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Forward

The present lecture note is based on a graduate course “Topics in Operator Theory” delivered
by the author at the Seoul National University, in the spring semester of 2010.

In 1903, Erik I. Fredholm considered integral equations and then gave a complete de-
scription of integral equations via the spectral theory of operators, so-called the Fredholm
operators. This theory is named in honor of E.I. Fredholm. Since then, the Fredholm theory
has been extensively generalized and applied to many branches of mathematics. In 1909,
writing about differential equations, Hermann Weyl noticed something about the essential
spectrum of a self adjoint operator on a Hilbert space: when you take it away from the
spectrum, you are left with the isolated eigenvalues of finite multiplicity. This was soon gen-
eralized to normal operators, and then to more general operators, bounded and unbounded,
on Hilbert and on Banach spaces. Nowadays, this is called the Weyl’s theorem.

In this lecture note we attempt to set forth some of the recent developments that had
taken place in the theory of Fredholm operators. In particular, we focus on the Weyl’s
theorem.
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1 FREDHOLM THEORY

1 Fredholm theory

If k(x, y) is a continuous complex-valued function on [a, b]× [a, b], then K : C[a, b] → C[a, b]
defined by

(Kf)(x) =

∫ b

a

k(x, y)f(y)dy

is a compact operator. The classical Fredholm integral equations is

λf(x)−
∫ b

a

k(x, y)f(y)dy = g(x), a ≤ x ≤ b,

where g ∈ C[a, b], λ is a parameter and f is the unknown. Using I to be the identity operator
on C[a, b], we can recast this equation into the form (λI−K)f = g. Thus we are naturally led
to study of operators of the form T = λI −K on any Banach space X. The Riesz-Schauder
theory concentrates attention on these operators of the form T = λI−K, λ ≠ 0, K compact.
The Fredholm theory concentrates attention on operators called Fredholm operators, whose
special cases are the operators λI −K. After we develop the “Fredholm Theory”, we can
obtain the following result. Suppose k(x, y) ∈ C[a, b] × C[a, b] (or L2[a, b] × L2[a, b]). The
equation

λf(x)−
∫ b

a

k(x, y)f(y)dy = g(x), λ ̸= 0 (1)

has a unique solution in C[a, b] for each g ∈ C[a, b] if and only if the homogeneous equation

λf(x)−
∫ b

a

k(x, y)f(y)dy = 0, λ ̸= 0 (2)

has only the trivial solution in C[a, b]. Except for a countable set of λ, which has zero as
the only possible limit point, the equation (1) has a unique solution for every g ∈ C[a, b].
For λ ̸= 0, the equation (2) has at most a finite number of linear independent solutions.

In this section we explore the Fredholm theory, in the viewpoint of Robin Harte’s ap-
proach [Har4], which is basically presented by the incomplete space techniques even though
we consider most materials in the setting of Banach spaces.

1.1 Preliminaries

Let X and Y be complex Banach spaces. Let B(X,Y ) denote the set of bounded linear
operators from X to Y and abbreviate B(X,X) to B(X). If T ∈ B(X), we write ρ(T )
for the resolvent set of T ; σ(T ) for the spectrum of T ; π0(T ) for the set of eigenvalues
of T . For a set K in C, we write clK, ∂K, isoK, accK, and intK for the closure, the
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1 FREDHOLM THEORY

boundary points, the isolated points, the accumulation points, and the interior points of K.
respectively.

We begin with:

Definition 1.1. Let X be a normed space and let X∗ be the dual space of X. If Y is a
subset of X, then

Y ⊥ = {f ∈ X∗ : f(x) = 0 for all x ∈ Y } = {f ∈ X∗ : Y ⊂ f−1(0)}

is called the annihilator of Y . If Z is a subset of X∗ then

⊥Z = {x ∈ X : f(x) = 0 for all f ∈ Z} =
∩
f∈Z

f−1(0)

is called the back annihilator of Z.

Even if Y and Z are not subspaces, Y ⊥ and ⊥Z are closed subspaces.

Lemma 1.2. Let Y, Y ′ ⊂ X and Z,Z ′ ⊂ X∗. Then
(a) Y ⊂ ⊥(Y ⊥), Z ⊂ (⊥Z)⊥;
(b) Y ⊂ Y ′ =⇒ (Y ′)⊥ ⊂ Y ⊥; Z ⊂ Z ′ =⇒ ⊥(Z ′) ⊂ ⊥Z;
(c) (⊥(Y ⊥))⊥ = Y ⊥, ⊥((⊥Z)⊥) =⊥ Z;
(d) {0}⊥ = X∗, X⊥ = {0}, ⊥{0} = X.

Proof. This is straightforward.

Theorem 1.3. Let M be a subspace of X. Then
(a) X∗/M⊥ ∼=M∗;
(b) If M is closed then (X/M)

∗ ∼=M⊥;
(c) ⊥(M⊥) = clM .

Proof. See [Go, p.25].

If T ∈ B(X,Y ), we write T ∗ for the adjoint of T . If X and Y are Hilbert spaces and
T ∈ B(X,Y ), T ∗ denotes the (Hilbert space) adjoint of T .

Theorem 1.4. If T ∈ B(X,Y ), then
(a) T (X)⊥ = (T ∗)−1(0);
(b) clT (X) = ⊥(T ∗−1(0));
(c) T−1(0) ⊂ ⊥T ∗(Y ∗);
(d) clT ∗(Y ∗) ⊂ T−1(0)⊥.

Proof. See [Go, p.59].

Theorem 1.5. Let X and Y be Banach spaces and T ∈ B(X,Y ). Then the following are
equivalent:

(a) T has closed range;
(b) T ∗ has closed range;
(c) T ∗(Y ∗) = T−1(0)⊥;
(d) T (X) = ⊥(T ∗−1(0)).

5



1 FREDHOLM THEORY

Proof. (a) ⇔ (d): From Theorem 1.4 (b).
(a) ⇒ (c): Observe that the operator T∧ : X/T−1(0) → TX defined by

x+ T−1(0) 7→ Tx

is invertible by the open mapping theorem. Thus we have

T−1(0)⊥ ∼=
(
X/T−1(0)

)∗ ∼= (TX)∗ ∼= T ∗(Y ∗).

(c) ⇒ (b): This is clear because T−1(0)⊥ is closed.
(b) ⇒ (a): Observe that if T1 : X → cl (TX) then T ∗

1 : (clTX)∗ → X∗ is one-one. Since
T ∗(Y ∗) = ranT ∗

1 , T
∗
1 has closed range. Therefore T ∗

1 is bounded below, so that T1 is open;
therefore TX is closed.

We introduce:

Definition 1.6. If T ∈ B(X,Y ), write

α(T ) := dimT−1(0) and β(T ) := dimY/cl (TX).

We then have:

Theorem 1.7. If T ∈ B(X,Y ) has a closed range then

α(T ∗) = β(T ) and α(T ) = β(T ∗).

Proof. This follows form the following observation:

T ∗−1(0) = (TX)⊥ ∼= (Y/TX)∗ ∼= Y/T (X)

and
T−1(0) ∼= (T−1(0))∗ ∼= X∗/T−1(0)⊥ ∼= X∗/T ∗(Y ∗).

1.2 Definitions and examples

In the sequel we assume that X and Y are complex Banach spaces and that H and K are
complex Hilbert spaces.

Definition 1.8. An operator T ∈ B(X,Y ) is called a Fredholm operator if T (X) is closed,
α(T ) <∞ and β(T ) <∞. In this case we define the index of T by the equality

index (T ) := α(T )− β(T ).

In the below we shall see that the condition “ T (X) is closed ” is automatically fulfilled if
β(T ) <∞.
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1 FREDHOLM THEORY

Example 1.9. If X and Y are both finite dimensional then any operator T ∈ B(X,Y ) is
Fredholm and

index(T ) = dimX − dimY :

indeed recall the “rank theorem”

dimX = dimT−1(0) + dimT (X),

which implies
index(T ) = dimT−1(0)− dimY/T (X)

= dimX − dimT (X)− (dimY − dimT (X))

= dimX − dimY.

Thus in particular, if T ∈ B(X) with dimX <∞ then T is Fredholm of index zero.

Example 1.10. If K ∈ B(X) is a compact operator then T = I −K is Fredholm of index
0. This follows from the spectral theory of compact operators (cf. [Con1]).

Example 1.11. If U is the unilateral shift operator on ℓ2, i.e.,

U(x1, x2, x3, · · · ) = (0, x1, x2, x3, · · · ) for each (x1, x2, x3, · · · ) ∈ ℓ2,

then a straightforward calculation shows that

indexU = −1 and indexU∗ = −1.

With U and U∗, we can build a Fredholm operator whose index is equal to an arbitrary
prescribed integer. Indeed if

T =

(
Up 0
0 U∗q

)
: ℓ2 ⊕ ℓ2 → ℓ2 ⊕ ℓ2,

then T is Fredholm, α(T ) = q, β(T ) = p, and hence indexT = q − p.

1.3 Operators with closed ranges

If T ∈ B(X,Y ), write

dist
(
x, T−1(0)

)
= inf

{
||x− y|| : Ty = 0

}
for each x ∈ X. (3)

If T ∈ B(X,Y ), we define

γ(T ) = inf

{
c > 0 : ||Tx|| ≥ c dist (x, T−1(0)) for each x ∈ X

}
:

we call γ(T ) the reduced minimum modulus of T .

We then have:

7



1 FREDHOLM THEORY

Theorem 1.12. If T ∈ B(X,Y ), then

T (X) is closed ⇐⇒ γ(T ) > 0.

Proof. Consider X̂ = X/T−1(0) and thus X̂ is a Banach space with norm

||x̂|| = dist (x, T−1(0)).

Define T̂ : X̂ → Y by T̂ x̂ = Tx. Then T̂ is one-one and T̂ (X̂) = T (X).

(⇒) Suppose TX is closed and thus T̂ : X̂ → TX is bijective. By the open mapping

theorem, T̂ is invertible with inverse T̂−1. Thus

||Tx|| = ||T̂ x̂|| ≥ 1

||T̂−1||
||x̂|| = 1

||T̂−1||
dist (x, T−1(0)),

which implies that γ(T ) = 1

||T̂−1||
> 0.

(⇐) Suppose γ(T ) > 0. Let Txn → y. Then by the assumption ||Txn|| ≥ γ(T ) ||x̂n||,
and hence, ||Txn − Txm|| ≥ γ(T ) ||x̂n − x̂m||, which implies that (x̂n) is a Cauchy sequence

in X̂. Thus x̂n → x̂ ∈ X̂ because X̂ is complete. Hence Txn = T̂ x̂n → T̂ x̂ = Tx; therefore
y = Tx.

Theorem 1.13. If there is a closed subspace Y0 of Y for which T (X)⊕ Y0 is closed then T
has closed range.

Proof. Define T0 : X × Y0 → Y by

T0(x, y0) = Tx+ y0.

The space X × Y0 is a Banach space with the norm defined by

||(x, y0)|| = ||x||+ ||y0||.

Clearly, T0 is a bounded linear operator and T0(X × Y0) = T (X) ⊕ Y0, which is closed by
hypothesis. Moreover, T−1

0 (0) = T−1(0) × {0}. Theorem 1.12 asserts that there exists a
c > 0 such that

||Tx|| = ||T0(x, 0)|| ≥ cdist

(
(x, 0), T−1

0 (0)

)
= cdist

(
x, T−1(0)

)
,

which implies that T (X) is closed.

Corollary 1.14. If T ∈ B(X,Y ) then

T (X) is complemented =⇒ T (X) is closed.

In particular, if β(T ) <∞ then T (X) is closed.

Proof. If T (X) is complemented then we can find a closed subspace Y0 for which T (X)⊕Y0 =
Y . Theorem 1.13 says that T (X) is closed.

8



1 FREDHOLM THEORY

To see the importance of Corollary 1.14, note that for a subspace M of a Banach space
Y ,

Y =M ⊕ Y0 does not imply that M is closed.

Take a non-continuous linear functional f on Y and putM = ker f . Then there exists a one-
dimensional subspace Y0 such that Y = M ⊕ Y0 (recall that Y/f−1(0) is one-dimensional).
But M = f−1(0) cannot be closed because f is continuous if and only if f−1(0) is closed.

Consequently, we don’t guarantee that

dim (Y/M) <∞ =⇒ M is closed. (4)

However Corollary 1.14 asserts that if M is a range of a bounded linear operator then (4) is
true. Of course, it is true that

M is closed, dim (Y/M) <∞ =⇒ M is complemented.

Theorem 1.15. Let T ∈ B(X,Y ). If T maps bounded closed sets onto closed sets then T
has closed range.

Proof. Suppose T (X) is not closed. Then by Theorem 1.12 there exists a sequence {xn}
such that

Txn → 0 and dis
(
xn, T

−1(0)
)
= 1.

For each n choose zn ∈ T−1(0) such that ||xn − zn|| < 2. Let V := cl {xn − zn : n =
1, 2, . . .}. Since V is closed and bounded in X, T (V ) is closed in Y by assumption. Note
that Txn = T (xn − zn) ∈ T (V ). So, 0 ∈ T (V ) (Txn → 0 ∈ T (V )) and thus there exists
u ∈ V ∩ T−1(0). From the definition of V it follows that

||u− (xn0 − zn0)|| <
1

2
for some n0,

which implies that

dis
(
xn0 , T

−1(0)
)
<

1

2
.

This contradicts the fact that dist
(
xn, T

−1(0)
)
= 1 for all n. Therefore T (X) is closed.

Theorem 1.16. Let K ∈ B(X). If K is compact then T = I −K has closed range.

Proof. Let V be a closed bounded set in X and let

y = lim
n→∞

(I −K)xn, where xn ∈ V. (5)

We have to prove that y = (I − K)x0 for some x0 ∈ V . Since V is bounded and K is
compact the sequence {Kxn} has a convergent subsequence {Kxni}. By (5), we see that

x0 := lim
i→∞

xni = lim
i→∞

(
(I −K)xni +Kxni

)
exists.

But then y = (I −K)x0 ∈ (I −K)V ; thus (I −K)V is closed. Therefore by Theorem 1.15,
I −K has closed range.

9



1 FREDHOLM THEORY

Corollary 1.17. If K ∈ B(X) is compact then I −K is Fredholm.

Proof. From Theorem 1.16 we see that (I − K)(X) is closed. Since x ∈ (I − K)−1(0)
implies x = Kx, the identity operator acts as a compact operator on (I − K)−1(0); thus
α(I −K) < ∞. To prove that β(I −K) < ∞, recall that K∗ : X∗ → X∗ is also compact.
Since (I −K)(X) is closed it follows from Theorem 1.7 that

β(I −K) = α(I −K∗) <∞.

1.4 The Product of Fredholm operators

Let T ∈ B(X,Y ). Suppose T−1(0) and T (X) are complemented by subspaces X0 and Y0;
i.e.,

X = T−1(0)⊕X0 and Y = T (X)⊕ Y0.

Define T̃ : X0 × Y0 → Y by
T̃ (x0, y0) = Tx0 + y0.

The space X0 × Y0 is a Banach space with the norm defined by ||(x, y)|| = ||x|| + ||y|| and
T̃ is a bijective bounded linear operator. We call T̃ the bijection associated with T (cf.
[GGK]). If T is Fredholm then such a bijection always exists and Y0 is finite dimensional.
If we identify X0

∼= X0 × {0} then the operator T0 : X0 → Y defined by

T0x = Tx

is a common restriction of T and T̃ to X0 (= X0 × {0}).

Note that
(a) 1

||T̃−1||
= γ(T );

(b) If T̂ : X/T−1(0) → TX then T̂ ∼= T̃ .

Lemma 1.18. Let T ∈ B(X,Y ) and M ⊂ X with codimM = n <∞. Then

T is Fredholm ⇐⇒ T0 := T |M is Fredholm,

in which case, indexT = indexT0 + n.

Proof. It suffices to prove the lemma for n = 1. Put X :=M ⊕ span {x1}. We consider two
cases:

(Case 1) Assume Tx1 /∈ T0(M). Then T (X) = T0(M) ⊕ span {Tx1} and T−1(0) =
T−1
0 (0). Hence

β(T0) = β(T ) + 1 and α(T0) = α(T ). (6)

(Case 2) Assume Tx1 ∈ T0(M). Then T (X) = T0(M), and hence there exists u ∈ M
such that Tx1 = T0u. Thus T

−1(0) = T−1
0 (0)⊕ span {x1 − u}. Thus

β(T0) = β(T ) and α(T0) = α(T )− 1. (7)

From (6) and (7) we have the result.

10



1 FREDHOLM THEORY

Theorem 1.19. (Index Product Theorem) If T ∈ B(X,Y ) and S ∈ B(Y,Z) then

S and T are Fredholm =⇒ ST is Fredholm with

index (ST ) = indexS + indexT.

Proof. Let T̃ be a bijection associated with T , X0, and Y0: i.e., X = T−1(0) ⊕ X0 and

Y = T (X)⊕Y0. Suppose T0 := T |X0 . Since T̃ is invertible, ST̃ is invertible and index (ST̃ ) =

indexS. By identifying X0 and X0 × {0}, we see that ST0 is a common restriction of ST̃
and ST to X0. By Lemma 1.18, ST is Fredholm and

index (ST ) = index (ST0) + dimX/X0

= index(ST̃ )− dim

(
X0 × Y0/X0 × {0}

)
+ α(T )

= indexS − dimY0 + α(T )

= indexS − β(T ) + α(T )

= indexS + indexT.

The converse of Theorem 1.19 is not true in general. To see this, consider the following
operators on ℓ2:

T (x1, x2, x3, . . .) = (0, x1, 0, x2, 0, x3, . . .)

S(x1, x2, x3, . . .) = (x2, x4, x6, . . .).

Then T ad S are not Fredholm, but ST = I. However, if ST = TS then we have

ST is Fredholm =⇒ S and T are both Fredholm

because T−1(0) ⊂ (ST )−1(0) and (ST )(X) = TS(X) ⊂ T (X).

Remark 1.20. For a time being, a Fredholm operator of index 0 will be called a Weyl
operator. Then we have the following question: Is there implication that if ST = TS then

S, T are Weyl ⇐⇒ ST is Weyl ?

Here is an answer. The forward implication comes from the index product theorem without
commutativity condition. However the backward implication may fail even with commuta-
tivity condition. To see this, let

T =

(
U 0
0 I

)
and S =

(
I 0
0 U∗

)
,

where U is the unilateral shift on ℓ2. Evidently,

index (ST ) = index

(
U 0
0 U∗

)
= indexU + indexU∗

= 0,

but S and T are not Weyl.

11



1 FREDHOLM THEORY

1.5 Perturbation theorems

We begin with:

Theorem 1.21. Suppose T ∈ B(X,Y ) is Fredholm. If S ∈ B(X,Y ) with ||S|| < γ(T ) then
T + S is Fredholm and

(a) α(T + S) ≤ α(T );
(b) β(T + S) ≤ β(T );
(c) index (T + S) = indexT .

Proof. Let X = T−1(0) ⊕X0 and Y = T (X) ⊕ Y0. Suppose T̃ is the bijection with T,X0

and Y0. Put R = T + S and define

R̃ : X0 × Y0 → Y by R̃(x0, y0) = Rx0 + y0.

By definition, T̃ (x0, y0) = Tx0 + y0. Since T̃ is invertible and

||T̃ − R̃|| ≤ ||T −R|| = ||S|| < γ(T ) =
1

||T̃−1||
,

we have that R̃ is also invertible. Note that R0 : X0 → Y defined by

R0x = Rx

is a common restriction of R and R̃ to X0. By Lemma 1.18, R is Fredholm and

indexR = indexR0 + α(T )

= index R̃− β(T ) + α(T )

= indexT

which proves (c). The invertibility of R̃ implies that X0 ∩R−1(0) = {0}. Thus we have

α(R) ≤ dimX/X0 = α(T ),

which proves (a). Note that (b) is an immediate consequence of (a) and (c).

The first part of Theorem 1.21 asserts that the set of Fredholm operators forms an open
set.

Theorem 1.22. Let T,K ∈ B(X,Y ). Then

T is Fredholm, K is compact =⇒ T +K is Fredholm with

index (T +K) = indexT.

Proof. Let X = T−1(0)⊕X0 and Y = T (X)⊕ Y0. Define T̃ , K̃ : X0 × Y0 → Y by

T̃ (x0, y0) = Tx0 + y0, K̃(x0, y0) = Kx0 + y0.

Therefore K̃ is compact since K is compact and dimY0 < ∞. From (T̃ + K̃)(x0, 0) =
(T +K)x0 and Lemma 1.18 it follows that

T +K is Fredholm ⇐⇒ T̃ + K̃ is Fredholm.

12
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But T̃ is invertible. So
T̃ + K̃ = T̃

(
I + T̃−1K̃

)
.

Observe that T̃−1K̃ is compact. Thus by Corollary 1.17, I + T̃−1K̃ is Fredholm. Hence
T +K is Fredholm.

To prove the statement about the index consider the integer valued function F (λ) :=
index (T +λK). Applying Theorem 1.21 to T +λK in place of T shows that f is continuous
on [0, 1]. Consequently, f is constant. In particular,

indexT = f(0) = f(1) = index (T +K).

Corollary 1.23. If K ∈ B(X) then

K is compact =⇒ I −K is Fredholm with index (I −K) = 0.

Proof. Apply the preceding theorem with T = I and note that index I = 0.

1.6 The Calkin algebra

We begin with:

Theorem 1.24. If T ∈ B(X,Y ) then

T is Fredholm ⇐⇒ ∃ S ∈ B(Y,X) such that I − ST and I − TS are finite rank.

Proof. (⇒) Suppose T Fredholm and let

X = T−1(0)⊕X0 and Y = T (X)⊕ Y0.

Define T0 := T |X0 . Since T0 is one-one and T0(X0) = T (X) is closed

T−1
0 : T (X) → X0 is invertible.

Put S := T−1
0 Q, where Q : Y → T (X) is a projection. Evidently, S(Y ) = X0 and S−1(0) =

Y0. Furthermore,
I − ST is the projection of X onto T−1(0)

I − TS is the projection of Y onto Y0.

In particular, I − ST and I − TS are of finite rank.
(⇐) Assume ST = I −K1 and TS = I −K2, where K1,K2 are finite rank. Since

T−1(0) ⊂ (ST )−1(0) and (TS)X ⊂ T (X),

we have
α(T ) ≤ α(ST ) = α(I −K1) <∞
β(T ) ≤ β(TS) = β(I −K2) <∞,

which implies that T is Fredholm.

13
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Theorem 1.24 remains true if the statement “I − ST and I − TS are of finite rank” is
replaced by “I − ST and I − TS are compact operators.” In other words,

T is Fredholm ⇐⇒ T is invertible modulo compact operators.

Let K(X) be the space of all compact operators on X. Note that K(X) is a closed ideal
of B(X). On the quotient space B(X)/K(X), define the product

[S][T ] = [ST ], where [S] is the coset S +K(X).

The space B(X)/K(X) with this additional operation is an algebra, which is called the
Calkin algebra, with identity [I].

Theorem 1.25. (Atkinson’s Theorem) Let T ∈ B(X). Then

T is Fredholm ⇐⇒ [T ] is invertible in B(X)/K(X).

Proof. (⇒) If T is Fredholm then

∃ S ∈ B(X) such that ST − I and TS − I are compact.

Hence [S][T ] = [T ][S] = [I], so that [S] is the inverse of [T ] in the Calkin algebra.
(⇐) If [S][T ] = [T ][S] = [I] then

ST = I −K1 and TS = I −K2,

where K1,K2 are compact operators. Thus T is Fredholm.

Let T ∈ B(X). The essential spectrum σe(T ) of T is defined by

σe(T ) = {λ ∈ C : T − λI is not Fredholm}

We thus have
σe(T ) = σB(X)/K(X)(T +K(X)).

Evidently σe(T ) is compact. If dimX = ∞, then

σe(T ) ̸= ∅ (because B(X)/K(X) ̸= ∅).

In particular, Theorem 1.22 implies that

σe(T ) = σe(T +K) for every K ∈ K(X).

Theorem 1.26. If T ∈ B(X,Y ) then

T is Weyl ⇐⇒ ∃ a finite rank operator F such that T + F is invertible.

14
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Proof. (⇒) Let T be Weyl and put

X = T−1(0)⊕X0 and Y = T (X)⊕ Y0.

Since indexT = 0, it follows that

dimT−1(0) = dimY0.

Thus there exists an invertible operator F0 : T−1(0) → Y0. Define F := F0(I −P ), where P
is the projection of X onto X0. Obviously, T + F is invertible.

(⇐) Assume S = T + F is invertible, where F is of finite rank. By Theorem 1.22, T is
Fredholm and indexT = indexS = 0.

The Weyl spectrum, ω(T ), of T ∈ B(X) is defined by

ω(T ) =

{
λ ∈ C : T − λI is not Weyl

}
Evidently, ω(T ) is compact and in particular,

ω(T ) =
∩

K compact

σ(T +K).

Definition 1.27. An operator T ∈ B(X,Y ) is said to be regular if there is T ′ ∈ B(Y,X)
for which

T = TT ′T ; (8)

then T ′ is called a generalized inverse of T . We can always arrange

T ′ = T ′TT ′ : (9)

indeed if (8) holds then

T ′′ = T ′TT ′ =⇒ TT ′′T and T ′′ = T ′′TT ′′.

If T ′ satisfies (8) and (9) then it will be called a generalized inverse of T in the strong sense.
Also T ∈ B(X,Y ) is said to be decomposably regular if there exists T ′ ∈ B(Y,X) such that

T = TT ′T and T ′ is invertible.

The operator S := T−1
0 Q, which was defined in the proof of Theorem 1.24, is a generalized

inverse of in the strong sense. Thus we have

T is Fredholm ⇐⇒ I − T ′T and I − TT ′ are finite rank.

Generalized inverses are useful in solving linear equations. Suppose T ′ is a generalized
inverse of T . If Tx = y is solvable for a given y ∈ Y , then T ′y is a solution (not necessary
the only one). Indeed,

Tx = y is solvable =⇒ ∃ x0 such that Tx0 = y

=⇒ TT ′y = TT ′Tx0 = Tx0 = y.

15
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Theorem 1.28. If T ∈ B(X,Y ), then

T is regular ⇐⇒ T−1(0) and T (X) are complemented.

Proof. (⇐) If X = X0 ⊕ T−1(0) and Y = Y0 ⊕ T (X) then T ′ : Y → X defined by

T ′(Tx0 + y0) = x0, where x0 ∈ X0 and y0 ∈ Y0

is a generalized inverse of T because for x0 ∈ X0 and z ∈ T−1(0),

TT ′T (x0 + z) = TT ′(Tx0) = Tx0 = T (x0 + z).

(⇒) Assume T ′ is a generalized inverse of T : TT ′T = T . Obviously, TT ′ and T ′T are
both projections. Also,

T (X) = TT ′T (X) ⊂ TT ′(X) ⊂ T (X);

T−1(0) ⊂ (T ′T )−1(0) ⊂ (TT ′T )−1(0) = T−1(0),

which gives
TT ′(X) = T (X) and (T ′T )−1(0) = T−1(0),

which implies that T−1(0) and T (X) are complemented.

Corollary 1.29. If T ∈ B(X,Y ) then

T is Fredholm =⇒ T is regular.

Proof. Immediate from Theorem 1.28.

Theorem 1.30. If T ∈ B(X,Y ) is Fredholm with T = TT ′T , then T ′ is also Fredholm with

index (T ′) = −index (T ).

Proof. We first claim that

ST is Fredholm =⇒ (S Fredholm ⇐⇒ T Fredholm) : (10)

indeed,

ST is Fredholm =⇒ I − (ST )′(ST ) ∈ K0 and I − (ST )(ST )′ ∈ K0,

which implies

T is Fredholm ⇐⇒ I − T (ST )′S ∈ K0 ⇐⇒ S is Fredholm.

Thus by (10), T ′ is Fredholm and by the index product theorem,

index (T ) = index (TT ′T ) = index (T ) + index (T ′) + index (T ).

16
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Theorem 1.31. If T ∈ B(X,Y ) is Fredholm with generalized inverse T ′ ∈ B(Y,X) in the
strong sense then

index (T ) = dimT−1(0)− dim (T ′)−1(0).

Proof. Observe that

(T ′)−1(0) = (TT ′)−1(0) ∼= X/TT ′(X) ∼= X/T (X),

which gives that β(T ) = α(T ′).

Theorem 1.32. If T ∈ B(X,Y ) is Fredholm with generalized inverse T ′ ∈ B(Y,X), then

index (T ) = trace (TT ′ − T ′T ).

Proof. If T = TT ′T is Fredholm then

I − T ′T and I − TT ′ are both finite rank.

Observe that

dim (I − T ′T )(X) = dim (T ′T )−1(0) = dimT−1(0) = α(T );

dim (I − TT ′)(Y ) = dim (TT ′)−1(0) = dimX/TT ′(Y ) = dimX/T (X) = β(T ).

Thus we have

trace (TT ′ − T ′T ) = trace
(
(I − T ′T )− (I − TT ′)

)
= trace (I − T ′T )− trace (I − TT ′)

= rank (I − T ′T )(X)− dim (I − TT ′)(X)

= α(T )− β(T )

= index (T ).

1.7 The punctured neighborhood theorem

If T ∈ B(X,Y ) then
(a) T is said to be upper semi-Fredholm if T (X) is closed and α(T ) <∞;
(b) T is said to be lower semi-Fredholm if T (X) is closed and β(T ) <∞.
(c) T is said to be semi-Fredholm if it is upper or lower semi-Fredholm.

Theorem 1.21 remains true for semi-Fredholm operators. Thus we have:

Lemma 1.33. Suppose T ∈ B(X,Y ) is semi-Fredholm. If ||S|| < γ(T ) then
(i) T + S has a closed range;
(ii) α(T + S) ≤ α(T ), β(T + S) ≤ β(T );
(iii) index (T + S) = indexT .

Proof. This follows from a slight change of the argument for Theorem 1.21.

17
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We are ready for the punctured neighborhood theorem; this proof is due to Harte and
Lee [HaL1].

Theorem 1.34. (Punctured Neighborhood Theorem) If T ∈ B(X) is semi-Fredholm then
there exists ρ > 0 such that α(T−λI) and β(T−λI) are constant in the annulus 0 < |λ| < ρ.

Proof. Assume that T is upper semi-Fredholm and α(T ) <∞. First we argue

(T − λI)−1(0) ⊂
∞∩
n=1

Tn(X) =: T∞(X). (11)

Indeed,
x ∈ (T − λI)−1(0) =⇒ Tx = λx, and hence x ∈ T (X)

=⇒ Note that λx = Tx ∈ T (TX) = T 2(X)

=⇒ By induction,x ∈ Tn(X) for all n.

Next we claim that
T∞(X) is closed:

indeed, since Tn is upper semi-Fredholm for all n, Tn(X) is closed and hence T∞(X) is
closed.

If S commutes with T , so that also S(T∞(X)) ⊂ T∞(X), we shall write S̃ : T∞(X) →
T∞(X). We claim that

T̃ : T∞(X) → T∞(X) is onto. (12)

To see this, let y ∈ T∞(X) and thus

∃ xn ∈ Tn(X) such that Txn = y (n = 1, 2, . . .).

Since T−1(0) is finite dimensional and Tn(X) ⊃ Tn+1(X),

∃n0 ∈ N such that T−1(0) ∩ Tn0(X) = T−1(0) ∩ Tn(X) for n ≥ n0.

From the fact that Tn(X) ⊂ Tn0(X), we have

xn − xn0
∈ T−1(0) ∩ Tn0(X) = T−1(0) ∩ Tn(X) ⊂ Tn(X).

Hence
xn0 ∈

∩
n≥n0

Tn(X) = T∞(X) and Txn0 = y,

which says that T̃ is onto. This proves (12). Now observe

dim (T − λI)−1(0) = dim T̃ − λI
−1

(0) = index T̃ − λI = index T̃ : (13)

the first equality comes from (11), the second equality follows from the fact that β(T̃ − λI) ≤
β(T̃ ) = 0 by Lemma 1.33, and the third equality follows the observation that T̃ is semi-
Fredholm. Since the right-hand side of (13) is independent of λ, α(T − λI) is constant and
hence also is β(T − λI).

If instead β(T ) <∞, apply the above argument with T ∗.

18
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Theorem 1.35. Define

U :=

{
λ ∈ C : T − λI is semi-Fredholm

}
.

Then we have:
(a) U is an open set;
(b) If C is a component of U then on C, with the possible exception of isolated points,

α(T − λI) and β(T − λI) have constant values n1 and n2, respectively.

At the isolated points,

α(T − λI) > n1 and β(T − λI) > n2.

Proof. (a) For λ ∈ U apply Lemma 1.33 to T − λI in place of T .
(b) The component C is open since any component of an open set in C is open. Let

α(λ0) = n1 be the smallest integer which is attained by

α(λ) = α(T − λI) on C.

