof. Consider the (k+ 1) x (I+ 1) “Hankel” matrix A(n;k,l) by

Tn Tn+1 Yn+l
Int+1 Int2 oo Unti4l
Alns k)= | " " (n>0).
Tn+k  Yntk+l  --- Untktl

Case 1 (o : 21, (g, -+ ,a)"): Let A(n;k,1) and A(n;k,1) denote the Hankel
matrices corresponding to the weight sequences (ag, -+ ,ax)” and «, respectively.
Suppose W, is ([%] + 1)-hyponormal. Then by Lemma BE52, Wiy, ... a,)~ is sub-
normal. Observe that

A(n 4+ 1;m,m) = 22 A(n;m,m) for all n > 0 and all m > 0.

Thus it suffices to show that A(0;m,m) > 0 for all m > [#51] + 2. Also note that

if B denotes the (k — 1) x k matrix obtained by eliminating the first row of a k x k
matrix B then

) ) k41
A, m) = a3 A~ Lm) forall m > (M2 1) 40

Therefore for every m > [E81] + 2, A(0;m,m) is a flat extension of A(0;[%H] +
1, [5H] + 1). This implies A(0;m,m) > 0 for all m > [2E1] + 2 and therefore W, is
subnormal.

Case 2 (a: @y, -+ ,x1, (0, -+ ,ax)")): Asin Case 1, let fl(n, k,l) and A(n; k,1)
denote the Hankel matrices corresponding to the weight sequences (ag, - -, ax)" and
o, respectively. Observe that det A(n; (B + 1, 5] +1) = 0 for all n > 0. Suppose
W, is ([%2] + 2)-hyponormal. Observe that

kE+1 kE+1 N kE+1 k+1
A+ o By =22 A 1 B 4,
2 2 2 2
so that L1 1
det A(n + 1;[*—] + L[ 2=] +1) = 0, (4.29)
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Also observe

k+1 k+1 2222 *
2 2) = |72 n )
y 1 t2l1+2) s Aln+ 1 [ + 1, (B2 + 1)

Aln =15

Since W, is ([££%] + 1)-hyponormal it follows from Lemma BT (iii) and (229) that
det A(n — 1;[2H] + 1, [E] + 1) = 0. Note that

‘ =
>

P Jooo e Ay
k+1 k+1 Yo ge! N == S
A(n—l;[ih—l,[i]—kl):x%---xi (%571 ’
2 2 : : :
Ve YRz oo T
where 4, denotes the moments corresponding to the weight sequence (ag, - -+, ax)”".
Therefore x1 is determined uniquely by {ag, - -+, ag } such that (z1, g, - ,ap_1)" =
x1, (g, -+ ,ax)": more precisely, if 4 := rank (a) and ¢, - -, p;—1 denote the coeffi-
cients of recursion in (ap,- -+, )" then
A 0 2
Z’leZ'[(CYO,"’,Olk) ]: < < ~
Yi—-1 — Pi-1%i-2 — - — P17
(cf. [CuE3, (3.4)]). Continuing this process we can see that z1,--- ,z,_1 are deter-
mined uniquely by a telescoping method such that
(xnfh T 71'77(717]{;)/\ =Tn—-1,""",T1, (0[0, T 7ak)/\

and Wiz, .. 2. . )~ is subnormal. Therefore, after (n — 1) steps, Case 2 reduces
to Case 1. This proves the first assertion. For the second assertion, note that if
rank(ag, - -+ , ) =4 then
det A(n;i,i) = 0.

Now applying the above argument with ¢ in place of [%] +1 gives that 1, -+ ,T,_1
are determined uniquely by ag, -+, ag;—2 such that W, _, .. . .. )» is subnormal.
Thus the second assertion immediately follows. Finally, observe that the preceding
argument also establish the remaining assertions. O

Remark 4.5.4. (a) From Theorem E53 we note that the subnormality of an ex-
tension of a recursive shift is independent of its length if the length is bigger than
1.

(b) In Theorem B3, “[£42]” can not be relaxed to “[£]”. For example consider
the following weight sequences:

(i) a: \/g7 (\/g, V3, \/%T), \/%)A with g = 0;
(i) o : \@ @ V3, \/§ \/E)A.
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Observe that « equals o’. Then a straightforward calculation shows that W, (and
hence W) is 2-hyponormal but not 3-hyponormal (and hence, not subnormal). Note
that k =3 and n =11in (i) and k = 2 and n = 2 in (ii).

(c) The second assertion of Theorem B3 does not imply that if rank(ag, - - - , o) =
i then (E28) holds in general. Theorem E53 says only that when W, is ([£32] 4 1)-
hyponormal (n = 1), i-hyponormality and subnormality coincide, and that when W/,
is ([££!] + 2)-hyponormal (n > 1), (i + 1)-hyponormality and subnormality coincide.
For example consider the weight sequence

10 /17
a=(v2,V3, \/Z, \/Z, 2)"  with g = 0 (here ; = 0 also).

Since (v/2,v/3, 1/ 2 /A c (V2,3 4/ D)7, we can see that rank(a) = 2. Put

B=1,(vV2,V3, \/1;0 \/1577,2%.

If (7ZR) held true without assuming (E=21), then 2-hyponormality would imply sub-
normality for W3. However, a straightforward calculation shows that Wjp is 2-
hyponormal but not 3-hyponormal (and hence not subnormal): in fact, det A(n,2) =0
for all n > 0 except for n = 2 and det A(2,2) = 160 > 0, while since

2 2.2 9 2.2 2
PO (G S VYIS S P (. LY
aj — a3 aj — a3
(so that ag = , /¢4 — i—g = ,/177), we have that
1 2 6 20
2 6 20 68
det A(,3) =det | & o0 go  ony | = —3200 < 0.

20 68 272 2312

(d) On the other hand, Theorem E53 does show that if a = (g, -+ , ) is such

that rank(«) = i and Wy is subnormal with associated Berger measure p, then Wy has

an n-step (i + 1)-hyponormal extension Wy, ... 2,4 (n > 2) if and only if % € L*(p),

2
14\ .
Tjp1 = . . - (0<j<n-2),
[75”1 iy - - 9017(])]
and )
o 3
0
Ty <
n = n—1 n—1 n—1 ’
[71(_1 ) %'71’71‘(_2 Jo - 901’76 )1
where g, -+, p;_1 denote the coefficients of recursion in (g, -, a9;_2)" and %(,{)

(0 <m <i—1) are the moments corresponding to the weight sequence

. 0
(x]? , L1, 00y 7ak—j>/\ with ’)/,En):’ym
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We now observe that the determination of k-hyponormality and subnormality
for canonical perturbations of recursive shifts falls within the scope of the theory of
extensions.

Corollary 4.5.5. Let a = {a,}32, = (ap, -+, o). If Wy is a perturbation of W,
at the j-th weight then

W is ([E] + 1)-h ! =0
Wy is subnormal <= z.s ([k21] +1)-hyponorma <J ) .

War is ([%52] + 2)-hyponormal (7>1)
Proof. Observe that if j = 0 then o = z, (a1, -+ ,ags1)” and if instead 7 > 1 then
o =g, ,aj-1,%, (@41, ,1k+1)". Thus the result immediately follows from
Theorem BT273. O

In Corollary B53, we showed that if a(z) is a canonical rank-one perturbation
of a recursive weight sequence then subnormality and k-hyponormality for the cor-
responding shift coincide. We now consider a converse - an “extremality” problem:
Let a(x) be a canonical rank-one perturbation of a weight sequence «. If there exists
k > 1 such that (k+1)-hyponormality and k-hyponormality for the corresponding shift
Wa(a) coincide, does it follow that o(x) is recursively generated ?

In [CuFE3], the following extremality criterion was established.

Lemma 4.5.6. (Extremality Criterion) [CuF3, Theorem 5.12, Proposition 5.13] Let
« be a weight sequence and let k > 1.

(i) If Wy is k-extremal (i.e., det A(j, k) = 0 for all j > 0) then W, is recursive
subnormal.

(ii) If Wy, is k-hyponormal and if det A(ig,jo) = 0 for some ig > 0 and some
jo < k then W, is recursive subnormal.

In particular, Lemma BZ58 (ii) shows that if W, is subnormal and if det A(ig, jo) =
0 for some 7 > 0 and some j > 0 then W, is recursive subnormal.

We now answer the above question affirmatively.

Theorem 4.5.7. Let a = {a, }52 be a weight sequence and let aj(z) be a canonical
perturbation of o in the j-th weight. Write

fp = {reR": We,(z) @8 k-hyponormal}.

If 1 = Hpq1 for some k > 1 and x € Hy, then aj(x) is recursively generated, i.e.,
We, (z) 18 recursive subnormal.

J
Proof. Suppose 9 = $Hi+1 and let Hy = sup, 9. To avoid triviality we assume
aj—1 < T < Qjq1.

Case 1 (j = 0): In this case, clearly H; is the nonzero root of the equation
detA(0,k) = 0 and for x € (0, Hi], Wq,(a) is k-hyponormal. By assumption Hy =
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Hy 1,80 Woo(H,,1) i (k+1)-hyponormal. The result now follows from Lemma B-58
(ii).

Case 2 (j > 1): Let Az(n,k) denote the Hankel matrix corresponding to a;(x).
Since Wy, (s is (k + 1)-hyponormal for = € §, we have that A,(n,k + 1) > 0 for all
n > 0 and all z € H;. Observe that if n > 5 + 1 then

Vn—j—1 -+ Vn—j—1+k

Am(n,k):ag~~~a?_1x2 : ; ,

n—j—1+k -+ Yn—j—1+2k

where 7, denotes the moments corresponding to the subsequence i1, 0j42,---.
Therefore for n > j + 1, the positivity of A,(n,k) is independent of the values of
x > 0. This gives

Wa,(«) i k-hyponormal <= A, (n, k) > 0 for all n < j.

Write
5’)5:) = {x o detAy(i,k) >0 and a1 <z < ozHl} (0<i<y)

and ‘ ‘
Y =suphy) (0<i<j).

Since det A4 (7, k) is a polynomial in z we have detA ) (i, k) = 0. Observe that
k

ﬂzzojﬁ,(j) =9 and sup H]gi) = Hj.
0<i<j

Since by [CuL2, Theorem 2.11], §; is a closed interval, it follows that Hy € $;. Say,
H, = H,Ep) or some 0 < p < j. Then detAH(,,>(p7 k) =0 and W
k

a(H®) 18 (k+1)-
hyponormal. Therefore it follows from Lemma 4.1 (ii) that W, is recursive subnormal.
This completes the proof. O

We conclude this section with two corollaries of independent interest.

Corollary 4.5.8. With the notations in Theorem G517, if j > 1 and H = Hi41 for
some k, then i is a singleton set.

Proof. By [CuL2, Theorem 2.2],
oo :={z € RT : W, (5 is subnormal}

is a singleton set. By Theorem B2, we have that $; = Ho. O
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Corollary 4.5.9. If W, is a nonrecursive shift with weight sequence a = {an, 15
and if a(z) is a canonical rank-one perturbation of «, then for every k > 1 there
always exists a gap between k-hyponormality and (k + 1)-hyponormality for Wy, .
More concretely, if we let

O = {x: Wy(a) is k-hyponormal}

then {9}, is a strictly decreasing nested sequence of closed intervals in (0, 00)
except when the perturbation occurs in the first weight. In that case, the intervals are
of the form (0, Hy].

Proof. Straightforward from Theorem BTh4. O

We now illustrate our result with some examples. Consider

oy, ) 1 VU, vV, (Va, Vb, ve)  (a<b<c).

Without loss of generality, we assume a = 1. Observe that

be — b? 2 z(b—1)
Hy(1,Vb =/ — d [(H 1,vb)| = = .
2( 7\/: \/E) 1+ be— 2 an ( 2(\/'%’ 7\/>)) (I*1)2+(b*1) f(l')
According to Theorem ?7, W, ») is 2-hyponormal if and only if 0 < z < 1_?_%;32%

and 0 < y < f(z). To completely describe the region
R :={(7,y) : Wq(y.e) is 2-hyponormal},
we study the graph of f. Observe that

(b—1)(b—2?)
(b — 2z + 22)?

2(b—1)(2b — 3ba + 2°)

f/(l‘) = >0 and f//(x) - (b —2r + 1‘2)3

Note that b — 2z + 22 = (b—1) 4+ (1 —x)? > 0 and f/(v/b) = 0. To consider the
sign of f”, we let g(x) := 2b — 3bz + 2. Then ¢'(vb) = 0, g(1) = =b+1 < 0, and
g"(xz) >0 (z > 0). Hence there exists zg € (0,1) such that f”(z¢) =0, f”(z) > 0 on
0<x<xg,and f’(z) <0onzg <z <1. We investigate which of the two values xg
or H := Hj(1,v/b,1/c)? is bigger. By a simple calculation, we have

~ (=14 b)b-g1(b,c)
IH) = o bep

where
gr(b,c) = —(2 = 10b + 17b* — 110> 4 b* 4 3bc — 9b%c + 9b3c — 3b3c? + b*c?).
For notational convenience we let b:= 1+ h, ¢c:= 1+ h+ k. Then

g1(b, ¢) = 2h° + (3h3 + 3h)k + (=1 — 2h — h?)k3.
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If h is sufficiently small (i.e., b is sufficiently close to 1), then g; < 0, i.e., H > xQ-
If & is sufficiently small (i.e., b is sufficiently close to ¢), then g; > 0, i.e., H < xQ-
Thus, if H < g, then f is convex downward on = < H. If H > g, then (zo, f(z0))
is an inflection point. Thus, f is convex downward on 0 < x < zg and convex
upward on zg < < H. Moreover, Wy, » is 2-hyponormal if and only if (z,y) €
{(z,)|0 <y < f(z), 0 <z < H}, and Wa(y,z) i k-hyponormal (k > 3) if and only

if (z,y) € {(H,y)|0 <y < f(x)}.

Example 4.5.10. (b=2, ¢c=3)

x
Notice that f is convex in this case.
Example 4.5.11. (b= 1}, ¢ =10)

x

T 11— 20z + 1022

In this case, f has an inflection point at z ~ 0.633892.
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4.6 The Completion Problem

We begin with:

Definition 4.6.1. Let a : ag, - am, (m > 0) be an initial segment of positive
weights and let w = {w,, }52, be a bounded sequence. We say that W, is a completion
of a if

Wy, =ay, (0<n <m)

and we write o C w.

The completion problem for a property (P) entails finding necessary and sufficient
conditions on « to ensure the existence of a weight sequence w DO «a such that

W, satisfies (P).

In 1966, Stampfli [Sta3] showed that for arbitrary ap < a1 < ag, there exists a

subnormal shift W, whose first three weights are «q,ay,as ; he also proved that
given four or more weights it may not be possible to find a subnormal completion.

Theorem 4.6.2. [CuF3|
(a)(Minimality of Norm)

[IW5]] = inf{||Ww|| taCwand W, is subnormal}.
(b) (Minimality of Moments) If « C w and W,, is subnormal then

/ M dpa(t) < / o) (> 0).

Proof. See [CuE3]. O

Theorem 4.6.3. (Subnormal Completion Problem) [CuE3] If o : ag, g, -+, i, (M >
0) is an initial segment then the followings are equivalent:

(i) « has a subnormal completion.
(ii) « has a recursively generated subnormal completion.

(iii) The Hankel matrices

/'YO /‘Yl ... ’)/k: /')/1 ’)/2 ... /‘Y2

Al VE+1 Al Vi+1
Ak) = | . . and B(l—1):=| . .

Ye o Yk4+1 o 2k Yoo Yi+1r o o 721
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are both positive (k = [Tﬂ], l= {%} + 1) and the vector

VE+1 VE+1
resp.

Y2k+1 Y2k

is in the range of A(k) (resp. B(l — 1)) when m is even (resp. odd).

Theorem 4.6.4. (k-Hyponormal Completion Problem) [CuE3] If o : ag, 01 - -+, gy, (m >
1) is an initial segment then for 1 < k < m, the followings are equivalent:

(i) « has k-hyponormal completion.

(ii) The Hankel matrix
Vit Ytk
A(j k) = :
Vi+k o Vi+2k
is positive for all j, 0 < j < 2m — 2k + 1 and the vector

V2m—k+2

Y2m+1

is in the range of A(2m — 2k + 2,k — 1).

