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ABSTRACT

During the week of December 20-24, 2004, the author is one of two principal lecturers at the
Winter School 2004 of Operator Theory and Operator Algebras. In this lecture I attempt to
set forth some of the recent developments that had taken place in Toeplitz operator theory. In
particular I focus on the hyponormlaity and subnormality of Toeplitz operators on the Hardy space
of the unit circle.
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1 Preliminaries

In this lecture all Hilbert spaces will be understood to be complex and H will be a separable Hilbert
space. We write L£(H) for the algebra of all bounded linear operators on H and K(H) for the set
of compact operators on H. In this chapter we give basic notions and results which will be used in
the sequel: spectra and essential spectra, weighted shifts, hyponormality and subnormality, Fourier
transform and Beurling’s theorem, Hardy spaces and elementary properties of Toeplitz operators
on the Hardy space of the unit circle. We also present some proofs for the well-known results.

1.1 Spectra and Essential Spectra

If T € L(H), then the spectrum, denoted o(T"), and the point spectrum, denoted o,(T), of T are
defined by

o(T):={X e C:T — Xis not invertible};
op(T) :={A € C: T — X is not one-one}.

It is well-known that o(T) is a non-empty compact set in C. However o,(T) is liable to be empty.
For example, if U is the unilateral shift on ¢2, i.e.,

0

10
U .= L0
1 0

then o, (T) = 0. The spectral radius, denoted r(T'), of T' is defined by

r(T):= sup |\
Aeo(T)

By the Gelfand formula, we have )
r(T) = lim ||T"||~.

n— oo

An operator T' € L(H) is called Fredholm if T has closed range with finite dimensional null
space and its range of finite co-dimension. The quotient map £(H) — L(H)/K(H) (=the Calkin
algebra) is denoted by m. Then by the Atkinson’s theorem,

T is Fredholm <= 7(T) is invertible in L(H)/K(H).



The index of a Fredholm operator T' € £(H) is defined by the equality
ind(T) := dim T71(0) — dim H/cl T(H) = dim T~ (0) — dim 7*~(0).

The function ind(-) satisfies the following:
1. (Index Product Theorem) ind (ST') = ind S + ind 7' for Fredholm operators S, T
2. (Index Stability Theorem) ind (T'+ K) = ind T if T is Fredholm and K is compact;

3. (Index Continuity Theorem) The map ind(-) is continuous.

The essential spectrum, denoted o.(T), of T € L(H) is defined by

0e(T) :={A € C:T — X is not Fredholm}.
By the Atkinson’s theorem,
0e(T) = oy k) (m(T)).

Thus o.(T) is compact. If dimH = oo then o(T') # (), and if instead dim H < oo then ¢.(T) =0
because this case forces £(H) = K(H). In particular,

0.(T+ K) =0.(T) for all compact operators K.

Write D for the open unit disk and let T = oD.
If U is the unilateral shift on ¢2 then (cf. [Conl])

1. o(U) = clD;

2. o,(U) =0;

3. Al <1 = dimker (U* — \) =1;
4. 0.(T) = 0Dy

5. Al<1 =ind(U— ) =—1.

Two operators S and T in L£(H) are said to be wunitarily equivalent if there exists a unitary
operator V such that VI'V~! = S, denoted by T = S.

An operator T is called quasinilpotent if o(T) = {0}, or equivalently, lim,, ,~ ||7]|* = 0. For

example, if

0
10
1
T = 2 0
3 0
then lim,,_ o ||T"|\% = lim, o0 (1 . % e %) " =1imy, e ( )E = 0, so that T is quasinilpotent.

Finally, o(T') and 0. (T') enjoy the spectral mapping theorem: i.e., if f(z) is an analytic function
in an open neighborhood of ¢(T") then

f(o(T)) = 0.(f(T)) where o, =0, 0..



1.2 Weighted Shifts

Given a bounded sequence of positive numbers « : ag,aq, - (called weights), the (unilateral)
weighted shift W, associated with « is the operator on ¢?(Z. ) defined by Wye,, := aye,41 for all
n > 0, where {e,, }5°, is the canonical orthonormal basis for £2. Tt is straightforward to check that

W, is compact <— «, — 0.

Indeed, W, = UD, where U is the unilateral shift and D is the diagonal operator whose diagonal
entries are au,.

We observe:
Proposition 1.2.1. If T = W,, is a weighted shift and w € D then T = wT.
Proof. If Ve, :=w"e, for all n then VT'V* = wT. O

As a consequence of Proposition 1.2.1, we can see that the spectrum of a weighted shift must
be a circular symmetry:
oc(Wa) = o(wWy) = wo(Wy,).

Indeed we have:

Theorem 1.2.2. If T = W, is a weighted shift with weight sequence a = {an 5% such that
Qapn — a4 then

(i) op(T) = 0;

(ii) o(T) ={A: [N < aq};

(iii) oe(T) ={A: [\l = ay};

(iv) [N\ < ay = ind(T — ) =—1.

g
g,

Proof. The assertion (i) is straightforward. For the other assertions, observe that if ay = 0 then
T is compact and quasinilpotent. If instead oy > 0 then T'— a4 U (U :=the unilateral shift) is a
weighted shift whose weight sequence converges to 0. Hence T' — . U is a compact and hence

0e(T) =0c(ayU) = ayo.(U) = {A:|A =at}.
If |A] < a4 then T'— A is Fredholm and
ind(T — A\) = ind(ayU — X) = —1.

In particular, {\ : |A\| < a;} C o(T). By the assertion (i), we can conclude that o(T) = {\: |A| <
O[+}.

Theorem 1.2.3. If T =W, is a weighted shift with weight sequence a = {,}52 then

2
a1 — Qg
[T%,7] = ad — a2

Proof. From a straightforward calculation. O



1.3 Hyponormality and Subnormality

An operator T € L(H) is said to be normal if T*T = TT*, hyponormal if the self-commutator
[T*,T)=T*T —TT* > 0, and subnormal if T' = N|3, where N is normal on some Hilbert space
K2OH.

The following lemma is elementary:

Proposition 1.3.1. subnormal = hyponormal.

Proof. If S is subnormal then there exists a normal operator N = (ﬁ g) Thus,
_AreAT «_ [[5*, 8] —AA* S*A
which implies [S*, S] = AA* > 0. O

Definition 1.3.2. Let p be a compactly supported measure on C and define N, on L?(p) by

N,f ==zf.

Then N, is normal since N f = Zf. If P2?(u) denotes the closure in L?(y) of analytic polynomials,
define S, on P?(p) by
Suf ==zf.

Then S, is subnormal and N, is a normal extension of S,,.

Definition 1.3.3. A vector eg is called a cyclic vector for T if
H = cl{p(T)ep : p is a polynomial}
and a star-cyclic vector for T if
H=clTey: T € C*(T)},

where C*(T') denotes the C*-algebra generated by T and 1. The operator T' € L(H) is called a
cyclic [star-cyclic] operator if T has a cyclic [star-cyclic] vector.

It was known [Conl], [Cond| that if T € L(#H) then
1. T is a star-cyclic normal operator <= T = N,;
2. T is a cyclic subnormal operator <= T = 5,,;

3. If 4 = Lebesgue measure on D then N, is the bilateral shift on L*(T).

We here record basic properties of hyponormal operators which have been developed in the
literature.

Proposition 1.3.4 (Basic Properties of Hyponormal Operators). Let T' € L(H) be a hyponormal
operator. Then we have:

(a) If T = S then S is also hyponormal;



(b) T — X is hyponormal for every A € C;

(¢) If TM C M then T|p is hyponormal;

(d) ||T*h|| <||Th]|| for all h, so that ker(T — X\) C ker(T — \)*;
(e) If f and g are eigenvectors corresponding to distinct eigenvalues of T then f L g;
(f) If X € 0,(T) then ker (T' — X) reduces T';

(g) If T is invertible then T~ is hyponormal;
(h) (Stampfli, 1962) ||T™"|| = ||T||*, so that ||T|| = r(T) (r(-) denotes spectral radius);
(i) T is isoloid, i.e., isoo(T) C 0,(T);

(G) If A ¢ o(T) then dist(X, o(T)) = |[(T — X\)71||~L.

(k) (Berger-Shaw theorem) If T is cyclic then tr[T*,T] < Lu(o(T));

(1) (Putnam’s Inequality) || [T, T]|| < 2u(o(T)).

Proof. (a)-(f) are straightforward.
(g) Note that if T is positive and invertible then

T>1T <1,

Since T*T > TT* and T is invertible we have T=Y(T*T)(T~Y)* > T=YTT*)(T~1)* = 1, so that
T*T~YT*)'T < 1, and hence

T=YT*)~t = (T~ Y (T T~ (T ~'T)T~! < (7).
(h) Observe
1T fI[P = (T, T f) = (T T £, 77 ) < ([T T fI] T < T 1T L
We use an induction. Clearly, it is true for n = 1. Suppose ||T*|| = ||T||* for 1 < k < n. Then
IT1P = (17" < (|7 7= 17| |77 so that [T < |77+,
(j) Observe that
1 1

T =2~ maeo(ny 1 uealroy

Il = dist(\, (7).