Suppose α(λ′) ̸= n1. Since C is connected there exists an arc Γ lying in C with endpoints
λ0 and λ′. It follows from Theorem 1.34 and the fact that C is open that for each µ ∈ Γ,
there exists an open ball S(µ) in C such that

α(λ) is constant on the set S(µ) with the point µ deleted.

Since Γ is compact and connected there exist points λ1, λ2, · · · , λn = λ′ on Γ such that

S(λ0), S(λ1), . . . , S(λn) cover Γ and S(λi) ∩ S(λi+1) ̸= ∅ (0 ≤ i ≤ n− 1) (14)

We claim that α(λ) = α(λ0) on all of S(λ0). Indeed it follows from the Lemma 1.33 that

α(λ) ≤ α(λ0) for λ sufficiently close to λ0.

Therefore, since α(λ0) is the minimum of α(λ) on C,

α(λ) = α(λ0) for λ sufficiently close to λ0.

Since α(λ) is constant for all λ ̸= λ0 in S(λ0), which is α(λ0). Now α(λ) is constant on
the set S(λi) with the point λi deleted (1 ≤ i ≤ n). Hence it follows from (14) and the
observation α(λ) = α(λ0) for all λ ∈ S(λ0) that α(λ) = α(λ0) for all λ ̸= λ′ in S(λ′) and
α(λ′) > n1. The result just obtained can be applied to the adjoint. This completes the
proof.
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1.8 The Riesz-Schauder (or Browder) theory

An operator T ∈ B(X) is said to be quasinilpotent if

∥Tn∥ 1
n −→ 0 as n→ ∞

and is said to be nilpotent if
Tn = 0 for some n ∈ N.

An example for quasinilpotent but not nilpotent:

T : ℓ2 → ℓ2

T (x1, x2, x3, . . .) 7−→ (0, x1,
x2
2
,
x3
3
, . . .).

An example for quasinilpotent but neither nilpotent nor compact:

T = T1 ⊕ T2 : ℓ2 ⊕ ℓ2 −→ ℓ2 ⊕ ℓ2,

where
T1 : (x1, x2, x3, . . .) 7−→ (0, x1, 0, x3, 0, x5, . . .)

T2 : (x1, x2, x3, . . .) 7−→ (0, x1,
x2
2
,
x3
3
, . . .).

Remember that if T ∈ B(X) we define LT , RT ∈ B(B(X)) by

LT (S) := TS and RT (S) := ST for S ∈ B(X).

Lemma 1.36. We have:
(a) LT is 1-1 ⇐⇒ T is 1-1;
(b) RT is 1-1 ⇐⇒ T is dense;
(c) LT is bounded below ⇐⇒ T is bounded below;
(d) RT is bounded below ⇐⇒ T is open.

Proof. See [Be3].

Theorem 1.37. If T ∈ B(X), then
(a) T is nilpotent =⇒ T is neither 1-1 nor dense;
(b) T is quasinilpotent =⇒ T is neither bounded below nor open.

Proof. By Lemma 1.36,

(a) T is nilpotent =⇒ Tn+1 = 0 ̸= Tn

=⇒ LT (T
n) = RT (T

n) = 0 ̸= Tn

=⇒ LT and RT are not 1-1
=⇒ T is not 1-1 and not dense.

(b) T is quasinilpotent =⇒ ∀ ε > 0, ∃n ∈ N such that ∥Tn∥ 1
n ≥ ε > ∥Tn+1∥

1
n+1

=⇒ ∥LT (Tn)∥ = ∥RT (Tn)∥ < ε∥Tn∥
=⇒ LT and RT are not bounded below
=⇒ T is not bounded below and not open.
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We would remark that

{quasinilpotents} ⊆ ∂B−1(X).

Observe that quasinilpotents of finite rank or cofinite rank are nilpotents.

Definition 1.38. An operator T ∈ B(X) is said to be quasipolar [polar, resp.] if there is a
projection P commuting with T for which T has a matrix representation

T =

(
T1 0
0 T2

)
:

(
P (X)
P−1(0)

)
→

(
P (X)
P−1(0)

)
,

where T1 is invertible and T2 is quasinilpotent [nilpotent, resp.]

Definition 1.39. An operator T ∈ B(X) is said to be simply polar if there is T ′ ∈ B(X)
for which

T = TT ′T with TT ′ = T ′T

Proposition 1.40. Simply polar operators are decomposably regular.

Proof. Assume T = TT ′T with TT ′ = T ′T . Then

T ′′ = T ′ + (1− T ′T ) =⇒
{
T = TT ′′T
(T ′′)−1 = T + (1− T ′T )

.

Theorem 1.41. If T ∈ B(X) then

T is quasipolar but not invertible ⇐⇒ 0 ∈ isoσ(T )

Proof. (⇒) If T is quasipolar we may write

T =

(
T1 0
0 T2

)
:

(
P (X)
P−1(0)

)
→

(
P (X)
P−1(0)

)
,

where T1 is invertible and T2 is quasinilpotent. Thus for sufficiently small λ ̸= 0, T1 − λI
and T2 − λI are both invertible, which implies that 0 ∈ isoσ(T )

(⇐) If 0 ∈ isoσ(T ), construct open discs D1 and D2 such that D1 contains 0, D2 contains
the spectrum σ(T ) and D1 ∩D2 = ∅. If we define f : D1 ∪D2 −→ C by setting

f(λ) =

{
0 on D1

1 on D2

then f is analytic on D1 ∪D2 and f(λ)2 = f(λ). Observe that

P = PD2 = f(T ) =
1

2πi

∫
∂D2

(λ− T )−1dλ
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and PT = TP . Thus we may write

T =

(
T1 0
0 T2

)
: P (X)⊕ P−1(0) −→ P (X)⊕ P−1(0),

where σ(T1) = σ(T )\{0} and σ(T2) = {0}. Therefore T1 is invertible and T2 is quasinilpo-
tent; so that T is quasipolar.

Theorem 1.42. If T ∈ B(X) then

T is simply polar ⇐⇒ T (X) = T 2(X), T−1(0) = T−2(0)

Proof. (⇒) Observe

T (X) = TT ′T (X) = T 2T ′(X) ⊆ T 2(X) ⊆ T (X);

T−1(0) = (TT ′T )−1(0) = (T ′T 2)−1(0) ⊇ T−2(0) ⊇ T−1(0).

(⇐) (i) x ∈ T (X) ∩ T−1(0) ⇒ x = Ty for some y ∈ X and Tx = 0
⇒ T 2y = 0 ⇒ y ∈ T−2(0) = T−1(0)
⇒ Ty = 0 ⇒ x = 0,

which gives T (X) ∩ T−1(0) = {0}.

(ii) By assumption, T (T (X)) = T (X). Let T1 := T |T (X), so that T1(X) = T 2(X) =
T (X). Thus for all x ∈ X,

∃ y ∈ T (X) such that Tx = T1y = Ty.

Define z = x− y, and hence z ∈ T−1(0). Thus X = T (X) + T−1(0). In particular, T (X) is
closed by Theorem 1.13, so that

X = T (X)⊕ T−1(0).

Therefore we can find a projection P ∈ B(X) for which

P (X) = T (X) and P−1(0) = T−1(0).

We thus write

T =

(
T1 0
0 0

)
:

(
P (X)
P−1(0)

)
→

(
P (X)
P−1(0)

)
,

where T1 is invertible because T1 := T |TX is 1-1 and onto since T (X) = T 2(X). If we put

T ′ =

(
T−1
1 0
0 0

)
,

then TT ′T = T and

TT ′ = T ′T =

(
T−1
1 0
0 0

)(
T1 0
0 0

)
=

(
I 0
0 0

)
= P,

which says that T is simply polar.
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Theorem 1.43. If T ∈ B(X) then

T is polar ⇐⇒ Tn is simply polar for some n ∈ N

Proof. (⇒) If T is polar then we can write T =

(
T1 0
0 T2

)
with T1 invertible and T2

nilpotent. So Tn =

(
Tn1 0
0 0

)
, where n is the nilpotency of T2. If we put S =

(
T−n
1 0
0 I

)
,

then TnSTn = Tn and STn = TnS.

(⇐) If Tn is simply polar then X = Tn(X) ⊕ T−n(0). Observe that since Tn is simply
polar we have

T (TnX) = Tn+1(X) ⊇ T 2n(X) = Tn(X)

T (T−n(0)) ⊆ T−n+1(0) ⊆ T−n(0)

Thus we see that T |Tn(X) is 1-1 and onto, so that invertible. Thus we may write

T =

(
T1 0
0 T2

)
: Tn(X)⊕ T−n(0) −→ Tn(X)⊕ T−n(0),

where T1 = T |Tn(X) is invertible and T2 = T |T−n(0) is nilpotent with nilpotency n. Therefore
T is polar.

If T ∈ B(X,Y ), then we have

{0} ⊆ T−1(0) ⊆ T−2(0) ⊆ · · · ⊆ T−n(0) ⊆ T−n−1(0) ⊆ · · ·

and
X ⊇ T (X) ⊇ T 2(X) ⊇ · · · ⊇ Tn(X) ⊇ Tn+1(X) ⊇ · · · :

We shall say that T has ascent k if k is the smallest number such that

T−k(0) = T−∞(0) ≡
∞∪
n=1

T−n(0) :

in this case, we write ascent (T ) = k. Also we say that T has descent k such that if k is the
smallest number such that

T k(X) = T∞(X) ≡
∞∩
n=1

T k(X) :

in this case, we write descent (T ) = k.

The following is an immediate result of Theorem 1.43 :

Corollary 1.44. If T ∈ B(X) then

T is polar ⇐⇒ ascent (T ) = descent (T ) <∞

Corollary 1.45. If S, T ∈ B(X) with ST = TS, then

S and T are polar =⇒ ST is polar.
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Proof. Suppose Sn(X) = Sn+1(X) and Tn(X) = Tn+1(X). Then

(ST )mn+1(X) = Smn+1Tmn+1(X) = Smn+1Tmn(X) = TmnSmn+1(X)

= TmnSmn(X) = (ST )mn(X)

Similarly,
(ST )−p−1(0) = (ST )−p(0).

Definition 1.46. An operator T ∈ B(X) is called a Browder (or Riesz-Schauder) operator
if T is Fredholm and quasipolar.

If T is Fredholm then by the remark above Definition 1.38,

T is quasipolar ⇐⇒ T is polar.

Thus we have
T is Browder ⇐⇒ T is Fredholm and polar.

Theorem 1.47. If T ∈ B(X), the following are equivalent:
(a) T is Browder, but not invertible;
(b) T is Fredholm and 0 ∈ isoσ(T );
(c) T is Weyl and 0 ∈ isoσ(T );
(d) T is Fredholm and ascent (T ) = descent (T ) <∞.

Proof. (a) ⇔ (b) : Theorem 1.41
(b) ⇔ (c) : From the continuity of the index
(b) ⇔ (d) : From Corollary 1.44.

Theorem 1.48. If K ∈ B(X) then

K is compact =⇒ I +K is Browder.

Proof. From the spectral theory of the compact operators,

−1 ∈ isoσ(K) (in fact, λ ̸= 0 ⇒ λ /∈ accσ(K)),

which gives
0 ∈ isoσ(I +K).

From Corollary 1.17, I +K is Fredholm. Now Theorem 1.47 says that I +K is Browder.

Theorem 1.49. (Riesz-Schauder Theorem) If T ∈ B(X) then

T is Browder ⇐⇒ T = S +K, where S is invertible and K is compact with SK = KS.
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Proof. (⇒) If T is Browder then it is polar, so that we can write

T =

(
T1 0
0 T2

)
,

where T1 is invertible and T2 is nilpotent. Since T is Fredholm, T2 is also Fredholm. If we
put

S =

(
T1 0
0 I

)
and K =

(
0 0
0 T1 − I

)
,

then evidently T2 − I is of finite rank. Thus S is invertible and K is of finite rank. Further,

T = S +K and SK = KS.

(⇐) Suppose T = S+K and SK = KS. Since, by Theorem 1.48, I+S−1K is Browder,
so that I + S−1K is Fredholm and polar. Therefore, by Theorem 1.19 and Corollary 1.45,
T = S(I + S−1K) is Fredholm and polar, and hence Browder. Here, note that S and
I + S−1K commutes.

Remark 1.50. If S, T ∈ B(X) and ST = TS then
(a) S, T are Browder ⇐⇒ ST is Browder;
(b) S is Browder and T is compact =⇒ S + T is Browder.

Example 1.51. There exists a Weyl operator which is not Browder.

Proof. Put T =

(
U 0
0 U∗

)
: ℓ2 ⊕ ℓ2 → ℓ2 ⊕ ℓ2, where U is the unilateral shift. Evidently, T

is Fredholm and indexT = indexU + indexU∗ = 0, which says that T is Weyl. However,
σ(T ) = {λ ∈ C : |λ| ≤ 1} ; so that 0 /∈ isoσ(T ), which implies that T is not Browder.

1.9 Essential spectra

If T ∈ B(X) we define:
(a) The essential spectrum of T := σe(T ) = {λ ∈ C : T − λI is not Fredolm}
(b) The Weyl spectrum of T := ω(T ) = {λ ∈ C : T − λI is not Weyl}
(c) The Browder spectrum of T := σb(T ) = {λ ∈ C : T − λI is not Browder}

Evidently, σe(T ), ω(T ) and σb(T ) are all compact;

σe(T ) ⊂ ω(T ) ⊂ σb(T );

these are nonempty if dimX = ∞.

Theorem 1.52. If T ∈ B(X), then
(a) σ(T ) = σe(T ) ∪ σp(T ) ∪ σcom(T );
(b) σ(T ) = ω(T ) ∪

(
σp(T ) ∩ σcom(T )

)
;

(c) σb(T ) = σe(T ) ∪ accσ(T ),
where σcom(T ) := {λ ∈ C : T − λI does not have dense range}.
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Proof. Immediate follow from definition.

Definition 1.53. We shall write

P00(T ) = isoσ(T )\σe(T )

for the Riesz points of σ(T ). Evidently, λ ∈ P00(T ) means that T − λI is Browder, but not
invertible.

Lemma 1.54. If Ω is locally connected and H, K ⊂ Ω, then

∂K ⊆ H ∪ isoK =⇒ K ⊂ ηH ∪ isoK,

where η(·) denotes the polynomially convex hull.

Proof. See [Har4].

Theorem 1.55. If T ∈ B(X), then
(a) ∂σ(T )\σe(T ) ⊆ isoσ(T );
(b) σ(T ) ⊆ ησe(T ) ∪ P00(T )

Proof. (a) This is an immediate consequence of the punctured neighborhood theorem.

(b) From (a) and Lemma 1.54,

σ(T ) ⊆ ησe(T ) ∪ isoσ(T )

= ησe(T ) ∪ P00(T )

by the fact that if λ /∈ ησe(T ) and λ ∈ isoσ(T ), then T − λI is Fredholm and λ ∈
isoσ(T ) thus T − λI is Browder.

1.10 Spectral mapping theorems

Recall the Calkin algebra B(X)/K(X). The Calkin homomorphism π is defined by

π : B(X) −→ B(X)/K(X)

π(T ) = T +K(X).

Evidently, by the Atkinson’s theorem,

T is Fredholm ⇐⇒ π(T ) is invertible.

If K is a compact set in C, write Hol (K) for the set of all analytic (holomorphic) functions
defined on an open set containing K.
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Theorem 1.56. If T ∈ B(X) and f ∈ Hol (σ(T )), then

f(σe(T )) = σe(f(T ))

Proof. Since f(π(T )) = f(T +K(X)) = f(T ) +K(X) = π(f(T )) it follows that

f(σe(T )) = f(σ(π(T ))) = σ(f(π(T ))) = σ(π(f(T ))) = σe(f(T )).

Theorem 1.57. If T ∈ B(X) and f ∈ Hol (σ(T )), then

f(σb(T )) = σb(f(T ))

Proof. Since by the analyticity of f , f(accK) = acc f(K), it follows that

f(σb(T )) = f(σe(T ) ∪ accσ(T ))

= f(σe(T )) ∪ f(accσ(T ))
= σe(f(T )) ∪ accσ(f(T ))

= σb(f(T )).

Theorem 1.58. If T ∈ B(X) and p is a polynomial then

ω(p(T )) ⊆ p(ω(T )).

Proof. Let p(z) = a0 + a1z + · · ·+ anz
n ; thus p(z) = c0(z − α1) · · · (z − αn). Then

p(T ) = c0(T − α1I) · · · (T − αnI).

We now claim that

0 /∈ p(ω(T )) =⇒ c0(z − α1) · · · (z − αn) ̸= 0 for each λ ∈ ω(T )

=⇒ λ ̸= αi for each λ ∈ ω(T )

=⇒ T − αiI is Weyl for each i = 1, 2, . . . n

=⇒ c0(T − α1I) · · · (T − αnI) is Weyl

=⇒ 0 /∈ ω(p(T ))

In fact, we can show that ω(f(T )) ⊆ f(ω(T )) for any f ∈ Hol (σ(T )).

The inclusion of Theorem 1.58 may be proper. For example, if U is the unilateral shift,
consider

T =

(
U + I 0

0 U∗ − I

)
: ℓ2 ⊕ ℓ2 −→ ℓ2 ⊕ ℓ2.

Then
ω(T ) = σ(T ) =

{
z ∈ C : |1 + z| ≤ 1

}
∪
{
z ∈ C : |1− z| ≤ 1

}
.

Let p(z) = (z + 1)(z − 1). Then

p(ω(T )) is a Cardioid containing 0.
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Therefore 0 ∈ p(ω(T )). However

p(T ) = (T + I)(T − I) =

(
U + 2I 0

0 U∗

)(
U 0
0 U∗ − 2I

)
,

so that index (p(T )) = indexU∗ + indexU = 0, which implies 0 /∈ ω(p(T )). Therefore

p(ω(T )) * ω(p(T )).

1.11 The continuity of spectra

Let σn be a sequence of compact subsets of C.
(a) The limit inferior, lim inf σn, is the set of all λ ∈ C such that every neighborhood of

λ has a nonempty intersection with all but finitely many σn.

(b) The limit superior, lim supσn, is the set of all λ ∈ C such that every neighborhood of
λ intersects infinitely many σn.

(c) If lim inf σn = lim supσn then limσn is said to be exist and is the common limit.

A mapping T on B(X) whose values are compact subsets of C is said to be upper semi-
continuous at T when

Tn −→ T =⇒ lim sup T (Tn) ⊂ T (T )

and to be lower semi-continuous at T when

Tn −→ T =⇒ T (T ) ⊂ lim inf T (Tn).

If T is both upper and lower semi-continuous, then it is said to be continuous.

Example 1.59. The spectrum σ : T 7−→ σ(T ) is not continuous in general: for example, if

Tn :=

(
U 1

n (I − UU∗)
0 U∗

)
and T :=

(
U 0
0 U∗

)
then σ(Tn) = ∂D, σ(T ) = D, and Tn −→ T .

Proposition 1.60. σ is upper semi-continuous.

Proof. Suppose Tn → T and λ ∈ lim supσ(Tn). Then there exists λn ∈ lim supσ(Tn) so
that λnk → λ. Since Tnk − λnkI is singular and Tnk − λnkI −→ T − λI, it follows that
T − λI is singular; therefore λ ∈ σ(T ).

Let H be a complex Hilbert space. Then T ∈ B(H) is called a hyponormal operator if
T ∗T ≥ TT ∗, i.e., the self-commutator [T ∗, T ] ≡ T ∗T − TT ∗ is positive semi-definite.

We then have:

Theorem 1.61. σ is continuous on the set of all hyponormal operators.
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Proof. Let Tn, T be hyponormal operators such that Tn → T in norm. We want to prove
that

σ(T ) ⊂ lim inf σ(Tn).

Assume λ /∈ lim inf σ(Tn). Then there exists a neighborhood N(λ) of λ such that it does
not intersect infinitely many σ(Tn). Thus we can choose a subsequence {Tnk} of {Tn} such
that for some ε > 0,

dist

(
λ, σ(Tnk)

)
> ε.

Since Tnk is hyponormal, it follows that

dist(λ, σ(Tnk)) = min
µ∈σ(Tnk−λ)

|µ| = 1

max
µ∈σ((Tnk−λ)−1)

|µ|
=

1

∥(Tnk − λ)−1∥
,

where the second equality follows from the observation

σ(T−1) =

{
1

z
: z ∈ σ(T )

}
because if f(z) = 1

z then σ(T−1) = σ(f(T )) = f(σ(T )) = { 1
z : z ∈ σ(T )} and the last

equality uses the fact that (Tnk −λI)−1 is normaloid. So ∥(Tnk −λI)−1∥ < 1
ε . We thus have

∥(Tnk − λI)−1 − (Tnl − λI)−1∥

= ∥(Tnk − λI)−1

{
(Tnk − λI)− (Tnl − λI)

}
− (Tnl − λI)−1∥

≤ ∥(Tnk − λI)−1∥ · ∥Tnl − Tnk∥ · ∥(Tnl − λI)−1∥

<
1

ε2
∥Tnl − Tnk∥.

Since Tnk → T , it follows that {(Tnk−λI)−1} converges, to some operator B, say. Therefore

(T − λI)B = lim(Tnk − λI) · lim(Tnk − λI)−1

= lim(Tnk − λI)(Tnk − λI)−1 = 1.

Similarly, B(T − λI) = 1 and hence λ /∈ σ(T ).

Lemma 1.62. Let A be a commutative Banach algebra. If x ∈ A is not invertible and
∥y − x∥ < ε, then there exists λ such that y − λ is not invertible and |λ| < ε.

Proof. Since x is not invertible, it generates an ideal ̸= A. Thus there exists a maximal
ideal M containing x. So z ∈M =⇒ z is not invertible. Since A/M ∼= F, λ · 1 ∈ y+M for
some y. Thus y − λ · 1 ∈M . Since x ∈M we have y − x− λ · 1 ∈M , so that λ ∈ σ(y − x).
Finally, |λ| ≤ ∥y − x∥ < ε.

Theorem 1.63. If in a Banach algebra A, xi → x and xix = xxi for all i, then limσ(xi) =
σ(x).
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Proof. Let B be the algebra generated by 1, x, and xi. Then (x− µ)−1 and (xi − µ)−1 are
commutative whenever they exist. Let λ ∈ σ(x), i.e., x − λ is not invertible. By Lemma
1.62, there exists N such that

i > N =⇒ σ(xi − λ) ∩Nε(0) ̸= ∅.

So 0 ∈ lim inf σ(xi − λ), or λ ∈ lim inf σ(xi), so that

σ(x) ⊆ lim inf σ(xi) ⊆ lim supσ(xi) ⊆ σ(x).

Theorem 1.64. ω is upper semi-continuous.

Proof. We want to prove that

lim supω(Tn) ⊂ ω(T ) if Tn → T.

Let λ /∈ ω(T ), so T − λI is Weyl. Since the set of Weyl operators forms an open set,

∃ η > 0 such that ∥T − λI − S∥ < η =⇒ S is Weyl.

Let N be such that
∥(T − λI)− (Tn − λI)∥ < η

2
for n ≥ N.

Let V = B(λ ; η2 ). Then for µ ∈ V, n ≥ N ,

∥(T − λI)− (Tn − µI)∥ < η,

so that Tn − µI is Weyl, which implies that λ /∈ lim supω(Tn).

Theorem 1.65. Let Tn → T . If TnT = TTn for all n, then limω(Tn) = ω(T ).

Proof. In view of Theorem 1.64, it suffices to show that

ω(T ) ⊆ lim inf ω(Tn) (15)

Observe that π(Tn)π(T ) = π(T )π(Tn) and hence by Theorem 1.63, limσe(Tn) = σe(T ).
Towards (15), suppose λ /∈ lim inf ω(Tn). So there exists a neighborhood V (x) which does
not intersect infinitely many ω(Tn). Since σe(Tn) ⊂ ω(Tn), V does not intersect infinitely
many σe(Tn), i.e., λ /∈ limσe(Tn) = σe(T ). This shows that T − λI is Fredholm. By the
continuity of index, T − λI is Weyl, i.e., λ /∈ ω(T ).

We now have:

Theorem 1.66. If S and T are commuting hyponormal operators then

S, T are Weyl ⇐⇒ ST is Weyl.

Hence if f is analytic in a neighborhood of σ(T ), then

ω(f(T )) = f(ω(T )).

Proof. See [LeL1].
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1.12 Concluding remarks and open problems

Let H be an infinite dimensional separable Hilbert space. An operator T ∈ B(H) is called a
Riesz operator if σe(T ) = 0. If T ∈ B(H) then the West decomposition theorem [Wes] says
that

T is Riesz ⇐⇒ T = K +Q with compact K and quasinilpotent Q:

this is equivalent to the following: if QB(H) and QC(H) denote the sets of quasinilpotents of
B(H) and C(H), respectively, then

π
(
QB(H)

)
= QC(H), (16)

where C(H) = B(H)/K(H) is the Calkin algebra and π denotes the Calkin homomorphism.
It remains still open whether the West decomposition theorem survives in the Banach space
setting.

Problem 1.67. Is the equality (16) true if H is a Banach space ?

Suppose A is a Banach algebra with identity 1: we shall write A−1 for the invertible
group of A and A−1

0 for the connected components of the identity in A−1. It was [Har3]
known that

A−1
0 := Exp(A) = {ec1ec2 · · · eck : k ∈ N, ci ∈ A} .

Evidently, Exp (A) is open, relatively closed in A−1, connected and a normal subgroup.
Write

κ(A) := A−1/Exp (A)

for the abstract index group. The exponential spectrum ϵ(a) of a ∈ A is defined by

ϵ(a) := {λ ∈ C : a− λ /∈ Exp (A)}.

Clearly,
∂ϵ(a) ⊂ σ(a) ⊂ ϵ(a).

If A = B(H) then ϵ(a) = σ(a). We have known that σ(ab) \ {0} = σ(ba) \ {0}: indeed (cf.
[GGK, p.38]) (

ab− 1 0
0 1

)
= F

(
ba− 1 0

0 1

)
E,

where

E :=

(
b 1

ab− 1 a

)
and F :=

(
a 1− ab
−1 b

)
are both invertible.

However we were not able to answer to the following:

Problem 1.68. If A is a Banach algebra and a, b ∈ A, does it follow that

ϵ(ab) \ {0} = ϵ(ba) \ {0} ?
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2 Weyl theory

In 1909, writing about differential equations, Hermann Weyl noticed something about the
essential spectrum of a self adjoint operator on a Hilbert space: when you take it away
from the spectrum, you are left with the isolated eigenvalues of finite multiplicity. This
was soon generalized to normal operators, and then to more general operators, bounded
and unbounded, on Hilbert and on Banach spaces. Nowadays, this theorem is called the
Weyl’s theorem. In this section, we explore a recent development of the study on the Weyl’s
theorem.

2.1 Weyl’s theorem

If T ∈ B(X) write π0f (T ) for the eigenvalues of finite multiplicity; π0i(T ) for the eigenvalues
of infinite multiplicity. We often write ker T and ranT for the null space and the range of
T , respectively. Define

π00(T ) := {λ ∈ isoσ(T ) : 0 < dim ker(T − λI) <∞} (17)

for the isolated eigenvalues of finite multiplicity, and ([Har1], [Har2], [Har3], [Har4])

p00(T ) := σ(T ) \ σb(T ) (18)

for the Riesz points of σ(T ), then by the punctured neighborhood theorem, i.e., ∂ σ(T ) \
σe(T ) ⊆ isoσ(T ) (cf. [HaL1]),

isoσ(T ) \ σe(T ) = isoσ(T ) \ ω(T ) = p00(T ) ⊆ π00(T ). (19)

H. Weyl [We] examined the spectra of all compact perturbations T + K of a single
hermitian operator T and discovered that λ ∈ σ(T + K) for every compact operator K if
and only if λ is not an isolated eigenvalue of finite multiplicity in σ(T ). Today this result is
known as Weyl’s theorem: that is, we say that Weyl’s theorem holds for T ∈ B(X) if there
is equality

σ(T ) \ ω(T ) = π00(T ). (20)

In this section we explore the class of operators satisfying Weyl’s theorem.
If T ∈ B(X), write r(T ) for the spectral radius of T . It is familiar that r(T ) ≤ ||T ||.

An operator T is called normaloid if r(T ) = ||T || and isoloid if isoσ(T ) ⊆ π0(T ). If X is a
Hilbert space, an operator T ∈ B(X) is called reduction-isoloid if the restriction of T to any
reducing subspace is isoloid.

32



2 WEYL THEORY

Let H be a Hilbert space and suppose that T ∈ B(H) is reduced by each of its finite-
dimensional eigenspaces. If

M :=
∨

{ker(T − λI) : λ ∈ π0f (T )},

then M reduces T . Let T1 := T |M and T2 := T |M⊥. Then we have ([Be2, Proposition 4.1])
that

(a) T1 is a normal operator with pure point spectrum;
(b) π0(T1) = π0f (T );
(c) σ(T1) = clπ0(T1);
(d) π0(T2) = π0(T ) \ π0f (T ) = π0i(T ).

In this case, S. Berberian ([Be2, Definition 5.4]) defined

τ(T ) := σ(T2) ∪ accπ0f (T ). (21)

We shall call τ(T ) the Berberian spectrum of T . S. Berberian has also shown that τ(T ) is a
nonempty compact subset of σ(T ). We can, however, show that Weyl spectra, Browder spec-
tra, and Berberian spectra all coincide for operators reduced by each of its finite-dimensional
eigenspaces:

Theorem 2.1. If H is a Hilbert space and T ∈ B(H) is reduced by each of its finite-
dimensional eigenspaces then

τ(T ) = ω(T ) = σb(T ). (22)

Proof. Let M be the closed linear span of the eigenspaces ker(T − λI) (λ ∈ π0f (T )) and
write

T1 := T |M and T2 := T |M⊥.

From the preceding arguments it follows that T1 is normal, π0(T1) = π0f (T ) and π0f (T2) = ∅.
For (22) it will be shown that

ω(T ) ⊆ τ(T ) ⊆ σb(T ) (23)

and
σb(T ) ⊆ ω(T ). (24)

For the first inclusion of (23) suppose λ ∈ σ(T ) \ τ(T ). Then T2 − λI is invertible and
λ ∈ isoπ0(T1). Since also π0(T1) = π0f (T1), we have that λ ∈ π00(T1). But since T1 is
normal, it follows that T1−λI is Weyl and hence so is T−λI. This proves the first inclusion.
For the second inclusion of (23) suppose λ ∈ σ(T ) \ σb(T ). Thus T − λI is Browder but not
invertible. Observe that the following equality holds with no other restriction on either R
or S:

σb(R⊕ S) = σb(R) ∪ σb(S) for each R ∈ B(X1) and S ∈ B(X2). (25)

Indeed if λ ∈ isoσ(R⊕S) then λ is either an isolated point of the spectra of direct summands
or a resolvent element of direct summands, so that if R− λI and S − λI are Fredholm then
by (19), λ is either a Riesz point or a resolvent element of direct summands, which implies
that σb(R) ∪ σb(S) ⊆ σb(R ⊕ S), and the reverse inclusion is evident. From this we can
see that T1 − λI and T2 − λI are both Browder. But since π0f (T2) = ∅, it follows that
T2 − λI is one-one and hence invertible. Therefore λ ∈ π00(T1) \ σ(T2), which implies that
λ /∈ τ(T ). This proves the second inclusion of (23). For (24) suppose λ ∈ σ(T ) \ ω(T ) and
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hence T − λI is Weyl but not invertible. Observe that if H1 is a Hilbert space and if an
operator R ∈ B(H1) satisfies the equality ω(R) = σe(R), then

ω(R⊕ S) = ω(R) ∪ ω(S) for each Hilbert space H2 and S ∈ B(H2) : (26)

this follows from the fact that the index of a direct sum is the sum of the indices

index (R⊕ S − λ(I ⊕ I)) = index (R− λI) + index (S − λI)

whenever λ /∈ σe(R ⊕ S) = σe(R) ∪ σe(S). Since T1 is normal, applying the equality (26)
to T1 in place of R gives that T1 − λI and T2 − λI are both Weyl. But since π0f (T2) = ∅,
we must have that T2 − λI is invertible and therefore λ ∈ σ(T1) \ ω(T1). Thus from Weyl’s
theorem for normal operators we can see that λ ∈ π00(T1) and hence λ ∈ isoσ(T1) ∩ ρ(T2),
which by (19), implies that λ /∈ σb(T ). This proves (24) and completes the proof.

As applications of Theorem 2.1 we will give several corollaries below.

Corollary 2.2. If H is a Hilbert space and T ∈ B(H) is reduced by each of its finite-
dimensional eigenspaces then σ(T ) \ ω(T ) ⊆ π00(T ).

Proof. This follows at once from Theorem 2.1.