Theorem 4.6.5. (Quadraically Hyponormal Completion Problem) Let m > 2 and
let a: g < ag, - < apy be an initial segment. Then the followings are equivalent:

(i) « has a quadratically hyponormal completion.
(ii) Dp—1(t) > 0 for all t > 0.
Moreover, a quadratically hyponormal completion w of L can be obtained by
W:ag, o, Qe (Qm—1, Qo Q1)
where a,;,11 is chosen sufficiently large.

Proof. First of all, note that D,,_1(t) > 0 for all ¢ > 0 if and ouly if d,(t) > 0
for all £t > 0 and for n = 0,--- ,m — 1; this follows from the Nested Determinants
Test (see [12, Remark 2.4]) or Choleski’s Algorithm (see [CuFE2, Proposition 2.3]). A
straightforward calculation gives

do(t) = ad + a2ait
di(t) = af(o — af) +agei(e3 —af)t + agajazt?

da(t) = aj(af — ag)(e3 — af) + ajaj(af — af)(af — af)t

2 9 9f 9,9 4 2,9 ovl,2, 2.4 2,2 2 2 2y,3
+ 0‘0%“2{%(% —ag) —aj(ag — ao)}t + agajasz(aza; — ajag) t°,
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which shows that all coefficients of d; (i = 0,1,2) are positive, so that d;(¢) > 0 for
allt >0and i =0,1,2.

Now suppose « has a quadratically hyponormal completion. Then evidently,
dn(t) > 0 for all t > 0 and all n > 0. In view of the propagation property, {a, 52,

n

is strictly increasing. Thus d,,(0) = ug---u, = [[[_o(a? —a?_;) > 0 for all n > 0.
If d,,,(to) = 0 for some ty > 0 and the first such ng > 0 (3 < ng < m — 1), then
(1.6) implies that 0 < dy,y+1(t0) = —|7ng (to)|?dny—1(to) < 0, which forces rp, (tg) = 0,
so that an,41 = ape—1, a contradiction. Therefore d, () > 0 for all ¢ > 0 and for
n=20,---,m — 1. This proves the implication (i) = (ii).

For the reverse implication, we must find a bounded sequence {c,}32,,,; such
that d,(¢t) > 0 for all ¢ > 0 and all n > 0. Suppose d,,(t) > 0 for all ¢ > 0 and for

n=20,---,m— 1. We now claim that there exists a constant My > 0 for which

d—1(t
fl;t())SMk forallt>0and for k=1,---,m— 1.
k
Indeed, since d’;l;(lt()t) is a continuous function of ¢ on [0, c0), and deg (di—1) < deg (dk),

it follows that

max di-1(t) < max{l7 max dk_l(t)}zl My,
tel0,00) dp(t) tef0,¢] di(t)

where ¢ is the largest root of the equation di_1(t) = di(t). Now a straightforward
calculation shows that

Ao () = g (D)1 (t) = [Pn—1 (8)Pdim—2(t)

So if we write e, (t) := Uy — Win—1 Z::fgg, then by (3.1), ep(t) > v — Wy—1 Mpp—1.
Now choose a;,11 so that v, — w1 My,—1 >0, ie.,

2

«

2 2 m—1 2 2 2 2

At > max {am’ a2 [M (am - O‘m—2) + O‘m—Q} } )
m

where M := max;c(o,o0) g’"jgg Then e,,(t) > 0 for all ¢ > 0, so that

A () = (g + €m(t) )1 (t) > Upmdum_1(t) > 0.
)

Therefore, d,;,—1(t) < dn(t)  With Q2 to be chosen later, we now consider d,,11.

We have oo
A1 () = @1 ()i () = [P (8)Pdin 1 (2)
> () = (0 ()
= i {umumﬂ + (UmVm+1 — wm)t} din (1)

t
= Um4+1dm (t) + — (UmVmt1 — W) A (B).

m
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Write fr41 = UmUm+1 — W If we choose 19 such that f,,11 > 0, then dy,11 ()
0 for all ¢ > 0. In particular we can choose au,+2 so that f,+1 = 0. ie., UpVmt1
Wy, OF

v

2 (.2 2 2 2 2 (.2 2
OZQ L am(am+1 B amfl) + amflam(am - amfl)
mr Offn+1(0‘»2n - O‘?n—l) ’
or equivalently,
2 2 22
2 2 1 (05 — )
Oé'm—i—2 T Oé'm—i—l + 2

am+1(a$n - a72nfl) .

In this case, dp1(t) > Umt1 dm(t) > 0. Repeating the argument (with a3 to be
chosen later), we obtain

A2 (t) = Qs 2O (8) = [P ()P (1)

1
> 1 [um+1qm+2<t> - |rm+1<t>|2} I (1)
Um+1
1
- Um+1Um+2 + (um+1vm+2 - merl) t derl (t)
Um+1

= Um+2 dm-‘rl(t) + (um+1U7rL+2 - wnL-i—l) dm-‘rl(t)-

uerl

Write fi42 '= Um+1Vm+2 — Wmt1. 1f we choose a3 such that f,40 =0, ie.,

2 (.2 2 2

2 ) a7rz(am+2 - O‘m+1)
X3 7= Qg0 aZ (2., —a2)
m+2 m—+1 m

)

then dp,12(t) > Um42 dm41(t) > 0. Continuing this process with the sequence {o, }o2,, 1o
defined recursively by

2 2 2 2 2 2 2
L am(aerl B amfl) L amflam(aerl B am)
P1 = 2 2 y Yo = — D) P}
QO — X1 QA — Q1

and
a2y =1+ % (n=mt 1),
an
we obtain that d,(¢t) > 0 for all ¢ > 0 and all n > m + 2. On the other hand, by
an argument of [Sfa3, Theorem 5], the sequence {a,}52,, o is bounded. Therefore,
a quadratically hyponormal completion {a,}5%, is obtained. The above recursive
relation shows that the sequence {ay,}52,,  is obtained recursively from ,—1, o,

and ap+1, that is, {an}22,, 1 = (@m—1, Qm, @m+t1)”. This completes the proof. O

Given four weights a : ag < a1 < ag < ag, it may not be possible to find
a 2-hyponormal completion. In fact, by the preceding criterion for subnormal and
k-hyponormal completions, the following statements are equivalent:

(i) @ has a subnormal completion;
(ii) o has a 2-hyponormal completion;
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Yo Y1 72
(111) det [y1 72 73| >0.
Y2 V3 V4

By contrast, a quadratically hyponormal completion always exists for four weights.

Corollary 4.6.6. For arbitrary a : oy < a1 < az < ag, there always exists a
quadratically hyponormal completion w of a.

Proof. In the proof of Theorem BBH, we showed that d,,(¢) > 0 for all ¢ > 0 and for
n =0,1,2. Thus the result immediately follows from Theorem EG3. O

Remark. To discuss the hypothesis ap < a3 < -+ < @y, in Theorem BEGH, we consider

the case where o : ag, a1, -, a;, admits equal weights:
(i) If g < 1 = -+ = «uy, then there exists a trivial quadratically hyponormal
completion (in fact, a subnormal completion) w: oy < a1 = = ap = app1 =+ -.
(if) If {an }— is such that a; = 41 for some j =1,2,--- ,m —1, and o # ag

for some 1 < j,k < m, then by the propagation property there does not exist any
quadratically hyponormal completion of «.

(iii) If a9 = a1, the conclusion of EBH may fail: for example, if o : 1,1,2,3
then d,,(¢t) > 0 for all ¢t > 0 and for n = 0,1, 2, whereas a admits no quadratically
hyponormal completion because we must have a3 < 2.

Problem. Given a: ap = a1 < g < + -+ < Qy, find necessary and sufficient conditions
for the existence of a quadratically hyponormal completion w of a.

In [CuJ], related to the above problem, weighted shifts of the form 1, (1, v/, \/c)"
have been studied and their quadratic hyponormality completely characterized in
terms of b and c.

Remark. In Theorem BB, the recursively quadratically hyponormal completion
requires a sufficiently large a,,+1. One might conjecture that if the quadratically
hyponormal completion of a: ag < 1 < ag < -+ < @y, exists, then

. A
W Qg , -3, (am—Qa Qp—1, am)

is such a completion. However, if « : ,/1%, V1,v/2,4/3 then w : ,/19—0, (\/I, V2, \/g)A
is not quadratically hyponormal (by [CuE3, Theorem 4.3]), even though by Corollary
I61d a quadratically hyponormal completion does exist.

We conclude this section by establishing that for five or more weights, the gap
between 2-hyponormal and quadratically hyponormal completions can be extremal.

Proposition 4.6.7. Fora < b < ¢, let n: (v/a,vb,\/c)" be a recursively generated
weight sequence, and consider a(z) : /a, Vb, \/c,\/x,ns (five weights). Then

(1) « has a subnormal completion <= x = n3;
(i) a has a 2-hyponormal completion < x = n3;
(iii) a has a quadratically hyponormal completion <= ¢ < x < 13.
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Proof. Assertions (i) and (ii) follow from the argument used in the proof of ??. For
assertion (iii), observe that by Theorem 3.1, a has a quadratically hyponormal com-
pletion if and only if ds(t) > 0 for all ¢ > 0. Without loss of generality, we write
a=1b=1+4+r,c=14r+s,ande=14+r+s+u(r>0,s>0,u>0). A
straightforward calculation using Mathematica shows that the Maclaurin coefficients
¢(3,1) of d3(t) are given by
¢(3,0) = rsu;
c(3,1)=s*(r+s)(1+r+s+u)(r+r>+2rs+s°)"Y
c(3,2) = (1 + 7+ 8)(s* + rsu + 4r?su + 5r3su + 2rtsu + 2rs?u + 7ris?u + 5ris%u
+ 253U + 4rsu + 4r?s3u 4 stu 4+ rstu + r2u® + 230+ rtu® + 3r?su?
+ 3r3su? + 2rs?u? + 3r2s2u? + $3u? +rsPu?)(r +r? 4 2rs + 5737
c(3,3) =10 +r)r+8)A+r+8)1+r+s+u)(ris® +r3s® + s +2rs®
+2r253 4+ 51+ rst 4+ r2u 4 230 + rhu + 3r%su + 3rdsu 4 2rsPu 4 3r?s?u
+ su 4 rs3u) (r? + 3 + 2r%s +rs?) 71 and
c(3,4) = (1 4+ (L+r+8)(r+72 + 25+ 2rs + 5% +u+ru+ su)(ris + 2r’s + rts
+rs% +4r2s% + 31357 + 83 + 3rs + 3r25% + st + st + r2u+ 23u 4+ rtu

+ 3r%su + 3rdsu + 2rs*u + 3r?s*u + sPu + rsPu) (r® + 1% 4+ 2r%s + rs?) 7L

This readily shows that for ¢ < z < a3, all Maclaurin coefficients of d3(t) are positive,

so that dz(t) > 0 for all t > 0. Moreover if x = ¢ or @ then Theorem 1.2 shows that
no quadratically hyponormal completion exists. This proves assertion (iii). O

152



CHAPTER 4. WEIGHTED SHIFTS

4.7 Comments and Problems

Problem 4.1. Let T, be a weighted shift with weights o = {ay,} given by

* ) 3’ 47 57 N
Describe the set {x : T, is cubically hyponormal}. More generally, describe {x :
T, is weakly k-hyponormal}.
Problem 4.2. Let T be the weighted shift with weights o = {a,,} given by

ag=ay <ag <oz <---

If T is cubically hyponormal, is o flat?

Problem 4.3. (Minimality of Weights Problem) If o : ag, a1, , a0, admits a
subnormal completion and if « C w with W, subnormal, does it follow that

ap <w, foralln>07

A combination of Theorem BTG (a) and (b) show that a,, < w, for 0 <n <2k +1
and also for large n.

Problem 4.4. Given a : ag = a1 < ag < -+ < Qu, find necessary and sufficient
conditions for the existence of a quadratically hyponormal completion w of «.

In [CuEY] it was shown that
31 < b < csuch that W1(1,\/E,\/E)A
is quadratically hyponormal. In fact, it was shown that if we write
$2 :={(b,c) : Wy 5, ./e)~ is quadratically hyponormal}

then
99 :={(b,¢) : b(bc — 1) + b(b — 1)(c — 1)K — (b — 1)2K?% > 0},

where

b(c — 1)2(b(c — 1)+ /02 (c— )2 — 4b(b — 1)(c — b))

K= 2(b—1)2(c — b)

Problem 4.5. Does there exists 1 < b < c¢ such that W, (1,VB,/E)A is cubically
hyponormal ¢ More generally, describe the set /

{(b,¢) : Wy 1 v, s cubically hyponormal}.
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We remember the following question (Due to P. Halmos):
Whether every polynomially hyponormal operator is subnormal ?
In 1993, R. Curto and M. Putinar [CPZ] have answered it negatively:
There exits a polynomially hyponormal operator which is not 2-hyponormal.

In 1989, S. M. McCullough and V. Paulsen [McCPH] proved the following: FEvery
polynomially hyponormal operator is subnormal if and only if every polynomially hy-
ponormal weighted shift is subnormal.

However we did not find a concrete example of such a weighted shift:

Problem 4.6. Find a weighted shift which is polynomially hyponormal but not sub-
normal.

Problem 4.7. Does there exists a polynomially hyponormal weighted shift which is
not 2-hyponormal ?

Let B; be the weighted shift whose weight are given by

2 /5 /4
\/Ea \/;7 \/;7 \/;a T
Let By be the weighted shift whose weight are given by
1 3 4
\/g7 ﬁa \/;7 \/;a U
A straightforward calculation shows that

Bj subnormal <=0 < x <

k)

DO | =

Bj 2-hyponormal <0<z < %;

wl N

B quadratically hyponormal <=0 < 2 <

2
Bs subnormal <= x = 5;

By 2-hyponormal <=z € [

63 —v129 24
80 735"

We conjecture that
9 . .
6 < sup{z : By is polynomially hyponormal}

24
35 < sup{x : By is polynomially hyponormal}
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Problem 4.8. Is the above converse true ¢

We here suggest related problems:
Problem 4.9.

(a) Does there exists a Toeplitz operator which is polynomially hyponormal but not
subnormal ?

(b) Classify the polynomially hyponormal operators with finite rank self commuta-
tors.

(c) Is there an analogue of Berger’s theorem for polynomially hyponormal weighted
shift ¢

An operator T' € B(H) is called M -hyponormal if
3 M > 0 such that |[(T—N)*z|| < M ||(T—X)z|| for any A € C and for any = € H.

If M < 1 then M-hyponormality = hyponormality. It was shown [HLI] that it
T =W, is a weighted shift with weight sequence « then

« is eventually increasing = 7T is hyponormal.

We wonder if the converse is also true.

Problem 4.10. (M-hyponormality of weighted shifts) Does it follow that

Wy is M -hyponormal —> « is eventually increasing ¢

Problem 4.11 (Perturbations of weighted shifts) Let o be a strictly increasing weighted
sequence.

(a) If W, is k-hyponormal, dose it follow that W, is weakly k-hyponormal under
small perturbations of the weighted shifts ?

(b) Does it follow that the polynomiality of the weighted shifts is stable under small
perturbations of the weighted sequence ¢

It was shown [CnL5] that the answer to Problem 4.10 (a) is affirmative if k = 2.
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Chapter 5

Toeplitz Theory

5.1 Preliminaries

5.1.1 Fourier Transform and Beurling’s Theorem

A trigonometric polynomial is a function p € C(T) of the form Y_,_  ax2". It was
well-known that the set of trigonometric polynomials is uniformly dense in C(T) and
hence is dense in L?(T). In fact, if e, := 2", (n € Z) then {e, : n € Z} forms
an orthonormal basis for L?(T). The Hardy space H?(T) is spanned by {e, : n =
0,1,2,---}. Write H*®(T) := L°°(T) N H?(T). Then H* is a subalgebra of L>.

Let m :=the normalized Lebesgue measure on T and write L? := L?(T). If f € L?
then the Fourier transform of f, f: 7Z — C, is defined by

2m

~ 1 _
f(n) = (f,en) = / fzZ"dm = — f(t)eﬂntdt,
T 21 Jo
which is called the n-th Fourier coefficient of f. By Parseval’s identity,
> o~
f=> fnea",

which converges in the norm of L2. This series is called the Fourier series of f.