(1) Let f € H with ||f]| =1 and K := cl{r(T)f : r is a rational function}. If S := T'|¢ then S
is a cyclic hyponormal operator and ||S* f|| < ||T*f||. By the Berger-Shaw theorem,

(T, 71 ) = ITAP = N fIP < NISFIP = IS™FI1P = (5™, 81f. f)

< tr[5°,8] < p(o(S)) < _p(o(T))

Since f was arbitrary the result follows.
For (i) and (k), refer [Con2]. O

Theorem 1.3.5 (A Characterization of Subnormality). If T € L(H) then the following are equiv-
alent:



(a) T is subnormal;

(b) (Bram-Halmos, 1955)

I T e Tk
T T*T ... T*T
. =0 fallk>1).
Tk T*TF .. TRTE
()
[T*,T] [T*%,T] ... [T 1)
[T*, 72 [T*%,T% ... [T* 17
. . . >0 (all k> 1).
[T*,TF] [T*2,TF] ... [T** T¥
(d) (Embry, 1973) There is a positive operator-valued measure Q on some interval [0,a] C R
such that
™" = /tQ"dQ(t) for all n > 0.
Proof. See [Con2]. O

Condition (b) (or equivalently, condition (c)) provides a measure of the gap between hyponor-
mality and subnormality. In fact, the positivity condition (b) for & = 1 is equivalent to the
hyponormality of 7', while subnormality requires the validity of (b) for all k. So we define T to
be k-hyponormal whenever the (k + 1) x (k + 1) operator matrix in (b) is positive semi-definite.
Then the Bram-Halmos criterion can be rephrased as saying that 7" is subnormal if and only if T’
is k-hyponormal for every k > 1 ([CMX]).

Theorem 1.3.6 (Berger’s Theorem). Let T = W, be a weighted shift with weight sequence o =
{an} and define the moment of T by

Yo:=1 and ~,:=cakal---a?_| (n>1).

Then T is subnormal if and only if there exists a probability measure v on [0, ||T||?] such that
(1.3.6.1) Yo = / t"dv(t) (n>1).
(0,17[1?]

Proof. (=) Note that T' is cyclic. So if T" is subnormal then 7' = S,,, i.e., there is an isomorphism
U : ¢* — P?(u) such that
Uepy=1 and UTU '=S9,.

Observe T™ ey = /Vnen for all n. Also, U(T"eq) = SpUey = S 1 =2". So

/Izlz"du:/IUT"eOIQdu:/IU(\/fyzen)Pdu:wn/|Uen|2du:m|Uen||2 = Y-

If v is defined on [0, ||T|?] by
V(&) = u({z: | € A})

then v is a probability measure and ~,, = [ t"dv(t). '
(<) If v is the measure satisfying (1.3.6.1), define the measure p by du(re’’) = F=dfdv(r).
Then we can see that T"= §,,. O



Example 1.3.7. (a) The Bergman shift B, is the weighted shift with weight sequence a = {a, }
given by

n+1
n = > 0).
“ n+2 (n20)
Then B, is subnormal: indeed,
e L2 om0
T Tl T 3 nk 1l ntd

and if we define u(t) =t, i.e., du = dt then

. 1
/ P dp(t) = s
0

n—|—1:

(b) If o, : B,1,1,1,--- then W, is subnormal: indeed 7, = $2 and if we define du = 326, +
(1 — B%)dy then [ t"du = B> = .

Remark. Recall that the Bergman space A(D) for D is defined by
AD):={f:D— C: f is analytic with / |f|?du < oo}
D
Then the orthonormal basis for A(D) is given by {e, = vn+12": n=0,1,2,---} with du = 1dA.
The Bergman operator T : A(D) — A(D) is defined by
Tf==zf.

In this case the matrix (a;;) of the Bergman operator T with respect to the basis {e, = v/n + 12" :
n=20,1,2,---} is given by

Q5 = <T6j, €i>
={(T\j+12, Vi+1z%
=(/i+ 12T Vit 12

= (j+1)(i+1)/zﬂ‘+1zidu
D

1 27 1 . o .
=vVE+DE+1) = / / pITIH G000 g g
™ Jo 0

{ L (i=j+1)
0 (i#j+1):

therefore

0
T = NE)

%O
N
o



Recall ([Ath],[CMX],[CoS]) that T' € L(H) is said to be weakly k-hyponormal if
k
LS((T,T?,--- ,T")) := ZajTj ca=(ag, - ,a) € CF
j=1

consists entirely of hyponormal operators. If £ = 2 then T is said to be quadratically hyponormal.
Similarly, T is said to be polynomially hyponormal if p(T) is hyponormal for every polynomial
p € Clz]. Tt is known that k-hyponormal = weakly k-hyponormal, but the converse is not true in
general. The classes of (weakly) k-hyponormal operators have been studied in an attempt to bridge
the gap between subnormality and hyponormality ([Cul], [Cu2], [CuF1], [CuF2], [CuF3], [CLL],
[CuLl], [CuL2], [CuL3], [CMX], [DPY], [McCP]). The study of this gap has been only partially
successful. For example, such a gap is not yet well described for Toeplitz operators on the Hardy
space of the unit circle. For weighted shifts, positive results appear in [Cul] and [CuF3], although
no concrete example of a weighted shift which is polynomially hyponormal but not subnormal has
yet been found (the existence of such weighted shifts was established in [CP1] and [CP2]).



1.4 Fourier Transform and Beurling’s Theorem

A trigonometric polynomial is a function p € C(T) of the form ) ,_ arpz®. It was well-known
that the set of trigonometric polynomials are uniformly dense in C'(T) and hence is dense in L?(T).
In fact, if e, := 2", (n € Z) then {e, : n € Z} forms an orthonormal basis for L?(T). The Hardy
space H?(T) is spanned by {e, : n =0,1,2,---}. Write H®(T) := L*(T) N H?(T). Then H* is
a subalgebra of L>°.

Let m :=the normalized Lebesgue measure on T and write L? := L(T). If f € L? then the

Fourier transform of f, f: Z — C, is defined by

iy 27 )
Fi = (fen) = [ gram= 1 [7 goe-an

0

which is called the n-th Fourier coefficient of f. By Parseval’s identity,
f=>" Fnen,

which converges in the norm of L2. This series is called the Fourier series of f.

Proposition 1.4.1. (i) feL?= fe 2(Z);
(i) If V : L? — (*(Z) is defined by V f = f then V is an isomorphism.
(iii) If W = N,,, on L? then VWV =1 is the bilateral shift on (*(Z).

Proof. (i) Since by Parseval’s identity, > |f(n)\2 = ||f||? < o0, it follows fe (7).
(ii) We claim that ||V f|| = ||f]|: indeed, ||V f||> = ||fII> = D2 |f(n)|? = || f]|?. If f = 2" then

-~ JOifk#n
f(k){l if k=n,

so that fis the n-th basis vector in ¢2(Z). Thus ranV is dense and hence V is an isomorphism.
(iii) If {e, } is an orthonormal basis for £2(Z) then by (ii), V2" = e,,. Thus VIWz" = V(") =
ent1 = UV 2™ O
If T € L(H), write Lat T for the set of all invariant subspaces for T, i.e.,
LatT :={MCH: TMC M}.
Theorem 1.4.2. If uu is a compactly supported measure on T and M € LatN,, then
M = ¢H? ® L*(u|A),

where ¢ € L (1) and A is a Borel set of T such that ¢|A = 0 a.e. and |p|*n = m(:=the normalized
Lebesgue measure).

Proof. See [Con3, p.121]. O

Now consider the case where y = m (in this case, NV, is the bilateral shift). Observe
peL? [pPm=m = |¢| =1 ae.,
so that there is no Borel set A such that ¢|A = 0 and m(A) # 0. Therefore every invariant

subspace for the bilateral shift must have one form or the other. We thus have:

10



Corollary 1.4.3. If W is the bilateral shift on L? and M € Lat W then
either M = L*(m|A) or M = ¢H?

for a Borel set A and a function ¢ € L such that |¢p| =1 a.e.

Definition 1.4.4. A function ¢ € L [¢ € H™] is called a unimodular [inner] function if |¢| = 1
a.e.

The following theorem has had an enormous influence on the development in operator theory
and function theory.

Theorem 1.4.5 (Beurling’s Theorem). If U is the unilateral shift on H? then
LatU = {¢H? : ¢ is an inner function}.

Proof. Let W be the bilateral shift on L2. If M € LatU then M € Lat W. By Corollary 1.4.3,
M =L2(m|A) or M = ¢H?, where ¢ is a unimodular function. Since U is a shift,

(UM c(U"H? = {0},

so the first alternative is impossible. Hence ¢H? = M C H2?. Since ¢ = ¢ -1 € M, it follows
¢ € L°NH? = H®. O

11



1.5 Hardy Spaces

If feH? and f(z) = . ,—,anz" is its Fourier series expansion, this series converges uniformly on
compact subsets of D. Indeed, if |z| <r < 1, then

z|anzn|<(z|an|2) (zw”) <||f||2<2r2"> |

n=m

Therefore it is possible to identify H? with the space of analytic functions on the unit disk whose
Taylor coefficients are square summable.