Weyl’s theorem is not transmitted to dual operators: for example if T : ℓ2 → ℓ2 is the
unilateral weighted shift defined by

Ten =
1

n+ 1
en+1 (n ≥ 0), (27)

then σ(T ) = ω(T ) = {0} and π00(T ) = ∅, and therefore Weyl’s theorem holds for T , but
fails for its adjoint T ∗. We however have:

Corollary 2.3. Let H be a Hilbert space. If T ∈ B(H) is reduced by each of its finite-
dimensional eigenspaces and isoσ(T ) = ∅, then Weyl’s theorem holds for T and T ∗. In this
case, σ(T ) = ω(T ).

Proof. If isoσ(T ) = ∅, then it follows from Corollary 2.2 that σ(T ) = ω(T ), which says that
Weyl’s theorem holds for T . The assertion that Weyl’s theorem holds for T ∗ follows from

noting that σ(T )∗ =
(
σ(T )

)−
, ω(T ∗) =

(
ω(T )

)−
and π00(T

∗) =
(
π00(T )

)−
= ∅.

In Corollary 2.3, the condition “isoσ(T ) = ∅” cannot be replaced by the condition
“π00(T ) = ∅”: for example consider the operator T defined by (27).

Corollary 2.4. ([Be1, Theorem]) If H is a Hilbert space and T ∈ B(H) is reduction-isoloid
and is reduced by each of its finite-dimensional eigenspaces then Weyl’s theorem holds for
T .

Proof. In view of Corollary 2.2, it suffices to show that π00(T ) ⊆ σ(T ) \ ω(T ). Suppose λ ∈
π00(T ). Then with the preceding notations, λ ∈ π00(T1)∩

[
isoσ(T2)∪ρ(T2)

]
. If λ ∈ isoσ(T2),

then since by assumption T2 is isoloid we have that λ ∈ π0(T2) and hence λ ∈ π0f (T2). But
since π0f (T2) = ∅, we should have that λ /∈ isoσ(T2). Thus λ ∈ π00(T1) ∩ ρ(T2). Since T1 is
normal it follows that T1 − λI is Weyl and so is T − λI; therefore λ ∈ σ(T ) \ ω(T ).
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Since hyponormal operators are isoloid and are reduced by each of its eigenspaces, it
follows from Corollary 2.4 that Weyl’s theorem holds for hyponormal operators.

If the condition “reduction-isoloid” is replaced by “isoloid” then Corollary 2.4 may fail:
for example, consider the operator T = T1 ⊕ T2, where T1 is the one-dimensional zero
operator and T2 is an injective quasinilpotent compact operator.

If H is a Hilbert space, an operator T ∈ B(H) is said to be p-hyponormal if (T ∗T )p −
(TT ∗)p ≥ 0 (cf. [Al],[Ch3]). If p = 1, T is hyponormal and if p = 1

2 , T is semi-hyponormal.

Corollary 2.5. [CIO] Weyl’s theorem holds for every p-hyponormal operator.

Proof. This follows from the fact that every p-hyponormal operator is isoloid and is reduced
by each of its eigenspaces ([Ch3]).

L. Coburn [Co, Corollary 3.2] has shown that if T ∈ B(H) is hyponormal and π00(T ) = ∅,
then T is extremally noncompact, in the sense that

||T || = ||π(T )||,

where π is the canonical map of B(H) onto the Calkin algebra B(H)/K(H). His proof relies
upon the fact that Weyl’s theorem holds for hyponormal operators, and hence σ(T ) = ω(T )
since π00(T ) = ∅. Now we can strengthen the Coburn’s argument slightly:

Corollary 2.6. If T ∈ B(H) is normaloid and π00(T ) = ∅, then T is extremally noncom-
pact.

Proof. Since σ(T ) ⊆ η ω(T ) ∪ p00(T ) for any T ∈ B(H), we have that η σ(T ) \ η ω(T ) ⊆
π00(T ). Thus by our assumption, η σ(T ) = η ω(T ). Therefore we can argue that for each
compact operator K ∈ B(H),

||T || = r(T ) = rω(T ) = rω(T +K) ≤ r(T +K) ≤ ||T +K||,

where rω(T ) denotes the “Weyl spectral radius”. This completes the proof.

Note that if T ∈ B(H) is normaloid and π00(T ) = ∅, then Weyl’s theorem may fail for
T ; for example take X = ℓ2 ⊕ ℓ2 and T = U ⊕ U∗, where U is the unilateral shift.

We next consider Weyl’s theorem for Toeplitz operators.

The Hilbert space L2 ≡ L2(T) has a canonical orthonormal basis given by the trigono-
metric functions en(z) = zn, for all n ∈ Z, and the Hardy space H2 ≡ H2(T) is the closed
linear span of {en : n = 0, 1, . . . }. An element f ∈ L2 is referred to as analytic if f ∈ H2

and coanalytic if f ∈ L2 ⊖ H2. If P denotes the projection operator L2 → H2, then for
every φ ∈ L∞(T), the operator Tφ on H2 defined by

Tφg = P (φg) for all g ∈ H2 (28)

is called the Toeplitz operator with symbol φ.

Theorem 2.7. [Co] Weyl’s theorem holds for every Toeplitz operator Tφ.
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Proof. It was known [Wi] that σ(Tφ) is always connected. Since there are no quasinilpotent
Toeplitz operators except 0, σ(Tφ) can have no isolated eigenvalues of finite multiplicity.
Thus Weyl’s theorem is equivalent to the fact that

σ(Tφ) = ω(Tφ). (29)

Since Tφ − λI = Tφ−λ, it suffices to show that if Tφ is Weyl then Tφ is invertible. If Tφ
is not invertible, but is Weyl then it is easy to see that both Tφ and T ∗

φ = Tφ must have
nontrivial kernels. Thus we want to show that this can not happen, unless φ = 0 and hence
Tφ is the non-Weyl operator.

Suppose that there exist nonzero functions φ, f , and g (φ ∈ L∞ and f, g ∈ H2) such
that Tφf = 0 and Tφg = 0. Then P (φf) = 0 and P (φg) = 0, so that there exist functions
h, k ∈ H2 such that ∫

h dθ =

∫
k dθ = 0 and φf = h, φg = k.

Thus by the F. and M. Riesz’s theorem, φ, f, g, h, k are all nonzero except on a set of measure
zero. We thus have that f/g = h/k pointwise a.e., so that fk = gh a.e., which implies gh = 0
a.e. Again by the F. and M. Riesz’s theorem, we can conclude that either g = 0 a.e. or
h = 0 a.e. This contradiction completes the proof.

We review here a few essential facts concerning Toeplitz operators with continuous sym-
bols, using [Do1] as a general reference. The sets C(T) of all continuous complex-valued
functions on the unit circle T and H∞(T) = L∞ ∩H2 are Banach algebras, and it is well-
known that every Toeplitz operator with symbol φ ∈ H∞ is subnormal. The C∗-algebra
A generated by all Toeplitz operators Tφ with φ ∈ C(T) has an important property which
is very useful for spectral theory: the commutator ideal of A is the ideal K(H2) of com-
pact operators on H2. As C(T) and A/K(H2) are ∗-isomorphic C∗-algebras, then for every
φ ∈ C(T),

Tφ is a Fredholm operator if and only if φ is invertible (30)

indexTφ = −wn(φ) , (31)

σe(Tφ) = φ(T) , (32)

where wn(φ) denotes the winding number of φ with respect to the origin. Finally, we make
note that if φ ∈ C(T) and if f ∈ Hol (σ(Tφ)), then f ◦ φ ∈ C(T) and f(Tφ) is well-defined
by the analytic functional calculus.

We require the use of certain closed subspaces and subalgebras of L∞(T), which are
described in further detail in [Do2] and Appendix 4 of [Ni]. Recall that the subspaceH∞(T)+
C(T) is a closed subalgebra of L∞. The elements of the closed selfadjoint subalgebra QC,
which is defined to be

QC =
(
H∞(T) + C(T)

)
∩
(
H∞(T) + C(T)

)
,

are called quasicontinuous functions. The subspace PC is the closure in L∞(T) of the set
of all piecewise continuous functions on T. Thus φ ∈ PC if and only if it is right continuous
and has both a left- and right-hand limit at every point. There are certain algebraic relations
among Toeplitz operators whose symbols come from these classes, including

TψTφ − Tψφ ∈ K(H2) for every φ ∈ H∞(T) + C(T) and ψ ∈ L∞(T) , (33)
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and
the commutator [Tφ, Tψ] is compact for every φ,ψ ∈ PC . (34)

We add to these relations the following one.

Lemma 2.8. If Tφ is a Toeplitz operator with quasicontinuous symbol φ, and if f ∈
Hol (σ(Tφ)), then Tf◦φ − f(Tφ) is a compact operator.

Proof. Assume that φ ∈ QC. Recall from [Do1, p.188] that if ψ ∈ H∞ + C(T), then Tψ
is Fredholm if and only if ψ is invertible in H∞ + C(T). Therefore for every λ ̸∈ σ(Tφ),
both φ− λ and φ− λ are invertible in H∞ +C(T); hence, (φ− λ)−1 ∈ QC. Using this fact
together with (33) we have that, for ψ ∈ L∞ and λ, µ ∈ C,

Tφ−µTψT(φ−λ)−1 − T(φ−µ)ψ(φ−λ)−1 ∈ K(H2) whenever λ /∈ σ(Tφ) .

The arguments above extend to rational functions to yield: if r is any rational function with
all of its poles outside of σ(Tφ), then r(Tφ)− Tr◦φ ∈ K(H2). Suppose that f is an analytic
function on an open set containing σ(Tφ). By Runge’s theorem there exists a sequence
of rational functions rn such that the poles of each rn lie outside of σ(Tφ) and rn → f
uniformly on σ(Tφ). Thus rn(Tφ) → f(Tφ) in the norm-topology of L(H2). Furthermore,
because rn ◦ φ → f ◦ φ uniformly, we have Trn◦φ → Tf◦φ in the norm-topology. Hence,
Tf◦φ − f(Tφ) = lim

(
Trn◦φ − rn(Tφ)

)
, which is compact.

Lemma 2.8 does not extend to piecewise continuous symbols φ ∈ PC, as we cannot
guarantee that Tnφ − Tφn ∈ K(H2) for each n ∈ Z+. For example, if φ(eiθ) = χT+ − χT− ,
where χT+ and χT− are characteristic functions of, respectively, the upper semicircle and
the lower semicircle, then T 2

φ − I is not compact.

Corollary 2.9. If Tφ is a Toeplitz operator with quasicontinuous symbol φ, then for every
f ∈ Hol (σ(Tφ)),

(a) ω(f(Tφ)) = σ(Tf◦φ), and

(b) f(Tφ) is essentially normal and is unitarily equivalent to a compact perturbation of
f(Tφ)⊕Mf◦φ, where Mf◦φ is the operator of multiplication by f ◦ φ on L2(T).

Proof. Because the Weyl spectrum is stable under the compact perturbations, it follows from
Lemma 2.8 that ω(f(Tφ)) = ω(Tf◦φ) = σ(Tf◦φ), which proves statement (a). To prove (b),
observe that because QC is a closed algebra, the composition of the analytic function f with
φ ∈ QC produces a quasicontinuous function f ◦φ ∈ QC. Moreover, by (33), every Toeplitz
operator with quasicontinuous symbol is essentially normal. The (normal) Laurent operator
Mf◦φ on L2(T) has its spectrum contained within the spectrum of the (essentially normal)
Toeplitz operator Tf◦φ. Thus there is the following relationship involving the essentially
normal operators f(Tφ) and Mf◦φ ⊕ f(Tφ):

σe
(
f(Tφ)⊕Mf◦φ

)
= σe(f(Tφ)) and SP(f(Tφ)) = SP

(
f(Tφ)⊕Mf◦φ

)
,

where SP(T ) denotes the spectral picture of an operator T . (The spectral picture SP(T ) is
the structure consisting of the set σe(T ), the collection of holes and pseudoholes in σe(T ),
and the Fredholm indices associated with these holes and pseudoholes.) Thus it follows
from the Brown-Douglas-Fillmore theorem [Pe] that f(Tφ) is compalent to f(Tφ) ⊕Mf◦φ,
in the sense that there exists a unitary operator W and a compact operator K such that
W
(
f(Tφ)⊕Mf◦φ

)
W ∗ +K = f(Tφ).
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Corollary 2.9 (a) can be viewed as saying that σ(f(Tφ)) \ σ(Tf◦φ) consists of holes with
winding number zero.

We consider the following question ([Ob2]):

if Tφ is a Toeplitz operator, then does Weyl’s theorem hold for T 2
φ ? (35)

To answer the above question, we need a spectral property of Toeplitz operators with con-
tinuous symbols.

Lemma 2.10. Suppose that φ is continuous and that f ∈ Hol (σ(Tφ)). Then

σ(Tf◦φ) ⊆ f(σ(Tφ)) , (36)

and equality occurs if and only if Weyl’s theorem holds for f(Tφ).

Proof. By Corollary 2.9, σ(Tf◦φ) = ω(f(Tφ)) ⊆ σ(f(Tφ)) = f(σ(Tφ)). Because σ(Tφ) is
connected, so is f(σ(Tφ)) = σ(f(Tφ)); therefore the set π00(f(Tφ)) is empty. Again by
Corollary 2.9, ω(f(Tφ)) = σ(Tf◦φ) and so ω(f(Tφ)) = σ(f(Tφ)) \ π00(f(Tφ)) if and only if
σ(Tf◦φ) = f(σ(Tφ)).

If φ is not continuous, it is possible for Weyl’s theorem to hold for some f(Tφ) without

σ(Tf◦φ) being equal to f(σ(Tφ)). One example is as follows. Let φ(ei θ) = e
i θ
3 (0 ≤ θ <

2π), a piecewise continuous function. The operator Tφ is invertible but Tφ2 is not; hence
0 ∈ σ(Tφ2) \ {σ(Tφ)}2. However ω(T 2

φ) = σ(T 2
φ), and π00(T

2
φ) is empty. Therefore Weyl’s

theorem holds for T 2
φ.

We can now answer the question (35): the answer is negative.

Example 2.11. [FL] There exists a continuous function φ ∈ C(T) such that σ(Tφ2) ̸=
{σ(Tφ)}2.

Proof. Let φ be defined by

φ(ei θ) =

{
−e2i θ + 1 (0 ≤ θ ≤ π)

e−2i θ − 1 (π ≤ θ ≤ 2π) .

Then the graph of φ consists of two adjacent circles C1 (in the right half-plane) and C2 (in
the left half-plane). Evidently, φ is continuous and φ has winding number +1 with respect
to the hole of C1; the hole of C2 has winding number −1. Thus we have σe(Tφ) = φ(T)
and σ(Tφ) = convφ(T). On the other hand, a straightforward calculation shows that φ2(T)
is the Cardioid r = 2(1 + cos θ). In particular, φ2(T) traverses the Cardioid once in a
counterclockwise direction and then traverses the Cardioid once in a clockwise direction.
Thus wn(φ2−λ) = 0 for each λ in the hole of φ2(T). Hence Tφ2−λ is a Weyl operator and is,
therefore, invertible for each λ in the hole of φ2(T). This implies that σ(Tφ2) is the Cardioid
r = 2(1 + cos θ). But because {σ(Tφ)}2 = {convφ(T)}2 = {(r, θ) : r ≤ 2(1 + cos θ)}, it
follows that σ(Tφ2) ̸= {σ(Tφ)}2.

We next consider Weyl’s theorem through the local spectral theory. Local spectral theory
is based on the existence of analytic solutions f : U → X to the equation (T − λI)f(λ) = x
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on an open subset U ⊂ C, for a given operator T ∈ B(X) and a given element x ∈ X. We
define the spectral subspace as follows: for a closed set F ⊂ C, let

XT (F ) := {x ∈ X : (T − λI)f(λ) = x has an analytic solution f : C \ F → X}.

We say that T ∈ B(X) has the single valued extension property (SVEP) at λ0 ∈ C if for
every neighborhood U of λ0, f = 0 is the only analytic solution f : U → X satisfying
(T − λI)f(λ) = 0. We also say that T has the SVEP if T has this property at every λ ∈ C.
The local spectrum of T at x is defined by

σT (x) := C \
∪{

(T − λI)f(λ) = x has an analytic solution f : U → X

on the open subset U ⊂ C
}
.

If T has the SVEP then XT (F ) = {x ∈ X : σT (x) ⊂ F}.

The following lemma gives a connection of the SVEP with a finite ascent property.

Lemma 2.12. [Fin] If T ∈ B(X) is semi-Fredholm then

T has the SVEP at 0 ⇐⇒ T has a finite ascent at 0.

The finite dimensionality of XT ({λ}) is necessary ad sufficient for T −λI to be Fredholm
whenever λ is an isolated point of the spectrum.

Lemma 2.13. [Ai] Let T ∈ B(X). If λ ∈ isoσ(T ) then

λ /∈ σe(T ) ⇐⇒ XT ({λ}) is finite dimensional.

Theorem 2.14. If T ∈ B(X) has the SVEP then the following are equivalent:
(a) Weyl’s theorem holds for T ;
(b) ran (T − λI) is closed for every λ ∈ π00(T );
(c) XT ({λ}) is finite dimensional for every λ ∈ π00(T ).

Proof. (a) ⇒ (b): Evident.
(b) ⇒ (a): If λ ∈ σ(T ) \ ω(T ) then by Lemma 2.12, T − λI has a finite ascent. Thus

T − λI is Browder and hence λ ∈ π00(T ). Conversely, if λ ∈ π00(T ) then by assumption
T − λI is Browder, so λ ∈ σ(T ) \ ω(T ).

(b) ⇔ (c): Immediate from Lemma 2.13.

An operator T ∈ B(X) is called reguloid if each isolated point of spectrum is a regular
point, in the sense that there is a generalized inverse:

λ ∈ iso σ(T ) =⇒ T − λI = (T − λI)Sλ(T − λI) with Sλ ∈ B(X).

It was known [Har4] that if T is reguloid then ran (T − λI) is closed for each λ ∈ isoσ(T ).
Also an operator T ∈ B(X) is said to satisfy the growth condition (G1), if for all λ ∈ C\σ(T )

||(T − λI)−1||dist(λ, σ(T )) ≤ 1.
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Lemma 2.15. If T ∈ B(X) then

(G1) =⇒ reguloid =⇒ isoloid. (37)

Proof. Recall ([Har4, Theorem 7.3.4]) that if T − λI has a generalized inverse and if λ ∈
∂σ(T ) is in the boundary of the spectrum then T −λI has an invertible generalized inverse.
If therefore T is reguloid and λ ∈ isoσ(T ) then T −λI has an invertible generalized inverse,
and hence ([Har4, (3.8.6.1)])

ker(T − λI) ∼= X/ran(T − λI).

Thus if ker(T − λI) = {0} then T − λI is invertible, a contradiction. Therefore λ is an
eigenvalue of T , which proves the second implication of (37). Towards the first implication
we may write T in place of T−λI and hence assume λ = 0: then using the spectral projection
at 0 ∈ C we can represent T as a 2× 2 operator matrix:

T =

(
T0 0
0 T1

)
,

where σ(T0) = {0} and σ(T1) = σ(T ) \ {0}. Now we can borrow an argument of J. Stampfli
([Sta, Theorem C]): take 0 < ϵ ≤ 1

2dist(0, σ(T ) \ {0}) and argue

T0 =
1

2πi

∫
|z|=ϵ

z(T − zI)−1dz,

using the growth condition (G1) to see that

||T0|| ≤
1

2π

∫
|z|=ϵ

|z| ||(T − zI)−1|| |dz| ≤ 1

2π
ϵ
1

ϵ
2πϵ = ϵ, (38)

which tends to 0 with ϵ. It follows that T0 = 0 and hence that

T =

(
0 0
0 T1

)
= TST with S =

(
0 0
0 T−1

1

)
has a generalized inverse.

Corollary 2.16. If T ∈ B(X) is reguloid and has the SVEP then Weyl’s theorem holds for
T .

Proof. Immediate from Theorem 2.14.

Lemma 2.17. Let T ∈ B(X). If for any λ ∈ C, XT ({λ}) is closed then T has the SVEP.

Proof. This follows from [Ai, Theorem 2.31] together with the fact that

XT ({λ}) = {x ∈ X : lim
n→∞

||(T − λI)nx|| 1
n = 0}.
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Corollary 2.18. If T ∈ B(X) satisfies

XT ({λ}) = ker(T − λI) for every λ ∈ C, (39)

then T has the SVEP and both T and T ∗ are reguloid. Thus in particular if T satisfies (39)
then Weyl’s theorem holds for T .

Proof. If T satisfies the condition (39) then by Lemma 2.17, T has the SVEP. The second
assertion follows from [Ai, Theorem 3.96]. The last assertion follows at once from Corollary
2.16.

An operator T ∈ B(X) is said to be paranormal if

||Tx||2 ≤ ||T 2x|| ||x|| for every x ∈ X.

It was well known that if T ∈ B(X) is paranormal then the following hold:

(a) T is normaloid;
(b) T has finite ascent;
(c) if x and y are nonzero eigenvectors corresponding to, respectively, distinct nonzero

eigenvalues of T , then ||x|| ≤ ||x+ y|| ([ChR, Theorem 2,6])

In particular, p-hyponormal operators are paranormal (cf. [FIY]). An operator T ∈ B(X)
is said to be totally paranormal if T − λI is paranormal for every λ ∈ C. Evidently, every
hyponormal operator is totally paranormal. On the other hand, every totally paranormal
operator satisfies (39): indeed, for every x ∈ X and λ ∈ C,

||(T − λI)nx|| 1
n ≥ ||(T − λI)x|| for every n ∈ N.

So if x ∈ XT ({λ}) then ||(T − λI)nx|| 1
n → 0 as n → ∞, so that x ∈ ker(T − λI), which

gives XT ({λ}) ⊂ ker(T −λI). The reverse inclusion is true for every operator. Therefore by
Corollary 2.18 we can conclude that Weyl’s theorem holds for totally paranormal operators.
We can prove more:

Theorem 2.19. Weyl’s theorem holds for paranormal operators on a separable Banach
space.

Proof. It was known [ChR] that paranormal operators T on a separable Banach spaceX have
the SVEP. So in view of Theorem 2.14 it suffices to show that ran(T −λI) is closed for each
λ ∈ π00(T ). Suppose λ ∈ π00(T ). Using the spectral projection P = 1

2πi

∫
∂B

(λI − T )−1dλ,
where B is an open disk of center λ which contains no other points of σ(T ), we can represent
T as the direct sum

T = T1 ⊕ T2, where σ(T1) = {λ} and σ(T2) = σ(T ) \ {λ}.

If λ = 0 then T1 is a quasinilpotent paranormal operator, so that T1 = 0. If λ ̸= 0 write
TA = 1

λT1. Then TA is paranormal and σ(TA) = {1}. Since TA is invertible we have that

TA and T−1
A are paranormal, and hence normaloid. So ||TA|| = ||T−1

A || = 1 and hence

||x|| = ||T−1
A TAx|| ≤ ||TAx|| ≤ ||x|| for each x ∈ X,

which implies that TA and T−1
A are isometries. Also since TA−1 is a quasinilpotent operator

it follows that TA = I, and hence T1 = λI. Thus we have that T − λI = 0⊕ (T2 − λI) has
closed range. This completes the proof.
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Does Weyl’s theorem hold for paranormal operators on an arbitrary Banach space? Para-
normal operators on an arbitrary Banach space may not have the SVEP. So the proof of
Theorem 2.19 does not work for arbitrary Banach spaces. In spite of it Weyl’s theorem
holds for paranormal operators on an arbitrary Banach space. To see this recall the reduced
minimum modulus of T is defined by

γ(T ) := inf
||Tx||

dist (x, ker(T ))
(x /∈ ker(T )).

It was known [Go] that γ(T ) > 0 if and only if T has closed range.

Theorem 2.20. Weyl’s theorem holds for paranormal operators on a Banach space.

Proof. The proof of Theorem 2.19 shows that with no restriction on X, π00(T ) ⊂ σ(T )\ω(T )
for every paranormal operator T ∈ B(X). Thus we must show that σ(T ) \ω(T ) ⊂ isoσ(T ).
Suppose λ ∈ σ(T )\ω(T ). If λ = 0 then T is Weyl and has finite ascent. Thus T is Browder,
and hence 0 ∈ isoσ(T ). If λ ̸= 0 and λ /∈ isoσ(T ) then we can find a sequence {λn} of
nonzero eigenvalues such that λn → λ. By the property (c) above Theorem 2.19,

dist

(
xλn , ker(T − λI)

)
≥ 1 for each unit vector xλn ∈ ker(T − λnI).

We thus have
||(T − λI)xn||

dist (xλn , ker(T − λI))
=

|λn − λ|
dist (xλn , ker(T − λI))

→ 0,

which shows that γ(T−λI) = 0 and hence T−λI does not have closed range, a contradiction.
Therefore λ ∈ isoσ(T ). This completes the proof.

2.2 The spectral mapping theorem for the Weyl spectrum

Let S denote the set, equipped with the Hausdorff metric, of all compact subsets of C. If
A is a unital Banach algebra then the spectrum can be viewed as a function σ : A → S,
mapping each T ∈ A to its spectrum σ(T ). It is well-known that the function σ is upper
semicontinuous, i.e., if Tn → T then lim supσ(Tn) ⊂ σ(T ) and that in noncommutative
algebras, σ does have points of discontinuity. The work of J. Newburgh [Ne] contains the
fundamental results on spectral continuity in general Banach algebras. J. Conway and B.
Morrel [CoM] have undertaken a detailed study of spectral continuity in the case where the
Banach algebra is the C∗-algebra of all operators acting on a complex separable Hilbert
space. Of interest is the identification of points of spectral continuity, and of classes C of
operators for which σ becomes continuous when restricted to C. In [BGS], the continuity
of the spectrum was considered when restricted to certain subsets of the entire manifold
of Toeplitz operators. The set of normal operators is perhaps the most immediate in the
latter direction: σ is continuous on the set of normal operators. As noted in Solution
104 of [Ha3], Newburgh’s argument uses the fact that the inverses of normal resolvents
are normaloid. This argument can be easily extended to the set of hyponormal operators
because the inverses of hyponormal resolvents are also hyponormal and hence normaloid.
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Although p-hyponormal operators are normaloid, it was shown [HwL1] that σ is continuous
on the set of all p-hyponormal operators.

We now examine the continuity of the Weyl spectrum in pace of the spectrum. In
general the Weyl spectrum is not continuous: indeed, it was in [BGS] that the spectrum
is discontinuous on the entire manifold of Toeplitz operators. Since the spectra and the
Weyl spectra coincide for Toeplitz operators, it follows at once that the weyl spectrum is
discontinuous.

However the Weyl spectrum is upper semicontinuous.

Lemma 2.21. The map T → ω(T ) is upper semicontinuous.

Proof. Let λ ∈ ω(T ). Since the set of Weyl operators forms an open set, there exists δ > 0
such that if S ∈ B(X) and ||T − λI − S|| < δ then S is Weyl. So there exists an integer N
such that ||T − λI − (Tn − λI)|| < δ

2 for n ≥ N . Let V be an open (δ/2)-neighborhhod of
λ. We have, for µ ∈ V and n ≥ N ,

||T − λI − (Tn − µI)|| < δ,

so that Tn−µI is Weyl. This shows that λ /∈ lim supω(Tn). Thus lim supω(Tn) ⊂ ω(T ).

Lemma 2.22. [Ne, Theorem 4] If {Tn}n is a sequence of operators converging to an operator
T and such that [Tn, T ] is compact for each n, then limσe(Tn) = σe(T ).

Proof. Newburgh’s theorem is stated as follows: if in a Banach algebra A, {ai}i is a sequence
of elements commuting with a ∈ A and such that ai → a, then lim σ(ai) = σ(a). If
π denotes the canonical homomorphism of B(X) onto the Calkin algebra B(X)/K(X),
then the assumptions give that π(Tn) → π(T ) and [π(Tn), π(T )] = 0 for each n. Hence,
lim σ(π(Tn)) = σ(π(T )); that is, limσe(Tn) = σe(T ).

Theorem 2.23. Suppose that T, Tn ∈ B(X), for n ∈ Z+, are such that Tn converges to T .
If [Tn, T ] ∈ K(X) for each n, then

lim ω(f(Tn)) = ω(f(T )) for every f ∈ Hol(σ(T )). (40)

Remark. Because Tn → T , by the upper-semicontinuity of the spectrum, there is a
positive integer N such that σ(Tn) ⊆ V whenever n > N . Thus, in the left-hand side of
(40) it is to be understood that n > N .

Proof. If Tn and T commute modulo the compact operators then, whenever T−1
n and T−1

exist, Tn, T, T
−1
n and T−1 all commute modulo the compact operators. Therefore r(Tn) and

r(T ) also commute modulo K(X) whenever r is a rational function with no poles in σ(T )
and n is sufficiently large. Using Runge’s theorem we can approximate f on compact subsets
of V by rational functions r who poles lie off of V . So there exists a sequence of rational
functions ri whose poles lie outside of V and ri → f uniformly on compact subsets of V . If
n > N , then by the functional calculus,

f(Tn)f(T )− f(T )f(Tn) = lim
i

(
ri(Tn)ri(T )− ri(T )ri(Tn)

)
,
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which is compact for each n. Furthermore,

||f(Tn)− f(T )|| = || 1

2πi

∫
Γ

f(λ)
(
(λ− Tn)

−1 − (λ− T )−1
)
dλ||

≤ 1

2πi
ℓ(Γ) max

λ∈Γ
|f(λ)| ·max

λ∈Γ
||(λ− Tn)

−1 − (λ− T )−1|| ,

where Γ is the boundary of V and ℓ(Γ) denotes the arc length of Γ. The right-hand side of the
above inequality converges to 0, and so f(Tn) → f(T ). By Lemma 2.22, lim σe(f(Tn)) =
σe(f(T )). The arguments used by J.B. Conway and B.B. Morrel in Proposition 3.11 of
[CoM] can now be used here to obtain the conclusion lim ω(f(Tn)) = ω(f(T )).

In general there is only inclusion for the Weyl spectrum:

Theorem 2.24. If T ∈ B(X) then

ω(p(T )) ⊆ p(ω(T )) for every polynomial p.

Proof. We can suppose p is nonconstant. Suppose λ /∈ pω(T ). Writing p(µ) − λ = a(µ −
µ1)(µ− µ2) · · · (µ− µn), we have

p(T )− λI = a(T − µ1I) · · · (T − µnI). (41)

For each i, p(µi) = λ /∈ pω(T ), so that µi /∈ ω(T ), i.e., T − µiI is weyl. It thus follows from
(41) that p(T )− λI is Weyl since the product of Weyl operators is Weyl.

In general the spectral mapping theorem is liable to fail for the Weyl spectrum:

Example 2.25. Let T = U ⊕ (U∗ + 2I), where U is the unilateral shift on ℓ2, and let
p(λ) := λ(λ− 2). Then 0 ∈ p(ω(T )) but 0 /∈ ω(p(T )).

Proof. Observe p(T ) = T (T − 2I) = [U ⊕ (U∗ + 2I)][(U − 2I) ⊕ U∗]. Since U is Fredholm
of index −1, and since U∗ + 2I and U − 2I are invertible it follows that T and T − 2I are
Fredholm of indices −1 and +1, respectively. Therefore p(T ) is Weyl, so that 0 /∈ ω(p(T )),
while 0 = p(0) ∈ p(ω(T )).

Lemma 2.26. If T ∈ B(X) is isoloid then for every polynomial p,

p(σ(T ) \ π00(T )) = σ(p(T )) \ π00(p(T )).

Proof. We first claim that with no restriction on T ,

σ(p(T )) \ π00(p(T )) ⊂ p(σ(T ) \ π00(T )). (42)

Let λ ∈ σ(p(T )) \ π00(p(T )) = p(σ(T )) \ π00(p(T )). There are two cases to consider.
Case 1. λ /∈ iso p(σ(T )). In this case, there exists a sequence (λn) in p(σ(T )) such that

λn → λ. So there exists a sequence (µn) in σ(T ) such that p(µn) = λn → λ. This implies
that (µn) contains a convergent subsequence and we may assume that limµn = µ0. Thus
λ = lim p(µn) = p(µ0). Since µ0 ∈ σ(T ) \ π00(T ), it follows that λ ∈ p(σ(T ) \ π00(T )).