Proposition 5.1.1. We have:

(i) fe L2 = fe?(z);
(i) If V : L2 — (%(Z) is defined by V f = f then V is an isomorphism.
(iii) If W = N,,, on L? then VWV 1 is the bilateral shift on (*(Z).
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Proof. (i) Since by Parseval’s identity, 3> |f(n)|2 = ||f||2 < oo, it follows f € (%(Z).
(ii) We claim that ||V f|| = ||f||: indeed, [V fI[* = |[f|]* = X [f(n)[* = |[f|]*. If
f = 2" then

s~ JO0ifk#n
f(k)_{l if k =n,

so that ]? is the n-th basis vector in £2(Z). Thus ranV is dense and hence V is an
isomorphism.

(iii) If {e,} is an orthonormal basis for ¢?(Z) then by (ii), V2" = e,. Thus
VW2 =V (") = e, = UV 2" O

If T € B(H), write Lat T for the set of all invariant subspaces for T, i.e.,
LatT:={MCH: TMcC M}.
Theorem 5.1.2. If 1 is a compactly supported measure on T and M € LatN,, then
M = ¢H? & L?(u|A),

where ¢ € L>®(u) and A is a Borel set of T such that ¢|A = 0 a.e. and |¢|*n =
m(:=the normalized Lebesgue measure).

Proof. See [Con3, p.121]. O
Now consider the case where p = m (in this case, N, is the bilateral shift). Observe
peL? [pPm=m = |¢| =1 a.e.,

so that there is no Borel set A such that ¢|A = 0 and m(A) # 0. Therefore every
invariant subspace for the bilateral shift must have one form or the other. We thus
have:

Corollary 5.1.3. If W is the bilateral shift on L? and M € Lat W then
either M = L2(m|A) or M = ¢H?

for a Borel set A and a function ¢ € L™ such that |¢p| =1 a.e.

Definition 5.1.4. A function ¢ € L [¢ € H*] is called a unimodular [inner]
function if |¢| =1 a.e.

The following theorem has had an enormous influence on the development in
operator theory and function theory.

Theorem 5.1.5 (Beurling’s Theorem). If U is the unilateral shift on H? then

LatU = {¢H? : ¢ is an inner function}.

158



CHAPTER 5. TOEPLITZ THEORY

Proof. Let W be the bilateral shift on L2. If M € LatU then M € LatW. By
Corollary E13, M = L?(m|A) or M = ¢H?, where ¢ is a unimodular function.
Since U is a shift,

(UM c (U"H? = {0},

so the first alternative is impossible. Hence ¢H? = M C H2. Since ¢ = ¢-1 € M, it
follows ¢ € L™ NH? = H™. O
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5.1.2 Hardy Spaces

If f € H? and f(z) = > .-, a,z"™ is its Fourier series expansion, this series converges
uniformly on compact subsets of D. Indeed, if |z| < r < 1, then

imnzﬂs(imu?) (iu) s|f|2<ir2“> .

Therefore it is possible to identify H? with the space of analytic functions on the unit
disk whose Taylor coefficients are square summable.

[SIE

Proposition 5.1.6. If f is a real-valued function in H' then f is constant.

Proof. Let a = [ fdm. By hypothesis, we have a € R. Since f € H', we have
J fz"dm =0forn>1. So [(f — a)z"dm =0 for n > 0. Also,

0= [ (s =a)rdm = [ (s =)z dm (n=0),

so that [(f — a)z™dm = 0 for all integers n. Thus f — « annihilates all the trigono-
metric polynomials. Therefore, f — a =0 in L. O

Corollary 5.1.7. If ¢ is inner such that ¢ = é € H? then ¢ is constant.

Proof. By hypothesis, ¢+ ¢ and @ are real-valued functions in H2. By Proposition
b1, they are constant, so is ¢. O

The proof of the following important theorem uses Beurling’s theorem.
Theorem 5.1.8 (The F. and M. Riesz Theorem). If f is a nonzero function in H?,
then m({z edD: f(z) = O}) = 0. Hence, in particular, if f,g € H? and if fg =0
a.e. then f =0 a.e. or g=20 a.e.

Proof. Let A be a Borel set of D and put
M:={he€H?:h(z) =0ae. on A}

Then M is an invariant subspace for the unilateral shift. By Beurling’s theorem,
if M # {0}, then there exists an inner function ¢ such that M = ¢H?. Since
¢p=¢- -1 M,it follows ¢ =0 on A. But |¢| =1 a.e., and hence M = {0}. O

A function f in H? is called an outer function if

HQ:\/{z"f:nEO}.

So f is outer if and only if it is a cyclic vector for the unilateral shift.
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Theorem 5.1.9 (Inner-Outer Factorization). If f is a nonzero function in H2, then
3 an inner function ¢ and an outer function g in H? such that f = ¢g.
In particular, if f € H*®, then g € H*®.
Proof. Observe M =\/{z"f :n >0} € Lat U. By Beurling’s theorem,
3 an inner function ¢ s.t. M = ¢H?,

Let g € H? be such that f = ¢g. We want to show that g is outer. Put ' = \/{z"g :
n > 0}. Again there exists an inner function ¢ such that N'= yyH?. Note that

¢H? :=\/{z"f :n >0} = \/{z"¢g : n > 0} = pyH.
Therefore there exists a function h € H? such that ¢ = ¢h so that ¢ = h € H2.

Hence 7 is a constant by Corollary BEI-. So N = H? and g is outer. Assume f € H>®
with f = ¢g. Thus |g| = |f| a.e. on 9D, so that g must be bounded, i.e., g € H*®. O
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5.1.3 Toeplitz Operators
Let P be the orthogonal projection of L?(T) onto H?(T). For ¢ € L°°(T), the Toeplitz
operator T, with symbol ¢ is defined by

Tof = P(ef) for f e H2.

Remember that {z" : n = 0,1,2,---} is an orthonormal basis for H2. Thus if
@ € L™ has the Fourier coefficients

1 2m
pn) = | ozdt
o(n) 5 /0 @z"dt,

then the matrix (a;;) for T, with respect to the basis {z" : n =0,1,2,---} is given
by:
o 12
ai; = (Tp2),2") = —/ wz' 7 ldt = 5(i — j).
21 Jo
Thus the matrix for 7}, is constant on diagonals:

Chp C_1 C_9 C_3
C1 Co cC_1 C_2o

(aij) = | 1 where ¢; = §(j) -
C3 Co C1 Co

Such a matrix is called a Toeplitz matriz.

Lemma 5.1.10. Let A € B(H?). The matriz A relative to the orthonormal basis
{z":n=0,1,2,---} is a Toeplitz matriz if and only if

U*AU = A, where U is the unilateral shift.
Proof. The hypothesis on the matrix entries a;; = (A27,2%) of A if and only if
Qiy1,j+1 = @i5 (4,5 =0,1,2,---). (5.1)
Noting Uz"™ = z"*+! for n > 0, we get

(5.1) <= (U*AUZ,2") = (AU UZ") = (A7 27 = (A2, 2%), Vi, j
— U"AU = A.

O

Remark. AU =UA < Ais an analytic Toeplitz operator (i.e., A = T, with ¢ € H*>).
Consider the mapping & : L — B(H?) defined by £(p) = T,,. We have:
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Proposition 5.1.11. ¢ is a contractive *-linear mapping from L> to B(H?).

Proof. Tt is obvious that £ is contractive and linear. To show that £(¢)* = £(P), let
f,g € H2. Then

(Tf,9) = (P@f). 9) = (@f.9) = (f,09) = (f, P(pg)) = (f, Tpg) = (T . 9),
so that {(¢)* =T =Ty = £(®). O

Remark. § is not multiplicative. For example, 1,75 # [ = Ty = T|,}2 = T.z. Thus ¢
is not a homomorphism.

In special cases, £ is multiplicative.
Proposition 5.1.12. T, Ty, =T,y <= either 1 or P is analytic.

Proof. (<) Recall that if f € H? and ¢ € H* then ¢ f € H?. Thus, T, f = P(¢f) =
Yf. So
T, Tyf =T,(Vf) = Pl f) =Ty f, ie, ToTy =T,y.

Taking adjoints reduces the second part to the first part.
(=) From a straightforward calculation. O

Write M, for the multiplication operator on L? with symbol ¢ € L*. The
essential range of ¢ € L>® = R(p) :=the set of all A for which u({m S f(x) = Al <

e}) > 0 for any € > 0.

Lemma 5.1.13. If ¢ € L>(u) then o(M,) = R(p).
Proof. If A ¢ $(p) then

3¢ > 0 such that p({x de(x) — A < 5}) =0, ie., |p(x) — A > €ae. [y

So
€ L>®(X, pn).

Hence M, is the inverse of M, — A, ie., A ¢ o(M,). For the converse, suppose
A € R(p). We will show that

3 a sequence {g,} of unit vectors € L? with the property ||M,g, — Agn|| — 0,

showing that M, — A is not bounded below, and hence A € o(M,). By assumption,
{z € T:|p(z) — A| < 1} has a positive measure. So we can find a subset

1
EnC{xeTzw(x)—)\|<}
n
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XEnp
N(En)

satisfying 0 < u(E,) < co. Letting g, := , we have that

() = Nga@)] < ~lon(z)],

and hence [|(¢ — A)gnllrz < £ — 0. .

Proposition 5.1.14. If ¢ € L™ is such that Ty, is invertible, then ¢ is invertible in
L.

Proof. In view of Lemma B3, it suffices to show that
T, is invertible = M, is invertible.
If T, is invertible then
Je >0 such that ||T,f|| > ¢l|f||, Vfe€H
So for n € Z and f € H?,
1Mo (2" DI = [l0z" fIl = [lefIl Z ([P0 = T fIl = ell fI] = ell=" £l

Since {z"f : f € H*,n € Z} is dense in L?, it follows |[Myg|| > ¢||g|| for g €
L?. Similarly, ||Mpf]| > el|f|| since T = T is also invertible. Therefore M, is
invertible. O

Theorem 5.1.15 (Hartman-Wintner). If ¢ € L™ then
(i) Rp) = (M) C o(Ty)
(i) ||Tyl] = ||¢llee (i-e., & is an isometry).

Proof. (i) From Lemma BTT3 and Proposition bI14.

(i) [[elloe = suPren(p) Al < sUPsCo(T,) Al = 7(T5) < [[Tol| < [[#]]oo-

From Theorem bTT3 we can see that
(i) If T, is quasinilpotent then T, = 0 because R(p) C o(T,) = {0} = ¢ =0.
(i) If Ty, is self-adjoint then ¢ is real-valued because R(p) C o(T,) C R.
If & C L™, write 7(&) := the smallest closed subalgebra of £(H?) containing
{T,: p € &}

If A is a C*-algebra then its commutator ideal C is the closed ideal generated by
the commutators [a,b] := ab — ba (a,b € A). In particular, C is the smallest closed
ideal in A such that A/C is abelian.
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Theorem 5.1.16. If C is the commutator ideal in T (L), then the mapping &.
induced from L to T(L>)/C by £ is a x-isometrical isomorphism. Thus there is a
short exact sequence

0 — C — T(L*) — L* — 0.

Proof. See [Dall. O

The commutator ideal C contains compact operators.

Proposition 5.1.17. The commutator ideal in T (C(T)) = K(H?). Hence the com-
mutator ideal of T (L) contains K (H?).

Proof. Since T, is the unilateral shift, we can see that the commutator ideal of
T(C(T)) contains the rank one operator T+T, — T, T*. Moreover, T(C(T)) is irre-
ducible since T, has no proper reducing subspaces by Beurling’s theorem. Therefore
T(C(T)) contains K (H?). Since T is normal modulo a compact operator and gen-
erates the algebra T (C(T)), it follows that 7 (C(T))/K (H?) is commutative. Hence
K (H?) contains the commutator ideal of 7(C(T)). But since K (H?) is simple (i.e., it
has no nontrivial closed ideal), we can conclude that K (H?) is the commutator ideal

of T(C(T)). O

Corollary 5.1.18. There erxists a x-homomorphism ¢ : T(L>)/K(H?) — L™
such that the following diagram commutes:

T(L>) - T(L>)/K(H?)

N A

L (T)

Corollary 5.1.19. Let ¢ € L*™°. If T, is Fredholm then ¢ is invertible in L.

Proof. 1f T, is Fredholm then 7(T},) is invertible in 7 (L>)/K(H?), so ¢ = p(T,) =

(C om)(Ty) is invertible in L. O
From Corollary B8, we have:

(i) [|Ty]| < |IT, + K|| for every compact operator K because ||T,|| = ||¢||lc =
16(T + K| < [T + K.

(ii) The only compact Toeplitz operator is 0 because ||K|| < ||[K + K|| = K =0.

Proposition 5.1.20. If ¢ is invertible in L such that R(p) C the open right half-
plane, then T, is invertible.
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Proof. f A = {z € C : |z — 1] < 1} then there exists ¢ > 0 such that eR(p) C
A. Hence |lep — 1|| < 1, which implies ||[I — Te,|| < 1. Therefore T., = €I, is
invertible. O

Corollary 5.1.21 (Brown-Halmos). If ¢ € L™, then o(T,) C convR(y).

Proof. Tt is sufficient to show that every open half-plane containing JR(¢) contains
o(T,). This follow at once from Proposition after a translation and rotation of
the open half-plane to coincide with the open right half-plane. O

Proposition 5.1.22. If p € C(T) and v € L™ then
T, Ty —Tyy and TyT, —Ty, are compact.

Proof. If ¢ € L™, f € H? then

TyT=f = Ty P(Zf) = Ty(zf — f(0)2)
= PMy (21 - f0)z)
= P(yzf) - J(0)P(v%)

=Tyzf — f(0)P(yz),

which implies that T, 7% — T,z is at most a rank one operator. Suppose TyTsn — Tyzn
is compact for every ¢ € L and n =1,--- , N. Then

TyTone — T¢5N+1 = (TquEN — ngN) =+ (TwENTE - T(,L/)EN)E),

which is compact. Also, since TyT,n = Ty, (n > 0), it follows that T,T, — Ty
is compact for every trigonometric polynomial p. But since the set of trigonometric
polynomials is dense in C(T) and ¢ is isometric, we can conclude that T, T, — Ty, is
compact for ¢ € L> and ¢ € C(T).

Theorem 5.1.23. T(C(T)) contains K(H?) as its commutator and the sequence

0 — K(H?) — T(C(T)) — C(T) — 0

is a short exact sequence, i.e., T(C(T))/K (H?) is x-isometrically isomorphic to C(T).
Proof. By Proposition B2 and Corollary bTI3. O

Proposition 5.1.24. [Cd] If ¢ # 0 a.e. in L™, then

either ker Ty, = {0} or ker T, = {0}.
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Proof. 1f f € ker T, and g € ker T3, i.e., P(¢f) =0 and P(3g)=0, then
Bf € zH? and ¢g € zH%

Thus Bfg, vgf € zH' and therefore ¢ fg = 0. If neither f nor ¢ is 0, then by F. and
M. Riesz theorem, ¢ = 0 a.e. on T, a contradiction. O

Corollary 5.1.25. If ¢ € C(T) then T, is Fredholm if and only if p vanishes nowhere.
Proof. By Theorem bT23,

T, is Fredholm <= n(T,) is invertible in 7(C(T))/K(H?)
<= ¢ is invertible in C(T).

Corollary 5.1.26. If ¢ € C(T), then o.(T,) = ¢(T).
Proof. a.(T,) = o(T, + K(H2)) = o(p) = 9(T). 0

Theorem 5.1.27. If ¢ € C(T) is such that Ty, is Fredholm, then
index (T,,) = —wind ().
Proof. We claim that if ¢ and 1) determine homotopic curves in C\ {0}, then
index (T,) = index (Ty).
To see this, let ® be a constant map from [0,1] x T to C\ {0} such that
®(0,e™) = p(e™) and ®(1,e") = (™).

If we set ®(e?) = ®(\,e'), then the mapping A — Ty, is norm continuous and
each Ty, is a Fredholm operator. Since the map index is continuous, index(T,) =
index(Ty). Now if n = wind(y) then ¢ is homotopic in C\ {0} to z™. Since
index (T,») = —n, we have that index (T,) = —n. O

Theorem 5.1.28. If U is the unilateral shift on H? then comm(U) = {T, : ¢ €
H>}.