Proposition 1.5.1. If f is a real-valued function in H' then f is constant.

Proof. Let a = [ fdm. By hypothesis, we have a € R. Since f € H', we have [ fz"dm = 0 for
n>1. So [(f —a)z"dm =0 for n > 0. Also,

0= [(f = a)mam= [(f - ) "dm (020)

so that [(f —a)z™dm = 0 for all integers n. Thus f — « annihilates all the trigonometric polyno-
mials. Therefore, f — a =0 in L. O

Corollary 1.5.2. If ¢ is inner such that ¢ = % € H? then ¢ is constant.

Proof. By hypothesis, ¢ + ¢ and @ are real-valued functions in H2. By Proposition 1.5.1, they
are constant, so is ¢. O

The proof of the following important theorem uses Beurling’s theorem.
Theorem 1.5.3 (The F. and M. Riesz Theorem). If f is a nonzero function in H?, then m({z €

D : f(z) = 0}) = 0. Hence, in particular, if f,g € H? and if fg = 0 a.e. then f =0 a.e. or
g=20 a.e
Proof. Let A = a Borel set of D and put

M:={hcH?:h(z) =0ae. on A}.

Then M is an invariant subspace for the unilateral shift. By Beurling’s theorem, if M # {0}, then
there exists an inner function ¢ such that M = ¢H?2. Since ¢ = ¢ -1 € M, it follows ¢ = 0 on A.
But |¢| =1 a.e., and hence M = {0}. O

A function f in H? is called an outer function if

HQ:\/{z”f:nZ()}.

So f is outer if and only if it is a cyclic vector for the unilateral shift.

Theorem 1.5.4 (Inner-Outer Factorization). If f is a nonzero function in H?, then
3 an inner function ¢ and an outer function g in H? s.t. f = ¢g.

In particular, if f € H*, then g € H®.

12



Proof. Observe M = \/{z"f :n >0} € LatU. By Beurling’s theorem,
3 an inner function ¢ s.t. M = ¢H?.

Let g € H? be such that f = ¢g. We want to show that g is outer. Put A" = \/{z"g : n > 0}.
Again there exists an inner function 1 such that A" = ¢)H2. Note that

¢H? := \/{z"f :n >0} = \/{z"¢g : n > 0} = ¢ppH".
Therefore there exists a function h € H? such that ¢ = ¢h so that ¢» = h € H2. Hence v is a

constant by Corollary 1.5.2. So N' = H? and g is outer. Assume f € H* with f = ¢g. Thus
lg| = |f] a.e. on 9D, so that g must be bounded, i.e., g € H*. O

13



1.6 Toeplitz Operators

Let P be the orthogonal projection of L?(T) onto H?(T). For ¢ € L°°(T), the Toeplitz operator
T, with symbol ¢ is defined by

T,f = P(pf) for fe H.

Remember that {z" : n=0,1,2,---} is an orthonormal basis for H2. Thus if ¢ € L> has the

Fourier coefficients
1 27
o(n) = — z"dt,
o(n) 5 /0 vz

then the matrix (a;;) for T, with respect to the basis {z" : n=0,1,2,---} is given by:
o 1 [
a;j = (Ty2?, 2") = —/ Wzl dt = 9(i — §).
2 0

Thus the matrix for T}, is constant on diagonals:

cChp €C_1 C_o9 C_3
C1 Co cC_1 C_2

(aij): Ca (1 Co -1 |, where Cjzg?(j):
C3 C2 (&) Co

Such a matrix is called a Toeplitz matriz.
Lemma 1.6.1. Let A € L(H?). The matriz A relative to the orthonormal basis {z" : n =
0,1,2,---} is a Toeplitz matriz if and only if
U*AU = A, where U is the unilateral shift.
Proof. The hypothesis on the matrix entries a;; = (Az7,2") of A if and only if
(1.6.1.1) @it1 41 = a5 (4,7 =0,1,2,---).
Noting Uz"™ = z"*+! for n > 0, we get

(1.6.1.1) <= (U*AUZ?,2") = (AUZ?  Uz") = (A7 2P = (A2, 2%, Vi, j
— UAU = A.

Remark. AU =UA < Ais an analytic Toeplitz operator (i.e., A =T, with ¢ € H®).

Consider the mapping & : L — L(H?) defined by £(¢) = T,,. We have:
Proposition 1.6.2. ¢ is a contractive x-linear mapping from L to L(H?).

Proof. Tt is obvious that ¢ is contractive and linear. To show that £(p)* = £(9), let f,g € H2.
Then

(Tsf,9) = (P(®f),9) = (@f, 9) = (frp9) = (f, P(v9)) = (f, Tpg) = (T, f,9):
so that {(¢)* =T =Ty = £(®). O

14



Remark. £ is not multiplicative. For example, T.7% # [ = Ty = T, = T.z. Thus ¢ is not a
homomorphism.

In special cases, £ is multiplicative.
Proposition 1.6.3. T, Ty, =T,, <= ecither ¢ or p is analytic.
Proof. (<) Recall that if f € H? and ¢ € H*™ then o f € H2. Thus, T, f = P(¢f) =¥ f. So

T,Tpf =Tu(Wf) = Plovf) =Topf, ie., ToTy =Tuy.

Taking adjoints reduces the second part to the first part.
(=) From a straightforward calculation. O

Write M, for the multiplication operator on L2 with symbol ¢ € L>™. The essential range of
v € L™ = R(p) :=the set of all X for which u<{x Sf(x) = Al < e}> > 0 for any € > 0.

Lemma 1.6.4. If ¢ € L>°(u) then o(M,) = R(p).
Proof. If X ¢ R(p) then

Je>0s.t. u({x He(x) = Al < 6}) =0, ie, |p(x) — A > €a.e. [u].

So
1

9(96‘) = W

Hence M, is the inverse of M, — A, i.e., A ¢ o(M,,). For the converse, suppose A € R(y). We will
show that

€ L>¥(X, p).

3 a sequence {g,} of unit vectors € L? with the property ||[M,g, — Agn|| — O,

showing that M, — X is not bounded below, and hence A\ € o(M,). By assumption, {z € T :
lp(x) — Al < 1} has a positive measure. So we can find a subset

EnC{xe’H‘:|<p(x)—)\|<1}
n

XEy

VH(ER)

satisfying 0 < u(E,) < co. Letting g, := , we have that

() = Ngn(@)] < ~lgale)],

and hence [[(¢ — A)gnllz < L — 0. -

Proposition 1.6.5. If ¢ € L is such that T, is invertible, then ¢ is invertible in L.

Proof. In view of Lemma 1.6.4, it suffices to show that
T, is invertible = M, is invertible.

If T}, is invertible then
Je>0 st. [|Tuf|| > ¢llfll, Vfe H2.
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So for n € Z and f € H?,

1My (z" DIl = [lez" fIl = Nl f 1] Z [P )l = 1T fI] = ell £Il = ell2" £1I-

Since {z"f : f € H?,n € Z} is dense in L?, it follows ||Myg|| > €||g|| for g € L?. Similarly,
[[M5f|| > €|l fl| since T;; = T is also invertible. Therefore M, is invertible. O

Theorem 1.6.6 (Hartman-Wintner). If ¢ € L then
(i) R(p) = a(M,) C o(T,)
(i) ||T]| = llelloo (i-e., & is an isometry).

Proof. (i) From Lemma 1.6.4 and Proposition 1.6.5.

(iD) [lelloe = suPren(p) Al < sUPseo(T,) Al = 7(T5) < [[Tol| < [[#]|oo-

From Theorem 1.6.6 we can see that
(i) If T, is quasinilpotent then T\, = 0 because R(p) C 0(T,) = {0} = ¢ =0.

(ii) If T, is self-adjoint then ¢ is real-valued because R(y¢) C o(T,) C R.

If & C L™, write 7(&) := the smallest closed subalgebra of £(H?) containing {7}, : ¢ € &}.

If A is a C*-algebra then its commutator ideal C is the closed ideal generated by the commu-
tators [a,b] := ab — ba (a,b € A). In particular, C is the smallest closed ideal in A such that A/C
is abelian.

Theorem 1.6.7. If C is the commutator ideal in T (L), then the mapping &, induced from L
to T(L*®)/C by & is a x-isometrical isomorphism. Thus there is a short exact sequence

0 — C — T(L*) — L* — 0.

Proof. See [Do]. O

The commutator ideal C contains compact operators.

Proposition 1.6.8. The commutator ideal in T(C(T)) = K(H?). Hence the commutator ideal of
T (L) contains K(H?).

Proof. Since T, is the unilateral shift, we can see that the commutator ideal of 7 (C(T)) contains
the rank one operator T;T, — T,T7. Moreover, 7(C(T)) is irreducible since T, has no proper
reducing subspaces by Beurling’s theorem. Therefore 7 (C(T)) contains X(H?). Since T is normal
modulo a compact operator and generates the algebra 7 (C(T)), it follows that T(C(T))/K(H?)
is commutative. Hence KC(H?) contains the commutator ideal of 7(C(T)). But since K(H?) is
simple (i.e., it has no nontrivial closed ideal), we can conclude that (H?) is the commutator ideal

of T(C(T)). O
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Corollary 1.6.9. There exists a *-homomorphism ¢ : T(L>®)/K(H?) — L™ such that the
following diagram commutes:

T(L>) - T(L*>)/K(H?)