Case 2. λ ∈ iso p(σ(T )). In this case either λ is not an eigenvalue of p(T ) or it is an
eigenvalue of infinite multiplicity. Let p(T ) − λI = a0(T − µ1I) · · · (T − µnI). If λ is not
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an eigenvalue of p(T ) then none of µ1, · · · , µn can be an eigenvalue of T and at least one
of µ1, · · · , µn is in σ(T ). Therefore λ ∈ p(σ(T ) \ π00(T )). If λ is an eigenvalue of p(T ) of
infinite multiplicity then at least one of µ1, · · · , µn, say µ1, is an eigenvalue of T of infinite
multiplicity. Then µ1 ∈ σ(T ) \ π00(T ) and p(µ1) = λ, so that λ ∈ p(σ(T ) \ π00(T )). This
proves (42). For the reverse inclusion of (42), we assume λ ∈ p(σ(T ) \ π00(T )). Since
p(σ(T )) = σ(p(T )), we have λ ∈ σ(p(T )). If possible let λ ∈ π00(p(T )). So λ ∈ isoσ(p(T )).
Let

p(T )− λI = a0(T − µ1I) · · · (T − µnI). (43)

The equality (43) shows that if any of µ1, · · · , µn is in σ(T ) then it must be an isolated
point of σ(T ) and hence an eigenvalue since T is isoloid. Since λ is an eigenvalue of finite
multiplicity, any such µ must be an eigenvalue of finite multiplicity and hence belongs to
π00(T ). This contradicts the fact that λ ∈ p(σ(T ) \ π00(T )). Therefore λ /∈ π00(T ) and

p(σ(T ) \ π00(T )) ⊂ σ(p(T )) \ π00(p(T )).

Theorem 2.27. If T ∈ B(X) is isoloid and Weyl’s theorem holds for T then for every
polynomial p, Weyl’s theorem holds for p(T ) if and only if p(ω(T )) = ω(p(T )).

Proof. By Lemma 2.26, p(σ(T )\π00(T )) = σ(p(T ))\π00(p(T )). If Weyl’s theorem holds for
T then ω(T ) = σ(T ) \ π00(T ), so that

p(ω(T )) = p(σ(T ) \ π00(T )) = σ(p(T )) \ π00(p(T )).

The result follows at once from this relationship.

Example 2.28. Theorem 2.27 may fail if T is not isoloid. To see this define T1 and T2 on
ℓ2 by

T1(x1, x2, · · · ) = (x1, 0, x2/2, x3/2, · · · )

and
T2(x1, x2, · · · ) = (0, x1/2, x2/3, x3/4, · · · ).

Let T := T1 ⊕ (T2 − I) on X = ℓ2 ⊕ ℓ2. Then

σ(T ) = {1} ∪ {z : |z| ≤ 1/2} ∪ {−1}, π00(T ) = {1},

and
ω(T ) = {z : |z| ≤ 1/2} ∪ {−1},

which shows that Weyl’s theorem holds for T . Let p(t) = t2. Then

σ(p(T )) = {z : |z| ≤ 1/4} ∪ {1}, π00(p(T )) = {1}

and
ω(p(T )) = {z : |z| ≤ 1/4} ∪ {1}.

Thus 1 ∈ p(σ(T )\π00(T )), but 1 /∈ σ(p(T ))\π00(p(T )). Also ω(p(T )) = p(ω(T )) but Weyl’s
theorem does not hold for p(T ).
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Theorem 2.29. If p(ω(T )) = ω(p(T )) for every polynomial p, then f(ω(T )) = ω(f(T )) for
every f ∈ Hol(σ(T )).

Proof. Let (pn(T )) be a sequence of polynomials converging uniformly in a neighborhood of
σ(T ) to f(t) so that pn(T ) → f(T ). Since f(T ) commutes with each pn(T ), it follows from
Theorem 2.23 that

ω(f(T )) = limω(pn(T )) = lim pn(ω(T )) = f(ω(T )).

Theorem 2.30. If T ∈ B(X) then the following are equivalent:

index(T − λI) index(T − µI) ≥ 0 for each pair λ, µ ∈ C \ σe(T ); (44)

f(ω(T )) = ω(f(T )) for every f ∈ Hol(σ(T )). (45)

Proof. The spectral mapping theorem for the Weyl spectrum may be rewritten as implica-
tion, for arbitrary n ∈ N and λ ∈ Cn,

(T − λ1I)(T − λ2I) · · · (T − λnI) Weyl =⇒ T − λjI Weyl for each j = 1, 2, · · · , n. (46)

Now if index(T − zI) ≥ 0 on C \ σe(T ) then we have

n∑
j=1

index(T − λjI) = index

n∏
j=1

(T − λjI) = 0 =⇒ index(T − λjI) = 0 (j = 1, 2, · · · , n),

and similarly if index (T − zI) ≤ 0 off σe(T ). If conversely there exist λ, µ for which

index(T − λI) = −m < 0 < k = index(T − µI) (47)

then
(T − λI)k(T − µI)m (48)

is a Weyl operator whose factors are not Weyl. This together with Theorem 2.29 proves the
equivalence of the conditions (44) and (45).

Corollary 2.31. If H is a Hilbert space and T ∈ B(H) is hyponormal then

f(ω(T )) = ω(f(T )) for every f ∈ Hol(σ(T )). (49)

Proof. Immediate from Theorem 2.30 together with the fact that if T is hyponormal then
index (T − λI) ≤ 0 for every λ ∈ C \ σe(T ).

Corollary 2.32. Let T ∈ B(X). If

(i) Weyl’s theorem holds for T ;
(ii) T is isoloid;
(iii) T satisfies the spectral mapping theorem for the Weyl spectrum,

then Weyl’s theorem holds for f(T ) for every f ∈ Hol(σ(T )).
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Proof. A slight modification of the proof of Lemma 2.26 shows that if T is isoloid then

f
(
σ(T ) \ π00(T )

)
= σ(f(T )) \ π00(f(T )) for every f ∈ Hol(σ(T )).

It thus follows from Theorem 1.31 and Corollary 2.31 that

σ(f(T )) \ π00(f(T )) = f
(
σ(T ) \ π00(T )

)
= f(ω(T )) = ω(f(T )),

which implies that Weyl’s theorem holds for f(T ).

Corollary 2.33. If T ∈ B(X) has the SVEP then

ω(f(T )) = f(ω(T )) for every f ∈ Hol(σ(T )).

Proof. If λ /∈ σe(T ) then by Lemma 2.12, T − λI has a finite ascent. Since if S ∈ B(X) is
Fredholm of finite ascent then index (S) ≤ 0: indeed, either if S has finite descent then S is
Browder and hence index (S) = 0, or if S does not have finite descent then

n index (S) = dim ker(Sn)− dim (ranSn)⊥ → −∞ as n→ ∞,

which implies that index (S) < 0. Thus we have that index (T − λI) ≤ 0. Thus T satisfies
the condition (44), which gives the result.

Theorem 2.34. If T ∈ B(X) satisfies

XT ({λ}) = ker(T − λI) for every λ ∈ C,

then Weyl’s theorem holds for f(T ) for every f ∈ Hol(σ(T )).

Proof. By Corollary 2.18, Weyl’s theorem holds for T , T is isoloid, and T has the SVEP. In
particular by Corollary 2.33, T satisfies the spectral mapping theorem for the Weyl spectrum.
Thus the result follows from Corollary 2.32.

2.3 Perturbation theorems

In this section we consider howWeyl’s theorem survives under “small” perturbations. Weyl’s
theorem is transmitted from T ∈ B(X) to T −K for commuting nilpotents K ∈ B(X) To
see this we need:

Lemma 2.35. If T ∈ B(X) and if N is a quasinilpotent operator commuting with T then
ω(T +N) = ω(T ).

Proof. It suffices to show that if 0 /∈ ω(T ) then 0 /∈ ω(T + N). Let 0 /∈ ω(T ) so that
0 /∈ σ(π(T )). For all λ ∈ C we have σ(π(T + λN)) = σ(π(T )). Thus 0 /∈ σ(π(T + λN)) for
all λ ∈ C, which implies T + λN is a Fredholm operator forall λ ∈ C. But since T is Weyl,
it follows that T +N is also Weyl, that is, 0 /∈ ω(T +N).
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Theorem 2.36. Let T ∈ B(X) and let N be a nilpotent operator commuting with T . If
Weyl’s theorem holds for T then it holds for T +N .

Proof. We first claim that
π00(T +N) = π00(T ). (50)

Let 0 ∈ π00(T ) so that ker (T ) is finite dimensional. Let (T +N)x = 0 for some x ̸= 0. Then
Tx = −Nx. Since T commutes with N it follows that

Tmx = (−1)mNmx for every m ∈ N. (51)

Let n be the nilpotency of N , i.e., n be the smallest positive integer such that Nn = 0.
Then by (51) we have that for some r with 1 ≤ r ≤ n, T rx = 0 and then T r−1x ∈ ker(T ).
Thus ker(T +N) ⊂ ker(Tn−1). Therefore ker(T +N) is finite dimensional. Also if for some
x (̸= 0) Tx = 0 then (T + N)nx = 0, and hence 0 is an eigenvalue of T + N . Again since
σ(T + N) = σ(T ) it follows that 0 ∈ π00(T + N). By symmetry 0 ∈ π00(T + N) implies
0 ∈ π00(T ), which proves (50). Thus we have

ω(T +N) = ω(T ) (by Lemma 2.35)

= σ(T ) \ π00(T ) (since Weyl’s theorem holds for T )

= σ(T +N) \ π00(T +N),

which shows that Weyl’s theorem holds for T +N .

Theorem 2.36 however does not extend to quasinilpotents: let

Q : (x1, x2, x3, · · · ) 7→ ( 12x2,
1
3x3,

1
4x4, · · · ) on ℓ

2

and set on ℓ2 ⊕ ℓ2,

T =

(
1 0
0 0

)
and K =

(
0 0
0 Q

)
. (52)

Evidently K is quasinilpotent commutes with T : but Weyl’s Theorem holds for T because

σ(T ) = ω(T ) = {0, 1} and π00(T ) = ∅, (53)

while Weyl’s Theorem does not hold for T +K because

σ(T +K) = ω(T +K) = {0, 1} and π00(T +K) = {0}. (54)

But if K is an injective quasinilpotent operator commuting with T then Weyl’s theorem
is transmitted from T to T +K.

Theorem 2.37. If Weyl’s theorem holds for T ∈ B(X) then Weyl’s theorem holds for T+K
if K ∈ B(X) is an injective quasinilpotent operator commuting with T .

Proof. First of all we prove that if there exists an injective quasinilpotent operator commut-
ing with T , then

T is Weyl =⇒ T is injective. (55)

To show this suppose K is an injective quasinilpotent operator commuting with T . Assume
to the contrary that T is Weyl but not injective. Then there exists a nonzero vector x ∈ X
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such that Tx = 0. Then by the commutativity assumption, TKnx = KnTx = 0 for every
n = 0, 1, 2, · · · , so that Knx ∈ N(T ) for every n = 0, 1, 2, · · · . We now claim that {Knx}∞n=0

is a sequence of linearly independent vectors in X. To see this suppose c0x+ c1Kx+ · · ·+
cnK

nx = 0. We may then write cn(K − λ1I) · · · (K − λnI)x = 0. Since K is an injective
quasinilpotent operator it follows that (K − λ1I) · · · (K − λnI) is injective. But since x ̸= 0
we have that cn = 0. By an induction we also have that cn−1 = · · · = c1 = c0 = 0. This
shows that {Knx}∞n=0 is a sequence of linearly independent vectors in X. From this we can
see N(T ) is infinite-dimensional, which contradicts to the fact that T is Weyl. This proves
(55). From (55) we can see that if Weyl’s theorem holds for T then π00(T ) = ∅. We now
claim that π00(T +K) = ∅. Indeed if λ ∈ π00(T +K), then 0 < dim ker(T +K − λI) <∞,
so that there exists a nonzero vector x ∈ X such that (T + K − λI)x = 0. But since K
commutes with T +K − λI, the same argument as in the proof of (55) with T +K − λI in
place of T shows that ker(T +K − λI) is infinite-dimensional, a contradiction. Therefore
π00(T +K) = ∅ and hence Weyl’s theorem holds for T +K because ϖ(T ) = ϖ(T +K) with
ϖ = σ, ω.

In Theorem 2.37, “quasinilpotent” cannot be replaced by “compact”. For example con-
sider the following operators on ℓ2 ⊕ ℓ2:

T =


0

1
2 0

1
3

0 1
4

. . .

⊕ I and K =


1
− 1

2 0

− 1
3

0 − 1
4

. . .

⊕Q,

where Q is an injective compact quasinilpotent operator on ℓ2. Observe that Weyl’s theorem
holds for T , K is an injective compact operator, and TK = KT . But

σ(T +K) = {0, 1} = ω(T +K) and π00(T +K) = {1},

which says that Weyl’s theorem does not hold for T +K.

On the other hand, Weyl’s theorem for T is not sufficient for Weyl’s theorem for T + F
with finite rank F . To see this, let X = ℓ2 and let T, F ∈ B(X) be defined by

T (x1, x2, x3, · · · ) = (0, x1/2, x2/3, · · · )

and
F (x1, x2, x3, · · · ) = (0,−x1/2, 0, 0, · · · ).

since the point spectrum of T is empty it follows Weyl’s theorem holds for T . Also F is a
nilpotent operator. Since 0 ∈ π00(T + F ) ∩ ω(T + F ), it follows that Weyl’s theorem fails
for T + F .

Lemma 2.38. Let T ∈ B(X). If F ∈ B(X) is a finite rank operator then

dim ker(T ) <∞ ⇐⇒ dim ker(T + F ) <∞.

Further if TF = FT then
accσ(T ) = accσ(T + F ).

Proof. This follows from a straightforward calculation.
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Theorem 2.39. Let T ∈ B(X) be an isoloid operator and let F ∈ B(X) be a finite rank
operator commuting with T . If Weyl’s theorem holds for T then it holds for T + F .

Proof. We have to show that λ ∈ σ(T +F )\ω(T +F ) if and only if λ ∈ π00(T +F ). Without
loss of generality we may assume that λ = 0. We first suppose that 0 ∈ σ(T +F )\ω(T +F )
and thus T +F is Weyl but not invertible. It suffice to show that 0 ∈ isoσ(T +F ). Since T
is Weyl and Weyl’s theorem holds for T , it follows that 0 ∈ ρ(T ) or 0 ∈ isoσ(T ). Thus by
Lemma 2.38, 0 /∈ accσ(T+F ). But since T+F is not invertible we have that 0 ∈ isoσ(T+F ).

Conversely, suppose that 0 ∈ π00(T + F ). We want to show that T + F is Weyl. By our
assumption, 0 ∈ isoσ(T + F ) and 0 < dim ker(T + F ) <∞. By Lemma 2.38, we have

0 /∈ accσ(T ) and dim ker(T ) <∞. (56)

If T is invertible then it is evident that T + F is Weyl. If T is not invertible then by the
first part of (56) we have 0 ∈ isoσ(T ). But since T is isoloid it follows that T is not one-
one, which together with the second part of (56) gives 0 < dim ker(T ) < ∞. Since Weyl’s
theorem holds for T it follows that T is Weyl and so is T + F .

Example 2.40. There exists an operator T ∈ B(X) and a finite rank operator F ∈ B(X)
commuting with T such that Weyl’s theorem holds for T but it does not hold for T + F .

Proof. Define on ℓ2 ⊕ ℓ2, T := I ⊕ S and F = K ⊕ 0, where S : ℓ2 → ℓ2 is an injective
quasinilpotent operator and F : ℓ2 → ℓ2 is defined by

F (x1, x2, x3, · · · ) = (−x1, 0, 0, · · · ).

Then F is of finite rank and commutes with T . It is easy to see that

σ(T ) = ω(T ) = {0, 1} and π00(T ) = ∅,

which implies that Weyl’s theorem holds for T . We however have

σ(T + F ) = ω(T + F ) = {0, 1} and π00(T + F ) = {0},

which implies that Weyl’s theorem fails for T + F .

Theorem 2.39 may fail if “finite rank” is replaced by “compact”. In fact Weyl’s theorem
may fail even if K is both compact and quasinilpotent: for example, take T = 0 and K the
operator on ℓ2 defined by K(x1, x2, · · · ) = (x2

2 ,
x3

3 ,
x4

4 , · · · ). We will however show that if
“isoloid” condition is strengthened slightly then Weyl’s theorem is transmitted from T to
T +K if K is either a compact or a quasinilpotent operator commuting with T . To see this
we observe:

Lemma 2.41. If K ∈ B(X) is a compact operator commuting with T ∈ B(X) then

π00(T +K) ⊆ isoσ(T ) ∪ ρ(T ).

Proof. See [HanL].

An operator T ∈ B(X) will be said to be finite-isoloid if isoσ(T ) ⊆ π0f (T ). Evidently
finite-isoloid ⇒ isoloid. The converse is not true in general: for example, take T = 0. In
particular if σ(T ) has no isolated points then T is finite-isoloid. We now have:
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Theorem 2.42. Suppose T ∈ B(X) is finite-isoloid. If Weyl’s theorem holds for T then
Weyl’s theorem holds for T + K if K ∈ B(X) commutes with T and is either compact or
quasinilpotent.

Proof. First we assume that K is a compact operator commuting with T . Suppose Weyl’s
theorem holds for T . We first claim that with no restriction on T ,

σ(T +K) \ ω(T +K) ⊆ π00(T +K). (57)

For (57), it suffices to show that if λ ∈ σ(T+K)\ω(T+K) then λ ∈ isoσ(T+K). Assume to
the contrary that λ ∈ accσ(T +K). Then we have that λ ∈ σb(T +K) = σb(T ), so that λ ∈
σe(T ) or λ ∈ accσ(T ). Remember that the essential spectrum and the Weyl spectrum are
invariant under compact perturbations. Thus if λ ∈ σe(T ) then λ ∈ σe(T +K) ⊆ ω(T +K),
a contradiction. Therefore we should have that λ ∈ accσ(T ). But since Weyl’s theorem
holds for T and λ /∈ ω(T + K) = ω(T ), it follows that λ ∈ π00(T ), a contradiction. This
proves (57). For the reverse inclusion suppose λ ∈ π00(T +K). Then by Lemma 2.41, either
λ ∈ isoσ(T ) or λ ∈ ρ(T ). If λ ∈ ρ(T ) then evidently T +K−λI is Weyl, i.e., λ /∈ ω(T +K).
If instead λ ∈ isoσ(T ) then λ ∈ π00(T ) whenever T is finite-isoloid. Since Weyl’s theorem
holds for T , it follows that λ /∈ ω(T ) and hence λ /∈ ω(T +K). Therefore Weyl’s theorem
holds for T +K.

Next we assume that K is a quasinilpotent operator commuting with T . Then by Lemma
2.35, ϖ(T ) = ϖ(T +Q) with ϖ = σ, ω. Suppose Weyl’s theorem holds for T . Then

σ(T +K) \ ω(T +K) = σ(T ) \ ω(T ) = π00(T ) ⊆ isoσ(T ) = isoσ(T +K),

which implies that σ(T +K)\ω(T +K) ⊆ π00(T +K). Conversely, suppose λ ∈ π00(T +K).
If T is finite-isoloid then λ ∈ isoσ(T + K) = isoσ(T ) ⊆ π0f (T ). Thus λ ∈ π00(T ) =
σ(T ) \ ω(T ) = σ(T +K) \ ω(T +K). This completes the proof.

Corollary 2.43. Suppose H is a Hilbert space and T ∈ B(H) is p-hyponormal. If T satisfies
one of the following:

(i) isoσ(T ) = ∅;
(ii) T has finite-dimensional eigenspaces,

then Weyl’s theorem holds for T +K if K ∈ B(H) is either compact or quasinilpotent and
commutes with T .

Proof. Observe that each of the conditions (i) and (ii) forces p-hyponormal operators to be
finite-isoloid. Since by Corollary 2.5 Weyl’s theorem holds for p-hyponormal operators, the
result follows at once from Theorem 2.42.

In the perturbation theory the “commutative” condition looks so rigid. Without the
commutativity, the spectrum can however undergo a large change under even rank one
perturbations. In spite of it, Weyl’s theorem may hold for (non-commutative) compact
perturbations of “good” operators. We now give such a perturbation theorem. To do this
we need:

Lemma 2.44. If N ∈ B(X) is a quasinilpotent operator commuting with T ∈ B(X) modulo
compact operators (i.e., TN−NT ∈ K(X)) then σe(T +N) = σe(T ) and ω(T +N) = ω(T ).
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Proof. Immediate from Lemma 2.35.

Theorem 2.45. Suppose T ∈ B(X) satisfies the following:

(i) T is finite-isoloid;
(ii) σ(T ) has no “holes” (bounded components of the complement), i.e., σ(T ) = η σ(T );
(iii) σ(T ) has at most finitely many isolated points;
(iv) Weyl’s theorem holds for T .

If K ∈ B(X) is either compact or quasinilpotent and commutes with T modulo compact
operators then Weyl’s theorem holds for T +K.

Proof. By Lemma 2.44, we have that σe(T +K) = σe(T ) and ω(T +K) = ω(T ). Suppose
Weyl’s theorem holds for T and λ ∈ σ(T+K)\ω(T+K). We now claim that λ ∈ isoσ(T+K).
Assume to the contrary that λ ∈ accσ(T +K). Since λ /∈ ω(T +K) = ω(T ), it follows from
the punctured neighborhood theorem that λ /∈ ∂ σ(T +K). Also since the set of all Weyl
operators forms an open subset of B(X), we have that λ ∈ int

(
σ(T +K)\ω(T +K)

)
. Then

there exists ϵ > 0 such that {µ ∈ C : |µ− λ| < ϵ} ⊆ int
(
σ(T +K) \ ω(T +K)

)
, and hence

{µ ∈ C : |µ− λ| < ϵ} ∩ ω(T ) = ∅. But since

∂ σ(T +K) \ isoσ(T +K) ⊆ σe(T +K) = σe(T ),

it follows from our assumption that

{µ ∈ C : |µ− λ| < ϵ} ⊆ int
(
σ(T +K) \ ω(T +K)

)
⊆ η

(
∂ σ(T +K) \ isoσ(T +K)

)
⊆ η σe(T ) ⊆ η σ(T ) = σ(T ),

which implies that {µ ∈ C : |µ− λ| < ϵ} ⊆ σ(T ) \ω(T ). This contradicts to Weyl’s theorem
for T . Therefore λ ∈ isoσ(T +K) and hence σ(T +K) \ ω(T +K) ⊆ π00(T +K). For the
reverse inclusion suppose λ ∈ π00(T +K). Assume to the contrary that λ ∈ ω(T +K) and
hence λ ∈ ω(T ). Then we claim λ /∈ ∂ σ(T ). Indeed if λ ∈ isoσ(T ) then by assumption
λ ∈ π00(T ), which contradicts to Weyl’s theorem for T . If instead λ ∈ accσ(T ) ∩ ∂ σ(T )
then since isoσ(T ) is finite it follows that

λ ∈ acc
(
∂ σ(T )

)
⊆ accσe(T ) = accσe(T +K),

which contradicts to the fact that λ ∈ isoσ(T + K). Therefore λ /∈ ∂ σ(T ). Also since
λ ∈ isoσ(T +K), there exists ϵ > 0 such that

{µ ∈ C : 0 < |µ− λ| < ϵ} ⊆ σ(T ) ∩ ρ(T +K),

so that {µ ∈ C : 0 < |µ − λ| < ϵ} ∩ ω(T ) = ∅, which contradicts to Weyl’s theorem for T .
Thus λ ∈ σ(T +K) \ ω(T +K) and therefore Weyl’s theorem holds for T +K.

If, in Theorem 2.45, the condition “σ(T ) has no holes” is dropped then Theorem 2.45
may fail even though T is normal. For example, if on ℓ2 ⊕ ℓ2

T =
(
U I−UU∗

0 U∗

)
and K =

(
0 I−UU∗

0 0

)
,
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where U is the unilateral shift on ℓ2, then T is unitary (essentially the bilateral shift) with
σ(T ) = T, K is a rank one nilpotent, and Weyl’s theorem does not hold for T −K.

Also in Theorem 2.45, the condition “isoσ(T ) is finite” is essential in the cases where K
is compact. For example, if on ℓ2

T (x1, x2, · · · ) = (x1,
x2
2
,
x3
3
, · · · ) and Q(x1, x2, · · · ) = (

x2
2
,
x3
3
,
x4
4
, · · · ),

we define K := −(T +Q). Then we have that (i) T is finite-isoloid; (ii) σ(T ) has no holes;
(iii) Weyl’s theorem holds for T ; (iv) isoσ(T ) is infinite; (v) K is compact because T and Q
are both compact; (vi) Weyl’s theorem does not hold for T +K (= −Q).

Corollary 2.46. If σ(T ) has no holes and at most finitely many isolated points and if K
is a compact operator then Weyl’s theorem is transmitted from T to T +K.

Proof. Immediate from Theorem 2.45.

Corollary 2.46 shows that if Weyl’s theorem holds for T whose spectrum has no holes and
at most finitely many isolated points then for every compact operator K, the passage from
σ(T ) to σ(T +K) is putting at most countably many isolated points outside σ(T ) which are
Riesz points of σ(T +K). Here we should note that this holds even if T is quasinilpotent
because for every quasinilpotent operator T (more generally, “Riesz operators”), we have

σ(T +K) ⊆ η σe(T +K) ∪ p00(T +K) = η σe(T ) ∪ p00(T +K) = {0} ∪ p00(T +K).

2.4 Hyponormal operators

Recall that if H is a Hilbert space then an operator A ∈ B(H) is called hyponormal if

[A∗, A] ≡ A∗A−AA∗ ≥ 0.

Thus if A ∈ B(H) then

A is hyponormal ⇐⇒ ∥Ah∥ ≥ ∥A∗h∥ for all h ∈ H.

If A∗A ≤ AA∗, or equivalently, ∥A∗h∥ ≥ ∥Ah∥ for all h, then A is called a cohyponormal
operator. Operators that are either hyponormal or cohyponormal are called seminormal.

Proposition 2.47. Let A ∈ B(H) be a hyponormal operator. Then we have:

(a) If A is invertible then A−1 is hyponormal.
(b) A− λI is hyponormal for every λ ∈ C.
(c) If λ ∈ π0(A) and Af = λf then A∗f = λf, i.e., ker (A− λI) ⊆ ker (A− λI)∗.
(d) If f and g are eigenvectors corresponding to distinct eigenvalues of A then f ⊥ g.
(e) If M ∈ LatA then A|M is hyponormal.
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Proof. (a) Recall that if T is positive and invertible then

T ≥ 1 =⇒ T−1 ≤ 1 :

because if T ∈ C∗(T ) ≡ C(X) then T = f ≥ 1 ⇒ T−1 = 1
f ≤ 1. Since A∗A ≥ AA∗ and A

is invertible,

A−1(A∗A)(A∗)−1 ≥ A−1(AA∗)(A∗)−1 = 1

=⇒ A∗A−1(A∗)−1A ≤ 1

=⇒ A−1(A∗)−1 = (A∗)−1(A∗A−1A∗−1A)A−1 ≤ (A∗)−1A−1

=⇒ A−1 is hyponormal.

(b) (A−λI)(A∗−λI) = AA∗−λA∗−λA+|λ|2I ≤ A∗A−λA∗−λA+|λ|2I = (A∗−λI)(A−λI).

(c) Immediate from the fact that ∥(A∗ − λI)f∥ ≤ ∥(A− λI)f∥.

(d) Af = λf, Ag = µg ⇒ λ⟨f, g⟩ = ⟨Af, g⟩ = ⟨f,A∗g⟩ = ⟨f, µg⟩ = µ⟨f, g⟩.

(e) If M ∈ LatA then

A =

(
B C
0 D

)
M
M⊥ is hyponormal

=⇒ 0 ≤ [A∗, A] =

(
[B∗, B]− CC∗ ∗

∗ ∗

)
=⇒ [B∗, B] ≥ CC∗ ≥ 0

=⇒ B is hyponormal.

Corollary 2.48. If A ∈ B(H) is hyponormal and λ ∈ π0(A) then ker (A − λI) reduces A.
Hence if A is a pure hyponormal then π0(A) = ∅.

Proof. From Proposition 2.47(c), if f ∈ ker (A − λI) then Af = λf ∈ ker (A − λI) and
A∗f = λf ∈ ker (A− λI).

Proposition 2.49. [Sta] If A ∈ B(H) is hyponormal then ∥An∥ = ∥A∥n, so

∥A∥ = γ(A), where r(·) denoted the spectral radius,

in other words, A is normaloid.

Proof. Observe

∥Anf∥2 =< Anf,Anf >=< A∗Anf,An−1f >≤ ∥A∗Anf∥ · ∥An−1f∥ ≤ ∥An+1f∥ · ∥An−1f∥.

Hence ∥An∥2 ≤ ∥An+1∥·∥An−1∥. We use an induction. Clearly, it is true for n = 1. Suppose
∥Ak∥ = ∥A∥k for 1 ≤ k ≤ n. Then ∥A∥2n = ∥An∥2 ≤ ∥An+1∥ · ∥An−1∥ = ∥An+1∥ · ∥A∥n−1,

so ∥A∥n+1 ≤ ∥An+1∥. Also r(A) = lim ∥An∥ 1
n = ∥A∥.
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Corollary 2.50. If A ∈ B(H) is hyponormal and λ /∈ σ(A) then

1

∥(A− λI)−1∥
= dist

(
λ, σ(A)

)
.

Proof. Observe

|| 1

(A− λI)−1
|| = 1

maxµ∈σ(A−λI)−1 |µ|
= minµ∈σ(A−λI)|µ| = dist

(
λ, σ(A)

)
.

Proposition 2.51. [Sta] If A ∈ B(H) is hyponormal then A is isoloid, i.e., isoσ(A) ⊆
π0(A). The pure hyponormal operators have no isolated points in their spectrum.

Proof. Replacing A by A−λI we may assume that λ = 0. Observe that the only quasinilpo-
tent hyponormal operator is zero. Consider the spectral decomposition of A:

A =

(
A1 0
0 A2

)
, where σ(A1) = {0}, σ(A2) = σ(A)\{0}.

Then A1 = 0, so 0 ∈ π0(A).
The second assertion comes from the fact that ker (A− λI) is a reducing subspaces of a

hyponormal operator A.

Corollary 2.52. The only compact hyponormal operator is normal.

Proof. Recall that if K is compact then every nonzero point of σ(K) is isolated. So if K is
hyponormal then every eigenspaces reduces K and the restriction of K to each eigenspace
is normal. Consider the restriction of K to the orthogonal complement of the span of all
the eigenvectors. The resulting operator is hyponormal and quasinilpotent, and hence 0.
Therefore K is normal.

Proposition 2.53. Let A ∈ B(H) be a hyponormal operator. Then we have:

(a) A is invertible ⇐⇒ A is right invertible.
(b) A is Fredholm ⇐⇒ A is right Fredholm.
(c) σ(A) = σr(A) and σe(A) = σre(A).
(d) A is pure, λ ∈ σ(A)\σe(A) =⇒ index (A− λI) ≤ −1.

Proof. (a) Observe that

A is right invertible =⇒ ∃ B such that AB = 1

=⇒ A is onto and hence kerA∗ = (ranA)⊥ = {0}
=⇒ kerA = {0}
=⇒ A is invertible.

(b) Similar to (a).
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(c) From (a) and (b).

(d) Observe that

A is pure hyponormal =⇒ A− λI is pure hyponormal

=⇒ ker (A− λI) = {0} (by Proposition 2.51)

=⇒ A− λI is not onto since λ ∈ σ(A)

=⇒ index (A− λI) = dim (ker (A− λI))− dim
(
ran(A− λI)⊥

)
= −dim

(
ran(A− λI)⊥

)
≤ −1.

Write F denotes the set of Fredholm operators. We here give a direct proof showing that
Weyl’s theorem holds for hyponormal operators.

Proposition 2.54. If A ∈ B(H) is hyponormal then

σ(A)\ω(A) = π00(A),

where π00(A) = the set of isolated eigenvalues of finite multiplicity.

Proof. (⇐) If λ ∈ π00(A) then ker (A− λI) reduces A. So

A = λI
⊕

B,

where I is the identity on a finite dimensional space, B is hyponormal and λ /∈ σ(B). So
λ /∈ ω(A).

(⇒) Suppose λ ∈ σ(A)\ω(A), and so A − λI not invertible, Fredholm with index (A −
λI) = 0. We may assume λ = 0. Since A ∈ F and indexA = 0, it follows that 0 is an
eigenvalue of finite multiplicity.

It remains to show that 0 ∈ isoσ(A). Observe that

ker (A) ⊆ ker (A∗) = (ranA)⊥ and 0 = index(A) = dimker (A)− dim
(
ranA

)⊥
,

so that ker(A) = (ranA)⊥. So

A = 0
⊕

B,

where B is invertible. Since σ(A) = {0} ∪ σ(B), 0 must be an isolated point of σ(A).

Corollary 2.55. If A ∈ B(H) is a pure hyponormal then

∥A∥ ≤ ∥A+K∥ for every compact operator K.

Proof. Since A is pure, π0(A) = ∅. So σ(A) = ω(A) =
∩
K∈K(H) σ(A+K). Thus for every

compact operator K, σ(A) ⊆ σ(A+K). Therefore, ∥A∥ = r(A) ≤ r(A+K) ≤ ∥A+K∥.
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2.5 p-hyponormal operators

Recall that if H is a Hilbert space, the numerical range of T ∈ B(H) is defined by

W (T ) :=

{
⟨Tx, x⟩ : ||x|| = 1

}
and the numerical radius of T is defined by

w(T ) := sup

{
|λ| : λ ∈W (T )

}
.