Proof. 1t is straightforward that UT, = T,,U for ¢ € H*®, ie., {T, : ¢ € H®} C
comm(U). For the reverse we suppose T' € comm(U), i.e., TU = UT. Put ¢ :=T(1).
So ¢ € H? and T'(p) = pp for every polynomial p. If f € H2, let {p,} be a sequence
of polynomials such that p,, — f in H2. By passing to a subsequence, we can assume
pn(2) = f(2) a.e. [m]. Thus pp, = T(p,) — T(f) in H? and pp, — ¢f a.e. [m].
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Therefore T f = ¢f for all f € H2. We want to show that ¢ € L> and hence ¢ € H*®.
We may assume, without loss of generality, that ||T'|| = 1. Observe

TFf=Ff for fe H? k> 1.

Hence ||@" f|]2 < ||f||2 for all k¥ > 1. Taking f = 1 shows that [ |¢|**dm < 1 for all
k>1.1f A:={z€0D: [p(z)| > 1} then [, |p|**dm <1 for all k> 1. If m(A) #0
then [, lo|?*dm — oo as k — 0o, a contradiction. Therefore m(A) = 0 and hence ¢
is bounded. Therefore T' = T, for ¢ € H*. O

D. Sarason [Sa] gave a generalization of Theorem BT 28.

Theorem 5.1.29 (Sarason’s Interpolation Theorem). Let

(i) U =the unilateral shift on HZ;
(ii) K := H? © ¢H? (¥ is an inner function);
(iii) S := PU|x, where P is the projection of H? onto K.

If T € comm(S) then there exists a function ¢ € H™® such that T = T,|x with
leplloo = I1T7]-

Proof. See [Sa]. O
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5.2 Hyponormality of Toeplitz operators

An elegant and useful theorem of C. Cowen [Cow3] characterizes the hyponormality
of a Toeplitz operator T, on the Hardy space H?(T) of the unit circle T C C by
properties of the symbol ¢ € L°°(T). This result makes it possible to answer an
algebraic question coming from operator theory — namely, is T, hyponormal ? - by
studying the function ¢ itself. Normal Toeplitz operators were characterized by a
property of their symbol in the early 1960’s by A. Brown and P.R. Halmos [BH], and
so it is somewhat of a surprise that 25 years passed before the exact nature of the
relationship between the symbol ¢ € L and the positivity of the selfcommutator
[T, T,] was understood (via Cowen’s theorem). As Cowen notes in his survey paper
[Cow?], the intensive study of subnormal Toeplitz operators in the 1970’s and early
80’s is one explanation for the relatively late appearance of the sequel to the Brown-
Halmos work. The characterization of hyponormality via Cowen’s theorem requires
one to solve a certain functional equation in the unit ball of H*°. However the
case of arbitrary trigonometric polynomials ¢, though solved in principle by Cowen’s
theorem, is in practice very complicated. Indeed it may not even be possible to find
tractable necessary and sufficient conditions for the hyponormality of T}, in terms of
the Fourier coefficients of ¢ unless certain assumptions are made about ¢. In this
chapter we present some recent development in this research.

5.2.1 Cowen’s Theorem

In this section we present Cowen’s theorem. Cowen’s method is to recast the operator-
theoretic problem of hyponormality of Toeplitz operators into the problem of finding
a solution of a certain functional equation involving its symbol. This approach has
been put to use in the works [CLD, Cull, Cul?, Cul3, FLY, EL2, G, HKLD, HKL?,
Hwl.3, KT, NaTl, ZH] to study Toeplitz operators.

We begin with:
Lemma 5.2.1. A necessary and sufficient condition that two Toeplitz operators com-

mute is that either both be analytic or both be co-analytic or one be a linear function
of the other.

Proof. Let p =Y, ;2" and ¢ =) j B;z7. Then a straightforward calculation shows
that

T, Ty =TyT, <= ojt1f—j—1 = PBiy1c—j—1 (i, >0).
Thus either a_;_1 = f_;_1 = 0 for j > 0, ie., ¢ and 9 are both analytic, or
;11 = Pir1 = 0 for i > 0, i.e., ¢ and @ are both co-analytic, or there exist ig, jo
such that o;,41 # 0 and a_j,—1 # 0. So for the last case, if the common value of
B—jo—1/0—jo—1 and B, 41/ 41 is denoted by A, then

Bit1 =Aaip1 (1>0) and S_;_1=Xa_j_1 (j>0).
Therefore, fr = Aay (k #0). O
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Theorem 5.2.2 (Brown-Halmos). Normal Toeplitz operators are translations and
rotations of hermitian Toeplitz operators i.e.,

T, normal <= 3 a,p € C, a real valued v € L™ such that T, = a1y + B1.

Proof. If o =Y, a;2", then
5 s Y
i i

So if ¢ is real, then a; = @—;. Thus no real ¢ can be analytic or co-analytic unless
¢ is a constant. Write T\, = Ty, 144,, Where @1, 2 are real-valued. Then by Lemma
620, T, T3 = 1571, it T, T, = T,,T,, iff either ¢; and ¢, are both analytic or ¢,
and @9 are both co-analytic or ¢1 = aps + 8 (o, 8 € C). So if ¢ # a constant, then
©=aps+ B+ips = (a+1i)ps+ 8. O

For 1 € L*°, the Hankel operator H,, is the operator on H? defined by
Hyf=JI - P)(¥f) (feH?),
where J is the unitary operator from (H?)+ onto H? :

JzT) =2t (n>1).

Denoting v*(z) := v(Z), another way to put this is that Hy is the operator on H?
defined by B
< zuw, Y >=< Hyu,v* > for all v € H™.

If ) has the Fourier series expansion 9 := foz_oo anz™, then the matrix of Hy is
given by
a_1 a_92 a_3
a_o a—
Hy =

The following are basic properties of Hankel operators.

H;Z = Hy-;

HyU = U*Hy, (U is the unilateral shift);

KerH,, = {0} or H? for some inner function ¢ (by Beurling’s theorem);
T‘Fw - T¢Tw = H%H¢;

H,T, =Hg, =T H, (h € H®).

CU o=

We are ready for:

Theorem 5.2.3 (Cowen’s Theorem). If ¢ € L™ is such that ¢ =g+ f (f,g € H?),
then
T, is hyponormal <= g=c+1T;f

for some constant ¢ and some h € H>® (D) with ||h||cc < 1.
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Proof. Let o = f +7 (f,g € H?). For every polynomial p € H?,

(T3T, — T,Ty)p, p) = (Tep, Top) — (Typ, Tp)
= (fp+ Pgp, fp+ Pgp) — (Pfp + gp, Pfp + gp)
= (fp, fp) — (P fp, Pfp) — (gp,gp) + (Pgp, Pgp)
= (fp,(I = P)fp) — (gp, (I — p)gp)
(
= |

(I = P)fp,(I-P)fp)— (I — P)gp,(I - P)gp)
| Hpl|* = || Hgpl|*.
Since polynomials are dense in H?,
T, hyponormal <= ||[Hgul| < [|[H7ul|, Vu € H? (5.2)

Write K := clran(H7) and let S be the compression of the unilateral shift U to K.
Since K is invariant for U* (why: H7U = U*H?), we have S* = U*|x. Suppose T, is
hyponormal. Define A on ran(HT) by

A(Hyu) = Hygu. (5.3)
Then A is well defined because by (63)
Hyuy = Hyup = Hy(u1 —u2) =0 = Hg(u1 —u2) = 0.

By (B3), ||4]| <1, so A has an extension to K, which will also be denoted A. Observe
that

Thus AS* = S*A on K since ranHy is dense in K, and hence SA* = A*S. By
Sarason’s interpolation theorem,

3k € H*(D) with ||k]|ec = [|A%]] = ||4]| s.t. A* = the compression of T}, to K.

Since Ty Hy = H7Ty-, we have that K is invariant for T}, = T3, which means that A
is the compression of 73 to K and

Hy=THy  (by (63)). (54)

Conversely, if (62) holds for some k € H*(D) with ||k||cc < 1, then (B22) holds for
all u, and hence T}, is hyponormal. Consequently,

T, hyponormal <= Hy = TpHy.
But Hg = T3 Hy if and only if V u,v € H*>,
(zuv, g) = (Hgu,v*) = (IgHyu,v") = (Hzu, kv")
= (zuk™v, f) = (zuv, k* f) = (zuv, T f).
Since \/{zuv : u,v € H*®} = zH?, it follows that
Hy =TpHy <= g=c+T5f for h=k*.
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Theorem 5.2.4 (Nakazi-Takahashi Variation of Cowen’s Theorem). For ¢ € L™,
put
E(p) ={k e H> : ||k||lcc <1 and p — kip € H>}.

Then T, is hyponormal if and only if E(p) # @.

Proof. Let ¢ = f +g € L™ (f,g € H?). By Cowen’s theorem,

T, is hyponormal <= g =c+ 1%f
for some constant ¢ and some k € H* with [|k[|c < 1. If p = kp+h (h € H*) then
o—kp=g—kf+f—kge H®. Thusg—kf € H?, so that P(g —kf) =c (c= a

constant), and hence g = ¢ + 11 f for some constant c¢. Thus T}, is hyponormal. The
argument is reversible. O
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5.2.2 The Case of Trigonometric Polynomial Symbols

In this section we consider the hyponormality of Toeplitz operators with trigonometric
polynomial symbols. To do this we first review the dilation theory.

If B= [f j , then B is called a dilation of A and A is called a compression of B.

It was well-known that every contraction has a unitary dilation: indeed if ||A4|| < 1,
then

B A (I — AA*)3
T (- A% A): —A*
is unitary.
On the other hand, an operator B is called a power (or strong) dilation of A if B™
is a dilation of A™ for all n = 1,2,3,---. So if B is a (power) dilation of A then B

should be of the form B = 1;1 2 . Sometimes, B is called a lifting of A and A is
said to be lifted to B. It was also well-known that every contraction has a isometric

(power) dilation. In fact, the minimal isometric dilation of a contraction A is given
by

A 00 0
(I-A*A)z 0 0 0
B= 0 I 0 0
0 01 0

We then have:
Theorem 5.2.5 (Commutant Lifting Theorem). Let A be a contraction and T be a
minimal isometric dilation of A. If BA = AB then there exists a dilation S of B
such that
*

S{B 2] ST =TS, and ||S||=||BI|.

Proof. See [GGKI, p.658]. O

We next consider the following interpolation problem, called the Carathéodory-
Schur Interpolation Problem (CSIP).

Given ¢q,- -+ ,cy—1 in C, find an analytic function ¢ on D such that
(i) ®(j)=¢ (j=0,--,N—1);
(i) [[lloe < 1.

The following is a solution of CSIP.
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Theorem 5.2.6.

Co
C1 Co O
CSIP is solvable <= C = | ¢y c1 o is a contraction.
CN-1 CN-2 -*° &1 Co

Moreover, ¢ is a solution if and only if T, is a contractive lifting of C' which commutes
with the unilateral shift.

Proof. (=) Assume that we have a solution . Then the condition (ii) implies

%0
T $1 ¥o O 0 =3
’ $2 Y1 Yo (e @)

is a contraction because ||T,|| = ||¢|loc < 1. So the compression of T, is also con-
tractive. In particular,

%0

Y1 ¥o O

Pn—1 On—2 et @0

must have norm less than or equal to 1 for all n. Therefore if CSIP is solvable, then
lel < 1.

(<) Let
co
C1 Co O
C= Co c1 co with ||C]| <1
CN—-1 CN-2 =" C1 Co
and let
0
1 0
A= 10 :CN - V.
1 0

Then A and C are contractions and AC = C'A. Observe that the unilateral shift U
is the minimal isometric dilation of A (please check it!). By the Commutant Lifting
Theorem, C' can be lifted to a contraction S such that SU = US. But then S is an
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analytic Toeplitz operator, i.e., S = T, with ¢ € H*. Since S is a lifting of C we
must have

@(]) =Cj (j:(],l, 7N_1)'
Since S is a contraction, it follows that ||¢||s = ||T,|| < 1. O

Now suppose ¢ is a trigonometric polynomial of the form

N

o(z) = Z anz" (an #0).

n=—N

If a function k£ € H*(T) satisfies ¢ — kp € H™ then k necessarily satisfies

N N
k Z@z_" - Z a_nz"" € H™. (5.5)
n=1 n=1

From (63) one compute the Fourier coefficients E(O), ,z(N — 1) to be E(n) =
¢n (n =0,1,--- /N — 1), where ¢y, c1,--- ,cy—1 are determined uniquely from the
coefficients of ¢ by the following relation

Co a; az a3z A an a_1
G as az ... . a—2
CN-1 aN a_n

Thus if k(2) = 3772, ¢;j7’ is a function in H* then
p—kp e H® < c¢p,c1, -+ ,cn—1 are given by (60).

Thus by Cowen’s theorem, if cg,cq, -+ ,cny—1 are given by (B8) then the hyponor-
mality of T, is equivalent to the existence of a function k € H* such that

k(j) =¢; (G =0,--- ,N—1)
[1klloo < 1,
which is precisely the formulation of CSIP. Therefore we have:

Theorem 5.2.7. If p(z) = ZnN:_N anz", where ay # 0 and if cp,c1,- -+ ,cN—1 are
given by (@A) then

Co
(&1 Co O
T, is hyponormal <= C = | ¢, c1 co s a contraction.
CN—-1 CN-2 - C1  Cp
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5.2.3 The Case of Rational Symbols

A function ¢ € L* is said to be of bounded type (or in the Nevanlinna class) if there
are functions 11,1y in H* (D) such that

olz) = D)

 a(2)
for almost all z in T. Evidently, rational functions in L>° are of bounded type.

If 6 is an inner function, the degree of 0, denoted by deg(#), is defined by the
number of zeros of # lying in the open unit disk D if # is a finite Blaschke product of
the form

0(z :ei§ i | <1lforj=1,---,n),
=TI i< ton )

otherwise the degree of @ is infinite. For an inner function 6, write
H(h) := H? © H?.
Note that for f € H?,
(T3, Tl f, ) = T fIIP = 1T f11? = [l fI? = 1 Ho fIP = (13117 — || Hp f1%)
= |[HgfI[* = [[HfI*.
Thus we have
T, hyponormal <= ||Hpf|| > [|[H,f|| (f € H?).

Now let ¢ = g+ f € L™, where f and g are in H?. Since H,U =U*H, (U =the
unilateral shift), it follows from the Beurling’s theorem that

ker H7 =60,H?> and ker Hy = 0;H? for some inner functions 6y, 6;.
Thus if T, is hyponormal then since ||Hzh|| > [[Hgh|| (h € H?), we have
6oH? = ker Hy C ker Hy = 6,H?, (5.7)

which implies that 6; divides 6, so that 6y = 01605 for some inner function 6.

On the other hand, note that if f € H2 and f is of bounded type, i.e., f = ¥/t
(v»; € H*™), then dividing the outer part of 1, into ¢ one obtain f = v/ with 0
inner and ¢y € H*®, and hence f = 6. But since f € H? we must have ¢ € H(6).
Thus if f € H? and f is of bounded type then we can write

f=0¢ (0inner, v € H(H)). (5.8)

Therefore if ¢ = g+ f is of bounded type and T, is hyponormal then by (64) and
(BR), we can write

f = 91926 and g = 911),
where a € H(61602) and b € H(61).

We now have:
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Lemma 5.2.8. Let o =g+ f € L, where f and g are in H2. Assume that

f=0.6a and g=0:b (5.9)
for a € H(60102) and b € H(01). Let ¢ := 601 Pyp,y(a) +7g. Then T, is hyponormal if
and only if Ty, is.

Proof. This assertion follows at once from [Gu2, Corollary 3.5]. O

In view of Lemma B7Z8, when we study the hyponormality of Toeplitz operators
with bounded type symbols ¢, we may assume that the symbol ¢ =g+ f € L* is of
the form

f=0a and g=06b, (5.10)

where 6 is an inner function and a,b € #H(#) such that the inner parts of a,b and 6
are coprime.