N

Lo(T)

Corollary 1.6.10. Let ¢ € L*>. IfT, is Fredholm then ¢ is invertible in L>.

Proof. 1f T, is Fredholm then 7(T},) is invertible in 7 (L>)/K(H?), so ¢ = p(T,) = (( o m)(T,) is
invertible in L°°. O

From Corollary 1.6.10, we have:

(i) ||IT,|| <||T, + K|| for every compact operator K because ||T,|| = ||¢||s = [|¢(T + K)|| <
T, + K]|.

(ii) The only compact Toeplitz operator is 0 because ||K|| < ||K + K|| = K =0.

Proposition 1.6.11. If ¢ is invertible in L such that R(p) C the open right half-plane, then
T, is invertible.

Proof. If A = {z € C : |z — 1| < 1} then there exists ¢ > 0 such that eR(p) C A. Hence
|lep — 1|| < 1, which implies ||I — T.,|| < 1. Therefore T¢, = €T, is invertible. O

Corollary 1.6.12 (Bram-Halmos). If ¢ € L*°, then o(T,) C convR(y).

Proof. 1t is sufficient to show that every open half-plane containing JR(y) contains o(T,). This
follow at once from Proposition 1.6.11 after a translation and rotation of the open half-plane to
coincide with the open right half-plane. O

Proposition 1.6.13. If ¢ € C(T) and ¢ € L™ then
T, Ty —Tyy and TyTl,—Ty, are compact.

Proof. If p € L*°, f € H? then

T,T5f = TyP(zf) = Ty(zf — F(0)7)
= PMy (?f - f(o)z)
= P(yzf) — f(0)P(¢%)

=Ty=zf = f(0)P(¥Z),

which implies that 171> — Tyz is at most a rank one operator. Suppose TyT5» — Tyzn is compact
for every p € L and n=1,--- ,N. Then

T¢TEN+1 — T¢3N+1 = (T¢T2N — TwZN) =+ (TwENTE — T(wEN)E)v
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which is compact. Also, since TyT.n = Ty.n (n > 0), it follows that T,,T, — Ty, is compact for
every trigonometric polynomial p. But since the set of trigonometric polynomials is dense in C(T)
and ¢ is isometric, we can conclude that T}, T, — Ty, is compact for ¢ € L> and ¢ € C(T). O

Theorem 1.6.14. T (C(T)) contains K(H?) as its commutator and the sequence
0 — KH?) — T(C(T)) — C(T) — 0
is a short exact sequence, i.c., T (C(T))/K(H?) is x-isometrically isomorphic to C(T).
Proof. By Proposition 1.6.13 and Corollary 1.6.9. O

Proposition 1.6.15 (Coburn). If ¢ # 0 a.e. in L, then
either ker T,, = {0} or ker T;; = {0}.
Proof. 1f f € ker T, and g € ker T}, i.e., P(¢f) = 0 and P(%g)=0, then
Bf € zH? and g € zH%

Thus Bfg, ¢gf € zH' and therefore ¢ fg = 0. If neither f nor g is 0, then by F. and M. Riesz
theorem, ¢ = 0 a.e. on T, a contradiction. O]

Corollary 1.6.16. If ¢ € C(T) then Ty, is Fredholm if and only if ¢ vanishes nowhere.

Proof. By Theorem 1.6.14, T, is Fredholm if and only if 7(7,) is invertible in 7(C(T))/K(H?) if
and only if ¢ is invertible in C(T). O

Corollary 1.6.17. If ¢ € C(T), then o.(T,) = ¢(T).
Proof. 0.(T,) = o(T, + K(H?)) = o () = ¢(T). O

Theorem 1.6.18. If ¢ € C(T) is such that Ty, is Fredholm, then
ind (T,) = —wind (¢).
Proof. We claim that if ¢ and ¢ determine homotopic curves in C\ {0}, then
ind (T,) = ind (T3).
To see this, let ® be a constant map from [0,1] x T to C\ {0} such that
D(0,e™) = p(e™) and ®(1,e") = (™).

If we set ®,(e?) = ®(\,e'), then the mapping A — Ts, is norm continuous and each Ty, is a
Fredholm operator. Since the map ind is continuous, ind(7,,) = ind(Ty). Now if n = wind(y) then
¢ is homotopic in C\ {0} to z". Since ind (T.») = —n, we have that ind (T,,) = —n. O

Theorem 1.6.19. If U is the unilateral shift on H? then comm(U) = {T}, : ¢ € H*}.
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Proof. Tt is straightforward that UT, = T, U for ¢ € H*®, ie., {T,: ¢ € H*®} C comm(U). For
the reverse we suppose T € comm(U), i.e., TU = UT. Put ¢ := T(1). So ¢ € H? and T(p) = ¢p
for every polynomial p. If f € H?, let {p,,} be a sequence of polynomials such that p, — f in H?.
By passing to a subsequence, we can assume p,(z) — f(z) a.e. [m]. Thus ¢p, = T(pn) — T(f)
in H? and ¢p,, — @f a.e. [m]. Therefore Tf = of for all f € H2. We want to show that ¢ € L>®
and hence p € H*®. We may assume, without loss of generality, that ||T'|| = 1. Observe

TFf=Ff for fe H? k> 1.

Hence ||¢*f||2 < ||f||2 for all k > 1. Taking f = 1 shows that [|¢|**dm <1 for all k > 1. If
A:={z€0dD: |p(z)| > 1} then [, [p|**dm <1 for all k > 1. If m(A) # 0 then [, |¢|**dm — oo
as k — 0o, a contradiction. Therefore m(A) = 0 and hence ¢ is bounded. Therefore T' = T,, for
feH™. 0

D. Sarason [Sa] gave a generalization of Theorem 1.6.19.
Theorem 1.6.20 (Sarason’s Interpolation Theorem). Let
(i) U =the unilateral shift on H?;
(ii) K :=H?o¢yH? (@ is an inner function);
(iii) S := PU|x, where P is the projection of H? onto K.
If T € comm(S) then there exists a function ¢ € H*™ such that T = Ty | with ||¢||e = ||T|.

Proof. See [Sa). O
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2 Hyponormality of Toeplitz operators

An elegant and useful theorem of C. Cowen [Cow3] characterizes the hyponormality of a Toeplitz
operator T}, on the Hardy space H?*(T) of the unit circle T C C by properties of the symbol
@ € L*°(T). This result makes it possible to answer an algebraic question coming from operator
theory — namely, is T}, hyponormal ? - by studying the function ¢ itself. Normal Toeplitz operators
were characterized by a property of their symbol in the early 1960’s by A. Brown and P.R. Halmos
[BH], and so it is somewhat of a surprise that 25 years passed before the exact nature of the
relationship between the symbol ¢ € L and the positivity of the selfcommutator [T}, T,] was
understood (via Cowen’s theorem). As Cowen notes in his survey paper [Cow2], the intensive study
of subnormal Toeplitz operators in the 1970’s and early 80’s is one explanation for the relatively late
appearance of the sequel to the Brown-Halmos work. The characterization of hyponormality via
Cowen’s theorem requires one to solve a certain functional equation in the unit ball of H>°. However
the case of arbitrary trigonometric polynomials ¢, though solved in principle by Cowen’s theorem,
is in practice very complicated. Indeed it may not even be possible to find tractable necessary and
sufficient conditions for the hyponormality of T}, in terms of the Fourier coefficients of ¢ unless
certain assumptions are made about . In this chapter we present some recent development in this
research.

2.1 Cowen’s Theorem

In this section we present Cowen’s theorem. Cowen’s method is to recast the operator-theoretic
problem of hyponormality of Toeplitz operators into the problem of finding a solution of a certain
functional equation involving its symbol. This approach has been put to use in the works [CLL],
[CuLl], [CuL2], [CuL3], [FL1], [FL2], [Gul], [HKL1], [HKL2], [HL], [KL], [NaT], [Zhu] to study
Toeplitz operators.

We begin with:

Lemma 2.1.1. A necessary and sufficient condition that two Toeplitz operators commute is that
either both be analytic or both be co-analytic or one be a linear function of the other.

Proof. Let o = > ;2" and ¢y =3 y B;z7. Then a straightforward calculation shows that

T, Ty =TyT, <= aiy1f-j—1 = Pit1a_j—1 (i,j >0).
Thus either a_;_; = B3_;_1 =0 for j > 0, i.e., ¢ and % are both analytic, or o;; 41 = B;11 = 0 for
i >0, i.e., ¢ and ¢ are both co-analytic, or there exist 49, jo such that a;,+1 # 0 and a—;,—1 # 0.

So for the last case, if the common value of f_j,_1/a_;,—1 and Bi,4+1/as,+1 is denoted by A, then

Bit1=Aaiy1 (120) and B_j_1=Aa_j_1 (j=>0).
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Therefore, B = Aoy, (k #0). O

Theorem 2.1.2 (Brown-Halmos). Normal Toeplitz operators are translations and rotations of
hermitian Toeplitz operators i.e.,

T, normal <= 3 o, f € C, a real valued ¢ € L™ s.t. T, = ol + B1.