It was well-known (cf. [Ha3]) that

(a) W (T ) is convex (Toeplitz-Haussdorff theorem);
(b) convσ(T ) ⊂ clW (T );
(c) r(T ) ≤ w(T ) ≤ ||T ||;
(d) 1

dist (λ, σ(T ))
≤ ||(T − λ)−1|| ≤ 1

dist (λ, clW (T ))
.

Definition 2.56. (a) T is called normaloid if ||T || = r(T );
(b) T is called spectraloid if w(T ) = r(T );
(c) T is called convexoid if convσ(T ) = clW (T );
(d) T is called transaloid if T − λI is normaloid for any λ;
(e) T is siad to satisfy (G1)-condition if

||(T − λI)−1|| ≤ 1

dist (λ, σ(T ))
, in fact, ||(T − λI)−1|| = 1

dist (λ, σ(T ))
.

(f) T is called paranormal if ||T 2x|| ≥ ||Tx||2 for any x with ||x|| = 1.

It was well-known that it T is paranormal then
(i) Tn is paranormal for any n;
(ii) T is normaloid;
(iii) T−1 is paranormal if it exists;

and that
hyponormal ⊂ paranormal ⊂ normaloid ⊂ spectraloid.

Theorem 2.57. If T ∈ B(H) then

(a) T is convexoid ⇐⇒ T − λI is spectraloid for any λ, i.e., w(T − λI) = r(T − λI);

(b) T is convexoid ⇐⇒ ||(T − λI)−1|| ≤ 1

dist (λ, convσ(T ))
for any λ /∈ convσ(T ).

Proof. (a) Note that

convM = the intersection of all disks containing M

=
∩
µ

{
λ : |λ− µ| ≤ sup

x∈M
|x− µ|

}
.
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Since clW (T ) is convex,

clW (T ) =
∩
µ

{
λ : |λ− µ| ≤ w(T − µI)

}
;

convσ(T ) =
∩
µ

{
λ : |λ− µ| ≤ r(T − µI)

}
.

so the result immediately follows.
(b) (⇒) Clear from the preceding remark.
(⇐) Suppose

||(T − λI)−1|| ≤ 1

dist (λ, convσ(T ))
for any λ /∈ convσ(T ),

or equivalently,

||(T − λI)x|| ≥ 1

dist (λ, convσ(T ))
for any λ /∈ convσ(T ) and ||x|| = 1.

Thus

||Tx||2 − 2Re ⟨Tx, x⟩λ+ |λ|2 ≥ inf
s∈convσ(T )

(
|s|2 − 2Re sλ+ |λ|2

)
.

Taking λ = |λ|e−i(θ+π), dividing by |λ| and letting λ→ ∞, we have

Re ⟨Tx, x⟩eiθ ≥ inf
s∈convσ(T )

Re
(
seiθ

)
for ||x|| = 1,

which implies clW (T ) ⊂ convσ(T ). Therefore clW (T ) = convσ(T ).

Corollary 2.58. We have:

(a) transaloid ⇒ convexoid;
(b) (G1) ⇒ convexoid.

Proof. (a) Clear.
(b) ||(T − λI)−1|| = 1

dist (λ, σ(T ))
≤ 1

dist (λ, convσ(T ))

Definition 2.59. An operator T ∈ B(H) for a Hilbert space H is said to satisfy the
projection property if Reσ(T ) = σ(ReT ), where ReT := 1

2 (T + T ∗).

Theorem 2.60. Let H be a Hilbert space. An operator T ∈ B(H) is convexoid if and only
if

Re convσ
(
eiθT

)
= convσ

(
Re (eiθT )

)
for any θ ∈ [0, 2π).

Proof. Observe that
Re
(
eiθconvσ(T )

)
= convσ

(
Re (eiθT )

)
= clW

(
Re (eiθT )

)
= Re clW (eiθT )

= Re
(
eiθclW (T )

)
.

which implies that convσ(T ) = clW (T ) and this argument is reversible.
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Example 2.61. There exist convexoid operators which are not normaloid and vice versa.
(see [Ha2, Problem 219]).

Example 2.62. (An example of a non-convexoid and papranormal operator) Let U be the
unilateral shift on ℓ2, P = diag(1, 0, 0, . . .) and put

T =

(
U + I P

0 0

)
.

Then σ(T ) = σ(U + I) ∪ {0} = {λ : |λ − 1| ≤ 1}. But if x = (− 1
2 , 0, 0, . . .) and y =

(
√
3
2 , 0, 0, . . .) then

∣∣∣∣∣∣∣∣(xy
)∣∣∣∣∣∣∣∣ = 1 and

W (T ) ∋ ⟨T (x⊕ y), x⊕ y⟩ = 1

4
−

√
3

4
< 0.

Therefore T is not convexoid, but T is papranormal (see [Fur]).

Definition 2.63. [ChH] Let H be a Hilbert space. An operator T ∈ B(H) is called p-
hyponormal if

(T ∗T )
p ≥ (TT ∗)

p
.

If p = 1, T is hyponormal ad if p = 1
2 , T is called seminormal. It was known that q-

hyponormal ⇒ p-hyponormal for p ≤ q by Löner-Heinz inequality.

Theorem 2.64. p-hyponormal =⇒ paranormal.

Proof. See [An].

It was also well-known that if T ∈ B(H) is p-hyponormal then
(i) T is normaloid;
(ii) T is reduced by its eigenspaces;
(iii) T−1 is paranormal if it exists.

However p-hyponormal operators need not be transaloid. In fact, p-hyponormality is not
translation-invariant. To see this we first recall:

Lemma 2.65. If T is p-hyponormal then Tn is p
n -hyponormal for 0 < p ≤ 1.

Proof. See [AW].

Theorem 2.66. [ChL] There exists an operator T satisfying
(i) T is semi-hyponormal;
(ii) T − λI is not p-hyponormal for any p > 0 and some λ ∈ C.
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Proof. Let

S ≡ 4U2 + U∗2 + 2UU∗ + 2I (U =the unilateral shift on ℓ2).

Then we claim that

(a) S is semi-hyponormal;
(b) S − 4I is not p-hyponormal for any p > 0, in fact S − 4I is not paranormal.

Indeed, if we put φ(z) = 2z+z−1 the Tφ is hyponormal but T 2
φ is not because Since T 2

φ = S,
so S is semi-hyponormal. On the other hand, observe that

||(S − 4I)e0||2 = 20 and ||(S − 4I)2e0|| =
√
384,

so
||(S − 4I)e0||2 > ||(S − 4I)2e0||,

which is not paranormal.

2.6 Browder’s theorem

One fall day of 1995, Robin Harte and I have traveled to Zion Canyon and Bryce Canyon in
the Utah, USA. Two canyons had a similar feature but a subtle difference in our feeling. At
that time, we have discussed about Weyl’s theorem all the way in the car and recognized that
Weyl’s theorem is close to, but not quite the same as, equality between the Weyl spectrum
and the “Browder spectrum”, which in turn ought to, but does not, guarantee the spectral
mapping theorem for the Weyl spectrum of polynomials in T . After a return from the trip,
we have defined a new notion of the “Browder’s theorem,” which has a little different feature
with the Weyl’s theorem like a subtle difference between the Zion and the Bryce. This was
first appeared in [HaL2] in 1997. Nowadays, this theorem has extensively studied by many
authors.

We first recall that if T ∈ B(X) then

σess(T ) ⊆ ωess(T ) ⊆ σb(T ) = σess(T ) ∪ acc σ(T ) (58)

p00(T ) := σ(T ) \ σb(T ) (59)

for the Riesz points of T and

iso σ(T ) \ σess(T ) = iso σ(T ) \ ω(T ) = p00(T ) ⊆ π00(T ). (60)

We begin with:

Definition 2.67. We say that Browder’s theorem holds for T if

σ(T ) \ ω(T ) = p00(T ). (61)

Evidently “Weyl’s theorem” implies “Browder’s theorem”:
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Theorem 2.68. Each of the following conditions is equivalent to Browder’s theorem for
T ∈ B(X):

σ(T ) = ω(T ) ∪ π00(T ); (62)

ω(T ) = σb(T ). (63)

Necessary and sufficient for Weyl’s theorem is Browder’s theorem together with either of the
following:

ω(T ) ∩ π00(T ) = ∅; (64)

π00(T ) ⊆ p00(T ). (65)

Proof. Implication (61) =⇒ (62) is the last part of (60). Conversely if (61) holds then
σ(T ) \ ω(T ) = π00(T ) \ ω(T ) ⊆ p00(T ), giving (61). Equivalence (61) ⇐⇒ (63) is (59).
Implication (63) =⇒ (61) is the middle part of (60). Towards the second part of the theorem
notice that (65) always implies (64): we claim that Browder’s theorem together with (64)
implies Weyl’s theorem, and that Weyl’s theorem implies (65). Indeed using the last part of
(60) Browder’s theorem says that the complement in σ(T ) of the Weyl spectrum is a subset
of π00(T ), while (64) ensures that π00(T ) is a subset of this complement. On the other hand
the second part of (60) together the inclusion π00(T ) ⊆ iso σ(T ) and Weyl’s theorem gives
(65).

The disjointness condition (64) can fail whether or not Browder’s theorem holds [Ob1]:

Example 2.69. If X = ℓp or X = c0 and

T = vw : (x1, x2, x3, · · · ) 7→ ( 12x2,
1
3x3,

1
4x4, · · · ) on X (66)

is the product of the backward shift v and the standard weight w then

σ(T ) = σess(T ) = ω(T ) = σb(T ) = {0} (67)

and
π00(T ) = {0}. (68)

Proof. T is quasinilpotent, and compact so not Fredholm, giving (67), while

T−1(0) = Cδ1 = {(λ, 0, 0, · · · ) : λ ∈ C}

is of dimension 1.

In general the spectral mapping theorem is liable to fail for the Weyl spectrum ([Be2,
Example 3.3]): there is only inclusion, since the product of Weyl operators is Weyl,

ωp(T ) ⊆ pω(T ). (69)

Similarly the Weyl spectrum of a direct sum need not be the union of the Weyl spectra of
the components: we only have in general, since the direct sum of Weyl operators is Weyl
and the index additive on direct sums,

ω(T ) \ ω(S) ⊆ ω(S ⊕ T ) ⊆ ω(S) ∪ ω(T ). (70)

By contrast ([Har4, Theorem 9.8.2]) the spectral mapping theorem holds for the Browder
spectrum, and the Browder spectrum of a direct sum is the union of the Browder spectrum
of the components. This might suggest that Browder’s theorem for S and T is sufficient for
equality in (69) and the second part of (70):
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Theorem 2.70. If Browder’s theorem holds for T ∈ B(X) and S ∈ B(Y ) and if p is a
polynomial then

Browder’s theorem holds for p(T ) ⇐⇒ p(ω(T )) ⊆ ω(p(T )), (71)

and
Browder’s theorem holds for S ⊕ T ⇐⇒ ω(S) ∪ ω(T ) ⊆ ω(S ⊕ T ). (72)

Proof. If σb(p(T )) ⊆ ω(p(T )) then, with no other restriction on T ,

p(ω(T )) ⊆ p(σb(T )) = σb(p(T )) ⊆ ω(p(T )),

which is the right hand side of (71); conversely if Browder’s theorem holds for T as well
as this inclusion then σb(p(T )) = p(σb(T )) ⊆ p(ω(T )) ⊆ ω(p(T )). Similarly if Browder’s
theorem holds for S ⊕ T then, with no other restriction on either S or T ,

ω(S) ∪ ω(T ) ⊆ σb(S) ∪ σb(T ) = σb(S ⊕ T ) ⊆ ω(S ⊕ T ),

which is the right hand side of (72); conversely if Browder’s theorem holds for S and for T
as well as this inclusion then σb(S ⊕ T ) = σb(S) ∪ σb(T ) ⊆ ω(S) ∪ ω(T ) ⊆ ω(S ⊕ T ).

We have a familiar example of an operator for which the spectral mapping theorem holds
for the Weyl spectrum, which does not coincide with the Browder spectrum:

Example 2.71. If

T =

(
u 0
0 v

)
:

(
Y
Y

)
→
(
Y
Y

)
(73)

with Y = ℓp or Y = c0 and the forward and backward shifts u and v, and if |λ| < 1, then

T − λI is Weyl and not Browder, (74)

but there is inclusion

p(ω(T )) ⊆ ω(p(T )) for each polynomial p. (75)

At the same time Browder’s theorem holds for each of u and v, but not for T = u⊕ v.

Proof. It is clear that T −λI is Fredholm and has index zero, therefore is Weyl; alternatively
(cf. [Har4, (7.7.6.6)-(7.7.6.9)]) if

S =

(
u− λ 1− uv
0 v − λ

)
and S′ =

(
v(1− λv)−1 0

(1− λu)−1(1− uv)(1− λv)−1 (1− λu)−1u

)
(76)

then
S′S = I = SS′ and T − λI − S is finite rank; (77)

note to make the calculations

(1−λv)−1(u−λ) = u ; (v−λ)(1−λu)−1 = v ; (1−λv)−1(1−uv) = 1−uv = (1−uv)(1−λu)−1.

To see that T − λI is not Browder recall the eigenvector

δ1 = (1, 0, 0, · · · ) ∈ v−1(0) :
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we claim
y = un(1− λu)−(n+1)δ1 =⇒ (v − λ)n+1y = 0 ̸= (v − λ)ny,

noting that
(v − λ)n(1− λu)−n = vn,

and hence

x =

(
0
y

)
=⇒ (T − λI)n+1x = 0 ̸= (T − λI)nx.

Since there is only one hole in the essential spectrum it follows that T satisfies the condition
(5.34) and hence (75).

We have a very similar example in the opposite direction:

Example 2.72. If Y = ℓp or Y = c0 and

T =

(
u+ 1 0
0 v − 1

)
:

(
Y
Y

)
→
(
Y
Y

)
(78)

with the forward and backward shifts u and v on Y , then Browder’s theorem holds for T
while the spectral mapping theorem for the Weyl spectrum fails.

Proof. We claim ([Har4, (7.6.4.9)]), using the first part of (70),

σ(T ) = ω(T ) = {|1− z| ≤ 1} ∪ {|1 + z| ≤ 1},

since both the spectrum and the Weyl spectrum of each of the shifts is the closed unit disc.
Thus Browder’s theorem certainly holds for T ; to see the failure of the spectral mapping
theorem with the polynomial p = z2 observe

1 ∈ pω(T ) ⊇ σessp(T ) and 1 ̸∈ ωp(T ) = ω(T 2) :

for this last part observe that index(T − I) = −1 = −index(T + I), or alternatively make a
direct calculation ([Har4, (7.6.4.13)]) as for Example 2.71.

Weyl’s theorem may or may not hold for quasinilpotent operators, and is not transmitted
to or from dual operators: for example it fails for the quasinilpotent T = vw of Example
2.69, but holds for its adjoint T ∗ = wu: if T = vw on ℓ2 then

σ(T ∗) = ω(T ∗) = {0} and π00(T
∗) = ∅. (79)

Once again Browder’s theorem performs better:

Theorem 2.73. If T ∈ B(X) then

Browder’s theorem holds for T ⇐⇒ Browder’s theorem holds for T ∗. (80)

Proof. Observe that
ω(T ∗) = ω(T ) and iso σ(T ∗) = iso σ(T ), (81)

which together with (60) and (63) gives (80).
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Combining (68) and (79) shows that the Riesz points need not coincide with the inter-
section of the isolated eigenvalues of finite multiplicity for the operator and its dual:

T = vw ⊕ wu =⇒ π00(T ) ∩ π00(T ∗) = {0} ≠ π00(T ) = ∅. (82)

Theorem 2.74. Necessary and sufficient for Browder’s theorem to hold for T ∈ B(X) is
that

acc σ(T ) ⊆ ω(T ). (83)

Hence in particular Browder’s theorem holds for quasinilpotent operators, compact operators
and algebraic operators.

Proof. If (83) holds then
σ(T ) \ ω(T ) ⊆ iso σ(T ),

giving Browder’s theorem by (60); the converse is (58). If σ(T ) consists of isolated points
then T satisfies (83); thus Browder’s theorem holds for quasinilpotents, algebraic operators
and compact operators with finite spectrum. For general compact operators (more generally,
“Riesz operators”), we have (in infinite dimensions)

acc σ(T ) ⊂ {0} ⊆ σess(T ), (84)

giving again (83).

An example of Berberian shows that on a Hilbert space H it is not sufficient, for Weyl’s
theorem for T ∈ B(H), that T is reduced by its finite dimensional eigenspaces ([Be2, Ex-
ample 1]): take T = T1 ⊕ T2, where T1 is the one-dimensional zero operator and T2 is an
injective quasinilpotent compact operator. This condition is however sufficient for Browder’s
theorem:

Theorem 2.75. If H is a Hilbert space and T ∈ B(H) is reduced by its finite dimensional
eigenspaces then Browder’s theorem holds for T .

Proof. If T is reduced by its finite dimensional eigenspaces then T = T1 ⊕ T2 with

T1 is normal and ω(T2) = σ(T2) : (85)

for take ([Be1, Example 5])

X⊥
2 = X1 =

∑
λ∈Λ

(T − λI)−1(0)

to be the sum of the (not necessarily isolated) eigenvalues of finite multiplicity. Evidently
both the condition

ω(T ) = σe(T )

and Browder’s theorem hold for each of T1 and T2.
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Theorem 2.75 shows that Browder’s theorem holds for hyponormal operators, since hy-
ponormal operators are reduced by their eigenspaces.

As we have seen in Theorem 2.30, Weyl’s theorem is transmitted from T ∈ B(X) to T−K
for commuting nilpotents K ∈ B(X). This however does not extend to quasinilpotents (cf.
the example above Theorem 2.37) Browder’s theorem behaves better, at least for commuting
perturbations:

Theorem 2.76. If Browder’s theorem holds for T ∈ B(X) then Browder’s theorem holds
for T +K if K commutes with T and is either quasinilpotent or compact.

Proof. For the first part recall the argument of Oberai ([Ob2, Lemma 2]): if K is quasinilpo-
tent and commutes with a Weyl operator T then 0 /∈ σess(T + λK) for arbitrary λ ∈ C,
which by index continuity forces T +λK to have index zero for all λ ∈ C, in particular with
λ = 1. Thus if K is quasinilpotent and commutes with T then

ω(T +K) = ω(T ). (86)

It is also clear that, for the same K,

σ(T +K) = σ(T ) and σe(T +K) = σe(T ) : (87)

and hence also the accumulation points of the spectrum coincide. By (58) it follows that
also

σb(T +K) = σb(T ) (88)

whenever K is quasinilpotent and commutes with T . If instead K is a commuting compact
remember that the Weyl spectrum is invariant under compact purturbations, giving again
(86), while the Browder spectrum is invariant under commuting compact perturbations
giving (88).

This may fail if K is not assumed to commute with T , even if K both compact and
nilpotent:

Example 2.77. If

T =

(
u 1− uv
0 v

)
and K =

(
0 1− uv
0 0

)
(89)

then K is a rank one nilpotent, T is unitary, and Browder’s theorem does not hold for T−K.

Proof. It is clear that K is both rank one and square zero. The operator T is unitary
(essentially the bilateral shift), so that Weyl’s theorem holds for T ; we saw in Example 2.71
that Browder’s theorem fails for T −K.
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2.7 Concluding remarks and open problems

(a) Transaloid and SVEP. For an operator T ∈ B(H) for a Hilbert space H, denote

W (T ) = {(Tx, x) : ||x|| = 1}

for the numerical range of T and

w(T ) = sup {|λ| : λ ∈W (T )}

for the numerical radius of T . An operator T is called convexoid if convσ(T ) = clW (T ) and
is called spectraloid if w(T ) = r(T ) = the spectral radius. We call an operator T ∈ B(H)
transaloid if T − λI is normaloid for all λ ∈ C. It was well known that

transaloid =⇒ convexoid =⇒ spectraloid,

(G1) =⇒ convexoid and (G1) =⇒ reguloid.

We would like to expect that Corollary 2.16 remains still true if “reguloid” is replaced
by “transaloid”

Problem 2.78. If T ∈ B(H) is transaloid and has the SVEP, does Weyl’s theorem hold
for T ?

The following question is a strategy to answer Problem 2.78.

Problem 2.79. Does it follow that

transaloid =⇒ reguloid ?

If the answer to Problem 2.79 is affirmative then the answer to Problem 2.78 is affirmative
by Corollary 2.16.

(b) ∗-paranormal operators. An operator T ∈ B(H) for a Hilbert space H is said to
be ∗-paranormal if

||T ∗x||2 ≤ ||T 2x|| ||x|| for every x ∈ H.

It was [AT] known that if T ∈ B(H) is ∗-paranormal then the following hold:

T is normaloid; (90)

ker(T − λI) ⊂ ker(T − λI)∗. (91)

So if T ∈ B(H) is ∗-paranormal then by (91), T −λI has finite ascent for every λ ∈ C. Thus
∗-paranormal operators have the SVEP ([La]). On the other hand, we can easily show that
if T ∈ B(H) is ∗-paranormal then

σ(T ) \ ω(T ) ⊂ π00(T ). (92)

However we were unable to decide:

66



2 WEYL THEORY

Problem 2.80. Does Weyl’s theorem hold for ∗-paranormal operators ?

The following question is a strategy to answer Problem 2.80.

Problem 2.81. Is every ∗-paranormal operator isoloid ?

If the answer to Problem 2.81 is affirmative then the answer to Problem 2.80 is affirma-
tive. To see this suppose T ∈ B(H) is ∗-paranormal. In view of (92), it suffices to show that
π00(T ) ⊆ σ(T ) \ ω(T ). Assume λ ∈ π00(T ). By (185), T − λI is reduced by its eigenspaces.
Thus we can write

T − λI =

(
0 0
0 S

)
:

(
ker(T − λI)

(ker(T − λI))⊥

)
−→

(
ker(T − λI)

(ker(T − λI))⊥

)
.

Thus T =
(
λI 0
0 S+λI

)
. We now claim that S is invertible. Assume to the contrary that S

is not invertible. Then 0 ∈ isoσ(S) since λ ∈ isoσ(T ). Thus λ ∈ isoσ(S + λI). But since
S+λI is also ∗-paranormal, it follows from our assumption that λ is an eigenvalue of S+λI.
Thus 0 ∈ π0(S), which contradicts to the fact that S is one-one. Therefore S should be
invertible. Note that ker(T − λI) is finite-dimensional. Thus evidently T − λI is Weyl, so
that λ ∈ σ(T ) \ ω(T ). This gives a proof.

(c) Subclasses of paranormal operators. An operator T ∈ B(H) for a Hilbert space
H is said to be quasihyponormal if T ∗(T ∗T −TT ∗)T ≥ 0 and is said to be class A-operator if

|T 2| ≥ |T |2 (cf. [FIY]). Let T = U |T | be the polar decomposition of T and T̃ := |T | 12U |T | 12
be the Aluthge transformation of T (cf. [Al]). An operator T ∈ B(H) for a Hilbert space

H is called w-hyponormal if |T̃ | ≥ |T | ≥ |T̃ ∗| (cf. [AW]). It was well known that

hyponormal =⇒ quasihyponormal =⇒ class A =⇒ paranormal (93)

hyponormal =⇒ p-hyponormal =⇒ w-hyponormal =⇒ paranormal. (94)

Since by Theorem 2.20, Weyl’s theorem holds for paranormal operators on an arbitrary
Banach space, all classes of operators in (93) and (94) enjoy Weyl’s theorem.

The following problem on p-hyponormal operators remains still open:

Problem 2.82. (a) Is every p-hyponormal operator convexoid ?
(b) Does every p-hyponormal operator satisfy the (G1)-condition ?
(c) Does every p-hyponormal operator satisfy the projection property ?

In fact,
Yes to (b) =⇒ Yes to (a) =⇒ Yes to (c).

It was known that the projection property holds for every hyponormal operator. For a proof,
see [Put].

For a partial answer, see [CHKL].

It is easily check that every p-hyponormal weighted shift is hyponormal. However we
were unable to answer the following:

Problem 2.83. Is every p-hyponormal Toeplitz operator hyponormal ?
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We conclude with a problem of hyponormal operators with finite rank self-commutators.
In general it is quite difficult to determine the subnormality of an operator by definition. An
alternative description of subnormality is given by the Bram-Halmos criterion, which states
that an operator T is subnormal if and only if∑

i,j

(T ixj , T
jxi) ≥ 0

for all finite collections x0, x1, · · · , xk ∈ H ([Bra], [Con1, II.1.9]). It is easy to see that this
is equivalent to the following positivity test:

I T ∗ · · · T ∗k

T T ∗T · · · T ∗kT
...

...
. . .

...
T k T ∗T k · · · T ∗kT k

 ≥ 0 (all k ≥ 1 ). (95)

Condition (95) provides a measure of the gap between hyponormality and subnormality. An
operator T ∈ B(H) is called k-hyponormal if the (k+1)× (k+1) operator matrix in (95) is
positive; the Bram-Halmos criterion can be then rephrased as saying that T is subnormal if
and only if T is k-hyponormal for every k ≥ 1 ([CMX]). It now seems to be interesting to
consider the following problem:

Which 2-hyponormal operators are subnormal ? (96)

The first inquiry involves the self-commutator. The self-commutator of an operator plays
an important role in the study of subnormality. B. Morrel [Mor] showed that a pure sub-
normal operator with rank-one self-commutator (pure means having no normal summand)
is unitarily equivalent to a linear function of the unilateral shift. Morrel’s theorem can be
essentially stated (also see [Con2, p.162]) that if

(i) T is hyponormal;

(ii) [T ∗, T ] is of rank-one; and

(iii) ker [T ∗, T ] is invariant for T ,

(97)

then T − β is quasinormal for some β ∈ C. Now remember that every pure quasinormal
operator is unitarily equivalent to U ⊗P , where U is the unilateral shift and P is a positive
operator with trivial kernel. Thus if [T ∗, T ] is of rank-one (and hence so is [(T−β)∗, (T−β)]),
we must have P ∼= α (̸= 0) ∈ C, so that T−β ∼= αU , or T ∼= αU+β. It would be interesting
(in the sense of giving a simple sufficiency for the subnormality) to note that Morrel’s
theorem gives that if T satisfies the condition (97) then T is subnormal. On the other hand, it
was shown ([CuL, Lemma 2.2]) that if T is 2-hyponormal then T (ker [T ∗, T ]) ⊆ ker [T ∗, T ].
Therefore by Morrel’s theorem, we can see that

every 2-hyponormal operator with rank-one self-commutator is subnormal. (98)

On the other hand, M. Putinar [Pu2] gave a matricial model for the hyponormal operator
T ∈ B(H) with finite rank self-commutator, in the cases where

H0 :=
∞∨
k=0

T ∗k(ran [T ∗, T ]
)
has finite dimension d and H =

∞∨
n=0

TnH0.
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In this case, if we write

Hn := Gn ⊖Gn−1 (n ≥ 1) and Gn :=
n∨
k=0

T kH0 (n ≥ 0),

then T has the following two-diagonal structure relative to the decomposition H = H0 ⊕
H1 ⊕ · · · :

T =


B0 0 0 0 · · ·
A0 B1 0 0 · · ·
0 A1 B2 0 · · ·
0 0 A2 B3 · · ·
...

...
...

...
. . .

 , (99)

where 
dim (Hn) = dim (Hn+1) = d (n ≥ 0);

[T ∗, T ] = ([B∗
0 , B0] +A∗

0A0)⊕ 0∞;

[B∗
n+1, Bn+1] +A∗

n+1An+1 = AnA
∗
n (n ≥ 0);

A∗
nBn+1 = BnA

∗
n (n ≥ 0).

(100)

We will refer the operator (99) to the Putinar’s matricial model of rank d. This model was
also introduced in [GuP], [Pu1], [Xi], [Ya1], and etc.

We then have

Theorem 2.84. Let T ∈ B(H). If

(i) T is a pure hyponormal operator;
(ii) [T ∗, T ] is of rank-two; and
(iii) ker [T ∗, T ] is invariant for T ,

then the following hold:

1. If T |ker [T∗,T ] has the rank-one self-commutator then T is subnormal;

2. If T |ker [T∗,T ] has the rank-two self-commutator then T is either a subnormal operator
or the Putinar’s matricial model (99) of rank two.

Proof. See [LeL2].

Since the operator (99) can be constructed from the pair of matrices {A0, B0}, we know
that the pair {A0, B0} is a complete set of unitary invariants for the operator (99). Many
authors used the following Xia’s unitary invariants {Λ, C} to describe pure subnormal op-
erators with finite rank self-commutators:

Λ :=
(
T ∗|ran [T∗,T ]

)∗
and C := [T ∗, T ]|ran [T∗,T ].

Consequently,
Λ = B0 and C = [B∗

0 , B0] +A2
0.

We know that given Λ and C (or equivalently, A0 and B0) corresponding to a pure subnormal
operator we can reconstruct T . Now the following question naturally arises: “what are the
restrictions on matrices A0 and B0 such that they represent a subnormal operator ?” In
the cases where A0 and B0 operate on a finite dimensional Hilbert space, D. Yakubovich
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[Ya1] showed that such a description can be given in terms of a topological property of
a certain algebraic curve, associated with A0 and B0. However there is a subtle difference
between Yakubovich’s criterion and the Putinar’s model operator (99). In fact, in some sense,
Yakubovich gave conditions on A0 and B0 such that the operator (99) can be constructed so
that the condition (100) is satisfied. By comparison, the Putinar’s model operator (99) was
already constructed so that it satisfies the condition (100). Thus we would guess that if the
operator (99) can be constructed so that the condition (100) is satisfied then two matrices
{A0, B0} in (99) must satisfy the Yakubovich’s criterion. In this viewpoint, we have the
following:

Conjecture 2.85. The Putinar’s matricial model (99) of rank two is subnormal.

An affirmative answer to Conjecture 2.85 would show that if T is a hyponormal operator
with rank-two self-commutator and satisfying that ker [T ∗, T ] is invariant for T then T is
subnormal.
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3 Upper triangles

We may ask whether a property is transmitted from the diagonals to the upper triangles.

For examples, Weyl’s theorem holds for

(
A 0
0 B

)
, when does it hold for

(
A C
0 B

)
? We

explore the passage from the diagonals to the upper triangles for various spectra and Weyl’s
theorem.

3.1 Spectra of upper triangles

In this section we consider spectra of upper triangular operator matrices.
Recall [Har4] that T ∈ B(X,Y ) is called regular if there is an operator T ′ ∈ B(Y,X) for

which
T = TT ′T ; (101)

then T ′ is called a generalized inverse for T . If T ∈ B(X,Y ) is left or right invertible, then,
evidently, T is regular: in this case a left or right inverse is just a generalized inverse. Also
if T ∈ B(X,Y ) is regular with a generalized inverse T ′, then X and Y can be decomposed
as follows (cf. [Har4]):

T−1(0)⊕ T ′T (X) = X and T (X)⊕ (TT ′)−1(0) = Y (102)

It is familiar with that if X and Y are Hilbert spaces and T ∈ B(X,Y ) then T is regular if
and only if T has closed range. An operatorT ∈ B(X,Y ) is called relatively Weyl if there
is an invertible operator T ′ ∈ B(Y,X) for which T = TT ′T . It is known ([Har4], Theorem
3.8.6) that T ∈ B(X,Y ) is relatively Weyl if and only if T is regular and T−1(0) ∼= Y/TX.

When A ∈ B(X) and B ∈ B(Y ) are given we denote byMC an operator acting on X⊕Y
of the form

MC =

(
A C
0 B

)
, (103)

where C ∈ B(Y,X).
Recall that a sequence of module-homomorphisms fj : Aj−1 → Aj and

A0 → A1 → A2 → · · · → An−1 → An

is said to be exact if ran fi = ker fi+1 (i = 1, · · · , n− 1).
We begin with:

Lemma 3.1. Suppose Tj : Aj−1 → Aj and the sequence

0 → A0 → A1 → · · · → An → 0 (104)
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is an exact sequence of Banach spaces. If each Ti (1 ≤ i ≤ n) is regular then{⊕n
2
i=0 A2i

∼=
⊕n

2 −1
i=0 A2i+1 (n even)⊕n−1

2
i=0 A2i

∼=
⊕n−1

2
i=0 A2i+1 (n odd).

(105)

Hence in particular if the sequence (104) is an exact sequence of Hilbert spaces then (105)
holds.