On the other hand, let f € H* be a rational function. Then we may write

n lifl

f pm + Z Z W (O < |Oé,‘| < 1),

=1 j=0

where p,,(z) denotes a polynomial of degree m. Let 6 be a finite Blaschke product of
the form .
z—q;
0=2z" :
¥ H (1 — Oz >

Q5 . Q05 ( Z— oy i)

1—-az 1—|a2\l-az o
Thus f € H(z0). Letting a := f, we can see that a € H(z0) and f = #a. Thus if
¢ =g+ f € L*°, where f and g are rational functions and if 7}, is hyponormal, then

we can write

Observe that

f=60a and g=06b
for a finite Blaschke product § with 6(0) = 0 and a,b € H(0).
Now let 6 be a finite Blaschke product of degree d. We can write

0= ][ B, (5.11)
=1

where Bi(z) == £21, (Jay] < 1), n; > 1 and Y0 n; = d. Let 0 = e[, B;

and each zero of 0 be repeated according to its multiplicity. Note that this Blaschke
product is precisely the same Blaschke product in (51). Let

d;
1 -5z

¢ = Bj 1Bj 2---By (1<j<d),
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where ¢; 1= dy (1 —a72)~! and d;j := (1 — |oy[?)2. Tt is well known that {¢;}¢ is an
orthonormal basis for H(0) (cf. [FH, Theorem X.1.5]). Let ¢ =g+ f € L*, where
g =0band f = 0a for a,b € H() and write
Clp) ={k e H* : o — kp € H*}.
Then k is in C(¢) if and only if b — kfa € H2, or equivalently,
b—ka € 6H. (5.12)

Note that ) (a;) = 0 for all 0 < n < n;. Thus the condition (5I32) is equivalent to
the following equation: for all 1 <i <mn,

- 4 -1

I k@o T a;i0 0 0 0 ce 0 - bLO .
ki,l a; 1 a;.0 0 0 A 0 bi’l
ki72 a; 2 g1 a;.o0 0 . 0 bi72
= : - . . . . . , (5.13)
Ziyniiz Gini—2 @ipy—3 - - a0 Zi,nrQ
Lvin,—1 | Qin;—1 Qin;—2 --- G2 Q31 Q0] | 0in;—1]
where . . .
k(i a(a; b (s
kij = j(' 1)7 ajj = ]('Z) and b; ;= jﬂz)

Conversely, if £ € H™ satisfies the equality (513) then & must be in C(y). Thus k
belongs to C(y) if and only if k is a function in H* for which

=ki;  (1<i<n, 0<j<ny), (5.14)

where the k; ; are determined by the equation (5I3). If in addition [|k||ec < 1 is
required then this is exactly the classical Hermite-Fejér Interpolation Problem (HFIP).
Therefore we have:

Theorem 5.2.9. Let ¢ =g+ f € L™, where f and g are rational functions. Then
T, is hyponormal if and only if the corresponding HFIP (6:13) is solvable.

Now we can summarize that tractable criteria for the hyponormality of Toeplitz
operators Ty, are accomplished for the cases where the symbol ¢ is a trigonometric
polynomial or a rational function via solutions of some interpolation problems.

We conclude this section with:

Problem 5.1.  Let p € L™ be arbitrary. Find necessary and sufficient conditions,
in terms of the coefficients of ¢, for T,, to be hyponormal. In particular, for the cases
where @ is of bounded type.
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5.3 Subnormality of Toeplitz operators

The present chapter concerns the question: Which Toeplitz operators are subnormal ¢
Recall that a Toeplitz operator T, is called analytic if ¢ is in H®, that is, ¢ is
a bounded analytic function on D). These are easily seen to be subnormal: T,h =
P(ph) = ph = Myhfor h € H?, where M, is the normal operator of multiplication by
¢ on L2. P.R. Halmos raised the following problem, so-called the Halmos’s Problem
5 in his 1970 lectures “Ten Problems in Hilbert Space” [Hall], [Ha2|:

Is every subnormal Toeplitz operator either normal or analytic 7

The question is natural because the two classes, the normal and analytic Toeplitz
operators, are fairly well understood and are obviously subnormal.

5.3.1 Halmos’s Problem 5

We begin with a brief survey of research related to P.R. Halmos’s Problem 5.

In 1976, M. Abrahamse [AH] gave a general sufficient condition for the answer to
the Halmos’s Problem 5 to be affirmative.

Theorem 5.3.1 (Abrahamse’s Theorem). If

(i) Ty, is hyponormal;
(ii) @ or @ is of bounded type;
(iil) ker[T};, T, is invariant for Ty,

then T, is normal or analytic.

Proof. See [AH]. O

On the other hand, observe that if S is a subnormal operator on H and if N := mne (5)
then

ker[S™, S| = {f: < f,[S", S1f >=0y ={f : [S"fII = [ISFII} ={f: N"f e}
Therefore, S(ker[S*, S]) C ker[S*, S].
By Theorem B33 and the preceding remark we get:

Corollary 5.3.2. If T, is subnormal and if ¢ or @ is of bounded type, then T, is
normal or analytic.

Lemma 5.3.3. A function ¢ is of bounded type if and only if kerH, # {0}.
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Proof. If kerH, # {0} then since H,f = 0= (1 - P)pf =0= ¢f = Ppf =g, we
have
I f,geH?st. of =g.

Hence ¢ = 4. Remembering that if é € L then ¢ is outer if and only if é € H*™
and dividing the outer part of f into g gives

Y= % (p € H*, 0 inner).

Conversely, if ¢ = % (1 € H*, 0 inner), then 6 € kerH, because ¢f = ¢ € H>® =
(1-P)pf=0= Hy0 =0. O

From Theorem B3 we can see that

Y

v=1y (0,7 inner), T, subnormal = 7T, normal or analytic (5.15)

The following proposition strengthen the conclusion of (6IH), whereas weakens
the hypothesis of (B1H).

Proposition 5.3.4. If ¢ = % (0,7 inner) and if T, is hyponormal, then T, is
analytic.

Proof. Observe that

L= 0[] = [[P©@)]] = [[P(@02)]| = [[P@¢)]]

w2 2
= Tl < T (DI = IIPCHIN < M5 =1,
which implies that %2 € H?, so 0 divides 2. Thus if one choose ¥ and 6 to be
relatively prime (i.e., if p = % is in lowest terms), then 6 is constant. Therefore T,

is analytic. O

Proposition 5.3.5. If A is a weighted shift with weights ag,aq,as,- -+ such that
0<ap<a1 < ---<ay=ant1=-=1,
then A is not unitarily equivalent to any Toeplitz operator.

Proof. Note that A is hyponormal, ||A|| = 1 and A attains its norm. If A is unitarily
equivalent to T, then by a result of Brown and Douglas [BD)], T,, is hyponormal and
o = % (0,7 inner). By Proposition b34, T, = T, is an isometry, so ag = 1, a
contradiction. O

Recall that the Bergman shift (whose weights are given by %) is subnormal.

The following question arises naturally:

Is the Bergman shift unitarily equivalent to a Toeplitz operator ? (5.16)
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An affirmative answer to the question (BI8) gives a negative answer to Halmos’s
Problem 5. To see this, assume that the Bergman shift S is unitarily equivalent to
T,, then

R(p) C 0c(T,) = 0c(S) = the unit circle T.

Thus ¢ is unimodular. Since S is not an isometry it follows that ¢ is not inner.
Therefore T, is not an analytic Toeplitz operator.

To answer the question (518) we need an auxiliary lemma:

Lemma 5.3.6. If a Toeplitz operator T, is a weighted shift with weights {a,}o%,
with respect to the orthonormal basis {e,}22 ), i.e.,

Tapen = An€n+t1 (TL > 0) (517)
then eg(z) is an outer function.

Proof. By Coburn’s theorem, ker T, = {0} or kerT;; = {0}. The expression (517)
gives eg € ker T}, and hence ker T\, = {0}. Thus a,, > 0 (n > 0). Write

eo := gF, where g is inner and F' is outer.
Because T;eq = 0, we get
T;F = Tg(geo) = TgT@EO = TgT;(EO =0.

Note that dimker 7 = 1. So we have F' = ce (c =a constant), so that g is a constant,
and hence ey is an outer function. O

Theorem 5.3.7 (Sun’s Theorem). Let T be a weighted shift with a strictly increasing
weight sequence {a,}5>. If T =T, then

an =V1—a?"2||T || (0<a<]l).

Proof. Assume T = T,. We assume, without loss of generality, that ||T'|| = 1 (so
a, < 1). Since T is a weighted shift, o.(7) = {z : |2| = 1}. Since R(p) C 0.(T,), it
follows that |p| =1, i.e., ¢ is unimodular. By Lemma 63,

3 an orthonormal basis {e, }> such that (62I4) holds.

Expression (6147) can be written as follows:

(5.18)

Peni1 = anen ++/1 —a2 &,

where 1,,, &, € (H2)L and ||n,|] = [|€a]| = 1. Since {pe, }5° 4 is an orthonomal system
and a,, < 1, we have

{cpen =apept1++/1—a2n,

0, {4k

5.19
1, 0=k ( )

< Moy >=< &g, & >= {
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From (BIR) we have
en =7 (ancnrr + VT= a2 m) = aden +any/T= @ &n+ V1= % . (5.20)
Then (B72M) is equivalent to
Ol = —ap&n + /1 — a2 &,. (5.21)

Set d,, := = and p, = % (|t| = 1). Then () is equivalent to

en

odp = —appn ++/1 —a2 (5.22)

Since £ € (H?)* and {d,};2, is an orthonormal basis for H?, we can see that

[|[Tpdol| = ao = inf)jz) =1 [|Tz|| = ||Tpeol| (5.23)
I Todell = ae = [[Tpecl] -
Then (517) and (6723) imply
Substituting (5224) into (A-23) and comparing it with (BR) gives
an V1—-a2 e,
anent1 + /1 —a2n, = pe, = —— pp + —7 —,
Tn T t
which implies
b = (5.25)
TnS: =1 -

Therefore (61R) is reduced to:

{Soen = Un€np+1 + 4/ 1-— a2 Tn egL (5 26)

Peni1 = apey — /1 — a7, e"“

Put e_(,41) := 2 € (H*)* (n > 0). We now claim that

peo=re_1 (|r|=1): (5.27)

indeed, T5 (“’eo) = P(%)=0,s0 €0 =2 for [r| = 1, and hence Pey = re_;. From

(628) we have

peg = apger +To\/1 —ade_1 =aper +ToT /1 — a peo, (5.28)
or, equivalently,
(<p —ToTy/1—a} @) eo = ape;. (5.29)
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Write
P

©o—ToT\/1—dip. (5.30)

V= {z € H? : yx € H?}

Evidently,

is not empty. Moreover, since V' is invariant for U, it follows from Beurling’s theorem
that
V = yH? for an inner function x.

Since ey € V and eg is an outer function, we must have y = 1. This means that
¢ =1 -1 € H2 Therefore 1pe; = Tye; € H?. On the other hand, by (6228),

e = (cp—rom/l—agw) e
=ajes +714/1 *&%6_2 — 7T/ 1 —a% (aoeo —4/1 a%roe_2>
=ajes —ToTapy/1 — a2 ep + (7‘1\/1 —a? + 7702 (1 — a2)> e_o.

Thus we have
Ty 1—a?+77°(1—ad) =0

So, /1—a? =1—ad, ie, a1 = /1—(1—ad)2 If we put a? = 1 — a3, ie,
ap = (1 — a?)2 then a; = (1 — a*)2. Inductively, we get a, = (1 — a2"2)32. O

Corollary 5.3.8. The Bergman shift is not unitarily equivalent to any Toeplitz op-
erator.

Proof. Z—E # 1 — a2 for any a > 0. O

Lemma 5.3.9. The weighted shift T = W, with weights o, = (1 — a2 t2)z (0 <
a < 1) is subnormal.

Proof. Write r,, := a2a?---a2_,

on [0,1] by

for the moment of W. Define a discrete measure

L(-a¥)  (:=0)

1(z) = 4 o ; o
{Hj—l(l - azj)m (z=aMk=12,--").

Then r,, = fol t"du. By Berger’s theorem, T is subnormal. O

Corollary 5.3.10. If T, = a weighted shift, then T, is subnormal.
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Remark 5.3.11. If T, = a weighted shift, what is the form of ¢ 7 A careful analysis
of the proof of Theorem b=377 shows that

Y =p—apeH™.

But
[0 —aag
ag 0 —aaq
0 _
Ty =T, - ol = a“ aaz
a9 0
[0 —a
1 0 -«
1 0o -
= @ + K (K compact)
1 0
= z—az + K.

Thus ran (¢) = 0c(Ty) = 0e(T—qz) = ran(z —az). Thus ¢ is a conformal mapping of
D onto the interior of the ellipse with vertices 4-i(1+ ) and passing through £(1—a).
On the other hand, 1 = ¢ — a®. So ay) = ap — a?p, which implies

1 _
p= m(%ﬁ + aa)).

We now have:

Theorem 5.3.12 (Cowen and Long’s Theorem). For (0 < a < 1, let ¢ be a conformal
map of D onto the interior of the ellipse with vertices +i(1—a)~1 and passing through
+(1+a)~t. Then Twm@ 1s a subnormal weighted shift that is neither analytic nor
normal.

Proof. Let ¢ =1 + atp. Then ¢ is a continuous map of D onto D with wind(y) = 1.
Let
K :=1-T;T, =Ty, — 15T, = H H,,

which is compact since ¢ is continuous. Now ¢ — ap = (1 — a?)y € H*, so Hy=0
and hence, H, = aHg. Thus

K =H}H, = o*HHy = o*(1 — T, Ty),

so that
KT, =a*(1 - T,T5)T, = *T,(1 - T5T,) = o*T,K.

By Coburn’s theorem, ker T, = {0} or ker Tz = {0}. But since

ind(T,) = —wind(p) = —1,
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it follows
kerT,, = {0} and dim ker T = 1.

Let ey € ker T and ||eo|| = 1. Write

Toen

e = .
s HTwenH

We claim that Ke, = a®"*2e,: indeed, Keg = a*(1 — T,,T5)eg = a’eq and if we
assume Ke; = a®*2¢; then

Keji1 = ||Twej||_1(KTw€j) = ||Tsoej||_1(0‘2T<pKej) = ‘|T¢ej||_1(a2j+4Tw€j) = a2j+4ej+1-
Thus we can see that

a?,a*,ab, .- are eigenvalues of K ;
{en}>2, is an orthonormal set since K is self-adjoint.

We will then prove that {e,} forms an orthonormal basis for H2. Observe
tr(H,Hy,) = the sum of its eigenvalues.

Thus

Z a? 2 < tr(HyH,) = [|H,||5 (|| - ||2 denotes the Hilbert-Schmidt norm).
n=0
(5.31)
Since ¥ € H*, we have

1H|13 = 1|Hy + a3 = o H|[3 = o*te(H3H) = o®tr [T, Ty

a? a? a?

< —p(o(Ty)) = ?u(@D(D)) T 12

s

which together with (B=31) implies that

042 =
Dot H |} < 5 =) o™,
l1-a —

so tr(HyH,) = Y07 o +2, which say that {o®"*2}>2 is a complete set of non-
zero eigenvalues for K = HZH,, and each has multiplicity one. Now, by Beurling’s
theorem,

kerK = kerH:,Hg, =kerH, = bH?, where b is inner or b = 0.
Since KT, = aszK, we see that

fekerK = T,f € kerK
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So, since b € kerK, it follows
Tob=bp — Hyb = by € kerK,

which means that by = bh for some h € H2. Since ¢ ¢ H? it follows that b = 0 and
ker K = 0. Thus 0 is not an eigenvalue. Therefore {e,}>2 , is an onthonormal basis
for H?. Remember that Tye,, = ||T,€n||ent1. So we can see that T, is a weighted
shift with weights {||T,e,||}. Since

o2, = Ke, = (1 — T5T,)en,
we have
(1- a2”+2)en =TgTen,

so that
1—a?™2 = (1 - a® ey, en) = (TgTpen, en) = [[Tpen|*.

Thus the weights are (1 — a2”+2)%. By Lemma 539, T, is subnormal. Evidently,
¢ ¢ H*> and T, is not normal since ran(y) is not contained in a line segment. O

Corollary 5.3.13. If ¢ = 1 + a1) is as in Theorem EZZI3, then neither ¢ nor @ is
bounded type.

Proof. From Abrahamse’s theorem and Theorem B=3T2. O

We will present a couple of open problems which are related to the subnormality
of Toeplitz operators. They are of particular interest in operator theory.

Problem 5.2.  For which f € H>, is there A (0 < A < 1) with T}, \5 subnormal
¢

Problem 5.3. Suppose ¥ is as in Theorem B33 (i.e., the ellipse map). Are there
g € H®, g # XY + ¢, such that T4 is subnormal ?

Problem 5.4. More generally, if 1 € H*®, define
S() :=={g € H*® : Ty 5 is subnormal }.