Proof. If o =, a;z", then

= E ozt = E a_; 2.
i i

So if ¢ is real, then ; = @—;. Thus no real ¢ can be analytic or co-analytic unless ¢ is a
constant. Write T, = T, 4i,,, Where @1, o are real-valued. Then by Lemma 2.1.1, T, T = 15T,
it T, T,, = T,,T,, iff either ¢ and @2 are both analytic or ¢, and @9 are both co-analytic or
w1 =aps+ f (a,8€C). Soif p# a constant, then ¢ = aps + 5+ ips = (a +i)p2 + . O

For ¢ € L*°, the Hankel operator Hy is the operator on H? defined by

Hyf=J(I - P)(¥f) (feH?),
where J is the unitary operator from (H?)* onto H? :

J(zT) =2""1 (n>1).

Denoting v*(z) := v(Z), another way to put this is that Hy, is the operator on H? defined by

(2.1.2.1) < zuv, ) >=< Hyu,v* > for all v € H*™.

o0 a
n=—oo N

If ¢ has the Fourier series expansion ¢ := 3 2™, then the matrix of Hy is given by

The following are basic properties of Hankel operators.
1. H} = Hy-
2. HyU =U*Hy (U is the unilateral shift);
3. KerHy, = {0} or #H? for some inner function 6 (by Beurling’s theorem);
4. T,y —T,T, = HiHy;
5. H,Tp = Hyp =T H, (h € H®).

We are ready for:

Theorem 2.1.3 (Cowen’s Theorem). If ¢ € L is such that ¢ =g+ f (f,g € H?), then
T, is hyponormal <= g=c+ T3 f

for some constant ¢ and some h € H>® (D) with ||h||c < 1.
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Proof. Let ¢ = f 4+ (f,g € H?). For every polynomial p € H?,

<(T;T¢ _TGDT;) p) = (T, op; T > <T;P7T* )
=(fp+ P ,fp+ Pgp) — (Pfp+ gp, Pfp+ gp)
= (fp, fp) — (Pfp. Pfp) — (gp,3p) + (Pgp, Pgp)
= (fp.(I = P)fp) — (gp,(I — p)gp)
= ((I = P)fp,(I = P)fp) — (I — P)gp, (I — P)gp)
= || Hyppl|* — || Hgp||*.
Since polynomials are dense in H?,
(2.1.3.1) T, hyponormal <= ||[Hgul| < ||Hzul|, Vu € H?

Write I := cl ran(HT) and let S be the compression of the unilateral shift U to K. Since K is
invariant for U* (why: H7U = U*HT)’ we have §* = U*|x. Suppose T, is hyponormal. Define A
on ran(Hy) by

(2.1.3.2) A(Hju) = Hgu.
Then A is well defined because by (2.1.3.1)
Hzuy = Hyup = H?(ul —up) =0 = Hg(u1 —ug) =0.
By (2.1.3.1), ||A]| <1, so A has an extension to /C, which will also be denoted A. Observe that
HyU = AH;U = AU"H; = AS*H; and HyU = U"Hy = U AH7 = 5" AH7,

Thus AS* = 5*A on K since ranHy is dense in K, and hence SA* = A*S. By Sarason’s interpo-
lation theorem,

3k € H*(D) with ||k]|ec = ||A*|] = ||4]] s.t. A* = the compression of T} to K.

Since T,:‘H7 = Hka*, we have that K is invariant for 7T) = T3, which means that A is the
compression of T3 to K and

(2.1.3.3) Hy = TH7  (by (2.1.3.2)).

Conversely, if (2.1.3.3) holds for some k € H*(D) with ||k||cc < 1, then (2.1.3.1) holds for all w,
and hence T, is hyponormal. Consequently,

T, hyponormal <= Hg= TEH?.
But Hg = TEHf if and only if V u,v € H*>,
<ZU’U,g> = <H§ua ’U*> - <TEHTU7U*> = <Hfua k’U*>
= (zuk*v, f) = (zuv, k* f) = (zuv, Ti= ).
Since \/{zuv : u,v € H*®} = zH?, it follows that

Hg =TiHy <= g=c+Tf for h = k*.
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Theorem 2.1.4 (Nakazi-Takahashi Variation of Cowen’s Theorem). For ¢ € L, put
E(p) =={k e H : [|k||c <1 and ¢ — kip € H*}.
Then Ty, is hyponormal if and only if E(p) # @.
Proof. Let ¢ = f +g € L* (f,g € H?). By Cowen’s theorem,
T, is hyponormal <= g =c+ 1%f
for some constant ¢ and some k € H* with ||k||oo < 1. If o = kp+ h (h € H*®) then ¢ — kp =

G—kf+f—kge H®. Thusg— kf € H?, so that P(g — kf) = ¢ (c = a constant), and hence
g = ¢+ 1% f for some constant c. Thus T, is hyponormal. The argument is reversible. O
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2.2 Trigonometric Polynomial Symbols Cases

In this section we consider the hyponormality of Toeplitz operators with trigonometric polynomial
symbols. To do this we first review the dilation theory.

If B= f I), then B is called a dilation of A and A is called a compression of B. It was

well-known that every contraction has a unitary dilation: indeed if ||A]| < 1, then

B (( A (J_AA*)%)

I—A*A)z —A*
is unitary.
On the other hand, an operator B is called a power (or strong) dilation of A if B™ is a dilation
of A" for all m = 1,2,3,---. So if B is a (power) dilation of A then B should be of the form

B = (A 2) Sometimes, B is called a lifting of A and A is said to be lifted to B. It was also

*
well-known that every contraction has a isometric (power) dilation. In fact, the minimal isometric
dilation of a contraction A is given by

A 0 0 O
(I—A*A)z 0 0 0

B= 0 I 0 0
0 01 0

We then have:

Theorem 2.2.1 (Commutant Lifting Theorem). Let A be a contraction and T be a minimal
isometric dilation of A. If BA = AB then there exists a dilation S of B such that

s<f 2) ST =TS, and ||S| =Bl

Proof. See [GGK, p.658]. O

We next consider the following interpolation problem, called the Carathéodory-Schur Interpo-
lation Problem (CSIP).

Given ¢g, -+ ,cy—1 in C, find an analytic function ¢ on D such that
(i) llelleo < 1.

The following is a solution of CSIP.
Theorem 2.2.2.

Co
C1 Co O
CSIP is solvable <— C = Co c1 co is a contraction.
CN-1 CN-—2 '+ (€ Cg

Moreover, if ¢ is a solution if and only if T, is a contractive lifting of C which commutes with the
unilateral shift.
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Proof. (=) Assume that we have a solution . Then the condition (ii) implies

%0
T — %Y1 ®o O ;=3
D o1 w0 (pj =)
is a contraction because ||T,|| = |||l < 1. So the compression of T, is also contractive. In
particular,
0
¥1 %o O
Pn—1 Pn—2 tee ®Yo

must have norm less than or equal to 1 for all n. Therefore if CSIP is solvable, then ||C|| < 1.
(<) Let

Co
C1 Co O
C = Co Cc1 Co with HCH S 1
CN—-1 CN—-2 " C1 Co
and let
0
1 0
A= L0 .cN - CN.
1 0

Then A and C' are contractions and AC = C A. Observe that the unilateral shift U is the minimal
isometric dilation of A (please check it!). By the Commutant Lifting Theorem, C' can be lifted
to a contraction S such that SU = US. But then S is an analytic Toeplitz operator, i.e., S =
T, with ¢ € H*°. Since S is a lifting of C' we must have

()/O\(j):Cj (‘7:07177]\[71)

Since S is a contraction, it follows that ||¢||s = ||T,|| < 1. O
Now suppose ¢ is a trigonometric polynomial of the form
N
o) = 3 anz" (an £0).
n=—N
If a function k € H>(T) satisfies ¢ — kg € H*™ then k necessarily satisfies
N N

(2.2.2.1) kY @z =Y a2t € H®.

n=1 n=1

From (2.2.2.1) one computes the Fourier coefficients k(0),--- , k(N — 1) to be k(n) = ¢, (n =
0,1,---,N — 1), where ¢g,c1,- - ,cny—1 are determined uniquely from the coefficients of ¢ by the
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following relation

Co a1 as as . anN a_q
C1 az as ... . a—2
(2.2.2.2) =9

CN-1 an a_n
Thus if k(2) = 3772 ¢;27 is a function in H* then
p—kp e H® <= cg,c1, -+ ,cn—1 are given by (2.2.2.2).

Thus by Cowen’s theorem, if ¢o,c1, -+, cy—1 are given by (2.6) then the hyponormality of T, is
equivalent to the existence of a function k& € H* such that

k() =c¢; (j =0, ,N=1)
k]l < 1,
which is precisely the formulation of CSIP. Therefore we have:

Theorem 2.2.3. If p(z) = Zg:_N anz"™, where any # 0 and if cg,c1,- -+ ,cn—1 are given by
(2.2.2.2) then

Co
C1 Co O
T, is hyponormal <= C = Co c1 co s a contraction.
CN—-1 CN-2 “*° €1 Co
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2.3 Bounded Type Symbols Cases

A function ¢ € L is said to be of bounded type (or in the Nevanlinna class) if there are functions
1,19 in H*®(D) such that
_ ¥1(2)

plz) =
(=) Pa(2)
for almost all z in T. Evidently, rational functions in LL°° are of bounded type.