Proof. If Tj = TjT
′
jTj with T ′

j ∈ B(Aj ,Aj−1) (1 ≤ j ≤ n), then each space Aj can be
decomposed as follows:

Aj−1 = T−1
j (0)⊕ T ′

jTj(Aj−1) (1 ≤ j ≤ n+ 1), (106)

where Tn+1 : An → 0 is the zero operator. Since the given sequence is exact, we have
that Tj(Aj−1) = T−1

j+1(0) (1 ≤ j ≤ n). Since the restriction T#
j of Tj to T ′

jTj(Aj−1) is

one-one and T#
j (T ′

jTj(Aj−1)) = Tj(Aj−1), it follows that T
#
j : T ′

jTj(Aj−1) → T−1
j+1(0) is an

isomorphism, i.e.,
T ′
jTj(Aj−1) ∼= T−1

j+1(0) (1 ≤ j ≤ n). (107)

Now (105) follows from (106) and (107). The second assertion follows from the first together
with the observation that the exactness of the sequence gives that Tj has closed range, so
that Tj is regular for 1 ≤ j ≤ n.

From Lemma 1 we can see that if 0 → A0 → A1 → · · · → An → 0 is an exact sequence
of finite dimensional spaces then

∑n
i=0(−1)idim(Ai) = 0 (cf. [Ya2], Theorem A.6).

We now have:

Theorem 3.2. Suppose X,Y, Z are Banach spaces. If T : X → Y , S : Y → Z and
ST : X → Z are regular then there is isomorphism

T−1(0)⊕ S−1(0)⊕ Z/ST (X) ∼= (ST )−1(0)⊕ Y/T (X)⊕ Z/S(Y ). (108)

Proof. From the “one-diagram” proof of the index theorem due to Yang [Ya1], we can see
that the sequence

0 → T−1(0) → (ST )−1(0) → S−1(0) → Y/T (X) → Z/ST (X) → Z/S(Y ) → 0 (109)

is exact. For a concrete representation of Tj (1 ≤ j ≤ 5), we give

T1 := the natural injection from T−1(0) to (ST )−1(0);

T2 := the restriction of T to (ST )−1(0);

T3 : y 7→ y + T (X) for each y ∈ S−1(0);

T4 : y + T (X) 7→ Sy + ST (X) for each y ∈ Y ;

T5 : z + ST (X) 7→ z + S(Y ) for each z ∈ Z :
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then we have

kerT1 = {0};
ranT1 = T−1(0) = kerT2;

ranT2 = S−1(0) ∩ T (X) = kerT3;

ranT3 = S−1(0) + T (X) = kerT4;

ranT4 = S(Y )/ST (X) = kerT5;

ranT5 = Z/S(Y ).

Thus evidently, T1 and T5 are regular. To show that each Tj (2 ≤ j ≤ 4) is regular it suffices
to show that S−1(0) ∩ T (X) and S−1(0) + T (X) are complemented in Y . Indeed if S, T ,
and ST are regular then we can arrange (cf. [Har4])

T = TT ′T, S = SS′S, ST = STUST ;

T ′ = T ′TT ′, S′ = S′SS′, U = USTU, and U = T ′V S′.

Then we can see that (I − TUS)TT ′ and S′S(I − TUS) are projections with

S−1(0) ∩ T (X) = (I − TUS)TT ′(Y ) and [S′S(I − TUS)]−1(0) = S−1(0) + T (X),

which shows that S−1(0) ∩ T (X) and S−1(0) + T (X) are complemented in Y (cf. [Har4]).
Therefore each Tj (1 ≤ j ≤ 5) is regular, so the result follows from Lemma 1.33.

Lemma 3.3. If A ∈ B(X) and B ∈ B(Y ) are both invertible, then MC is invertible for
every C ∈ B(Y,X).

Proof. The inverse of MC is

(
A−1 −A−1CB−1

0 B−1

)
.

Theorem 3.4. A 2× 2 operator matrix MC is invertible for some C ∈ B(Y,X) if and only
if A ∈ B(X) and B ∈ B(Y ) satisfy the following conditions:

(i) A is left invertible;

(ii) B is right invertible;

(iii) X/A(X) ∼= B−1(0).

Proof. Suppose MC =

(
A C
0 B

)
is invertible for some C ∈ B(Y,X) and write

MC =

(
I 0
0 B

)(
I C
0 I

)(
A 0
0 I

)
. (110)

Then A is left invertible and B is right invertible. On the other hand since

(
I 0
0 B

)(
I C
0 I

)
and

(
A 0
0 I

)
are both regular, Theorem 1.34 gives

ker

(
A 0
0 I

)
× ker(

(
I 0
0 B

)(
I C
0 I

)
)×

(
X
Y

)
/ranMC

∼= kerMC ×
(
X
Y

)
/ran

(
A 0
0 I

)
×
(
X
Y

)
/ran(

(
I 0
0 B

)(
I C
0 I

)
),
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which implies
A−1(0)×B−1(0)× {0} ∼= {0} ×X/A(X)× Y/B(Y ),

which gives that B−1(0) ∼= X/A(X) because A is left invertible and B is right invertible.
For the converse observe that if A′ is a left inverse of A and if B′ is a right inverse of B,
then, as in (102), X and Y can be decomposed as

A(X)⊕ (AA′)−1(0) = X and B−1(0)⊕B′B(Y ) = Y.

Then, by (iii), we have that (AA′)−1(0) ∼= B−1(0). Thus there is an isomorphism J :
B−1(0) → (AA′)−1(0). Define an operator C : Y → X by

C :=

(
J 0
0 0

)
:

(
B−1(0)
B′B(Y )

)
→
(
(AA′)−1(0)
A(X)

)
.

Then we have that C ∈ B(Y,X), C(Y ) = (AA′)−1(0) and C−1(0) = B′B(Y ). We now claim
that MC is one-one and onto, and hence invertible. Indeed we have(

A C
0 B

)(
X
Y

)
=

(
A(X) + C(Y )

B(Y )

)
=

(
A(X) + (AA′)−1(0)

Y

)
=

(
X
Y

)
and (

A C
0 B

)(
x
y

)
=

(
0
0

)
⇒

{
Ax+ Cy = 0

By = 0
⇒

{
Ax = 0

By = 0 = Cy
⇒
(
x
y

)
=

(
0
0

)
,

where the second and the third implications follow from the facts that A(X) ∩ C(Y ) = {0}
and B−1(0) ∩ C−1(0) = {0}, respectively. This completes the proof.

Corollary 3.5. For a given pair (A,B) of operators we have∩
C∈B(Y,X)

σ(MC) = σleft(A) ∪ σright(B) ∪ {λ ∈ C : (B − λ)−1(0) � Y/(A− λ)(X)}.

Proof. This follows at once from Theorem 3.4.

The following two corollaries are also immediate results from Theorem 3.4.

Corollary 3.6. For a given pair (A,B) of operators we have

(σ(A) ∪ σ(B)) \ (σ(A) ∩ σ(B)) j σ(MC) j σ(A) ∪ σ(B) for every C ∈ B(Y,X).

Proof. The second inclusion comes from Lemma 1.33. The first inclusion follows from the
observation

MC − λI is invertible ⇒ (A− λI is invertible ⇔ B − λI is invertible)

for each λ ∈ C.
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Corollary 3.7. If MC is Fredholm and if either A or B is Fredholm, then A and B are
both Fredholm with

indexMC = indexA+ indexB. (111)

Proof. The first assertion follows by applying Theorem 3.4 with the pair (π(A), π(B)), where
π is the Calkin homomorphism. The second assertion follows from applying the index
product theorem to (110).

The equality (111) is called the ”snake lemma”. From this we can also see that if MC

is Weyl, in the sense of Fredholm of index zero, and if either A or B is Fredholm, then A is
Weyl if and only if B is Weyl.

From Corollary 3.6 we see that, in perturbing a nilpotent matrix

(
0 C
0 0

)
to

(
A 0
0 B

)
,

σ(MC) shrinks from σ(A)∪σ(B). How much of σ(A)∪σ(B) survives? The following theorem
provides a clue:

Theorem 3.8. For a given pair (A,B) of operators we have

η(σ(MC)) = η(σ(A) ∪ σ(B)) for every C ∈ B(Y,X), (112)

where η(·) denotes the ”polynomially convex hull”.

Proof. By Corollary 3.6 we have

σ(MC) ⊆ σ(A) ∪ σ(B) for every C ∈ B(Y,X). (113)

We now claim that
∂(σ(A) ∪ σ(B)) ⊆ ∂σ(MC). (114)

Since
intσ(MC) ⊆ int(σ(A) ∪ σ(B)),

it suffices to show that ∂(σ(A) ∪ σ(B)) ⊆ σ(MC). Indeed we have

∂(σ(A) ∪ σ(B)) ⊆ ∂σ(A) ∪ ∂σ(B) ⊆ σap(A) ∪ σδ(B) ⊆ σleft(A) ∪ σright(B) ⊆ σ(MC),

where the second inclusion follows from the fact that if T ∈ B(Z) for a Banach space Z,
then ∂σ(T ) ⊆ σap(T )∩ σδ(T ) and the last inclusion follows from Corollary 3.5. This proves
(114). Now the Maximum Modulus Theorem with (113) and (114) gives (112).

The following corollary says that the passage from σ(A)∪σ(B) to σ(MC) is the punching
of some open sets in σ(A) ∩ σ(B):

Corollary 3.9. [HLL] For a given pair (A,B) of operators we have σ(A)∪σ(B) = σ(MC)∪
W ; where W is the union of certain of the holes in σ(MC) which happen to be subsets of
σ(A) ∩ σ(B).

Proof. Theorem 3.8 says that the passage from σ(MC) to σ(A)∪σ(B) is the filling in certain
of the holes in σ(MC). But since, by Corollary 3.6, (σ(A) ∪ σ(B)) \ σ(MC) is contained in
σ(A) ∩ σ(B), the filling some holes in σ(MC) should occur in σ(A) ∩ σ(B). This gives the
result.

The following is a generalization of [Ha3, Problem 72].
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Corollary 3.10. If σ(A) ∩ σ(B) has no interior points, then

σ(MC) = σ(A) ∪ σ(B) for every C ∈ B(Y,X). (115)

In particular if either A ∈ B(X) or B ∈ B(Y ) is a compact operator, then (115) holds.

Proof. The equality (115) immediately follows from Corollary 3.9. The second assertion
follows from the fact that the spectrum of a compact operator is at most countable.

One might guess that the closure of each member of W in Corollary 3.9 is a connected
component of σ(A) ∩ σ(B). But this is not the case. See the following:

Example 3.11. Let U : ℓ2 → ℓ2 be the unilateral shift and let D : ℓ2 → ℓ2 be a diagonal
operator whose diagonals form a countable dense subset of the annulus {z ∈ C : 1 ≤ |z| ≤ 2}.
Define the operators A,B and C acting on ℓ2 ⊕ ℓ2 by

A =

(
U 0
0 D

)
, B =

(
U∗ 0
0 D

)
and C =

(
1− UU∗ 0

0 0

)
.

Then we have σ(A) = σ(B) = {z ∈ C : |z| ≤ 2} and σ(MC) = {z ∈ C : 1 ≤ |z| ≤ 2},
which shows that the closure of the hole,{z ∈ C : |z| < 1}, of σ(MC) is not a component of
σ(A) ∩ σ(B).

We now consider another case in which the equality in (113) holds. To do this write, for
T ∈ B(X),

ρℓσ(T ) = σ(T ) \ σl(T ) and ρrσ(T ) = σ(T ) \ σr(T ).

Thus by Corollary 3.10 and Theorem 3.4 we can see that the holes in σ(MC) should lie in
ρℓσ(T ) ∩ ρrσ(T ). Thus we have:

Corollary 3.12. If ρℓσ(T ) ∩ ρrσ(T ) = ∅, then

σ(MC) = σ(A) ∪ σ(B) for every C ∈ B(Y,X).

We conclude with an application of Corollary 3.12.

Corollary 3.13. Suppose H and K are Hilbert spaces. If either A ∈ B(H) is cohyponormal
or B ∈ B(K) is hyponormal, then

σ(MC) = σ(A) ∪ σ(B) for every C ∈ B(K,H). (116)

Proof. If B is hyponormal and so is B−λI for every λ ∈ C, then ker(B−λ) ⊆ ker(B−λI)∗.
Thus if B − λI is right invertible, then it must be invertible, which implies ρrσ(B) = ∅. If
instead A is cohyponormal, then a similar argument gives ρlσ(A) = ∅. Thus (116) follows
from Corollary 3.12.
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3.2 Weyl spectra of upper triangles

In this section we consider Weyl spectra of upper triangular operator matrices. When
A ∈ B(X) and B ∈ B(Y ) write on X ⊕ Y ,

MC =

(
A C
0 B

)
, (117)

where C ∈ B(Y,X).

Lemma 3.14. For a given pair (A,B) of operators, if (A 0
0 B ) is Weyl then MC is Weyl for

every C ∈ B(Y,X). Hence, in particular, we have

ω(MC) ⊆ ω (A 0
0 B ) ⊆ ω(A) ∪ ω(B). (118)

Proof. If (A 0
0 B ) is Weyl then A and B are both Fredholm, and indexA+indexB = 0. Write

MC = ( I 0
0 B ) ( I C0 I ) (

A 0
0 I ) . (119)

Since ( I C0 I ) is invertible for every C ∈ B(Y,X), and since ( I 0
0 B ) and (A 0

0 I ) are both Fred-
holm, it follows that MC is Fredholm. Furthermore we have that indexMC = index ( I 0

0 B )+
index (A 0

0 I ) = 0 and therefore MC is Weyl for every C ∈ B(Y,X). The inclusions in (118)
are evident from the first assertion.

The following lemma gives a necessary condition for MC to be Weyl:

Lemma 3.15. If MC is Weyl for some C ∈ B(Y,X) then A ∈ B(X) and B ∈ B(Y ) satisfy
the following conditions:

(i) A is left Fredholm;

(ii) B is right Fredholm;

(iii) A−1(0)⊕B−1(0) ∼= X/AX ⊕ Y/BY .

which in turn implies that (A 0
0 B ) is relatively Weyl.

Proof. From (110) we can see that if MC is Fredholm then (A 0
0 I ) is left-Fredholm and ( I 0

0 B )
is right-Fredholm, so that A is left-Fredholm and B is right-Fredholm. On the other hand

since

(
I 0
0 B

)(
I C
0 I

)
and

(
A 0
0 I

)
are both regular, Theorem 1.34 gives

ker

(
A 0
0 I

)
× ker(

(
I 0
0 B

)(
I C
0 I

)
)×

(
X
Y

)
/ranMC

∼= kerMC ×
(
X
Y

)
/ran

(
A 0
0 I

)
×
(
X
Y

)
/ran(

(
I 0
0 B

)(
I C
0 I

)
).

Thus ifMC is Weyl then we get (iii). For the second assertion, noting that if the pair (A,B)
satisfies the conditions (i) and (ii) then (A,B) has a pair of generalized inverses (A′, B′),
we have that

(
A′ 0
0 B′

)
is a generalized inverse of (A 0

0 B ) and the condition (iii) is just the

equivalence ker (A 0
0 B ) ∼= (XY ) /ran (A 0

0 B ), which implies that (A 0
0 B ) is relatively Weyl.
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By the argument of Lemma 3.15, we can see that if any two of A, B, and (A C
0 B ) are

Fredholm then so is the other and, in that case, index (A C
0 B ) = indexA+ indexB.

The first inclusion in (118) may be proper. But we have a large class of operators for
which the first inclusion in (118) is reversible.

Corollary 3.16. If either SP(A) or SP(B) has no pseudoholes then, for every C ∈
B(Y,X),

ω(MC) = ω (A 0
0 B ) . (120)

Hence, in particular, if either A ∈ B(X) or B ∈ B(Y ) is essentially normal (i.e., the
self-commutator is a compact operator) then (120) holds.

Proof. From Lemma 3.14, we have that ω(MC) ⊆ ω (A 0
0 B ) . For the reverse, observe that if

SP(A) has no pseudoholes then, for every λ ∈ C,

A− λI is left-Fredholm =⇒ A− λI is Fredholm. (121)

Thus if λ /∈ ω(MC) then by the remark after Lemma 3.15 and (121), A − λI and B − λI
are both Fredholm. Further since

(
A−λI 0

0 B−λI
)
is relatively Weyl we must have that λ /∈

ω (A 0
0 B ). If instead SP(B) has no pseudoholes then the same argument gives the result.

The condition “either SP(A) or SP(B) has no pseudoholes” is essential in Corollary
3.16. For example consider the following operators on ℓ2 ⊗ ℓ2:

A = U ⊗ 1, B = U∗ ⊗ 1 and C = (1− UU∗)⊗ 1, (122)

where U is the unilateral shift on ℓ2. Then ω (A 0
0 B ) = D and ω (A C

0 B ) = T.
The following theorem says that the passage from ω(A)∪ω(B) to ω(MC) is accomplished

by removing certain open subsets of ω(A) ∩ ω(B) from the former:

Theorem 3.17. For a given pair (A,B) of operators there is equality, for every C ∈
B(Y,X),

ω(A) ∪ ω(B) = ω(MC) ∪S,

where S is the union of certain of the holes in ω(MC) which happen to be subsets of ω(A)∩
ω(B).

Proof. We first claim that, for every C ∈ B(Y,X),(
ω(A) ∪ ω(B)

)
\
(
ω(A) ∩ ω(B)

)
⊆ ω(MC) ⊆ ω(A) ∪ ω(B). (123)

Indeed the second inclusion in (123) follows from Lemma 3.14. For the first inclusion suppose
that λ /∈ ω(MC). Then by Lemma 3.15,

(
A−λI 0

0 B−λI
)
is relatively Weyl, so that by the

remark after Lemma 3.15, A − λI is Weyl if and only if B − λI is Weyl. Therefore if
λ ∈

(
ω(A)∪ω(B)

)
\ω(MC) then λ ∈ ω(A)∩ω(B), which proves (123). We next claim that,

for every C ∈ B(Y,X),
η
(
ω(MC)

)
= η

(
ω(A) ∪ ω(B)

)
, (124)

where ηC denotes the “polynomially convex hull” of the compact set C ⊆ C. Since by (123),
ω(MC) ⊆ ω(A) ∪ ω(B) for every C ∈ B(Y,X), we need to show that ∂

(
ω(A) ∪ ω(B)

)
⊆

∂ ω(MC), where ∂ C denotes the topological boundary of the compact set C ⊆ C. But since
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intω(MC) ⊆ int
(
ω(A) ∪ ω(B)

)
, it suffices to show that ∂

(
ω(A) ∪ ω(B)

)
⊆ ω(MC). Indeed

there are inclusions

∂
(
ω(A) ∪ ω(B)

)
⊆ ∂ω(A) ∪ ∂ω(B) ⊆ σ+

e (A) ∪ σ−
e (B) ⊆ ω(MC),

where the last inclusion follows from Lemma 3.15 and the second inclusion follows from the
punctured neighborhood theorem ([Har4, Theorem 9.8.9]): for every operator T ,

∂ω(T ) ⊆ ∂σe(T ) ⊆ σ+
e (T ) ∩ σ−

e (T ).

This proves (124). Consequently, (124) says that the passage from ω(MC) to ω(A)∪ω(B) is
the filling in certain of the holes in ω(MC). But since, by (123),

(
ω(A) ∪ ω(B)

)
\ ω(MC) is

contained in ω(A)∩ ω(B), it follows that the filling in certain of the holes in ω(MC) should
occur in ω(A) ∩ ω(B). This completes the proof.

Corollary 3.18. [Le2] If ω(A) ∩ ω(B) has no interior points then, for every C ∈ B(Y,X),

ω(MC) = ω(A) ∪ ω(B). (125)

In particular if either A ∈ B(X) or B ∈ B(Y ) is a compact operator (more generally, a
“Riesz operator”), then (125) holds.

Proof. The first assertion follows at once from Theorem 3.17. The second assertion follows
from the fact that the Weyl spectrum of a Riesz operator is contained in {0}.

Let r(·) and rω(·) denote the spectral radius and the “Weyl spectral radius”, respectively.
Corollary 3.9 shows that for a given pair (A,B) of operators, r(MC) is a constant. We also
have an analogue for rω:

Corollary 3.19. For a given pair (A,B) of operators, rω(MC) is a constant. Furthermore
if π00 (A 0

0 B ) = ∅ then, for every C ∈ B(Y,X),

r (A C
0 B ) = r (A 0

0 B ) = rω (A 0
0 B ) = rω (A C

0 B ) . (126)

Proof. The first assertion follows at once from Theorem 3.17. For the second assertion we
claim that

η σ (A 0
0 B ) \ η ω (A 0

0 B ) ⊆ π00 (A 0
0 B ) . (127)

Indeed if λ ∈ η σ (A 0
0 B ) \ η ω (A 0

0 B ) then there exists ϵ > 0 such that {µ : |λ − µ| <
ϵ} ∩ η ω (A 0

0 B ) = ∅, which forces that λ ∈ isoσ (A 0
0 B ) because if it were not so then λ

would be in η ω (A 0
0 B ), a contradiction. This proves (127) and hence the second equality in

(126).

If (A C
0 B ) is normaloid (i.e., norm equals spectral radius) and if π00 (A 0

0 B ) = ∅ then

|| (A C
0 B ) || ≤ r ( A C

D B ) for every compact operator D ∈ B(Y,X) : (128)

for we can also argue, by (126),

|| (A C
0 B ) || = r (A C

0 B ) = rω (A C
0 B ) = rω ( A C

D B ) ≤ r ( A C
D B ) .

Note that (128) may, in general, fail for even finite dimensional matrices: for example,

|| ( 1 1
0 1 ) || =

1 +
√
5

2
and r

(
1 1
1
4 1

)
=

3

2
.
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Lemma 3.20. Suppose Weyl’s theorem holds for A ∈ B(X) and B ∈ B(Y ).

(a) If Weyl’s theorem holds for (A 0
0 B ) then

ω (A 0
0 B ) = ω(A) ∪ ω(B). (129)

(b) If A and B are isoloid then the converse of (a) is true.

Proof. By (118), ω (A 0
0 B ) ⊂ ω(A) ∪ ω(B). If Weyl’s theorem holds for (A 0

0 B ) then

ω(A) ∪ ω(B) ⊂ σb(A) ∪ σb(B) ⊂ σb (A 0
0 B ) ⊂ ω (A 0

0 B ) ,

which gives (129). For the statement (b) observe that if A and B are isoloid then

π00 (A 0
0 B ) =

(
π00(A) ∩ ρ(B)

)
∪
(
ρ(A) ∩ π00(B)

)
∪
(
π00(A) ∩ π00(B)

)
, (130)

where ρ(·) denotes the resolvent set. If Weyl’s theorem holds for A and B then the right-
hand side of (130) must be just the set

(
σ(A)∪ σ(B)

)
\
(
ω(A)∪ ω(B)

)
. Thus if (129) holds

then π00 (A 0
0 B ) = σ (A 0

0 B ) \ ω (A 0
0 B ), which says that Weyl’s theorem holds for (A 0

0 B ).

The assumption “A and B are isoloid” is essential in the statement (b) of Lemma 3.20.
For example if A,B : ℓ2 → ℓ2 are defined by

A(x1, x2, · · · ) = (0, x2, x3, x4, · · · ) and B(x1, x2, · · · ) = (0, x1,
1

2
x2,

1

3
x3, · · · ),

then we have that (i) Weyl’s theorem holds for A and B; (ii) ω(A) = {1} and ω(B) = {0};
(iii) σ (A 0

0 B ) = ω (A 0
0 B ) = {0, 1}; (iv) π00 (A 0

0 B ) = {0}; (v) B is not isoloid.

Corollary 3.21. Suppose A ∈ B(X) and B ∈ B(Y ) are isoloid. If Weyl’s theorem holds for
A and B, and if ω(A) ∩ ω(B) has no interior points then Weyl’s theorem holds for (A 0

0 B ).

Proof. This follows from Lemma 3.20 together with applying Corollary 3.18 with C = 0.

It is familiar (cf. [GGK]) that for given operatorsA ∈ B(X), B ∈ B(Y ) and C ∈ B(Y,X),
if the operator equation

AZ − ZB = C (where Z ∈ B(Y,X) is the unknown) (131)

is solvable then (A C
0 B ) is similar to (A 0

0 B ): in fact, ( 1 Z0 1 ) (
A C
0 B )

(
1 −Z
0 1

)
= (A 0

0 B ). Also it is
known (cf. [GGK, Theorem I.4.1]) that if σ(A)∩σ(B) = ∅ then the operator equation (131)
is solvable. Thus if σ(A)∩σ(B) = ∅ then for most of the familiar kinds of spectrum ϖ there
is equality

ϖ (A C
0 B ) = ϖ (A 0

0 B ) . (132)

Note that (132) for ϖ = ω is a special case of Corollary 3.18. But evidently the condition
“σ(A)∩σ(B) has no interior points” does not imply the solvability of the operator equation
(131): for example, take X = Y,A = B = 0 and C = I.
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3.3 Weyl’s theorem for upper triangles

As we have noticed in Lemma 3.20, Weyl’s theorem is liable to fail for 2× 2 (even diagonal)
operator matrices even though Weyl’s theorem holds for the entries in the operator matrices.
In this section we consider Weyl’s theorem for 2× 2 operator matrices (cf. [Le1]).

For operator matrices we observe that for most of the familiar kinds of spectrum ϖ there
is equality, for T ∈ B(X) and S ∈ B(Y ),

ϖ

(
T 0
0 S

)
= ϖ(T ) ∪ϖ(S) (133)

also, for V ∈ B(X,Y ) and U ∈ B(Y,X),

ϖ

(
0 U
V 0

)
=
√
ϖ(UV ) ∪ϖ(V U), (134)

the set of those λ ∈ C for which λ2 is in the spectrum of one of the products. When the
entries in an operator matrix commute then ([Ha3, Solution 70]; [Har4, Theorem 11.7.7])
spectra can be calculated by determinants: if {S, T, U, V } ⊆ B(X) is commutative then

ϖ

(
T U
V S

)
= {λ ∈ C : 0 ∈ ϖ

(
(S − λI)(T − λI)− UV

)
}. (135)

Indeed (133) is easily checked for the ordinary spectrum, the left and the right spectrum,
the essential spectrum, the eigenvalues and the approximate eigenvalues while, for the same
spectra ϖ, (134) follows from (133) together with the spectral mapping theorem for the
polynomial z2: simply observe that(

0 U
V 0

)2

=

(
UV 0
0 V U

)
. (136)

For commutative matrices (135) just write down the “classical adjoint”:(
S −U
−V T

)(
T U
V S

)
=

(
ST − UV 0

0 ST − UV

)
=

(
T U
V S

)(
S −U
−V T

)
. (137)

We first consider Weyl’s theorem for the 2×2 skew-diagonal operator matrix of the form
( 0 A
B 0 ). Weyl’s theorem for the skew-diagonal matrices is more delicate in comparison with

the diagonal matrices.

Lemma 3.22. If A ∈ B(X,Y ) and B ∈ B(Y,X), then the non-zero elements of ϖ(AB)
and ϖ(BA) are the same for each ϖ ∈ {σ, σess, ω}.

Proof. Remember (cf. [GGK, p.38]) that if λ ̸= 0 then(
AB − λI 0

0 I

)
= F (λ)

(
BA− λI 0

0 I

)
E(λ), (138)

where E(λ) and F (λ) are both invertible for each λ ̸= 0. It thus follows from (138) that if
λ ̸= 0,

(AB − λI)−1(0) ∼= (BA− λI)−1(0) and Y/(AB − λI)Y ∼= X/(BA− λI)X,

which gives the result.
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Although σ(AB) = σ(BA), we need not expect that ω(AB) = ω(BA). To see this, let
dimX <∞ and Y = ℓ2, let S, T : Y → Y be defined by

S(x1, x2, · · · ) = (0, x1, 0, x2, 0, x3, · · · ) and T (x1, x2, · · · ) = (x2, x4, x6, · · · ), (139)

and put A = 0X ⊕ S and B = 0X ⊕ T , then σ(AB) = σ(BA) = {0, 1}, while ω(AB) =
{0, 1} ̸= ω(BA) = {1}. However one might be tempted to guess that if σ(AB) = σ(BA)
and if in addition σ(AB) is connected, then ω(AB) = ω(BA). But this guess is also wrong.
For an example, if on ℓ2 ⊗ ℓ2

A =


0 I
0 U∗

0 U∗

0 U∗

. . .
. . .

 and B =


0
U 0
I 0
U 0
U 0

. . .
. . .

 ,

where U is the unilateral shift on ℓ2, then a straightforward calculation shows that σ(AB) =
σ(BA) = D, while ω(AB) = T ̸= ω(BA) = T ∪ {0}, where D and T denote the closed unit
disk and the unit circle, respectively.

Lemma 3.23. If A ∈ B(Y,X) and B ∈ B(X,Y ), then there is equality

ω (AB 0
0 BA ) = ω(AB) ∪ ω(BA). (140)

Hence, in particular, if AB and BA are isoloid and if Weyl’s theorem holds for AB and BA
then Weyl’s theorem holds for (AB 0

0 BA ).

Proof. The inclusion “⊆” in (140) follows from the fact that the index of a direct sum is
the sum of the indices. For the inclusion “⊇”, suppose that

(
AB−λI 0

0 BA−λI
)
is Weyl. Then

AB−λI and BA−λI are both Fredholm, and index (AB−λI)+ index (BA−λI) = 0. But
if λ ̸= 0 then by Lemma 3.22, index (AB − λI) = index (BA − λI), so that we must have
that AB−λI and BA−λI are both Weyl. If instead λ = 0 then since AB and BA are both
Fredholm it follows from the continuity of the index that for sufficiently small |µ| (µ ̸= 0),

index (AB) = index (AB − µI) = index (BA− µI) = index (BA),

which also forces that AB and BA are both Weyl. This proves (140). The second assertion
follows at once from Lemma 3.20.

Example 3.24. (a) If X = Y in Lemma 3.23, one might expect to replace the condition
“Weyl’s theorem holds for AB and BA” by the condition “Weyl’s theorem holds for A and
B”. But this is not the case: for example, Weyl’s theorem may fail for T 2 when it holds for
the operator T (see Example 2.28).

(b) Since

( 0 A
B 0 )

2
= (AB 0

0 BA ) ,

one might also expect that “Weyl’s theorem for ( 0 A
B 0 )” is inherited from “Weyl’s theorem

for (AB 0
0 BA )”. But in general Weyl’s theorem need not be transmitted from the square of

the operator T to T . For example, if U is the unilateral shift on ℓ2 and K : ℓ2 → ℓ2 is
defined by

K(x1, x2, · · · ) = (
1

2
x2,

1

3
x3, · · · ), (141)
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put on ℓ2 ⊕ ℓ2
T =

(
U+1 0
0 K−1

)
:

then σ(T ) = ω(T ) = {z : |z − 1| ≤ 1} ∪ {−1} and π00(T ) = {−1}, while

σ(T 2) = ω(T 2) = {reiθ : r ≤ 2(1 + cos θ)} and π00(T
2) = ∅,

which says that Weyl’s theorem holds for T 2, but fails for T .
(c) In general “Weyl’s theorem holds for AB” does not imply “Weyl’s theorem holds for

BA”. For example if the operators K,S and T on ℓ2 are defined as in (145) and (143), put
on ℓ2 ⊕ ℓ2

A = K ⊕ S and B = 1⊕ T :

then σ(AB) = ω(AB) = σ(BA) = ω(BA) = {0, 1}, while π00(AB) = ∅ ̸= π00(BA) = {0}.

In spite of Example 3.24 (b), we have:

Theorem 3.25. Let A ∈ B(Y,X) and B ∈ B(X,Y ) be such that AB and BA are isoloid.
If Weyl’s theorem holds for AB and BA then it holds for ( 0 A

B 0 ).

Proof. We first claim that with no restriction on either A or B,

ϖ ( 0 A
B 0 ) =

√
ϖ(AB) ∪ϖ(BA) for each ϖ ∈ {σ, σe, ω}, (142)

where
√
K denotes the set of square roots of complex numbers in K ⊆ C. For (142) notice

that if 0 ̸= λ ∈ C(
−λI A
B −λI

)−1(
0
0

)
=

(
λI
B

)
(AB − λ2I)−1(0) =

(
A
λI

)
(BA− λ2I)−1(0) (143)

and (
0 A
B 0

)−1(
0
0

)
=

(
B−1(0)
A−1(0)

)
. (144)

Taking adjoints and combining shows that, whether or not λ = 0 ∈ C,

index

(
−λI A
B −λI

)
= index (AB − λ2I) = index (BA− λ2I) (145)

if U and V are Fredholm. This proves (142). Thus if Weyl’s theorem holds for AB and BA
then by Lemma 3.23, there is equality

σ ( 0 A
B 0 ) \ ω ( 0 A

B 0 ) =
√
σ(AB) ∪ σ(BA) \

√
ω(AB) ∪ ω(BA)

=
√(

σ(AB) ∪ σ(BA)
)
\
(
ω(AB) ∪ ω(BA)

)
=
√
σ (AB 0

0 BA ) \ ω (AB 0
0 BA )

=
√
π00 (AB 0

0 BA ).

Now it will be shown that √
π00 (AB 0

0 BA ) = π00 ( 0 A
B 0 ) . (146)
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But since, in view of (142), σ ( 0 A
B 0 ) is symmetric with respect to the origin, it follows from

the spectral mapping theorem that

√
isoσ (AB 0

0 BA ) =

√
iso

(
σ ( 0 A

B 0 )

)2

= isoσ ( 0 A
B 0 ) .