Describe S(1). For example, for which ¥ € H™, is it balanced?, or is it convez?, or
is it weakly closed? What is extS(¢) ¢ For which ¢ € H™, is it strictly convez ?,
i.e., 0S(¢Y) Cext S(¢) ?

In general, S(¢) is not convex. In the below (Theorem BE3T4), we will show that
if ¢ is as in Theorem 5312 then { : Tyirg is subnormal} is a non-convex set.

C. Cowen gave an interesting remark with no demonstration in [Cow3]: If T, is
subnormal then E(p) = {\} with |\| < 1. However we were unable to decide whether
or not it is true. By comparison, if 7}, is normal then £(¢) = {e?}.

Problem 5.5. Is the above Cowen’s remark true ¢ That is, if T, is subnormal, does
it follow that E(p) = {\} with |\| <17?
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If the answer to Problem 5.5 is affirmative, i.e., the Cowen’s remark is true then
foro =g+ f,

T, is subnormal = §— \f € H? with |[\| <1 = g= \f +c (c a constant),

which says that the answer to Problem 5.3 is negative.

When 1 is as in Theorem B=3T2, we examine the question: For which A, is T AN
subnormal ?
We then have:

Theorem 5.3.14. Let A € C and 0 < a < 1. Let @) be the conformal map of the disk
onto the interior of the ellipse with vertices £(1 + «)i passing through +(1 — a). For

0 =1+ M, T, is subnormal if and only if A = a or A = ofelta (—m <60 <m).

T+ okFleid
To prove Theorem BZ3T4, we need an auxiliary lemma:

Proposition 5.3.15. Let T be the weighted shift with weights

Then T + uT* is subnormal if and only if u =0 or |u| = o* (k=0,1,2,---).
Proof. See [Coll]. O

Proof of Theorem B-3.14. By Theorem B=3T32, Tyrog = (1- 012)%T, where T is a

weighted shift of Proposition E3T8. Thus Ty = (1 — 2)2 (T — o), so

1 A—«
_ * 2\3 *
T, =Ty + T, = (1—a%)2(1 Aa)(T+1 3 T).

Applying Proposition B23T4 with 1)‘:/\% in place of u gives that for £ =0,1,2,--- |

A —« )

k k if

=" — = a"e
1- )

= A-a=a«a
— M1+ afle?) = a4 ake'?
i0

A—«
1- )

kezG _ )\akJrlezG

a—i—ake

= A= 1+ aktieif

(—m<0<m)

O

However we find that, surprisingly, some analytic Toeplitz operators are unitarily
equivalent to some non-analytic Toeplitz operators. So C. Cowen noted that subnor-
mality of Toeplitz operators may not be the wrong question to be studying.

187



CHAPTER 5. TOEPLITZ THEORY

Example 5.3.16. Let ¢ be the ellipse map as in the example of Cowen and Long.
Then

Ty =T, with p =

ie= % (1 + aZei?) ac? +a —
1—a? v

Proof. Note that
~ 3T and T + \T* =~ T T +Xe 2 T*.

Thus we have

\
Q
(V)
e
99
|
w‘%
~
+
Q
9]
<
S
N

6

2y—1, —i8
(1 —a”) e 2T gecioyprareoyy (T <8 <)
6
ie” 2 (14 a2e'?)
&~ i — — < 7).
o2 ¢+1afa92tfs¢ (—m<0<m)
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5.3.2 Weak Subnormality

Now it seems to be interesting to understand the gap between k-hyponormality and
subnormality for Toeplitz operators. As a candidate for the first question in this line
we posed the following ([CuL)):

Problem 5.7. s every 2-hyponormal Toeplitz operator subnormal ?
In [CuLld), the following was shown:

Theorem 5.3.17. [CuLl] Every trigonometric Toeplitz operator whose square is
hyponormal must be normal or analytic. Hence, in particular, every 2-hyponormal
trigonometric Toeplitz operator is subnormal.

Tt is well known ([Cn]) that there is a gap between hyponormality and 2-hyponormality
for weighted shifts. Theorem BZ3T4 also shows that there is a big gap between hy-
ponormality and 2-hyponormality for Toeplitz operators. For example, if

N
p(z) = Z anz"™ (m < N)

is such that T, is hyponormal then by Theorem BZ3Ta, T, is never 2-hyponormal

because T, is neither analytic nor normal (recall that if p(z) = SN anz™ is such

that T,, is normal then m = N (cf. [ELI])). -
We can extend Theorem B34 First of all we observe:

Proposition 5.3.18. [Cul?] If T € £(#) is 2-hyponormal then
T (ker [T*,T]) C ker [T*,T). (5.32)

Proof. Suppose that [T*,T]f = 0. Since T is 2-hyponormal, it follows that (cf. [CMX],
Lemma 1.4])

(T2, T)g, )P < ([T, T)f, T2, T%]g,9) forall g € H.

By assumption, we have that for all g € H, 0 = ([T*%,T)g, f) = (g, [T*?,T)* f), so
that [T*2,T]*f = 0, i.e., T*T?f = T?T* f. Therefore,

[T*, T|Tf = (T*T*> - TT*T)f = (T*T* — TT*T)f = T[T*,T|f =0,
which proves (5232). O

Corollary 5.3.19. If T, is 2-hyponormal and if ¢ or ¢ is of bounded type then T,
is normal or analytic, so that T, is subnormal.

Proof. This follows at once from Abrahamse’s theorem and Proposition B318. [
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Corollary 5.3.20. If T, is a 2-hyponormal operator such that E(¢) contains at least
two elements then Ty, is normal or analytic, so that T, is subnormal.

Proof. This follows from Corollary 5319 and the fact ([Nall, Proposition 8]) that if
E(p) contains at least two elements then ¢ is of bounded type. O

From Corollaries b23T9 and BZ321, we can see that if T, is 2-hyponormal but not
subnormal then ¢ is not of bounded type and &£(p) consists of exactly one element.

For a strategy to answer Problem 5.7 we will introduce the notion of “weak sub-
normality,” which was introduced by R. Curto and W.Y. Lee [CuLZ]. Recall that
the operator T is subnormal if and only if there exist operators A and B such that

~ T Al .
T:= [0 B} is normal, i.e.,
[T*,T] :=T*T —TT* = AA*

A*T = BA* (5.33)
[B*,B]+ A*A = 0.

We now introduce:

Definition 5.3.21. [Cul?] An operator T' € B(H) is said to be weakly subnormal if
there exist operators A € L(H', H) and B € L(H’) such that the first two conditions
in (533) hold: [T*,T] = AA* and A*T = BA*. The operator T is said to be a
partially normal extension of T.

Clearly,
subnormal = weakly subnormal = hyponormal. (5.34)

The converses of both implications in (6234) are not true in general. Moreover, we
can easily see that the following statements are equivalent for 7' € B(H):

(a) T is weakly subnormal;
(b) There is an extension T of T" such that T*Tf = TT* f for all f € H;
(c) There is an extension T of T such that H C ker [T*,T.

Weakly subnormal operators possess the following invariance properties:

(i) (Unitary equivalence) if T' is weakly subnormal with a partially normal exten-
sion (L 4) then for every unitary U, (V' TV U A) (= (L 9)(F4) (Y 9) isa
partially normal extension of U*TU, i.e., U*TU is also weakly subnormal.

(ii) (Translation) if 7' € £(H) is weakly subnormal then T'— X is also weakly sub-
normal for every A € C: indeed if T has a partially normal extension 7" then
T — X\ :=T — )\ satisfies the properties in Definition BZ37211.
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(i) (Restriction) if T € L£(H) is weakly subnormal and if 9t € Lat T then T’ |gm is a

lso
weakly subnormal because for a partially normal extension 7' of T, T| =T
still satisfies the required properties.

How does one find partially normal extensions of weakly subnormal operators ?
Since weakly subnormal operators are hyponormal, one possible solution of the equa-
tion AA* = [T*,T] is A := [T*,T]2. Indeed this is the case.

Theorem 5.3.22. [Cul?] If T € B(H) is weakly subnormal then T has a partially
normal extension T on IC of the form
T [T*,T)2

(3.2.6.1) T = {0 -

} on K:=HDH.

The proof of Theorem BE322 will make use of the following elementary fact.
Lemma 5.3.23. If T is weakly subnormal then
T(ker [T*,T]) C ker [T*,T].

Proof. By definition, there exist operators A and B such that [T*,T] = AA* and
A*T = BA*. It [T*,T)f = 0 then AA*f =0 and hence A*f = 0. Therefore

[T*,T|Tf =AA*Tf = ABA*f =
as desired. O

Definition 5.3.24. Let T' be a weakly subnormal operator on H and let T be a par-
tially normal extension of 7" on K. We shall say that T is a minimal partially normal
exztension of T' if K has no proper subspace containing H to which the restriction of
T is also a partially normal extension of T. We write T :=m. p.n.e.(T).

Lemma 5.3.25. Let T be a weakly subnormal operator on H and let T be a partially
normal extension of T on K. Then T = m.p.n.e.(T) if and only if

K=\/{T""h: heH, n=0,1}. (5.35)
Proof. See [CuLY)]. O

It is well known (cf. [Con2, Proposition I1.2.4]) that if T is a subnormal operator
on H and N is a normal extension of T" then N is a minimal normal extension of T’
if and only if
K=\/{T""h: heH, n>0}

Thus if T is a subnormal operator then T" may have a partially normal extension
different from a normal extension. For, consider the unilateral (unweighted) shift U,
acting on £%(Zy). Then m.n.e.(U;) = U, the bilateral shift acting on ¢*(Z), with
orthonormal basis {e,}>2 . It is easy to verify that m.p.n.e. (Uy) = Ulz, where
L:=<e_1>®(Zy).
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Theorem 5.3.26. Let T € B(H).

(i) If T is 2-hyponormal then [T*7T}%T[T*,T]7%|Ran[T*}T1 18 bounded;
(ii) T 4s (k + 1)-hyponormal if and only if T is weakly subnormal and T =
m.p.n.e.(T) is k-hyponormal.

Proof. See [CIH, Theorems 2.7 and 3.2]. O

In 1966, Stampfli [Sta3] explicitly exhibited for a subnormal weighted shift Ay its
minimal normal extension
AO Bl 0
A1 B2
N = Ay , (5.36)
0
where A,, is a weighted shift with weights {a(()"), agn), <}, By = diag{bgn), bgn), N
and these entries satisfy:

(D) (a§™)? = (af)? + (1§")2 > 0 () = 0 for all j);

(1) 8" =0 = b\") =0

(III) there exists a constant M such that |a§n)| < M and |b§")| <M forn=0,1,---
and 5 =0,1,---, where

b(n+1)

+1 7 1 +1 +1

o = ) @)+ 0 o =
J

(i bx) =0, then agg) is taken to be 0).

We will now discuss analogues of the preceding results for k-hyponormal operators.
Our criterion on k-hyponormality follows:

Theorem 5.3.27. An operator Ay € B(Hyp) is k-hyponormal if and only if the fol-
lowing three conditions hold for all n such that 0 <n <k —1:

(I1,,) Ap—1(ker D,,—1) CkerD,,_1 (n>1);
(I1L,) D24 An_1D; % [jan (b, (n > 1) is bounded,
where

Dy := [Ag, Aol, Dny1:= Dulw, ., + A5 1 Anv1ls, Hiyr = ran (D)

1 1
and An41 denotes the bounded extension of DR ApDy ? to ran (Dy)(= Hpt1) from
Ran (D,,).
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Proof. Suppose Ay is k-hyponormal. We now use induction on k. If k = 2 then Ag is
1 _1

2-hyponormal, and so Dy := [A§, Ag] > 0. By Theorem (i), Dg AoDq ? |ran (Do)

is bounded. Let A; be the bounded extension of DO% AgD, ? from Ran (Dg) to Hy =

1
Ran (Do) and Dy := Doly, + [A}, A1]. Writing Ay := l%O Z&
1

m.p.n.e. (Ap), which is hyponormal by Theorem BZ32H(ii). Thus

, we have Ag =

Ay , Aol = . > 0.
[ 0 O] 0 D0|7-l1 +[A1,A1]] =
and hence Dy > 0. Also by [CnL2, Lemma 2.2], Ag(ker Dg) C ker Dy whenever Ay is

2-hyponormal. Thus (I,,), (IT,,), and (IIT,,) hold for n = 0,1. Assume now that if A
is k-hyponormal then (I,,),(II,) and (III,,) hold for all 0 <n < k — 1. Suppose Ay is
(k + 1)-hyponormal. We must show that (I,,),(II,,) and (III,,) hold for n = k. Define

Ay DE 0
1
Al 1)12 k-1 k—1
S = PH: — P
1 i=0 i=0
Di_»
L0 Ap—1]

By our inductive assumption, Di_; > 0. Writing T = m.p.n.e.(f(”’l)) when it
(k-1
exists, we can see by our assumption that S = AO( ): indeed, if

Ay Dg 0

Ay D?
S :

- Dl%—Z
0 A1 |

1 _1
then since by assumption [Sf,S;] = 0@ D; and A; = D2 ;A1 1D, 3 |Ran(Di_,), it
follows that S; is the minimal partially normal extension of S;—1 (1 <1< k—1). But
since by our assumption Ay is (k + 1)-hyponormal, it follows from Lemma B-326(ii)
that S is 2-hyponormal. Thus by Theorem B328(i), [S*, S]%S[S"“7 5}7%|Ran([s*,5]) is
1 _1
bounded, which says that D?_; Ax_1D, * |ran (D,_,) is bounded, proving (III,) for
1
S D¢,
0 A
we can see that § = m.p.n.e.(S), which is hyponormal, again by Theorem B=328(ii).

Thus, since [S*, 5] = {O 0 } > 0, we have Dy > 0, proving (I,,) for n = k. On the

n = k. Observe that A, Hy and Dy are well-defined. Writing S =

9

0 Dy
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other hand, since S is 2-hyponormal, it follows that S(ker[S*, S]) C ker[S*, S]. Since

[S*,5] = {8 D/E) ], we have ker [S*, 5] = @i:oQ H; P ker (Dy_1). Thus, since
-1

Ao Df 0 " "

A D? H, Hy

' : - : ;
D3 Hi—2 Hi—2
k=21 |ker (Dg—1) ker (Dg_1)

L0 Ap—1]

we must have that Aj_j(ker (Dy_1)) C ker (Dy_1), proving (II,,) for n = k. This
proves the necessity condition.

Toward sufficiency, suppose that conditions (I,,), (IL,) and (III,,) hold for all n
such that 0 <n <k — 1. Define

(40 DZ 0 ]
1
A, D?
Sp 1= (1<n<k-1).
1
D?2_
L 0 An—l_
Then Si_o is weakly subnormal and Sk_; = m.p.n.e.(Sg_2). Since, by assump-
tion, Dy_1 > 0, we have [S}_,,Sk—1] = [8 DO } > 0. It thus follows from
k—1

Theorem B32A(ii) that Si_o is 2-hyponormal. Note that S,, = m.p.n.e. (S,—1) for
n=1,--- k—1(Sg:= Ag). Thus, again by Theorem B328(ii), Sk_3 is 3-hyponormal.
Now repeating this argument, we can conclude that Sy = Ag is k-hyponormal. This
completes the proof. O

Corollary 5.3.28. An operator Ay € B(Ho) is subnormal if and only if the conditions
(1), (IL,), and (I11,,) hold for all n > 0. In this case, the minimal normal extension
N of Ay is given by

Ay DE 0
1
Al D§ [e'e] oo
N= P P
A E i=0 i=0
0
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5.3.3 Gaps between k-Hyponormality and Subnormality

We find gaps between subnormality and k-hyponormality for Toeplitz operators.

Theorem 5.3.29. [GuZ],[CLL] Let 0 < o < 1 and let ¢ be the conformal map of the
unit disk onto the interior of the ellipse with vertices (1 + a)i and passing through
(1 — ). Let o =1+ XY and let T, be the corresponding Toeplitz operator on H?.

Then T, is k-hyponormal if and only if X is in the circle ‘z - a1(1;2(;2+j2) = ‘fj;ﬁ?
(k1)
for j=0,1,--+ ,k —2 or in the closed disk |z — 21= O‘i:k ! ‘ < o 1(‘1%04

For 0 < a < 1, let T = Wp be the weighted shift with weight sequence § =
{Bn}e2y, where (cf. [Cowd, Proposition 9])

|

:(Zan)l forn=0,1,---. (5.37)
=0

Let D be the diagonal operator, D = diag (a™), and let Sy =T+ AT* (A € C). Then
we have that

[I*,T] = D* = diag (o®") and [S5,5] = (1 = [AP)[T™,T] = (1 - |A]*)D?