If 0 is an inner function, the degree of 6, denoted by deg(6), is defined by the number of zeros
of 0 lying in the open unit disk D if 6 is a finite Blaschke product of the form

0(z zeif @ i|<1forj=1,---,n),
=TT (3l <iors )

otherwise the degree of 6 is infinite. For an inner function 6, write
H(h) := H? © fH>.
Note that for f € H2,
(L5, T, £) = T 1P = 1T5£117 =l f I = [[H fI? = (e f 1P = [ Hpf 1)
= |[HzfII* = [ H, £

Thus we have
T, hyponormal <= ||Hgf|| > ||H,f|| (f € H?).

Now let ¢ =g+ f € L™, where f and g are in H2. Since H,U = U*H,, (U =the unilateral shift),
it follows from the Beurling’s theorem that

ker H? =0,H?> and ker Hy = 0:H? for some inner functions 6y, 6;.
Thus if T, is hyponormal then since ||H7h|| > [[Hghl| (h € H?), we have
(2.3.0.1) 0oH? = ker Hy C ker Hy = 0, H?,
which implies that 6, divides 6y, so that 8y = 6165 for some inner function 6s.
On the other hand, note that if f € H? and f is of bounded type, i.e., f =12/ (¢; € H®),
then dividing the outer part of 1y into ¥ one obtain f = /60 with 6 inner and v € H*, and

hence f = 6. But since f € H? we must have ¢ € H(f). Thus if f € H? and f is of bounded
type then we can write

(2.3.0.2) f=00 (0inner, v € H(0)).

Therefore if ¢ = g+ f is of bounded type and T, is hyponormal then by (2.3.0.1) and (2.3.0.2),
we can write

f=0.0a and g =6:b,
where a € H(0102) and b € H(61).
We now have:
Lemma 2.3.1. Let o =g+ f € L™, where f and g are in H?. Assume that
(2.3.1.1) f=0.6a and g=0:b
for a € H(6162) and b € H(61). Let ¢ := le + 9. Then T, is hyponormal if and only if
Ty is.
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Proof. This assertion follows at once from [Gu2, Corollary 3.5]. O
In view of Lemma 2.3.1, when we study the hyponormality of Toeplitz operators with bounded

type symbols ¢, we may assume that the symbol ¢ =g+ f € L is of the form

(2.3.1.2) f=0a and g = 0b,

where 0 is an inner function and a,b € H(#) such that the inner parts of a,b and 6 are coprime.

On the other hand, let f € H*> be a rational function. Then we may write

n l;—1 -
f:p,ﬂzﬂ—ZZ# (0 <ai <1),

i=1 j=0

where p,,,(z) denotes a polynomial of degree m. Let 6 be a finite Blaschke product of the form

n li
Z— Q;
0:zm|| ! .
Z__1<1—aiz>

Observe that

Qij Qg ( Z— 1 )

1—0472:17\0@\2 lfoTiz—’_oz:i

Thus f € H(z0). Letting a := 6 f, we can see that a € H(z0) and f = #a. Thus if p = g+ f € L™,
where f and g are rational functions and if T, is hyponormal, then we can write

f=60a and g=06b
for a finite Blaschke product 6 with 6(0) = 0 and a,b € H(6).

Now let 6 be a finite Blaschke product of degree d. We can write

(2.3.1.3) 0= ][ B,
=1

where B;(z) = 222 (lay| < 1), n; > 1and Y1, n; = d. Let 0 = €% H;l:l B; and each zero of

1—a;z’

0 be repeated according to its multiplicity. Note that this Blaschke product is precisely the same
Blaschke product in (2.3.1.3). Let

(2.3.1.4) ¢j = dL Bj 1Bj o---B; (1<j<d),

1-ajz

where ¢ :=dy(1 —agz)"! and d; := (1 — |aj\2)%. It is well known that {¢;}{ is an orthonormal
basis for H(0) (cf. [FF,Theorem X.1.5]). Let » = g+ f € L, where g = 6b and f = fa for
a,b € H(0) and write

Clp) ={keH>*:p—kpecH>}

Then k is in C(¢p) if and only if b — kfa € H2, or equivalently,

(2.3.1.5) b— ka € 0H.
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Note that 6™ (a;) = 0 for all 0 < n < n;. Thus the condition (2.3.1.5) is equivalent to the following
equation: for all 1 < < n,

-1

ki,O ;.0 0 0 0 0 bi,O
kia a1 a0 0 0 0 bin
k’i72 a2 Qi1 4,0 0 0 bi,g
(2.3.1.6) . - 2
ki’”’i’g Ajn;—2 Qin;—3 . . a;,0 0 bi,mf2
Kimi—1 Qin;—1  Qimg—2 -+ Gi2 Qi1 Qip bin,—1
where 4 ' .
- k) (a;) - a9 (a;) - b9 (o)
i = Ty iy = ——— and b= ———.
J: J 4!

Conversely, if k € H™ satisfies the equality (2.3.1.6) then & must be in C(¢). Thus k belongs to
C(yp) if and only if k is a function in H* for which

k9 ()

(2317) = kiJ' (1 <i<n, 0L 7 < ni),

where the k; ; are determined by the equation (2.3.1.6). If in addition ||k||oc < 1 is required then
this is exactly the classical Hermite-Fejér Interpolation Problem (HFIP). Therefore we have:

Theorem 2.3.2. Let ¢ = g+ f € L™, where f and g are rational functions. Then T, is
hyponormal if and only if the corresponding HFIP (2.3.1.7) is solvable.

Now we can summarize that tractable criteria for the hyponormality of Toeplitz operators T,
are accomplished for the cases where the symbol ¢ is a trigonometric polynomial or a rational
function via solutions of some interpolation problems.

We conclude this chapter with:

PROBLEM A. Let p € L™ be arbitrary. Find necessary and sufficient conditions, in terms of
the coefficients of ¢, for T, to be hyponormal. In particular, for the cases where ¢ is of bounded

type.
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3 Subnormality of Toeplitz operators

The present chapter concerns the question: Which Toeplitz operators are subnormal ? Recall that
a Toeplitz operator T, is called analytic if ¢ is in H°®, that is, ¢ is a bounded analytic function on
D. These are easily seen to be subnormal: T,h = P(ph) = ¢h = Myh for h € H?, where M,, is the
normal operator of multiplication by ¢ on L2. P.R. Halmos raised the following problem, so-called
the Halmos’s Problem 5 in his 1970 lectures “Ten Problems in Hilbert Space” [Hal], [Ha2]:

Is every subnormal Toeplitz operator either normal or analytic ?

The question is natural because the two classes, the normal and analytic Toeplitz operators, are
fairly well understood and are obviously subnormal.

3.1 Halmos’s Problem 5

We begin with a brief survey of research related to P.R. Halmos’s Problem 5.

In 1976, M. Abrahamse [Ab] gave a general sufficient condition for the answer to the Halmos’s
Problem 5 to be affirmative.

Theorem 3.1.1 (Abrahamse’s Theorem). If
(i) T, is hyponormal;
(ii) ¢ or @ is of bounded type;
(iil) ker[T};, T, is invariant for T,
then T, is normal or analytic.

Proof. See [AD]. O

On the other hand, observe that if S is a subnormal operator on H and if N := mne (5) then
ker[S*, 8] ={f: < [,[S",S]f >= 0y = {f: [IS"fII = 1SS} ={f: N"feH]}
Therefore, S(ker[S*,S]) C ker[S™*, S].
By Theorem 3.1.1 and the preceding remark we get:

Corollary 3.1.2. If T, is subnormal and if ¢ or @ is of bounded type, then T, is normal or
analytic.
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Lemma 3.1.3. A function ¢ is of bounded type if and only if kerH, # {0}.
Proof. If kerH, # {0} then since H,f =0= (1 - P)pf =0= ¢f = Ppf := g, we have

I f,geH?st. of =g.
Hence ¢ = %. Remembering that if i € L™ then ¢ is outer if and only if i € H* and dividing

the outer part of f into g gives

(v € H*, 0 inner).

_ v
L

Conversely, if ¢ = % (v € H*>, 6 inner), then 6 € kerH, because ¢ = ¢ € H*® = (1 — P)pf =
0= H,0=0. O

From Theorem 3.1.1 we can see that

Y

(3.1.3.1) v=73 (0,4 inner), T, subnormal = T, normal or analytic

The following proposition strengthen the conclusion of (3.1.3.1), whereas weakens the hypoth-
esis of (3.1.3.1).

Proposition 3.1.4. If ¢ = % (0, % inner) and if T, is hyponormal, then T, is analytic.
Proof. Observe that

L= 6]l = [IPO)]] = [[P(@8e)]| = [[P(@Y)]|
= ITaW)I] < [T ()] = IIP(%)H <ll5ll=1

which implies that w; € H?, so 0 divides 12. Thus if one choose ¢ and 6 to be relatively prime
(ie., if p= % is in lowest terms), then # is constant. Therefore T,, is analytic. O

Proposition 3.1.5. If A is a weighted shift with weights ag, a1, a2, -+ such that
OS(ZO§a1§~~'<aN:aN+1:...:]_’
then A is not unitarily equivalent to any Toeplitz operator.