Thus for (146) it suffices to show that, for any µ ∈ C,

0 < dim
(
AB−µI 0

0 BA−µI

)−1

( 00 ) <∞ ⇐⇒ 0 < dim
(

−√
µI A

B −√
µI

)−1

( 00 ) <∞. (147)

If µ = 0, then (147) follows from the observation

0 < dim

(
A−1(0)⊕B−1(0)

)
<∞ ⇐⇒ 0 < dim

(
(AB)−1(0)⊕ (BA)−1(0)

)
<∞. (148)

If instead µ ̸= 0, then (147) follows from the observation∨
{(x, 1

√
µ
Bx) : x ∈ (AB − µI)−1(0)}

∪ ∨
{( 1

√
µ
Ay, y) : y ∈ (BA− µI)−1(0)}

⊆
(

−√
µI A

B −√
µI

)−1

( 00 ) ⊆ (AB − µI)−1(0)⊕ (BA− µI)−1(0), (149)

where
∨
G denotes the closed linear span of G. This proves (146) and completes the proof.

Note that A2 may not be hyponormal when A is hyponormal ([Ha3, Problem 209]). In
spite of it, if A is hyponormal then Weyl’s theorem holds for f(A), where f ∈ Hol(σ(A))
(see Corollary 2.32). Thus we have:

Corollary 3.26. If A is hyponormal then Weyl’s theorem holds for
(

0 f(A)
g(A) 0

)
for every

f, g ∈ Hol(σ(A)).

Proof. It is easy to show that if A is isoloid then h(A) is also isoloid for every h ∈ Hol(σ(A)).
Thus the result follows at once from Theorem 3.25.

The assumption of Theorem 3.25 can easily be satisfied by Toeplitz operators. Evidently,
every Toeplitz operator is isoloid. If either φ is analytic (i.e., φ ∈ H∞(T) := L∞ ∩H2(T))
or ψ is coanalytic (i.e., ψ ∈ H∞(T)) then TψTφ = Tψφ (cf. [Do1, Proposition 7.5]). Also if
φ ∈ C(T) then (cf. [Do1, Proposition 7.22])

TφTψ − Tφψ and TψTφ − Tψφ are compact operators for every ψ ∈ L∞(T). (150)

We then have:

Example 3.27. If φ is either analytic or coanalytic and if ψ ∈ C(T) then Weyl’s theorem

holds for
(

0 Tφ
Tψ 0

)
.
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Proof. Suppose that φ ∈ H∞(T). Then TψTφ = Tψφ, and hence TψTφ is isoloid and Weyl’s
theorem holds for TψTφ. Therefore, in view of Theorem 3.25, it suffices to prove that TφTψ is
isoloid and Weyl’s theorem holds for TφTψ. Suppose that ψ ∈ C(T). If σ(TφTψ) = σ(TψTφ)
then by (150),

ω(TφTψ) = ω(Tφψ) = σ(Tψφ) = σ(TψTφ) = σ(TφTψ), (151)

because the Weyl spectrum is invariant under the compact perturbations. Since σ(TφTψ) =
σ(TψTφ) and hence σ(TφTψ) is connected, (151) implies that TφTψ is isoloid and Weyl’s
theorem holds for TφTψ. If instead σ(TφTψ) ̸= σ(TψTφ) then since σ(TψTφ) is connected, it
follows from Lemma 3.22 that

0 /∈ σ(TψTφ) and 0 ∈ isoσ(TφTψ).

But then TψTφ is invertible and hence, by (150), TφTψ is Weyl but not invertible, which
implies that 0 ∈ π00(TφTψ) and hence TφTψ is isoloid. Therefore there is equality

σ(TφTψ) \ ω(TφTψ) =
(
σ(TψTφ) \ ω(TψTφ)

)
∪ {0}

= π00(TψTφ) ∪ {0}
= π00(TφTψ),

which says that Weyl’s theorem holds for TφTψ. The argument for the case of the coanalytic
symbol φ is the same.

Example 3.28. (a) If φ and ψ are in C(T), then Weyl’s theorem need not hold for
(

0 Tφ
Tψ 0

)
.

For example if φ is defined by

φ(eiθ) =

{
−e2iθ + 1 (0 ≤ θ ≤ π)

e−2iθ − 1 (π ≤ θ ≤ 2π)

then a straightforward calculation shows (cf. Example 2.11)

σ
(

0 Tφ
Tφ 0

)
=
√
σ(T 2

φ) =
√
σ(Tφ)2 =

√
{reiθ : r ≤ 2(1 + cos θ)}

and

ω
(

0 Tφ
Tφ 0

)
=
√
ω(T 2

φ) =
√
ω(Tφ2) =

√
{reiθ : r = 2(1 + cos θ)},

which implies that Weyl’s theorem does not hold for
(

0 Tφ
Tφ 0

)
.

(b) As we noticed, if U is the unilateral shift on ℓ2 then Weyl’s theorem fails for
(
U 0
0 U∗

)
.

But Example 3.27 guarantees that Weyl’s theorem holds for
(

0 U
U∗ 0

)
.

We have seen in Theorem 2.37 that Weyl’s theorem is transmitted from T ∈ B(X)
to T + K for commuting nilpotents K ∈ B(X). But this may fail if K is not assumed
to commute with T even if K is both compact and nilpotent: for example, consider T =(
U 1−UU∗

0 U∗

)
and K =

(
0 1−UU∗

0 0

)
. We now consider the following question: if Weyl’s theorem

holds for (A 0
0 B ), when does it hold for (A C

0 B ) ?
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Although the passage from σ(MC) to σ (A 0
0 B ) is the filling in certain of the holes in

σ(MC), we cannot expect that isoσ (A 0
0 B ) = isoσ(MC) even when both SP(A) and SP(B)

have no pseudoholes. For example if on ℓ2 ⊕ ℓ2

A = U ⊕ 0, B = U∗ ⊕ 0, and C = (1− UU∗)⊕ 0,

where U is the unilateral shift on ℓ2, then σ (A 0
0 B ) = D and σ (A C

0 B ) = T ∪ {0}, while
ω (A 0

0 B ) = T ∪ {0} = ω (A C
0 B ).

We might expect that if either SP(A) or SP(B) has no pseudoholes then for every
C ∈ B(Y,X),

Weyl’s theorem holds for (A 0
0 B ) =⇒ Weyl’s theorem holds for (A C

0 B ). (152)

However (152) may fail for “Weyl’s theorem” even with the additional assumption that
Weyl’s theorem holds for A and B. To see this let the operators A,B and C on ℓ2 be
defined by

A(x1, x2, · · · ) = (0, x1, 0,
1

2
x2, 0,

1

3
x3, 0,

1

4
x4, · · · ); (153)

B(x1, x2, · · · ) = (0, x2, 0, x4, 0, x6, 0, x8, · · · ); (154)

C(x1, x2, · · · ) = (0, 0, x2, 0, x3, 0, x4, 0, · · · ) : (155)

then

σ(A) = ω(A) = {0}, σ(B) = ω(B) = {0, 1}, and π00(A) = π00(B) = ∅, (156)

which says that Weyl’s theorem holds for A and B. Also a straightforward calculation shows
that

σ (A 0
0 B ) = σ (A C

0 B ) = {0, 1},
ω (A 0

0 B ) = ω (A C
0 B ) = {0, 1},

π00 (A 0
0 B ) = p00 (A 0

0 B ) = ∅,

while
π00 (A C

0 B ) = {0} ≠ p00 (A C
0 B ) = ∅,

which implies that Weyl’s theorem holds for (A 0
0 B ), but fails for (A C

0 B ).

We now have:

Theorem 3.29. If either SP(A) or SP(B) has no pseudoholes and if A is an isoloid
operator for which Weyl’s theorem holds then for every C ∈ B(Y,X),

Weyl’s theorem holds for (A 0
0 B ) =⇒ Weyl’s theorem holds for (A C

0 B ).

Proof. By assumption we have that σ (A 0
0 B )\ω (A 0

0 B ) = π00 (A 0
0 B ). But since σ(MC) shrinks

from σ (A 0
0 B ), Corollary 3.9, Corollary 3.16 and Theorem 3.17 give

σ(MC) \ ω(MC) ⊆ π00 (A 0
0 B ) . (157)

Thus noting that isoσ (A 0
0 B ) ⊆ isoσ(MC) passing to Corollary 3.9, it follows that

σ(MC) \ ω(MC) ⊆ π00(MC). (158)
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For the reverse inclusion of (158) suppose that λ ∈ π00(MC). But if λ ∈ isoσ(MC) \
isoσ (A 0

0 B ) then, in view of Corollary 3.16, λ should lie in
(
σ(A) ∩ σ(B)

)
\ ω (A 0

0 B ), and
hence λ /∈ ω(MC). Therefore it suffices to show that, for each λ ∈ π00(MC) ∩ isoσ (A 0

0 B ),

0 < dim (MC −λI)−1(0) <∞ =⇒ 0 < dim
(
(A−λI)−1(0)⊕ (B−λI)−1(0)

)
<∞ : (159)

because (159) implies that if λ is in π00(MC) ∩ isoσ (A 0
0 B ) then λ is in π00 (A 0

0 B ), so that
λ /∈ ω (A 0

0 B ) = ω(MC) since Weyl’s theorem holds for (A 0
0 B ). For (159) suppose that

0 < dim (MC − λI)−1(0) <∞. First of all observe that there is inclusion, in general,

(MC − λI)−1(0) ⊆ (A− λI)−1
(
C ((B − λI)−1(0))

)
⊕ (B − λI)−1(0), (160)

which forces that (A−λI)−1(0)⊕ (B−λI)−1(0) is non-trivial because if it were not so then
(MC −λI)−1(0) would be trivial, a contradiction. Now we must show that (A−λI)−1(0)⊕
(B − λI)−1(0) is finite dimensional. To the contrary we assume that (A− λI)−1(0)⊕ (B −
λI)−1(0) is infinite dimensional. But since

(A− λI)−1(0)⊕ {0} ⊆ (MC − λI)−1(0), (161)

it follows that dim (A− λI)−1(0) <∞, so that (B − λI)−1(0) must be infinite dimensional.
Now there are two cases to consider.

Case 1. Suppose that C
(
(B−λI)−1(0)

)
is finite dimensional. Then C−1(0) must contain

a sequence {zj} of linear independent vectors in (B − λI)−1(0). But then(
A−λI C

0 B−λI
) (

0
zj

)
= ( 00 ) for each j = 1, 2, · · · ,

which implies that (MC − λI)−1(0) is infinite dimensional, a contradiction.
Case 2. Suppose that C

(
(B − λI)−1(0)

)
is infinite dimensional. Since

(i) λ ∈ isoσ (A 0
0 B ) and hence λ ∈ ρ(A) ∪ isoσ(A);

(ii) dim (A− λI)−1(0) <∞;

(iii) A is isoloid,

it follows that λ ∈ ρ(A)∪π00(A). But since Weyl’s theorem holds for A, we have that A−λI
is Weyl, and hence (A−λI)(X) is finite co-dimensional. Therefore C

(
(B−λI)−1(0)

)
∩ (A−

λI)(X) is infinite dimensional. Thus we can find a sequence {yj} of linearly independent
vectors in (B − λI)−1(0) for which there exists a sequence {xj} in X such that

(A− λI)xj = Cyj for each j = 1, 2, · · · .

But then (
A−λI C

0 B−λI
) ( xj

−yj
)
= ( 00 ) for each j = 1, 2, · · · ,

which implies that (MC − λI)−1(0) is infinite dimensional, a contradiction. This completes
the proof.

The “isoloid” condition is essential in Theorem 3.29. For an example, consider the
matrix (A C

0 B ), where A,B and C are given by (153), (154) and (155), respectively: in fact,
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the operator A in (153) is not isoloid. Also the condition “Weyl’s theorem holds for A”
cannot be dropped in Theorem 3.29. For example if on ℓ2

A(x1, x2, · · · ) = (0, 0, 0,
1

2
x2, 0,

1

3
x3, 0,

1

4
x4, · · · );

B(x1, x2, · · · ) = (0, x2, 0, x4, 0, x6, 0, x8, · · · );
C(x1, x2, · · · ) = (x1, 0, x2, 0, x3, 0, x4, 0, · · · ) :

then the all the spectra are the same as (156) except

π00(A) = {0}.

Therefore Weyl’s theorem holds for (A 0
0 B ), but fails for (A C

0 B ). Here note that Weyl’s
theorem does not hold for A, while A is isoloid.

Corollary 3.30. If H is a Hilbert space and A ∈ B(H) is essentially normal isoloid operator
for which Weyl’s theorem holds then for every C ∈ B(K,H) for a Hilbert space K,

Weyl’s theorem holds for (A 0
0 B ) =⇒ Weyl’s theorem holds for (A C

0 B ).

Hence, in particular, if A ∈ B(H) is normal then Weyl’s theorem is transmitted from (A 0
0 B )

to (A C
0 B ) for every C ∈ B(K,H).

Proof. The first assertion follows from Theorem 3.29 together with the fact ([Pe, Proposition
2.16]) that the spectral picture of every essentially normal operator has no pseudoholes. The
second assertion follows at once from the first.

When the entries in an operator matrix commute then the most of the familiar kinds of
spectrum ϖ can be calculated by determinants (cf. [GGK, Theorem XI.7.2]): if ( A C

D B ) is a
commutative operator matrix on X ⊕X then

ϖ ( A C
D B ) = {λ ∈ C : 0 ∈ ϖ

(
(A− λI)(B − λI)− CD

)
}. (162)

Indeed (162) holds for the ordinary spectrum, the essential spectrum and the eigenvalues.
We now have:

Theorem 3.31. If (A C
0 B ) is a commutative operator matrix acting on X ⊕X then Weyl’s

theorem holds for (A 0
0 B ) if and only if it holds for (A C

0 B ).

Proof. Observe, by (162), that there is equality

ϖ (A 0
0 B ) = ϖ (A C

0 B ) for each ϖ ∈ {σ, π0, σe, ω}, (163)

where π0(·) denotes the set of eigenvalues: the equality for ω follows from the fact that
index

(
A−λI 0

0 B−λI
)
= index

(
A−λI C

0 B−λI
)
for every λ ∈ C \ σe (A 0

0 B ). We now claim that
(163) also holds with ϖ = π00. In view of (163) it suffices to show

dim
(
(A− λI)−1(0)⊕ (B − λI)−1(0)

)
<∞ ⇐⇒ dim (MC − λI)−1(0) <∞. (164)

The forward implication follows from (160). For the backward implication suppose that
dim (MC−λI)−1(0) <∞. Then in view of (162), it suffices to show that dim (B−λI)−1(0) <

88



3 UPPER TRIANGLES

∞. To the contrary we assume that (B − λI)−1(0) contains a sequence {yj} of linearly
independent vectors. Then since CA = AC, we have(

A−λI C
0 B−λI

) ( Cyj
(λI−A)yj

)
= ( 00 ) for every j = 1, 2, · · · .

Thus we must have that dim {Cyj : j = 1, 2, · · · } < ∞, and hence we can find a sequence
{zj} of linearly independent vectors in C−1(0) ∩ (B − λI)−1(0). But then(

A−λI C
0 B−λI

) (
0
zj

)
= ( 00 ) for every j = 1, 2, · · · ,

which implies that (MC − λI)−1(0) is infinite dimensional, a contradiction. This proves
(164) and completes the proof.

3.4 Boundedness below for upper triangles

In this section we consider the approximate point spectra of upper triangular operator
matrices in the setting of Hilbert spaces. In this section, H and K denote Hilbert spaces.

Recall that an operator A ∈ B(H,K) is said to be bounded below if there exists k > 0 for
which ||x|| ≤ k ||Ax|| for each x ∈ H. If A ∈ B(H) then the approximate point spectrum,
σap(A), and the defect spectrum, σδ(A), of A are defined by

σap(A) := {λ ∈ C : A− λI is not bounded below};
σd(A) := {λ ∈ C : A− λI is not onto}.

If T ∈ B(H,K) then the reduced minimum modulus of T is defined by (cf. [Ap])

γ(T ) =

{
inf
{
||Tx|| : dist (x, N(T )) = 1

}
if T ̸= 0

0 if T = 0.

Thus γ(T ) > 0 if and only if T has closed non-zero range (cf. [Ap],[Go]). If T ∈ B(H) is a
non-zero operator then we can see ([Ap]) that γ(T ) = inf

(
σ(|T |) \ {0}

)
, where |T | denotes

(T ∗T )
1
2 . Thus we have that γ(T ) = γ(T ∗). From the definition we can also see that if T is

bounded below then ||x|| ≤ 1
γ(T ) ||Tx|| for each x ∈ H.

Recall ([Har4, Theorem 3.3.2]) that if S ∈ B(K,H) and T ∈ B(H,K) then

S, T bounded below =⇒ ST bounded below =⇒ T bounded below. (165)

Write MC := (A C
0 B ). Since ( I C0 I ) is invertible for every C ∈ B(K,H), noting the equation

MC = ( I 0
0 B ) ( I C0 I ) (

A 0
0 I ) gives

A,B bounded below =⇒MC bounded below =⇒ A bounded below. (166)

The following lemma is a result of independent interest.
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Lemma 3.32. Let T ∈ B(H) and T ̸= 0. Then T satisfies one of the following two
conditions:

(i) There exists a unit vector x in N(T )⊥ such that ||Tx|| = γ(T );

(ii) There exists an orthonormal sequence {xn} in (kerT )⊥ such that ||Txn|| → γ(T ).

In particular, if ran(T ) is not closed then T must satisfy the condition (ii) with γ(T ) = 0.

Proof. Suppose T ̸= 0 and write α := γ(T ) = inf
(
σ(|T |) \ {0}

)
. Let E be the spectral

measure on the Borel subsets of σ(|T |) such that |T | =
∫
z dE(z). There are two cases to

consider.
Case 1: α ∈ acc

(
σ(|T |) \ {0}

)
. In this case, there exists a strictly decreasing sequence

{αn} of elements in σ(|T |)\{0} such that αn → α. Since the αn’s are distinct, there exists a
sequence {Un} of mutually disjoint open intervals such that αn ∈ Un for all n ∈ Z+. Define
Fn := Un ∩ σ(|T |) (n ∈ Z+). Then the Fn’s are nonempty relatively open subsets of σ(|T |).
Thus E(Fn)H ̸= {0} for each n ∈ Z+. For each n ∈ Z+, choose a unit vector xn in E(Fn)H.
Since the Fn’s are mutually disjoint, it follows that {xn} is an orthonormal sequence. We will
show that xn ∈ (kerT )⊥ (n ∈ Z+). If |T | is invertible then (kerT )⊥ = (ker |T |)⊥ = H, so
evidently, xn ∈ (kerT )⊥. Now suppose |T | is not invertible. Since |T | is a normal operator,
|T | is unitarily equivalent to a multiplication operator Mφ. But since our argument below
depends only on the inner product, we may assume without loss of generality that |T | is a
multiplication operator. Let |T | := Mφ. If F0 := {0} then E(F0) is the multiplication by
χφ−1(0). Thus if f ∈ ker |T | then φf = 0 and hence

(
χφ−1(0)f

)
(x) =

{
0 if f(x) = 0,

f(x) if f(x) ̸= 0,

which shows that E(F0)f = f . Therefore if f ∈ ker |T | then for each n ∈ Z+,

(f, xn) = (E(F0)f, E(Fn)xn) = (f, E(F0 ∩ Fn)xn) = (f, 0) = 0,

which shows that xn ∈ (ker |T |)⊥ for all n ∈ Z+. It thus follows that xn ∈ (kerT )⊥. On the
other hand, for each n ≥ 2,

||Txn||2 = (T ∗Txn, xn) ≤ ||(T ∗T )|E(Fn)H || = r
(
(T ∗T )|E(Fn)H

)
≤
(
sup Fn

)2 ≤
(
sup Un

)2 ≤ α2
n−1,

where r(·) denotes the spectral radius. Therefore we have that α ≤ ||Txn|| ≤ αn−1 (n ≥ 2),
which implies that ||Txn|| → α = γ(T ).

Case 2: α ∈ iso
(
σ(|T |)\{0}

)
. Let L := E({α}) and M := E

(
σ(|T |)\{α}

)
. Then H can

be decomposed as H = L⊕M, where L and M are |T |-invariant subspaces, σ(|T | |L) = {α}
and σ(|T | |M) = σ(|T |) \ {α}: more precisely, we can write

|T | =
(
α 0
0 |T | |M

)
: L⊕M −→ L⊕M.

But since ||Tx|| = || |T |x|| for all x ∈ H, it follows that for every unit vector x0 in L,
||Tx0|| = || |T |x0|| = ||αx0|| = α.

For the second assertion suppose γ(T ) = 0 and T ̸= 0. If T satisfies the condition (i)
then there exists a unit vector x ∈ (kerT )⊥ such that Tx = 0, giving a contradiction. This
shows that T must satisfy the condition (ii).
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The following theorem is a characterization of the boundedness below of MC .

Theorem 3.33. [HwL2] A 2× 2 operator matrix MC := (A C
0 B ) is bounded below for some

C ∈ B(K,H) if and only if A is bounded below and{
α(B) ≤ β(A) if ran(B) is closed,

β(A) = ∞ if ran(B) is not closed.

Proof. We first claim that if A is bounded below and ran(B) is closed, then

α(B) ≤ β(A) ⇐⇒ MC is bounded below for some C ∈ B(K,H). (167)

To show this suppose α(B) ≤ β(A). Since dim kerB ≤ dimR(A)⊥, there exists a isometry
J : kerB → (ranA)⊥. Define an operator C : K → H by

C :=

(
J 0
0 0

)
:

(
kerB

(kerB)⊥

)
→
(
(ranA)⊥

ranA

)
.

Then MC is one-one. Assume to the contrary that MC is not bounded below. Then there
exists a sequence ( xnyn ) of unit vectors in H ⊕K for which(

A C
0 B

)(
xn
yn

)
=

(
Axn + Cyn

Byn

)
−→ 0.

Write yn := αn + βn for n ∈ Z+, where αn ∈ kerB and βn ∈ (kerB)⊥. Since γ(B) > 0 and
Byn → 0, it follows that βn → 0. Also by the definition of C, Cyn = C(αn+βn) = Cαn → 0
and hence αn → 0. Therefore yn → 0 and ||xn|| → 1. But since Axn → 0, it follows that A
is not bounded below, giving a contradiction. This proves that MC is bounded below.

Conversely, supposeMC is bounded below for some C ∈ B(K,H). WriteMC as in (117).
Since ( I 0

0 B ) ( I C0 I ) and (A 0
0 I ) have closed ranges, it follows from Theorem 3.8 that

ker (A 0
0 I )

⊕
ker (( I 0

0 B ) ( I C0 I ))
⊕

ran(MC)
⊥

∼= ker(MC)
⊕

ran ((A 0
0 I ))

⊥⊕
ran (( I 0

0 B ) ( I C0 I ))
⊥
,

which implies that α(B) + β(MC) = β(A) + β (( I 0
0 B ) ( I C0 I )). Since

β(MC) ≥ β (( I 0
0 B ) ( I C0 I )) ,

it follows that α(B) ≤ β(A). This proves (167). We next claim that if A is bounded below
and ran(B) is not closed, then

β(A) = ∞ ⇐⇒MC is bounded below for some C ∈ B(K,H). (168)

To show this suppose β(A) = ∞. Then with no restriction on ranB, MC is bounded
below for some C ∈ B(K,H). To see this, observe dim (ranA)⊥ = ∞, so there exists an
isomorphism C0 : K → (ranA)⊥. Define an operator C : K → H by

C :=
(
C0 0

)
: K →

(
(ranA)⊥

ranA)

)
.
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Then a straightforward calculation shows that MC is one-one and

γ(MC) = inf
||x||2+||y||2=1

||
(
Ax+ Cy
By

)
||

≥ inf
||x||2+||y||2=1

(
||Ax||2 + ||Cy||2

) 1
2

≥ inf
||x||2+||y||2=1

(
γ(A)2||x||2 + ||y||2

) 1
2

≥ min {1, γ(A)} > 0,

which implies that MC is bounded below. For the converse, assume β(A) = N < ∞. Since
ranB is not closed it follows from Lemma 3.32 that there exists an orthonormal sequence
{yn} in (ker B)⊥ such that Byn → 0. But since MC is bounded below we have

inf
||x||2+||y||2=1

|| (A C
0 B ) ( xy ) || = inf

||x||2+||y||2=1
||
(
Ax+Cy
By

)
|| > 0.

We now argue that there exist ϵ > 0 and a subsequence {ynk} of {yn} for which

dist
(
ranA, Cynk

)
> ϵ for all k ∈ Z+. (169)

Indeed, assume to the contrary that dist
(
ranA, Cyn

)
→ 0 as n → ∞. Thus there exists

a sequence {xn} in H such that dist
(
Axn, Cyn

)
→ 0. Let zn := || ( xnyn ) ||−1xn and wn :=

|| ( xnyn ) ||−1(−yn). Then || ( znwn ) || = 1 and || (A C
0 B ) ( znwn ) || = ||

(
Azn+Cwn
Bwn

)
|| −→ 0, giving a

contradiction. This proves (169). There is no loss in simplifying the notation and assuming
that

dist
(
ranA, Cyn

)
> ϵ for all n ∈ Z+. (170)

Since β(A) = N , there exists an orthonormal basis {e1, · · · , eN} for (ranA)⊥. Let Pm
be the projection from H to ∨{em} for m = 1, · · · , N , where ∨(·) denotes the closed lin-
ear span. If we let Cyn := αn + βn (n ∈ Z+), where αn ∈ ranA and βn ∈ (ran, A)⊥,
then by (170), ||βn|| > ϵ for all n ∈ Z+. Observe that

∑∞
n=1 ||

1
nβn|| = ∞ and hence

||
∑∞
n=1 Pm0(

1
nβne

iθn)|| = ∞ for some m0 ∈ {1, · · · , N} and for some θn ∈ [0, 2π) (n ∈ Z+).
Now if we write y :=

∑∞
n=1

1
nyne

iθn , then ||y||2 =
∑∞
n=1

1
n2 <∞ and hence y ∈ K. But

||Cy|| ≥ ||Pm0(Cy)|| = ||
∞∑
n=1

Pm0C(
1

n
yne

iθn)|| = ||
∞∑
n=1

Pm0(
1

n
βne

iθn)|| = ∞,

giving a contradiction. Therefore we must have that β(A) = ∞. This proves (168). Now
the result follows from (166), (167) and (168).

The following corollary is immediate from Theorem 3.33.

Corollary 3.34. For a given pair (A,B) of operators we have∩
C∈B(K,H)

σap(MC)

= σap(A)
∪

{λ ∈ C : ran(B − λI) is closed and β(A− λI) < α(B − λI)}∪
{λ ∈ C : ran(B − λI) is not closed and β(A− λI) <∞}.

92



3 UPPER TRIANGLES

The following is the dual statement of Corollary 3.34.

Corollary 3.35. For a given pair (A,B) of operators we have∩
C∈B(K,H)

σd(MC) = σd(B)
∪

{λ ∈ C : ran(A− λI) is closed and α(B − λI) < β(A− λI)}

∪
{λ ∈ C : ran(A− λI) is not closed and α(B − λI) <∞}.

Combining Corollaries 3.34 and 3.35 gives:

Corollary 3.36. ([DP, Theorem 2]) For a given pair (A,B) of operators we have∩
C∈B(K,H)

σ(MC) = σap(A)
∪
σd(B)

∪
{λ ∈ C : α(B − λ) ̸= β(A− λ)}.

It was shown in Corollary 3.9 that the passage from σ (A 0
0 B ) to σ(MC) is accomplished

by removing certain open subsets of σ(A) ∩ σ(B) from the former, that is, there is equality

σ (A 0
0 B ) = σ(MC) ∪ W, (171)

where W is the union of certain of the holes in σ(MC) which happen to be subsets of
σ(A)∩σ(B). However we need not expect the case for the approximate point spectrum (see
Examples 3.39 and 3.40 below). The passage from σap (A 0

0 B ) to σap(MC) is more delicate.

Theorem 3.37. For a given pair (A,B) of operators we have that for every C ∈ B(K,H),

η
(
σap(A) ∪ σap(B)

)
= η

(
σap(MC)

)
. (172)

More concretely,
σap (A 0

0 B ) = σap(MC) ∪ W, (173)

where W lies in certain holes in σap(A), which happen to be subsets of σd(A) ∩ σap(B).
Hence, in particular, rap(MC) is a constant, and furthermore for every C ∈ B(K,H),

r (A C
0 B ) = r (A 0

0 B ) = rap (A 0
0 B ) = rap (A C

0 B ) , (174)

where r(·) and rap(·) denote the spectral radius and the “approximate point spectral radius”.

Proof. First, observe that for a given pair (A,B) of operators we have that for every C ∈
B(K,H),

σap(A) ⊆ σap(MC) ⊆ σap(A) ∪ σap(B) = σap (A 0
0 B ) : (175)

the first and the second inclusions follow from (166) and the last equality is obvious. We
now claim that for every T ∈ B(H),

η
(
σ(T )

)
= η

(
σap(T )

)
. (176)

Indeed since intσap(T ) ⊆ intσ(T ) and ∂ σ(T ) ⊆ σap(T ), we have that ∂ σ(T ) ⊆ ∂ σap(T ),
which implies that the passage from σap(T ) to σ(T ) is filling in certain holes in σap(T ),
proving (176). Now suppose λ ∈

(
σap(A)∪σap(B)

)
\σap(MC). Thus by (175), λ ∈ σap(B)\

σap(A). Since MC − λI is bounded below it follows from Theorem 3.33 that if ran(B − λI)
is not closed then β(A − λI) = ∞, and if instead ran(B − λI) is closed then β(A − λI) ≥
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α(B − λI) > 0, where the last inequality comes from the fact that B − λI is not one-one
since B−λI is not bounded below. Therefore λ ∈ σd(A). On the other hand, λ should be in
one of the holes in σap(A): for if this were not so then by (176), A−λI would be invertible,
a contradiction. This proves (172) and (173). The equality (174) follows at once from (172)
and (176).

Corollary 3.38. If A is a quasitriangular operator (e.g., A is either compact or cohyponor-
mal) then for every B ∈ K and C ∈ B(K,H),

σap(MC) = σap(A) ∪ σap(B).

Proof. The inclusion ⊆ is the second inclusion in (175). For the reverse inclusion suppose
λ ∈ σap(A) ∪ σap(B). If λ ∈

(
σap(A) ∪ σap(B)

)
\ σap(MC) then by Theorem 3.37, λ ∈

σδ(A) ∩ σap(B) and A− λI is bounded below. But since A is quasitriangular, we have that
β(A− λI) ≤ α(A− λI) = 0. Therefore A− λI is invertible, a contradiction.

Example 3.39. One might expect that in Theorem 3.37, W is the union of certain of the
holes in σap(MC) together with the closure of some isolated points of σap(B). But this
is not the case. To see this, let φ ∈ H∞ be an inner function (i.e., |φ| = 1 a.e.) with

dim (φH2)⊥ = ∞ (e.g., φ(z) = exp
(
z+λ
z−λ

)
with |λ| = 1), let ψ be any function in C(T) with

||ψ||∞ < 1, and let J be an isometry from H2 to (φH2)⊥. Define

MJ :=

(
Tφ J
0 Tψ

)
.

Note that Tφ is a non–normal isometry and hence σap(Tφ) = T. Since ran(Tφ) ⊥ ran(J),
it follows that ||MJ (

x
y ) || ≥ || ( xy ) || for all ( xy ) ∈ H2 ⊕H2, which says that MJ is bounded

below. Observe
γ(MJ) = inf

||( xnyn )||=1
||MJ (

xn
yn ) || ≥ 1.

Thus by [Go, Theorem V.1.6], we have that for all |λ| < 1(≤ γ(MJ)),

(i) MJ − λI is semi-Fredholm;

(ii) α(MJ − λI) ≤ α(MJ) = 0,

which implies that MJ − λI is bounded below for all |λ| < 1. But since σ(Tψ) is contained
in the polynomially–convex hull of the range of ψ, it follows from our assumption that
σap(Tψ) ⊆ D. Thus by Theorem 3.37 we have that σap(MJ) = T. Note that σap(Tψ) has

disappeared in the passage from σap

(
Tφ 0
0 Tψ

)
to σap(MJ ).