Define )
Al:aTJr T* (1=0,£1,42,---).

It follows that Ag = Sy and

DAy = A D and A;D = DA, (I=0,+1,+2,--.). (5.38)

Theorem 5.3.30. Let 0 < o < 1 and T = Wp be the weighted shift with weight
sequence B = {Bn 52, where

:(ZQQJ)% forn:0717"'

Then Ag := T + XT* is k-hyponormal if and only if |\| < o*~! or |A\| = o’ for some
G=0,1,-- k-2
Proof. Observe that

(A5, A = [T+ AT, o!T + 2T

2 5.39
A, 7] - B 7= (a2 - By p2, O3
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Since ker D = {0} and DA,, = A, 41D, it follows that H,, = H for all n; if we use A;
for the operator A,, in Theorem BZ327 then we have, by (6239) and the definition of
Dj, that

Dj=Dj1 + [A], Aj] = Djo + [A] 1, Aja] + [A], Aj] = -

J—1»

P
=mahw¢ﬁAﬂ+~+mym:a—AWW+~+<&LJV)ﬁ

a?i
_ (1 —a2(j+1)> (1 B |)\2> D
1—a? a?i
By Theorem B34, Ag is k-hyponormal if and only if Dy > 0 or D; = 0 for

some j such that 0 < j < k — 2 (in this case Ay is subnormal). Note that D; = 0 if
and only if |A| = a/. On the other hand, if D; > 0 for j =0,1,--- ,k — 2, then

1 — o2k A2 ,
D= (=) (1 s ) P20
if and only if [A\| < a*~!. Therefore Ay is k-hyponormal if and only if [A| < o*~! or
Al = a7 for some j, j =0,1,--- , k — 2. O

We are ready for:

Proof. of Theorem It was shown in [Col]] that T}, is unitarily equivalent
to (1 —a2)2T, where T is the weighted shift in Theorem 53230, Thus Ty is unitarily
equivalent to (1 — a2)2 (T — aT™), so T, ,» 1s unitarily equivalent to

(1- a2)%(1 —da)(T+ 1)\7_)\O;T*) (cf. [Cowl, Theorem 2.4]).
Applying Theorem 62330 with 1)\:)\(2 in place of A, we have that for k =0,1,2,---,
A—o k 2 2k 2
<o’ <= |[A—al" <ol - Aq|
1-)a
, a(l—a?h) B a2 — a2k
|| R = (>\+/\)+71_a2k+2 <0
a(l — a?k) k(1 —a?)
— ’A_ 1 _q2kt2 | = 7 _ g2kt2°
This completes the proof. O
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5.4 Comments and Problems

From Corollary b23TU we can see that if T, is a 2-hyponormal operator such that ¢
or ¢ is of bounded type then T}, has a nontrivial invariant subspace. The following
question is naturally raised:

Problem 5.8. Does every 2-hyponormal Toeplitz operator have a nontrivial invari-
ant subspace ? More generally, does every 2-hyponormal operator have a nontrivial
invariant subspace ?

It is well known ([Brd]) that if 7" is a hyponormal operator such that R(c(T")) #
C(o(T)) then T has a nontrivial invariant subspace. But it remains still open whether
every hyponormal operator with R(o(T)) = C(o(T)) (i-e., a thin spectrum) has a
nontrivial invariant subspace. Recall that T € B(H) is called a von-Neumann operator
if o(T) is a spectral set for T, or equivalently, f(T") is normaloid (i.e., norm equals
spectral radius) for every rational function f with poles off (7). Recently, B. Prunaru
[P has proved that polynomially hyponormal operators have nontrivial invariant
subspaces. It was also known ([Agl]) that von-Neumann operators enjoy the same
property. The following is a sub-question of Problem G.

Problem 5.9. Is every 2-hyponormal operator with thin spectrum a von-Neumann
operator ?

Although the existence of a non-subnormal polynomially hyponormal weighted
shift was established in [CP1] and [CP?], it is still an open question whether the im-
plication “polynomially hyponormal = subnormal” can be disproved with a Toeplitz
operator.

Problem 5.10. Does there exist a Toeplitz operator which is polynomially hyponor-
mal but not subnormal ?

In [CuL2] it was shown that every pure 2-hyponormal operator with rank-one self-
commutator is a linear function of the unilateral shift. McCarthy and Yang [McCYal]
classified all rationally cyclic subnormal operators with finite rank self-commutators.
However it remains still open what are the pure subnormal operators with finite rank
self-commutators.

Now the following question comes up at once:

Problem 5.11. IfT, is a 2-hyponormal Toeplitz operator with nonzero finite rank
self-commutator, does it follow that T, is analytic ¢

For affirmativeness to Problem J we shall give a partial answer. To do this we recall
Theorem 15 in [Na™l] which states that if T;, is subnormal and ¢ = ¢@, where ¢ is a
finite Blaschke product then T, is normal or analytic. But from a careful examination
of the proof of the theorem we can see that its proof uses subnormality assumption
only for the fact that ker [T}, T,] is invariant under T),. Thus in view of Proposition
3.2.2, the theorem is still valid for “2-hyponormal” in place of “subnormal”. We thus
have:
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Theorem 5.4.1. If T,, is 2-hyponormal and ¢ = qp, where q is a finite Blaschke
product then Ty, is normal or analytic.

We now give a partial answer to Problem 5.11.

Theorem 5.4.2. Suppose log|y| is not integrable. If T,, is a 2-hyponormal operator
with nonzero finite rank self-commutator then T, is analytic.

Proof. If T,, is hyponormal such that log|p| is not integrable then by an argument
of [NaTl, Theorem 4], ¢ = ¢@ for some inner function ¢. Also if T}, has a finite rank
self-commutator then by [NaTl, Theorem 10], there exists a finite Blaschke product
b e &(p). If ¢ #b, sothat E(p) contains at least two elements, then by Corollary
3720, T, is normal or analytic. If instead ¢ = b then by Theorem 520, T, is also
normal or analytic. O

Theorem 622 reduces Problem 5.11 to the class of Toeplitz operators such that
log || is integrable. If log || is integrable then there exists an outer function e such
that || = |e|. Thus we may write ¢ = ue, where u is a unimodular function. Since
by the Douglas-Rudin theorem (cf. [Ga, p.192]), every unimodular function can be
approximated by quotients of inner functions, it follows that if log|p| is integrable
then ¢ can be approximated by functions of bounded type. Therefore if we could
obtain such a sequence v, converging to ¢ such that T}, is 2-hyponormal with finite
rank self-commutator for each n, then we would answer Problem J affirmatively. On
the other hand, if T, attains its norm then by a result of Brown and Douglas [BD)],
@ is of the form ¢ = )\% with A > 0, ¥ and 6 inner. Thus ¢ is of bounded type.
Therefore by Corollary B30, if T, is 2-hyponormal and attains its norm then T, is
normal or analytic. However we were not able to decide that if T}, is a 2-hyponormal
operator with finite rank self-commutator then 7, attains its norm.
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Chapter 6

A Brief Survey on the
Invariant Subspace Problem

6.1 A Brief History

Let H be a separable complex Hilbert space. If T € L£L(H) then T is said to have a
nontrivial invariant subspace if there is a subspace 9 of H such that {0} # 9 # H
and 799 C M. In this case we can represent 1" as

T{* *] on M & M+,
0 =

Example 6.1.1. If T has aigenvalue A, put
My := {x: Ta = Az} = the eigenspace corresponding to A.

Then evidently 799, C M. If T # X then 90 is nontrivial.

Invariant Subspace Problem (1932, J. von Neumann) Let X = a Banach space
of dim > 2 and T € B(X). Does T have a nontrivial invariant subspace ?

Let K(H) be the set of compact operators on H. If K € K(#) has a polar
decomposition K = U |T|, where |T| := (T*T)2 and U is a partial isometry, then |T| €
K(H) and so has a diagonal matrix diag (A, Ao, --) relative to some orthonormal
basis for H. For p > 1 we define

Cp(H) := {K eK(H): i/\ﬁ < OO},

n=1
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which is called the Schatten p-ideal. The ideal C;(H) is known as the trace class and
the ideal Co(H) as the Hilbert-Schmidt class.

1984 C.J. Read answered ISP in the negative (for ¢1).

Comment. However ISP is still open for a separable Hilbert space.

1934 J. von Neumann (unpublished): T € K(H) = T has n.i.s.

1954 N. Aronszajn and K. Smith (Ann. of Math.): T'€ K(H) = T has n.i.s.
1966 A. Bernstein and A. Robinson (Pacific J. of Math.)

T is polynomially compact (i.e., p(T) is compact for a polynomial p) = T has n.i.s.

1966 P. Halmos (Pacific J. of Math.) reproved Bernstein-Robinson theorem via
analysis technique.

1973 K. Lomonosov (Funk. Anal. Pril.)

T'(# X\) commutes with a nonzero compact operator = T has n.i.s.
1978 S. Brown (Int. Eq. Op. Th.): T is subnormal = T has n.i.s.
1986 S. Brown, Chevreau, C. Pearcy (J. Funct. Anal.)

[IT|| <1, o(T) 2 T (= the unit circle) = T has n.i.s.

1987 S. Brown (Ann. of Math.)

T is hyponormal with int o(7) # @ = T has n.i.s.

Problem. Prove or disprove ISP for hyponormal operators.
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6.2 Basic Facts

The spectral picture of T € B(H), SP(T), is the structure consisting of o.(T), the
collection of holes and pseudoholes in 0.(T), and the indices associated with these
holes and pseudoholes.

If H; (i = 1,2) is a separable Hilbert space and T; € B(H;), then Ty and T are said
to be compalent (notation:Ty ~ T5) if there exists a unitary operator W € B(H;, Hy)
and a compact operator K € K(Hj) such that WTIiW* + K = Ts.

Proposition 6.2.1. The relation of compalence on B(H) is an equivalence relation
and partitions B(H) into equivalence classes.

Definition 6.2.2. An operator T' € B(H) is called essentially normal if [T*,T] €
K(H), or equivalently, if 7(T) is normal in B(H)/K(H). We write (EN)(H) for the
set of all essentially normal operators in B(H).

Theorem 6.2.3. (BDF Theorem) [BDOH| IfT' € (EN)(H1) and Ty € (EN)(Hz) then

T ~Ty <— SP(Tl) = SP(TQ)

Suppose there exists a unitary operator W and a compact operator K such that
WTiW*+ K =Ts. If || K|| < € then T} and T5 are said to be e-compalent. (Notation:
T1 ~ T2 (6))

Theorem 6.2.4. [Bei] If N € B(H) is normal then for any € > 0, there exists a
diagonal operator D, such that N ~ D.(e).
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6.3 Quasitriangular operators

An operator T' € B(H) is called quasitriangular if there exists a sequence {P,} of
projections of finite rank that

P, — 1 weakly and |[|P, TP, —TP,|| — 0.

We write QT (H) for the set of all quasitriangular operators in B(H).

Compact operators are quasitriangular. Indeed, if P, is a projection such that
P, — I weakly and K is compact then ||P,KP, — K|| — 0. So

|P.K Py — KPy|| = || Po(K Py) Py — (KP)|| = ||PaK' P, — K| — 0.

A trivial example of a quasitriangular operator is an upper triangular operator: indeed
if P, denotes the orthogonal projection onto \/{ei,--- ,e,}, then TP, H C P,H, so
P, TP, =TP,.

Definition 6.3.1. An operator T' € B(H) is called triangular if there exists an
orthonormal basis {e,} for H such that T is upper triangular.

Evidently, triangular = quasitriangular.

Theorem 6.3.2. (P.Halmos, Quasitriangular operators, Acta Sci. Math. (Szeged)
29 (1968), 283-293)
QT (H) is norm closed.

Theorem 6.3.3. normal = quasitriangular.

Proof. By Theorem 624, if T is normal then for any € > 0,

T ~ D.(e) with a diagonal D,
ie., WIW? =D, + K, with ||K.|| <e. So, ||T = WD, W,||=¢— 0. O
Theorem 6.3.4. (P.Halmos, Quasitriangular operators, Acta Sci. Math. (Szeged)

29 (1968), 283293)
QT(H) = Triangular + Compact.

Theorem 6.3.5. (R. Douglas and C. Pearcy, A note on quasitriangular operators,
Duke math. J. 37(1970), 177-188)

Similarity preserves quasitriangularity
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Corollary 6.3.6. Compalence preserves quasitriangularity.

Theorem 6.3.7. (AFV Theorem) (Apostol, Foias, and Voiculescu, Some results on
non-quasitriangular operators I, Rev. Roumaine Math. Pure Appl. 18(1973), 159
181) If T € B(H) then T is quasitriangular if and only if SP(T) contains no hole or
pseudohole associated with a negative number.

Definition 6.3.8. An operator T' € B(H) is said to have a nontrivial hyperinvariant
subspace if there exists a nontrivial closed subspace 9 such that

M C M for every TV with TT' =T'T.

Definition 6.3.9. An operator T' € B(H) is called biquasitriangular if T, T* € B(H).
We write (BQT)(H) for the set of all biquasitriangular operators on H.

Theorem 6.3.10. If T ¢ (BQT)(H) then either T or T* has an eigenvalue and so
T has a nontrivial hyperinvariant subspace.

Proof. We consider T' ¢ (QT')(H). By the AFV theorem, there exists Ao such that
T — X\p is semi-Fredholm with —oo < index (T'— \g) < 0. Thus dim ker (T — X)) > 0,

and hence )¢ is an eugenvalue for T*. In fact, M = {x € H : T*z = Az} is
hyperinvariant for 7%*. Since Ag cannot be nonquasitriangular, we have 9t # H.
Thus 9+ is a nontrivial hyperinvariant subspace for 7. O

1973 Berger-Shaw If T is hyponormal and cyclic (i.e., there exists a vector ey such
that H = cl{p(T)eo : p = a polynomial} then [T*,T] € C;.

If T is not cyclic, and so
M=cl{p(T)e: e=avector} #H

then 791t C 9.

1979 Voiculescu: Normal = Diagonal normal + Cs.

Sub-Conclusion. The only hyponormal operators without known n.i.s. belong to

T = Diagonal normal + Compact with [T*,T] € C;.
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6.4 Operators whose spectra are Carathéodory re-
gions

In this section it is shown that if an operator 1" satisfies ||p(T')|| < ||p||s(r) for every
polynomial p and the polynomially convex hull of o(7T) is a Carathéodory region
whose accessible boundary points lie in rectifiable Jordan arcs on its boundary, then
T has a nontrivial invariant subspace. As a corollary, it is also shown that if T is
a hyponormal operator and the outer boundary of o(7T') has at most finitely many
prime ends corresponding to singular points on JD and has a tangent at almost every
point on each Jordan arc, then 7" has a nontrivial invariant subspace.

To prove the main theorem we first review some definitions and auxiliary lemmas.

Let K be a compact subset of C. Write nK for the polynomially convex hull of K.
The outer boundary of K means 0(nk), i.e., the boundary of nK. If I" is a Jordan
curve then int ' means the bounded component of C\I'. If K is a compact subset of
C then C(K) denotes the set of all complex-valued continuous functions on K; P(K)
for the uniform closure of all polynomials in C(K); R(K) for the uniform closure of
all rational functions with poles off K in C'(K); and A(K) for the set of all functions
on K which are analytic on int K and continuous on K. A compact set K is called a
spectral set for an operator T if o(T) C K and || f(T)|| < || f|lx for any f € R(K) and
is called a k-spectral set for an operator T if o(T) C K and there exists a constant
k > 0 such that

A <Kl flx  for any f € R(K).

A function algebra on a compact space K is a closed subalgebra A of C(K) that
contains the constant functions and separates the points of K. A function algebra A
on a set K is called a Dirichlet algebra on K if Re A = {Re f : f € A} is dense in
Cr(K) which is the set of all real-valued continuous functions on K.

The following lemma will be used for proving our main theorem.

Lemma 6.4.1. [Agl, Proposition 1] Let T € B(H). Suppose that K is a spectral
set for T and R(K) is a Dirichlet algebra. If T has no nontrivial reducing subspaces
then there exists a norm contractive algebra homomorphism ¢ : H*(int K) — B(H)
such that o(z) = T. Furthermore, ¢ is continuous when domain and range have their
weak® topologies.