Proof. Note that A is hyponormal, ||A]| = 1 and A attains its norm. If A is unitarily equivalent
to T, then by a result of Brown and Douglas [BD], T,, is hyponormal and ¢ = % (0, inner). By
Proposition 3.1.4, T, = Ty is an isometry, so ap = 1, a contradiction. O

n+1

m+3 ) is subnormal. The following

Recall that the Bergman shift (whose weights are given by

question arises naturally:

(3.1.5.1) Is the Bergman shift unitarily equivalent to a Toeplitz operator ?

An affirmative answer to the question (3.1.5.1) gives a negative answer to Halmos’s Problem 5.
To see this, assume that the Bergman shift S is unitarily equivalent to T;,, then

R(p) C 0c(T,) = 0c(S) = the unit circle T.
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Thus ¢ is unimodular. Since S is not an isometry it follows that ¢ is not inner. Therefore T, is
not an analytic Toeplitz operator.

To the question (3.1.5.1) we need an auxiliary lemma:

Lemma 3.1.6. If a Toeplitz operator Ty, is a weighted shift with weights {a,}7>, with respect to
the orthonormal basis {en}5, i.e.,

(3.1.6.1) Toen = anent1 (n>0)
then eo(z) is an outer function.

Proof. By Coburn’s theorem, ker T;, = {0} or kerT;; = {0}. The expression (3.1.6.1) gives ey €
ker 77, and hence ker T\, = {0}. Thus a,, > 0 (n > 0). Write

eo := gF, where g is inner and F' is outer.
Because TJeg = 0, we get
T;F = Tg@eo) = T§T¢€0 = TgT;€O =0.

Note that dimker 77 = 1. So we have F' = ceg (c =a constant), so that g is a constant, and hence
ep is an outer function. O]

Theorem 3.1.7 (Sun’s Theorem). Let T be a weighted shift with a strictly increasing weight
sequence {an}olo. If T =T, then

an =V1— a2 2|[T,]] (0<a<1).

Proof. Assume T = T,,. We assume, without loss of generality, that ||T'|| =1 (so a, < 1). Since
T is a weighted shift, o.(T) = {2z : |2| = 1}. Since R(p) C 0c(T},), it follows that |¢| =1, i.e., ¢ is
unimodular. By Lemma 3.1.6,

3 an orthonormal basis {e,}o> s.t. (3.1.6.1) holds.

Expression (3.1.6.1) can be written as follows:

€n = Gnéni1 + /1 —a2
(3.1.7.1) {Z;ZH :naz; + mz:
where 7, &, € (H?)* and ||n,|| = ||€.]| = 1. Since {pe, }32, is an orthonomal system and a,, < 1,
we have
(3.1.7.2) < ney g >=< &g, & >= {(1): ii Z
From (3.1.7.1) we have
(3.1.7.3) en =7 (anenﬂ ++/1—a2 nn) = aien + an\/l —a2 &+ \/1 — a2 on,.
Then (3.1.7.3) is equivalent to
(3.1.7.4) Oln = —an&n + /1 — a2 &,.
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Set d,, := = and p,, = Etl (|t| = 1). Then (3.1.7.4) is equivalent to

€n

(3.1.7.5) odp, = —anpn ++/1— a2 -

Since & € (H?)* and {d,,}32 is an orthonormal basis for H?, we can see that

(3.1.7.6)
| Todell = ae = [[Tped|| -

{||Tgad0| = ap = inf| 1| | Tpa|| = [|Tpeoll
Then (3.1.6.1)+(3.1.7.6) implies
(3.1.7.7) dp, = Tnen (‘Tn| = 1)'

Substituting (3.1.7.7.) into (3.1.7.6) and comparing it with (3.1.7.1) gives

a V1—a? €,
anent1 + /1 —a2n, = pe, = -l 41
Tn Tn t

which implies

(3.1.7.8) {_T”p” - ontt

e
Tn= = Mn.

Therefore (3.1.7.1) is reduced to:

Pepi1 = anen — /1 — a2 7 <ot

Put e_(,41) := 2 € (H*)* (n > 0). We now claim that
(3.1.7.10) peg =re_y (Jr|=1):

indeed, T (‘FTT)) =P(2) =0, s0 eg =22 for |r| = 1, and hence ey = re_;. From (3.1.7.9) we

have

(3.1.7.11) weg = aper +To\/1 —ade_1 = aper +ToT /1 — al ey,

or, equivalently,

(3.1.7.12) (gp —Tor\/1—a? <p> eo = apes.
Write

(3.1.7.13) Y=¢—ToT\/1—adP.
Evidently,

V.= {z € H? : yx € H?}

is not empty. Moreover, since V is invariant for U, it follows from Beurling’s theorem that

V = yH? for an inner function x.
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Since eg € V and eq is an outer function, we must have y = 1. This means that ¢ =+ -1 € H2.
Therefore e, = Tye; € H2. On the other hand, by (3.1.7.9),

Yer = <<p — 7T /1 —a%«p) el
=ajes +T1\/1 —afe_o —ToTy/1 —a? <aoeo —4/1 —a%roeg>
= ajey —TTag\/1 —a?eg + <r“/1 —a? +775° (1 — (12)) e_s.

iy 1—a?+775°(1—ad) =0
So, /1 —a2=1-ad}, ie, a1 =+/1—(1—a?)? If weput a® =1-ad3, ie, ao= (1 —az)% then

a1 = (1 — a)2. Inductively, we get a, = (1 — a?"+2)z. O

Thus we have

Corollary 3.1.8. The Bergman shift is not unitarily equivalent to any Toeplitz operator.

Proof. Z—i% £1—a?"*2 for any a > 0. O

Lemma 3.1.9. The weighted shift T = W, with weights an, = (1 — a2"2)z (0 < a < 1) is
subnormal.

Proof. Write r,, := a2a?---a2_, for the moment of W. Define a discrete measure y on [0, 1] by

n—1
1172, (1 - a®) (z=0)
1(2) = { 1y 2j a?* k
Then r, = fol t"du. By Berger’s theorem, T is subnormal. O

Corollary 3.1.10. If T, = a weighted shift, then T, is subnormal.

Remark 3.1.11. If T, = a weighted shift, what is the form of ¢ 7 A careful analysis of the proof
of Theorem 3.1.7 shows that
=@ —ap e H™®.

But
0 —aag
ag 0 —aaq
0 _
Ty =T, ol = a“ aaz
as 0
0 —«
1 0 —«
1 0o -
= @ + K (K compact)
1 0 -
= z—aZ+K-
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Thus ran (¢) = 0¢(Ty) = 0e(T>—az) = ran(z — az). Thus v is a conformal mapping of I onto the
interior of the ellipse with vertices (1 + «) and passing through £(1 — «). On the other hand,
Y= —ap. So o) = ap — a’p, which implies

p= ﬁw + ah).

We now have:

Theorem 3.1.12 (Cowen and Long Theorem). For 0 < o < 1, let b be a conformal map of D

onto the interior of the ellipse with vertices +i(1 — o)™t and passing through (1 + a)~t. Then

Ty oy isa subnormal weighted shift that is neither analytic nor normal.

Proof. Let ¢ = + azp. Then ¢ is a continuous map of D onto D with wind(y) = 1. Let
K =1- T@TLP = T¢<‘p - T¢T¢ = H;Htpv

which is compact since ¢ is continuous. Now ¢ — ap = (1 — a?)yp € H*®, so Hy = 0 and hence,
H, = aHy. Thus
K =H}H, = o®H Hz = o*(1 - T,T5),

so that
KT, = o*(1 - T,T5)T, = o*T,(1 — TpT,) = o* T, K.

By Coburn’s theorem, ker T, = {0} or ker T = {0}. But since
ind(T,) = —wind(p) = —1,

it follows
ker T, = {0} and dim ker Tz = 1.

Let eg € ker T and ||eg]| = 1. Write

Toen
(&4 =
" | Tpenl|

We claim that Ke, = o®"*?¢,: indeed, Keg = a*(1 — T,T;)eo = a’e and if we assume Ke; =
a?12e; then
j

Kejii = ||Tpe;|| 7 (KTpej) = |[Toesl| (T, Kej) = |[Tpes||~H(a® T T es) = a®He; .
Thus we can see that

a?,a%,a8, - are eigenvalues of K ;
{en}52, is an orthonormal set since K is self-adjoint.

We will then prove that {e,} forms an orthonormal basis for H2. Observe
tr(HjH,) = the sum of its eigenvalues.