Example 3.40. We need not expect a general information for removing in the passage from
σap (A 0

0 B ) to σap(MC). To see this, let Tφ, Tψ, and J be given as in Example 3.39. Also let
ζ be a function in C(T) such that σap(Tζ) is a compact subset σ of σap(Tψ). We define, on
H2 ⊕H2, A := Tφ ⊕ Tφ, B := Tψ ⊕ Tζ , C := J ⊕ 0 and in turn

MC :=

(
Tφ 0 J 0
0 Tφ 0 0
0 0 Tψ 0
0 0 0 Tζ

)
.
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A straightforward calculation shows

σap (A 0
0 B ) = σap(A) ∪ σap(B) = T ∪ σap(Tψ).

On the other hand, MC is unitarily equivalent to the operator(
Tφ J
0 Tψ

)⊕(
Tφ 0
0 Tζ

)
.

By Example 3.39 above, σap

(
Tφ J
0 Tψ

)
= T. It therefore follows that

σap(MC) = σap

(
Tφ J
0 Tψ

)∪
σap

(
Tφ 0
0 Tζ

)
= T ∪ σ.

One might conjecture that if MC is bounded below then ranB is closed. But this is not
the case. For example, in Example 3.40, take a function ψ ∈ C(T) whose range includes 0,
and consider MC .

3.5 Concluding remarks and open problems

In connection with upper triangles, we have a chance to consider weak subnormality. Note
that the operator T is subnormal if and only if there exist operators A and B such that

T̂ :=

(
T A
0 B

)
is normal, i.e., 

[T ∗, T ] := T ∗T − TT ∗ = AA∗

A∗T = BA∗

[B∗, B] +A∗A = 0.

(177)

The operator T̂ is called a normal extension of T . We also say that T̂ in B(K) is a minimal
normal extension (briefly, m.n.e.) of T if K has no proper subspace containing H to which

the restriction of T̂ is also a normal extension of T . It is known that

T̂ = m.n.e.(T ) ⇐⇒ K =
∨{

T̂ ∗nh : h ∈ H, n ≥ 0
}
,

and the m.n.e.(T ) is unique.
Recall ([CuL]) that an operator T ∈ B(H) is said to be weakly subnormal if there exist

operators A ∈ B(H ′,H) and B ∈ B(H ′) such that the first two conditions in (177) hold:

[T ∗, T ] = AA∗ and A∗T = BA∗, (178)

or equivalently, there is an extension T̂ of T such that T̂ ∗T̂ f = T̂ T̂ ∗f for all f ∈ H. The
operator T̂ is called a partially normal extension (briefly, p.n.e.) of T . We also say that T̂
in B(K) is a minimal partially normal extension (briefly, m.p.n.e.) of T if K has no proper

subspace containing H to which the restriction of T̂ is also a partially normal extension of
T . It is known ([CuL, Lemma 2.5 and Corollary 2.7]) that

T̂ = m.p.n.e.(T ) ⇐⇒ K =
∨{

T̂ ∗nh : h ∈ H, n = 0, 1
}
,
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and the m.p.n.e.(T ) is unique. For convenience, if T̂ = m.p.n.e. (T ) is also weakly subnormal

then we write T̂ (2) :=
̂̂
T and more generally, T̂ (n) :=

̂̂
T (n−1), which will be called the n-th

minimal partially normal extension of T . It was ([CuL], [CJP]) shown that

2-hyponormal =⇒ weakly subnormal =⇒ hyponormal (179)

and the converses of both implications in (179) are not true in general. It was ([CuL]) known
that

T is weakly subnormal =⇒ T (ker [T ∗, T ]) ⊆ ker [T ∗, T ] (180)

and it was ([CJP]) known that if T̂ := m.p.n.e.(T ) then for any k ≥ 1,

T is (k + 1)-hyponormal ⇐⇒ T is weakly subnormal and T̂ is k-hyponormal. (181)

So, in particular, one can see that if T is subnormal then T̂ is subnormal. It is worth to
noticing that in view of (179) and (180), Morrel’s theorem gives that every weakly subnormal
operator with rank-one self-commutator is subnormal.

On the other hand, in 2000, M. Dritschel and S. McCullough [DrM] have developed
a model theory for hyponormal contractions in the context of the Agler’s abstract model
theory [Ag]. The purpose is to find a small, representative subcollection of a given family of
operators, a so–called model, with the property that any member of the family extends to
a member of the subcollection. Following Agler [Ag], a family F is a bounded collection of
Hilbert space operators which is closed with respect to arbitrary direct sums, restrictions to
invariant subspaces, and unital ∗-representations. There are many examples of such families:
subnormal contractions, contractions, isometries, etc. The extremals extF of F are those
operators T in F whose only extensions in F are obtained by adding a direct summand to
T . The extremals have a role in finding the smallest possible model for F , the boundary ∂F
of F . In [Ag, Propositions 5.9 and 5.10], it was shown that the extremals belong to every
model, and that every element of F lifts to an element of extF . In [DrM] it was proved
that if T is a contractive n-hyponormal operator and if

ran (T ∗kA) ∩ ranA = {0} (182)

and
kerT ∗k ∩ ranA = {0} (183)

for some 1 ≤ k ≤ n, where [T ∗, T ] = AA∗, then T is extremal. The following corollary shows
that if T is weakly subnormal then conditions (182) and (183) force T to be normal.

Theorem 3.41. Let T ∈ B(H) be a weakly subnormal operator satisfying (182) and (183)
for some 1 ≤ k ≤ n. Then T must be normal, and therefore T is extremal for the collection
Fws of contractive weakly subnormal operators.

Proof. Suppose T is weakly subnormal. Then there exists a partially normal extension T̂ of
T such that

T̂ =

(
T A
0 B

)
with [T ∗, T ] = AA∗ and T ∗A = AB∗.

Thus by induction, T ∗kA = AB∗k, so ranT ∗kA ⊆ ranA for 1 ≤ k ≤ n. Thus Mk :=
ran (T ∗kA)∩ ranA = ran (T ∗kA). By (182) we have that Mk = {0}, i.e., T ∗kA = 0 for some
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1 ≤ k ≤ n. Let f ∈ H, and let g := Af . We have

T ∗kg = T ∗kAf = 0 =⇒ g ∈ kerT ∗k ∩ ranA

=⇒ g = 0 (by (183))

=⇒ Af = 0.

It follows that A = 0, which implies that T is normal. The extremality of normal operators
for Fws follows by looking at self-commutators.

Corollary 3.42. Let T be a contractive 2-hyponormal operator with closed range self-
commutator. Assume that T satisfies (182) and (183). Then T must be normal, and therefore
T is extremal for h2, the family of 2–hyponormal contractions.

A natural question arises: Is every 2-hyponormal operator satisfying (182) and (183)
normal ?

Finally, we examine five additional problems.

Problem 3.43. Does every 2-hyponormal operator have a partially normal extension which
is also 2-hyponormal ?

Let us suppose that the answer is affirmative. Let N , S, and h2 denote the collections
of normal, subnormal, and 2-hyponormal contractions, respectively. We now claim that if
every element of h2 has a partially normal extension in h2, then ext h2 = N . The inclusion
N ⊆ ext h2 is evident, and was mentioned in Corollary 3.42. For the converse, suppose
T ∈ ext h2. By our assumption T has a partially normal extension T̂ which is 2-hyponormal:

T̂ =

(
T A
0 S

)
∈ h2.

By extremality, we have A = 0, so weak subnormality forces T to be normal. Therefore
ext h2 = N . By [Ag, Proposition 5.10], every element in h2 would then have a normal
extension, and hence h2 = S, which leads to a contradiction because we know that there are
non–subnormal 2-hyponormal operators. We have thus obtained the following result, which
answers Problem 3.43 in the negative.

Proposition 3.44. There exists a 2–hyponormal operator T which either does not have a
partially normal extension, or such that m.p.n.e. (T ) is not 2–hyponormal.

Problem 3.45. Does the collection Fws of weakly subnormal contractions form a family ?

Note that Fws is closed with respect to (i) restrictions to invariant subspaces (c.f. basic
facts below Definition 1.1); (ii) unital ∗-representations (evident from the definition); and
(iii) finite direct sums, by the following observation: if T1 and T2 have partially normal
extensions

(
T1 A
0 B

)
and

(
T2 C
0 D

)
, then

T1 0 A 0
0 T2 0 C
0 0 B 0
0 0 0 D
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is a partially normal extension of T1 ⊕ T2. But it is not clear whether Fws is closed with
respect to arbitrary direct sums.

Problem 3.46. Is Fws sot-closed ?

We can easily show that S is sot-closed (in fact, S = sot-clN ) and that the collection
hk of k-hyponormal contractions is also sot-closed for each k ≥ 1. On the other hand, we
conjecture that

h2 ⊆ Fws ⊆ h1.

Thus an affirmative answer to Problem 3.46 would probably exhibit a sot-closed collection
of operators between h2 and h1. More generally, we have:

Problem 3.47. Is there a sot-closed collection of operators between hk and hk+1 for each
k ≥ 1 ?

On the other hand, if Fws were not sot-closed, we would ask:

Problem 3.48. Is every hyponormal operator a sot-limit of a sequence of weakly subnormal
operators, i.e., h1 = sot-clFws ?
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4 Weyl theory in several variables

In this section we consider Weyl’s theorem from multivariable operator theory. Let H be
a complex Hilbert space and write B(H) for the set of bounded linear operators acting
on H. Let T = (T1, · · · , Tn) be a commuting n-tuple of operators in B(H), let Λ[e] ≡
{Λk[e1, · · · , en]}nk=0 be the exterior algebra on n generators (ei ∧ ej = −ej ∧ ei for all
i, j = 1, · · · , n) and write Λ(H) := Λ[e] ⊗H. Let Λ(T ) : Λ(H) → Λ(H) be defined by (cf.
[Cu1], [Har1], [Har4], [Ta])

Λ(T )(ω ⊗ x) =
n∑
i=1

(ei ∧ ω)⊗ Tix. (184)

The operator Λ(T ) in (184) can be represented by the Koszul complex for T :

0 // Λ0(H)
Λ0(T ) // Λ1(H)

Λ1(T ) // · · ·
Λn−1(T )// Λ(H) // 0 , (185)

where Λk(H) is the collection of k-forms and Λk(T ) = Λ(T )|Λk(H). For n = 2, the Koszul
complex for T = (T1, T2) is given by

0 // H

T1
T2


//
(
H
H

) (
−T2 T1

)
// H // 0

Evidently, Λ(T )2 = 0, so that ranΛ(T ) ⊆ kerΛ(T ), or equivalently, ranΛk−1(T ) ⊆ kerΛk(T )
for every k = 0, · · · , n, where, for notational convenience, Λ−1(T ) := 0 and Λn(T ) = 0. For
the representation of Λ(T ), we may put together its odd and even parts, writing

Λ(T ) =

(
0 Λodd(T )

Λeven(T ) 0

)
:

(
Λodd(H)
Λeven(H)

)
→
(
Λodd(H)
Λeven(H)

)
,

where
Λ∗(H) =

⊕
p is ∗

Λp(H), Λ∗(T ) =
⊕
p is ∗

Λp(T ) with ∗ = even, odd.

Write
Hk(T ) := kerΛk(T )/ranΛk−1(T ) (k = 0, · · · , n),

which is called the k-th cohomology for the Koszul complex Λ(T ). We recall ([Cu1], [Har4],
[Ta]) that T is said to be Taylor invertible if kerΛ(T ) = ranΛ(T ) (in other words, the
Koszul complex (185) is exact at every stage, i.e., Hk(T ) = {0} for every k = 0, · · · , n) and
is said to be Taylor Fredholm if ker Λ(T )/ranΛ(T ) is finite dimensional (in other words, all
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cohomologies of (185) are finite dimensional). If T = (T1, · · · , Tn) is Taylor Fredholm, define
the index of T by

index (T ) ≡ Euler(0,Λn−1(T ), · · · ,Λ0(T ), 0) :=

n∑
k=0

(−1)kdimHk(T ),

where Euler(·) is the Euler characteristic of the Koszul complex for T . We shall write σT (T )
and σTe(T ) for the Taylor spectrum and Taylor essential spectrum of T , respectively: namely,

σT (T ) = {λ ∈ Cn : T − λI is not Taylor invertible};
σTe(T ) = {λ ∈ Cn : T − λI is not Taylor Fredholm}.

Following to R. Harte [Har4, Definition 11.10.5], we shall say that T = (T1, · · · , Tn) is Taylor
Weyl if T is Taylor Fredholm and index(T ) = 0. The Taylor Weyl spectrum, σTw(T ), of T
is defined by

σTw(T ) = {λ ∈ Cn : T − λI is not Taylor Weyl}.
It is known ([Har4, Theorem 10.6.4]) that σTw(T ) is compact and evidently,

σTe(T ) ⊂ σTw(T ) ⊂ σT (T ).

4.1 Weyl’s theorem in several variables

“Weyl’s theorem” for an operator on a Hilbert space is the statement that the complement
in the spectrum of the Weyl spectrum coincides with the isolated eigenvalues of finite multi-
plicity. In this note we introduce the joint version of Weyl’s theorem and then examine the
classes of n-tuples of operators satisfying Weyl’s theorem.

The spectral mapping theorem is liable to fail for σTw(T ) even though T = (T1, · · · , Tn)
is a commuting n-tuple of hyponormal operators (remember [LeL] that if n = 1 then every
hyponormal operator enjoys the spectral mapping theorem for the Weyl spectrum). For
example, let U be the unilateral shift on ℓ2 and T := (U,U). Then a straightforward
calculation shows that σTw(T ) = {(λ, λ) : |λ| = 1}. If f : C2 → C1 is the map f(z1, z2) =
z1 + z2 then σTwf(T ) = σTw(2U) = {2λ : |λ| ≤ 1} * fσTw(T ) = {2λ : |λ| = 1}. If instead
f : C1 → C2 is the map f(z) = (z, z) then σTwf(U) = {(λ, λ) : |λ| = 1} + fσTw(U) =
{(λ, λ) : |λ| ≤ 1}. Therefore σTw(T ) satisfies no way spectral mapping theorem in general.

The Taylor Weyl spectrum however satisfies a “subprojective” property.:

Lemma 4.1. If T = (T1, · · · , Tn) is a commuting n-tuple then σTw(T ) ⊂
∏n
j=1 σTe(Tj).

Proof. This follows at once from the fact (cf. [Cu1, p.144]) that every commuting n-tuple
having a Fredholm coordinate has index zero.

On the other hand, M. Cho and M. Takaguchi [ChT] have defined the joint Weyl spec-
trum, ω(T ), of a commuting n-tuple T = (T1, · · · , Tn) by

ω(T ) =
∩{

σT (T +K) : K = (K1, · · · ,Kn) is an n-tuple of compact operators

and T +K = (T1 +K1, · · · , Tn +Kn) is commutative.
}
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A question arises naturally: For a commuting n-tuple T , does it follow that σTw(T ) = ω(T )?
If n = 1 then σTw(T ) and ω(T ) coalesce: indeed, T is Weyl if and only if T is a sum of an
invertible operator and a compact operator.

We first observe:

Lemma 4.2. If T = (T1, · · · , Tn) is a commuting n-tuple then

σTw(T ) ⊂ ω(T ). (186)

Proof. Instead of assembling the Koszul complex into the single operator Λ(T ), we put
together its odd and even parts, writing

Λ(T ) =

(
0 Λodd(T )

Λeven(T ) 0

)
:

(
Λodd(H)
Λeven(H)

)
−→

(
Λodd(H)
Λeven(H)

)
,

where

Λeven(H) =
⊕
p even

Λp(H), Λodd(H) =
⊕
p odd

Λp(H),

Λeven(T ) =
⊕
p even

Λp(T ), Λodd(T ) =
⊕
p odd

Λp(T ).

Write K0(T ) := Λodd(T ) + Λeven(T )∗. Then it was known that (cf. [Cu1], [Har4], [Va])

T is Taylor invertible [Taylor Fredholm] ⇐⇒ K0(T ) is invertible [Fredholm] (187)

and moreover index(T ) = index(K0(T )). If λ = (λ1, · · · , λn) /∈ ω(T ) then there exists an
n-tuple of compact operators K = (K1, · · · ,Kn) such that T +K − λI is commutative and
Taylor invertible. By (187), K0(T + K − λI) is invertible. But since K0(T + K − λI) −
K0(T − λI) is a compact operator it follows that K0(T − λI) is Weyl, and hence, by (187),
T − λI is Taylor Weyl, i.e., λ /∈ σTw(T ).

The inclusion (186) cannot be strengthened by the equality. R. Gelca [Ge] showed that
if S is a Fredholm operator with index(S) ̸= 0 then there do not exist compact operators
K1 and K2 such that (T +K1,K2) is commutative and Taylor invertible. Thus for instance,
if U is the unilateral shift then ω(U, 0) * σTw(U, 0).

We introduce an interesting notion which commuting n-tuples may enjoy.

A commuting n-tuple T = (T1, · · · , Tn) is said to have the quasitriangular property if the
dimension of the left cohomology for the Koszul complex Λ(T −λI) is greater than or equal
to the dimension of the right cohomology for Λ(T − λI) for all λ = (λ1, · · · , λn) ∈ Cn, i.e.,

dimHn(T − λI) ≤ dimH0(T − λI) for all λ = (λ1, · · · , λn) ∈ Cn. (188)

Since H0(T − λI) = kerΛ0(T − λI) =
∩n
i=1 ker (Ti − λiI) and H

n(T − λI) = kerΛn(T −
λI)/ranΛn−1(T − λI) ∼=

(
ranΛn−1(T − λI)

)⊥ ∼=
∩n
i=1 ker (Ti − λiI)

∗, the condition (188) is
equivalent to the condition

dim
n∩
i=1

ker (Ti − λiI)
∗ ≤ dim

n∩
i=1

ker (Ti − λiI).
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If n = 1, the condition (188) is equivalent to the condition dim (T−λI)∗−1(0) ≤ dim (T−
λI)−1(0) for all λ ∈ C, or equivalently, the spectral picture of T contains no holes or
pseudoholes associated with a negative index, which, by the celebrated theorem due to
Apostol, Foias and Voiculescu, is equivalent to the fact that T is quasitriangular (cf. [Pe,
Theorem 1.31]). Evidently, every commuting n-tuple of quasitriangular operators has the
quasitriangular property. Also if a commuting n-tuple T = (T1, · · · , Tn) has a coordinate
whose adjoint has no eigenvalues then T has the quasitriangular property.

As we have seen in the above, the inclusion (186) cannot be reversible even though
T = (T1, · · · , Tn) is a doubly commuting n-tuple (i.e., [Ti, T

∗
j ] ≡ TiT

∗
j − T ∗

j Ti = 0 for all
i ̸= j) of hyponormal operators. On the other hand, R. Curto [Cu1, Corollary 3.8] showed
that if T = (T1, · · · , Tn) is a doubly commuting n-tuple of hyponormal operators then

T is Taylor invertible [Taylor Fredholm] ⇐⇒
n∑
i=1

TiT
∗
i is invertible [Fredholm]. (189)

On the other hand, many authors have considered the joint version of the Browder
spectrum. We recall ([BDW], [CuD], [Da1], [Da2], [Har4], [JeL], [Sn]) that a commuting
n-tuple T = (T1, · · · , Tn) is called Taylor Browder if T is Taylor Fredholm and there exists
a deleted open neighborhood N0 of 0 ∈ Cn such that T − λI is Taylor invertible for all
λ ∈ N0. The Taylor Browder spectrum, σTb(T ), is defined by

σTb(T ) = {λ ∈ Cn : T − λI is not Taylor Browder}.

Note that σTb(T ) = σTe(T )∪accσT (T ), where acc(·) denotes the set of accumulation points.
We can easily show that

σTw(T ) ⊂ σTb(T ). (190)

Indeed, if λ /∈ σTb(T ) then T −λI is Taylor Fredholm and there there exists δ > 0 such that
T − (λ + µ)I is Taylor invertible for 0 < |µ| < δ. Since the index is continuous it follows
that index(T − λ) = 0, which says that λ /∈ σTw(T ), giving (190).

If T = (T1, · · · , Tn) is a commuting n-tuple, we write π00(T ) for the set of all isolated
points of σT (T ) which are joint eigenvalues of finite multiplicity and writeR(T ) ≡ isoσT (T )\
σTe(T ) for the Riesz points of σT (T ). By the continuity of the index, we can see that
R(T ) = isoσT (T ) \ σTw(T ).

Lemma 4.3. If T = (T1, · · · , Tn) is a commuting n-tuple then ω(T ) ⊂ σTb(T ).

Proof. Suppose without loss of generality that 0 /∈ σTb(T ). Then T is Taylor invertible and
0 ∈ isoσT (T ). So there exists a projection P ∈ B(H) satisfying that

(i) P commutes with Ti (i = 1, · · · , n);
(ii) σT (T |P (H)) = {0} and σT (T |(I−P )(H)) = σT (T ) \ {0};
(iii) P is of finite rank

(see [Ta2, Theorem 4.9]). Put Q = (P, · · · , P ). Evidently, 0 /∈ σT ((T+Q)|(I−P )(H)). Since a
commuting quasinilpotent perturbation of an invertible operator is also invertible, it follows
that 0 /∈ σT ((T +Q)|P (H)). But since σT (T ) = σT ((T +Q)|(I−P )(H))

∪
σT ((T +Q)|P (H)),

we can conclude that T +Q is Taylor invertible. So 0 /∈ ω(T ).
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“Weyl’s theorem” for an operator on a Hilbert space is the statement that the comple-
ment in the spectrum of the Weyl spectrum coincides with the isolated eigenvalues of finite
multiplicity. There are two versions of Weyl’s theorem in several variables (cf. [Ch1], [Ch2],
[ChT]).

If T = (T1, · · · , Tn) is a commuting n-tuple then we say that Weyl’s theorem (I) holds
for T if

σT (T ) \ π00(T ) = σTw(T ) (191)

and that Weyl’s theorem (II) holds for T if

σT (T ) \ π00(T ) = ω(T ). (192)

We note that
Weyl’s theorem (I) =⇒ Weyl’s theorem (II). (193)

Indeed, since σTw(T ) ⊂ ω(T ), it follows that if σT (T ) \ π00(T ) ⊂ σTw(T ), then σT (T ) \
π00(T ) ⊂ ω(T ). Now suppose σTw(T ) ⊂ σT (T ) \ π00(T ). So if λ ∈ π00(T ) then T − λI
is Taylor Weyl, and hence Taylor Browder. By Lemma 4.3, λ /∈ ω(T ). Therefore ω(T ) ⊂
σT (T ) \ π00(T ), and so Weyl’s theorem (II) holds for T , which gives (193).

But the converse of (193) is not true in general. To see this, let T := (U, 0), where U is
the unilateral shift on ℓ2. Then

(a) σT (T ) = clD× {0};
(b) σTw(T ) = ∂D× {0};
(c) ω(T ) = clD× {0};
(d) π00(T ) = ∅,

where D is the open unit disk. So Weyl’s theorem (II) holds for T while Weyl’s theorem (I)
fails even though T is a doubly commuting n-tuple of hyponormal operators.

M. Cho [Ch2] showed that Weyl’s theorem (II) holds for a commuting n-tuple of normal
operators. The following theorem is an extension of this result.

Theorem 4.4. Let T = (T1, · · · , Tn) be a doubly commuting n-tuple of hyponormal opera-
tors. If T has the quasitriangular property then Weyl’s theorem (I) holds for T .

Proof. In [Ch2] it was shown that if T is a doubly commuting n-tuple of hyponormal oper-
ators then ω(T ) ⊂ σT (T ) \ π00(T ). Then by Lemma 4.2, σTw(T ) ⊂ σT (T ) \ π00(T ). For the
reverse inclusion, we first claim that

σTe(T ) = σTw(T ) = ω(T ). (194)

In view of Lemma 4.2, we need to show that ω(T ) ⊂ σTe(T ). Suppose without loss of
generality that 0 /∈ σTe(T ). Thus by (189) we have that

∑n
i=1 TiT

∗
i is Fredholm (and hence

Weyl since it is self-adjoint). Let P denote the orthogonal projection onto ker
∑n
i=1 TiT

∗
i .

Since P is of finite rank and Weyl-ness is stable under compact perturbations, we have that∑n
i=1 TiT

∗
i +nP is Weyl. In particular, a straightforward calculation shows that

∑n
i=1 TiT

∗
i +
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nP is one-one and therefore
∑n
i=1 TiT

∗
i + nP is invertible. Since each Ti is a hyponormal

operator, we have that

ranP = ker
(
T1, · · · , Tn

)T
∗
1
...
T ∗
n

 =
n∩
i=1

kerT ∗
i ⊃

n∩
i=1

kerTi.

So if T has the quasitriangular property then since ranP is finite dimensional, it follows
that

ranP =
n∩
i=1

kerTi =
n∩
i=1

kerT ∗
i .

So TiP = PTi = 0 for all i = 1, · · · , n. Hence we can see that (T1 + P, · · · , Tn + P ) is a
doubly commuting n-tuple of hyponormal operators. Thus (T1 + P, · · · , Tn + P ) is Taylor
invertible if and only if

∑
TiT

∗
i + nP is invertible. Therefore (T1, · · · , Tn) + (P, · · · , P ) is

Taylor invertible, and hence 0 /∈ ω(T ), which proves (194). So in view of (194), it now
suffices to show that σT (T ) \ π00(T ) ⊂ σTe(T ). To see this we need to prove that

accσT (T ) ⊂ σTe(T ). (195)

Suppose λ = limλk with distinct λk ∈ σT (T ). Write λ := (λ1, · · · , λn) and λk :=
(λk1 , · · · , λkn). If λk ∈ σTe(T ) then clearly, λ ∈ σTe(T ) since σTe(T ) is a closed set.
So we assume λk ∈ σT (T )\σTe(T ). Then by (189),

∑n
i=1(Ti−λkiI)(Ti−λkiI)∗ is Fredholm

but not invertible. So there exists a unit vector xk such that (Ti − λki)
∗xk = 0 for all

i = 1, · · · , n. If T has the quasitriangular property, it follows that (Ti − λkiI)xk = 0. In
particular, since the Ti are hyponormal, {xk} forms an orthonormal sequence. Further, we
have

n∑
i=1

||(Ti − λiI)xk|| ≤
n∑
i=1

(||(Ti − λkiI)xk||+ ||(λki − λk)xk||)

=

n∑
i=1

|λki − λi| −→ 0 as k → ∞.

Therefore λ ∈ σTe(T ) (see [Da1, Theorem 2.6] or [Ch2, Theorem 1]), which proves (195)
and completes the proof.

Corollary 4.5. A commuting n-tuple of normal operators satisfies Weyl’s theorem (I) and
hence Weyl’s theorem (II).

Proof. Immediate from (193) and Theorem 4.4.

Corollary 4.6. (Riesz-Schauder theorem in several variables) Let T = (T1, · · · , Tn) be a
doubly commuting n-tuple of hyponormal operators. If T has the quasitriangular property
then

ω(T ) = σTb(T ).

Proof. In view of Lemma 4.3, we need to show that σTb(T ) ⊂ ω(T ). Indeed if λ ∈ σT (T ) \
ω(T ) then by (195), λ ∈ isoσT (T ), and hence T − λI is Taylor-Browder.
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4.2 Browder’s theorem in several variables

We give a several-variables version of Browder’s theorem.

Definition 4.7. If T = (T1, · · · , Tn) is a commuting n-tuple then we say that Browder’s
theorem holds for T if σT (T ) \ σTw(T ) = R(T ).

We then have:

Theorem 4.8. Let T = (T1, · · · , Tn) be a commuting n-tuple. Then we have:

(i) Weyl’s theorem (I) implies Browder’s theorem.

(ii) Each of the following conditions is equivalent to Browder’s theorem:

(a) σT (T ) = σTw(T ) ∪ π00(T );
(b) σTw(T ) = σTb(T );

(c) σT (T ) \ σTw(T ) ⊂ isoσT (T ).

(iii) Necessary and sufficient for Weyl’s theorem (I) is Browder’s theorem together with
either of the following:

(d) σTw(T ) ∩ π00(T ) = ∅;
(e) π00(T ) ⊂ R(T ).

Proof. (i) Evident.
(ii) Implication Browder’s theorem ⇒ (a) comes from the fact R(T ) ⊂ π00(T ). If (a)

holds then σT (T ) \ σTw(T ) = π00(T ) \ σTw(T ) ⊂ R(T ). The remaining part is evident.
(iii) Note that (e) implies (d) with no assumption. Browder’s theorem says that σT (T ) \

σTw(T ) is a subset of π00(T ), while (e) ensures that π00(T ) is a subset of this complement.
Also the inclusion π00(T ) ⊂ isoσT (T ) and Weyl’s theorem (I) gives (e).

The disjoint condition (d) of Theorem 4.8 can fail whether or not Browder’s theorem
holds. For example, let

V : (x1, x2, · · · ) 7→ (
1

2
x2,

1

3
x3,

1

4
x4, · · · ) on ℓ2.

If T := (V, V ) then σT (T ) = σTe(T ) = σTw(T ) = σTb(T ) = {(0, 0)}. Since(
V
V

)−1

(0) = V −1(0) = Cδ1 = {(λ, 0, 0, · · · ) : λ ∈ C}

is of dimension 1, we have that π00(T ) = {(0, 0)}. Note that Browder’s theorem holds for
T , while Weyl’s theorem mark I does not.

Theorem 4.9. Let T = (T1, · · · , Tn) be a commuting n-tuple. Necessary and sufficient for
Browder’s theorem to hold for T is that

accσT (T ) ⊂ σTw(T ). (196)

Hence, in particular, Browder’s theorem holds for n-tuples of operators with finite spectrum.
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Proof. If (196) holds then σT (T ) \ σTw(T ) ⊂ isoσT (T ), giving Browder’s theorem. The
converse is evident. If σT (T ) consists of finite elements then T satisfies (196).

For the single-variable case, Browder’s theorem holds for a compact operator K because

accσ(K) ⊂ {0} ⊂ σe(T ).

However, if n ≥ 2 this is not the case. For example, let

K : (x1, x2, · · · ) 7→ (x1,
1

2
x2,

1

3
x3, · · · ) on ℓ2.

Then σ(K) = { 1
n : n ∈ N} ∪ {0}. Put T := (K,K). Then

accσT (T ) = {(0, 0), (0, 1
n
), (

1

n
, 0) : n ∈ N}.

However, (0, 1
n ) /∈ σTw(T ): indeed, by Lemma 4.2, (K,K − 1

n ) is Taylor Weyl since K − 1
n

is Fredholm.

4.3 Concluding remarks and open problems

It was known that

(i) If (A1, · · · , An) and
((

A1 B1

0 C1

)
, · · · ,

(
An Bn
0 Cn

))
are invertible then (C1, · · · , Cn) is in-

vertible.

(ii) If (A1, · · · , An) and (C1, · · · , Cn) are invertible then
((

A1 B1

0 C1

)
, · · · ,

(
An Bn
0 Cn

))
is in-

vertible.

Problem 4.10. If (A B
0 C ) ≡

((
A1 B1

0 C1

)
, · · · ,

(
An Bn
0 Cn

))
, find a necessary and sufficient con-

dition for (A B
0 C ) to be invertible for some B.

If n = 1 then it was known that (A B
0 C ) is invertible for some B if and only if

(i) A is left invertible;

(ii) C is right invertible;

(iii) ran(A)⊥ ∼= ker (C).

Problem 4.11. What is a kind of several variable version of the punctured neighborhood
theorem ?

The punctured neighborhood theorem says that ∂σ(T ) \σe(T ) ⊂ isoσ(T ). Our question
is that if T = (T1, · · · , Tn) then

∂σT (T ) \ σTe(T ) ⊂ ( ? ) of σT (T ).
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Problem 4.12. rm (Deformation Problem) Given two Fredholm n-tuples A = (A1, · · · , An)
and B = (B1, · · · , Bn) ∈ F with the same index, is it always possible to find a continuous
path γ : [0, 1] → F such that γ(0) = A and γ(1) = B ?

The answer for n = 1 is yes. Also if dimH <∞ then the answer is affirmative (cf. [Cu1],
[Cu2]).

R. Curto and M. Putinar [CP] showed that

σT (N) ⊂ σT (S) ⊂ ησT (N).

If n = 1 then σ(S) is obtained from σ(N) by “filling in some holes”.

Problem 4.13. If T = (T1, · · · , Tn) is commutative then

(i) σT (T ) ⊂
∏n
j=1 σ(Tj);

(ii) If p ∈ polymn then σT (p(T )) = p(σT (T )).

Let T = (T1, · · · , Tn) be a hyponormal n-tuple of commuting operators and p ∈ polymn . Does
it follow

σT (p(T )) = 0 =⇒ p(T ) = 0 ?

If n = 1 then the answer is yes: indeed, if σ(p(T )) = 0 and hence p(σ(T )) = 0 then σ(T )
is finite, so that T should be normal, which implies that p(T ) is normal and quasinilpotent
then p(T ) = 0 (cf. [Cu2]).
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