We recall [Co] that a Carathéodory domain is an open connected subset of C whose
boundary coincides with its outer boundary. We can easily show that a Carathéodory
domain G is a component of int nG and hence is simply connected. The notion of a
Carathéodory domain was much focused in giving an exact description of the functions
in P%(G) = the closure of the polynomials in L?(G): for example, P?(G) is exactly
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the Bergman space L2(G) if G is a bounded Carathéodory domain (cf. [Co, Theorem
8.15]). Throughout this section, a Carathéodory region means a closed set in C whose
interior is a Carathéodory domain.

We note that the boundary of a bounded Carathéodory domain need not be a
Jordan arc. A simple example is a Cornucopia, which is an open ribbon G that winds
about the unit circle so that each point of OD belongs to 0G. In this case, dG is
not a Jordan curve because every point ¢ of 9D is not an accessible boundary point,
in the sense that it cannot be joined with an arbitrary point of the domain G by a
continuous curve that entirely lies in G except for the end point ¢. Of course, IG\ OD
is a Jordan arc. In particular, D is called a prime end of a Cornucopia G (for the
definition of prime ends, see [Go, p.39]). We note that if ¢ is a conformal map from
D onto G then ¢ can be extended to a homeomorphism from clD\ {one point on oD}
onto G U (G \ dD) (cf. [Go, pp.40-44]).

If f is a conformal mapping of D onto the inside of a Jordan curve I', then f has
a continuous one-to-one extension up to 9D and when thus extended takes 9D onto
I'. If I' has a tangent at a point, we have:

Lemma 6.4.2. (Lindeldf theorem)[Ko, p.40] Let G be a simply connected domain
bounded by a Jordan curve I' and 0 € I'. Suppose that f maps D conformally onto G
and f(1) =0. If T has a tangent at 0, then for a constant c,

arg f(z) —arg(1—2) = ¢ for|z| <1, z— 1.

Note that Lemma BZ2 says that the conformal images of sectors in D with their
vertices at 1 are asymptotically like sectors in G of the same opening with their
vertices at 0.

We can extend Lemma B2 slightly.

Lemma 6.4.3. (An extension of Lindeldf theorem) Let G be a simply connected
domain and suppose a conformal map ¢ : D — G can be extended to a homeomorphism

@:cl]D)\{ziGaD:iGN}%GU{Ji:iEN},
where the J; are Jordan arcs on 0G. If0 € Ji, ¢71(0) =1 ¢ cl{z :i € N}, and J;

has a tangent at 0, then for a constant c,
argp(z) —arg(l—z) = ¢ forlz| <1, z = 1.

Proof. Consider open disks D; = D;(z;,1;) (i = 1,2,---), where r; is chosen so that
1 & clD;. Let D =D\ U2, clD,;. Then D is simply connected. So by Riemann’s
mapping theorem there exists a conformal map ) from D onto D such that (0) =0
and ¢¥(1) = 1. Then p o4 is a conformal map from D onto a simply connected
domain bounded by a Jordan curve. Clearly, the Jordan curve has a tangent at
po1(l) = p(1) = 0. Note that 1 — ¢ is a conformal map from D onto 1 — D. Also
9(1—D) is a Jordan curve and 9(1 — D) has a tangent at 1 —(1) = 0. Now applying
Lemma B2 with ¢ o9 and 1 — 9 gives the result. O
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Applying Lemma G472, we can show the following geometric property of a bounded
Carathéodory domain whose accessible boundary points lie in rectifiable Jordan arcs
on its boundary. The following property was proved for the open unit disk in [Ber].
But our case is little subtle. The following lemma plays a key role in proving our
main theorem.

Lemma 6.4.4. Let G be a bounded Carathéodory domain whose accessible boundary

points lie in rectifiable Jordan arcs on its boundary. If a subset A C G is not domi-

nating for G, i.e., there exists h € H*(QG) such that ||h|c > sup |h()\)|, then we can
AEA

construct two rectifiable simple closed curves I' and I satisfying
(i) T and T” are exterior to each other;

(i) T (resp. I") meets a Jordan arc J (resp. J') at two points, where J C OG (resp.
J' C 0G);

(i) T and TV cross Jordan arcs along line segments which are orthogonal to the
tangent lines of the Jordan arcs;

(iv) TNA=¢ andT"NA = ¢.

Proof. Let ¢ be a conformal map from D onto the domain G. Then it is well known
(cf. [Go, pp. 41-42]) that there exists a one-one correspondence between points on
0D and the prime ends of the domain G and that every prime end of G contains no
more than one accessible boundary point of G. Since G is a simply connected domain,
the map ¢! can be extended to a homeomorphism which maps a Jordan arc v on
O0G, no interior point of which is a cluster point for 0G \ 7, onto an arc on 9D (cf.
[Go, p.44, Theorem 4’]). But since by our assumption, every accessible boundary
point of OG lies in a Jordan arc of G and the set of all points on 0D corresponding
to accessible boundary points of G is dense in 9D (cf. [Go, p.37, Theorem 1]), it
follows that every prime end which contains no accessible boundary point of 0G must
be corresponded to an end point of an arc on dD corresponding to a Jordan arc on
OG or a limit point of a sequence of disjoint Jordan arcs on dD. Thus the points on
0D corresponding to the prime ends which contain no accessible boundary points of
0G form a countable set. Now let V' be the set of ‘singular’ points, that is, points on
OD corresponding to the prime ends which contain no accessible boundary points of
0G. Then V is countable and the map ¢ can be extended to a homeomorphism from
clD\ V onto GU {Ji 1 =1,2,--- }, where the J; are rectifiable Jordan arcs on 0G.
We denote this homeomorphism by still ¢. Then we claim that

A = ¢~ '(A) is not dominating for D. (6.1)

Indeed, by our assumption, ||h||¢ > supycy |R(A)| for some h € H*(G). Since ||k ¢ =
||k o ¢|lp and ¢ is conformal on D, we have that h oo € H>*(D). Also, since

sup [(A)| = sup |h(@(A)] = sup [(ho@)(A)];
AEA AEN AEA!
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it follows that
[h o @llp > sup [(hop)(N)],
NI

giving ([?]). Write
= {/\ € OD : ) is not approached nontangentially by points in A’ }

Remember that S = {«,} C D is dominating for D if and only if almost every point
on JD is approached nontangentially by points of S (cf. [BSZ, Theorem 3]). It thus
follows that w has a positive measure. We put

W .= {:13 € J; : J; does not have a tangent at x for i = 172,~-~}.

Then W has measure zero since the J; are rectifiable and every rectifiable Jordan arc
has a tangent almost everywhere. Now let W’ = =1 (W). Also W’ has measure zero.
Let 6 be a fixed angle with %ﬂ' < 0 < 7 and let Ay be the sector whose vertex is A
and whose radius is 7y, of opening 6. Then for each A\ € w we can find a rational
number 75 € (0,1) such that the sector Ay contains no point in A’. Write

o=w\(VUuw.

Since w has a positive measure and hence it is uncountable, there exist a rational
number r € (0,1) and an uncountable set w’ C @ such that r = ry for all A € W'
Clearly, we can find distinct points A1, Ao, A3, A4 in w’ such that

Ay, N Ay, # ¢ and A>\3 N Ax, # 0.
We can thus construct two rectifiable arcs I'S and I'§ in clD such that
Fc{ﬂDCA)qUA)\Q, Fcl)ﬂT:{)\l,)\g}

and
Fg ND C A)\3 UA)\47 F; NT = {)\37)\4}.

Let n; := p(X\;) for i = 1,...,4. Then, since ¢ is a homeomorphism, n;’s are distinct.
Also, each 7; is contained in a Jordan arc of 0G. Let B; := ¢(Ay,;). Then, since
%w < 0 < 7, we can, by Lemma EIE, find a line segment [; C B; which is orthogonal
to the tangent line at n;. Let L; ¢~ (l;). Then, by cutting off the end parts of
I'? and I'§ and j Jomlng L;’s, we can construct two new rectifiable arcs FO and F2 Let
= <p(F°) and I” := ap(Fo) Since G is a Carathéodory domain and the end parts
of T and I are hne segments, by extending straightly the end parts of r and I’ in
the unbounded component of C\clG, we can construct two Jordan curves [ and TV
whose end parts cross the boundary of G through line segments. Therefore, by joining
end points of T' (resp., the end points of I'') by a rectifiable arc in the unbounded
component, we can find a simple closed rectifiable curve I' (resp., I') satisfying the
given conditions. O
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We are ready for proving:

Theorem 6.4.5. Let T' € B(H) be such that ||p(T)|| < |pllo(r) for every polynomial
p. If no(T) is a Carathéodory region whose accessible boundary points lie in rectifiable
Jordan arcs on its boundary, then T has a nontrivial invariant subspace.

Proof. To investigate the invariant subspaces, we may assume that 7' has no non-
trivial reducing subspace and o(T') = 04, (T'), where 04, (T") denotes the approximate
point spectrum of 7. Since the complement of no(7T') is connected, we have that by
Mergelyan’s theorem, R(no(T)) = P(no(T)). We thus have

LA (DI < 1 Flgo(r) for any f € R(no(T)),

which says that no(7T) is a spectral set for 7. On the other hand, we note that
R(no(T)) (= P(no(T))) is a Dirichlet algebra. Thus if o(T) ¢ cl(intno(T)), then
it follows from a theorem of J. Stampfli [St, Proposition 1] that 7" has a nontriv-
ial invariant subspace. So we may, without loss of generality, assume that o(T") C
cl(int no(T)). In this case we have that no(T) = cl (intno(T)). Hence intno(T) is a
Carathéodory domain.

Now since no(T) is a spectral set, R(no(T)) is a Dirichlet algebra, and T has
no nontrivial reducing subspaces, it follows from Lemma B2 that there exists an
extension of the functional calculus of T' to a norm contractive algebra homomorphism

¢ H®(int no(T)) — B(H). (6.2)

Moreover, ¢ is weak*-weak® continuous. Let 0 < ¢ < % Consider the following set:
Ae) = {)\ € intno(T) : 3 a unit vector  such that |[(T'— A)z|| < edist (X, d(no(T))) }

There are two cases to consider.

Case 1: A(g) is not dominating for int no(T). Since int no(T') is a Carathéodory
domain, we can find two rectifiable simple closed curves I" and I satisfying the con-
ditions given in Lemma BGZ4; in particular, ' N A(e) = 0 and IV N A(e) = 0. Let

L Nano(T)) = {\, A2} and I’ NAno(T)) = {As, Al

Since o(T') = 04p(T), it is clear that A(e) D intno(T) No(T). So T — A is invertible
for any A in I'\{A1, A2} and I"\{A3, A\s}. If A € T'\no(T), then since the functional
calculus in (B22) is contractive, we have

1
~ dist(\, 0 (no(T))

1 .
I —7) < S“p{u—m ne mtno(T)}

Let A € T’ N intno(T). Since I' N A(e) = (), we have that for any unit vector z,

(T =Nzl = edist (A, 0(no(T))),
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which implies that
1

edist (A, d(no(T)))
On the other hand, Since d(no(T')) has a tangent at A;, it follows that in a sufficiently
small neighborhood N; of \;, d(no(T)) lies in a double-sector A; of opening 26;

(0 < 0; < %) for each i = 1,2. But since I' is a line segment in a sufficiently small
neighborhood of each \; (i = 1,2), it follows that if A € N; N T, then

A=) <

A=Al A = Al 1
<

dist (A, O(no(T))) — dist(\, 4;) cos;

We thus have
I = A1) = A)A—T)7Y| < E\A—A2|§M on Ny NT,

which says that Sy = (A — A\1)(A — A2)(A — T')~! is bounded on Ny NT. Also Sy has
at most two discontinuities on I'. So the following operator A is well-defined ([Apl]):

A= i (A= A)A = A)(A=T)""dA.
2me Jr

Now, using the argument of [Ber, Lemma 3.1]), we can conclude that ker(A) is a
nontrivial invariant subspace for T

Case 2: A(g) is dominating for intno(T). In this case, we can show that ¢ is
isometric, i.e.,

IR(T)|| = I ]lint po(ry forall he H(intno(T)),

by using the same argument as the well-known method due to Apostol (cf. [Apl]),
in which it was shown that the Sz.-Nagy-Foias calculus is isometric. Now consider a
conformal map ¢ : D — int no(T) and then define the function ¢ by

Y= ! intno(T) — D.

Then ¢ € H*®(intno(T)). Define A := (7). Then A is an absolutely continuous
contraction with norm 1. Thus we can easily show that

|R(A)|| = ||h||p for any h € H>*(D).
Thus if A\g € T, then

lim [[(A=N)7Y = lim [(z =X = o0,
A= Ao, A[>1 A= Ao, A[>1
which implies that A — Ao is not invertible, so that we get T C o(A). Since every
contraction whose spectrum contains the unit circle has a nontrivial invariant subspace
([BCP2]), A has a nontrivial invariant subspace. On the other hand, since T €
weak*-cl{p(A) : p is a polynomial}, we can conclude that T has a nontrivial invariant
subspace. O
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A simple example for the set satisfying ||p(T')|| < ||pl|s(r) for every polynomial p
is the set of ‘polynomially normaloid’ operators, in the sense that p(T") is normaloid
(i.e., norm equals spectral radius) for every polynomial p. Indeed if p(T') is normaloid
then ||p(T)|| = supxeq(p(ry) 1Al = |IP|lo(1) by the spectral mapping theorem.

Remark. We were unable to decide whether in Theorem B3, the condition “||p(T)|| <
|[p]|o(r)” can be relaxed to the condition “||p(T")|| < k |[p||s(r) for some k > 0”. How-
ever we can prove that if T € B(H) is such that ||p(T)|| < k||p||,(r) for every
polynomial p and some k > 0 and if the outer boundary of o(T) is a Jordan curve
then T has a nontrivial invariant subspace. This is a corollary of the theorem of C.
Ambrozie and V. Miiller [AM, Theorem A]. The proof goes as follows. Since 0 (no(T'))
is a Jordan curve, then by Carathéodory’s theorem on extensions of the conformal
representations, a conformal map ¢ : int no(7") — D can be extended to a homeomor-
phism ¢ : no(T) — clD. Since C\ no(T) is connected, we can find polynomials p,
such that p, — ¢ uniformly on no(T). Since the spectrum function o : B(H) — C is
upper semi-continuous, it follows that

P(9(no(T))) C ¢p(o(T)) = limsup p, (o (T)) = limsup o (pn (1)) C o (4p(T)).

But since 1 is a homeomorphism we have that 9D C o(¢(7")). By our assumption we
can also see that

1o $)(D| < k[P0 Ulling pocry = Ellplls Tor every polynomail p,

which says that ¢(T") is a polynomially bounded operator. Therefore by the theorem
of C. Ambrozie and V. Miiller[AM], ¢(T') has a nontrivial invariant subspace. Hence
we can conclude that 7' has a nontrivial invariant subspace.

We conclude with a result on the invariant subspaces for hyponormal operators
(this applies, in particular, to the case when no(T') is the closure of a Cornucopia).

Corollary 6.4.6. Let T € B(H) be a hyponormal operator. If the outer boundary
of o(T) has at most finitely many prime ends corresponding to singular points on
OD and has a tangent at almost every point on each Jordan arc, with respect to a
conformal map from D onto intno(T), then T has a nontrivial invariant subspace.

Proof. Suppose that
||hH1nt no(T) = Sup{lh()‘)‘ NS U(T) Nint 7’]0’(T)}

for all h € H*®(intno(T)). Then o(T) Nintno(T) is dominating for int no (7). Thus
by the well-known theorem due to S. Brown [Br2, Theorem 2|, T' has a nontrivial
invariant subspace. Suppose instead that

12 llint o (T) > sup{|h(/\)\ A €o(T)Nint no(T)}

for some h € H*(intno(T)). By an analysis of the proof of Lemma EZ4, we can
construct two rectifiable curves I' and I satisfying the conditions (i) - (iv). Let
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T'Nnono(T) = {1, A2} and IVNIno (T) = {A3, As}. Since T is a hyponormal operator,
we have
1

13 =D7 = G o)

on A€ (F\{)\l,/\2}> U (F/\{)\37>\4}).

Now the same argument as in Case 1 of the proof of Theorem G273 shows that T" has
a nontrivial invariant subspace. O
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