Thus

(3.1.12.1) Z o®" 2 < tr(HyH,) = I|H,|[5 (|| - ||2 denotes the Hilbert-Schmidt norm).

n=0
Since ¥ € H*, we have

1Hy|13 = 1|Hy + a3 = o[ Hgll3 = o*te(H} Hy) = o’tr [T, Ty

< Lplo(Ty) = Suwm) = -5,

™
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which together with (3.1.12.1) implies that

a2 >
S0P < H | < g = D™,
n=0

so tr(H Hy) = 0" o a®" 2, which say that {a*"*?}0° ; is a complete set of non-zero eigenvalues

n=

for K = H7H, and each has multiplicity one. Now, by Beurling’s theorem,
ker K =kerH;H, = kerH, = bH?, where b is inner or b = 0.
Since KT, = o*T,K, we see that
fekerK = T,f € kerK

So, since b € kerK, it follows
Tob=bp — H,b = by € kerK,

which means that by = bh for some h € H2. Since ¢ ¢ H? it follows that b = 0 and kerK = 0.
Thus 0 is not an eigenvalue. Therefore {e, }°, is an onthonormal basis for H2. Remember that
Tpen = ||Tpen|lent1. So we can see that T, is a weighted shift with weights {||T,e,||}. Since

o?" e, = Ke, = (1 — TeT,)en,

we have
(1—a®" e, = TpTpen,

so that
1—a®™2 = (1= o™ )e,, en) = (TgTpen, en) = [[Tpen |,

Thus the weights are (1 — a?"*2)2. By Lemma 3.1.9, T, is subnormal. Evidently, ¢ ¢ H* and
T, is not normal since ran(y) is not contained in a line segment. O

Corollary 3.1.13. If ¢ = ¢ + aa) is as in Theorem 3.1.12, then neither ¢ nor B is bounded type.

Proof. From Abrahamse’s theorem and Theorem 3.1.12. O

We will present a couple of open problems which are related to the subnormality of Toeplitz
operators. They are of particular interest in operator theory.

PROBLEM B.  For which f € H*, is there A (0 <A < 1) with T, 5 subnormal ?

PROBLEM C. Suppose v is as in Theorem 8.1.12 (i.e., the ellipse map). Are there g € H™,
g # M +c, such that Ty g is subnormal ?

PROBLEM D. More generally, if v € H*®, define
S) :={g e H*: Ty5 is subnormal }.

Describe S(). For example, for which ¢ € H*, is it balanced?, or is it convex?, or is it weakly
closed? What is ext S(v) ¢ For which ¥ € H™, is it strictly convex ?, i.e., S(¢p) C ext S(¢) ?

In general, S(¢) is not convex. In the below (Theorem 3.2.14), we will show that if ¢ is as in
Theorem 3.1.12 then {A: T, , 7 is subnormal} is a non-convex set.
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C. Cowen gave an interesting remark with no demonstration in [Cow3]: If T, is subnormal
then E(¢) = {A\} with || < 1. However we were unable to decide whether or not it is true. By
comparison, if T}, is normal then &(p) = {e*}.

PROBLEM E. Is the above Cowen’s remark true ? That is, if T, is subnormal, does it follow
that E(p) = {A\} with |\ <17

If the answer to Problem E is affirmative, i.e., the Cowen’s remark is true then for ¢ =g+ f,
T, is subnormal = g— Af € H® with |[\| <1 = g = Af + ¢ (c a constant),
which says that the answer to Problem C is negative.

When 9 is as in Theorem 3.1.12, we examine the question: For which A, is Ti 4y subnormal ?
We then have:

Theorem 3.1.14. Let A € C and 0 < a < 1. Let ¢ be the conformal map of the disk onto the
interior of the ellipse with vertices £(1 + )i passing through £(1 — o). For ¢ = 1 + A, T, is

k

subnormal if and only if A\ =« or A = 13‘_;,;%:‘9 (—m<60<m).

To prove Theorem 3.1.14, we need an auxiliary lemma:

Proposition 3.1.15. Let T be the weighted shift with weights

n

2 _ 2j
w;, = E ™,
j=0

Then T + pT* is subnormal if and only if p =0 or |u| = o (k=0,1,2,--).
Proof. See [CoL]. O

Proof of Theorem 5.1.14. By Theorem 3.1.12, T, & = (1- 042)%T, where T' is a weighted

shift of Proposition 3.1.15. Thus T}, = (1 — a2)2 (T — aT™*), so

* AU 1 A—a *
T, =Ty + AT = (1 —a*)2(1 - ) (T—i—l_)\aT).

Applying Proposition 3.1.15 with 1)‘__)\‘2 in place of p gives that for k =0,1,2,--- |
A« k A-« k_i6
= — =
‘ 1-a| 1-xa €
— A—a=dad"e? — \aFtie?
— M1+ aFte?) = o+ ket
a4+ akeit

O

However we find that, surprisingly, some analytic Toeplitz operators are unitarily equivalent to
some non-analytic Toeplitz operators. So C. Cowen noted that subnormality of Toeplitz operators
may not be the wrong question to be studying.
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Example 3.1.16. Let ¢ be the ellipse map as in the example of Cowen and Long. Then

ie= T (1+ a2e'?) ( ae +a —

Ty =T, with p = 1 5
-«

Proof. Note that

Thus we have

—_ =
|
Q
o
(S
N
|
Q
S~
N

T ;
ie” 2 (14 a2e'?)

(‘ZEIG o

1— a2 Y+ 1+a2;9¢

I

(—m <0 <m).

O

PROBLEM F. Let 1 be the ellipse map as in the example of Cowen and Long. Is Twm@ =T
for some ( € H>® ¢

If the answer to Problem F would affirmative then we could say that Halmos’s Problem 5
remains still open. In this case we have a reformulation of Halmos’s Problem 5:

If T, is a non-normal subnormal Toeplitz operator, does it follow that

T, =Ty for some € H*?

(Answer (2012 Updated)): Problem F was answered in the negative in : R.E. Curto, I.S. Hwang
and W.Y. Lee, Which subnormal Toeplitz operators are either normal or analytic 2, J. Funct. Anal.
263(8)(2012), 2333-2354.
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3.2 Weak Subnormality

Now it seems to be interesting to understand the gap between k-hyponormality and subnormality
for Toeplitz operators. As a candidate for the first question in this line we posed the following
([CuL1]):

Question A. Is every 2-hyponormal Toeplitz operator subnormal 7

In [CuL1], the following was shown:

Theorem 3.2.1 ([CuLl]). Every trigonometric Toeplitz operator whose square is hyponormal must
be normal or analytic. Hence, in particular, every 2-hyponormal trigonometric Toeplitz operator
is subnormal.

It is well known ([Cul]) that there is a gap between hyponormality and 2-hyponormality for
weighted shifts. Theorem 3.2.1 also shows that there is a big gap between hyponormality and
2-hyponormality for Toeplitz operators. For example, if

is such that T, is hyponormal then by Theorem 3.2.1, T, is never 2-hyponormal because T, is

neither analytic nor normal (recall that if p(z) = ZHN:_m anz™ is such that T, is normal then
m = N (cf. [FL1])).
We can extend Theorem 3.2.1 First of all we observe:

Proposition 3.2.2 ([CuL2]). If T € L(H) is 2-hyponormal then
(3.2.2.1) T (ker[T*,T]) C ker[T*,T).

Proof. Suppose that [T*,T]f = 0. Since T is 2-hyponormal, it follows that (cf. [CMX, Lemma
1.4])
(T2, Tlg, )P < ([T, T1f, T2, T%]g,9) for all g € H.

By assumption, we have that for all g € H, 0 = ([T*2,T)g, f) = (g, [T*?,T]* f), so that [T*?,T)* f =
0, i.e., T*T?f = T?T* f. Therefore,

[T*,T|Tf = (T*T? = TT*T)f = (T°T* — TT*T)f = T[T*,T]f =0,

which proves (3.2.2.1). O

Corollary 3.2.3. If T,, is 2-hyponormal and if ¢ or ¢ is of bounded type then T, is normal or
analytic, so that T, is subnormal.

Proof. This follows at once from Abrahamse’s theorem and Proposition 3.2.2. O

Corollary 3.2.4. If T, is a 2-hyponormal operator such that E(p) contains at least two elements
then T, is normal or analytic, so that T, is subnormal.

Proof. This follows from Corollary 3.2.3 and the fact ([NaT, Proposition 8]) that if £(¢) contains
at least two elements then ¢ is of bounded type. O
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From Corollaries 3.2.3 and 3.2.4, we can see that if T, is 2-hyponormal but not subnormal then
¢ is not of bounded type and &(p) consists of exactly one element.

For a strategy to answer Question A we will introduce the notion of “weak subnormality,”
which was introduced by R. Curto and W.Y. Lee [CuL2]. Recall that the operator T is subnormal
T

if and only if there exist operators A and B such that T:= (O B

> is normal, i.e.,

[T*,T) := T*T — TT* = AA*
(3.2.4.1) A*T = BA*
[B*,B] + A*A =0.

We now introduce:

Definition 3.2.5 ([CuL2]). An operator T' € L(#) is said to be weakly subnormal if there exist
operators A € L(H',H) and B € L(H') such that the first two conditions in (2.4.1) hold: [T*,T] =

AA* and A*T = BA*. The operator T is said to be a partially normal extension of T.

Clearly,
(3.2.5.1) subnormal = weakly subnormal = hyponormal.

The converses of both implications in (3.2.5.1) are not true in general. Moreover, we can easily see
that the following statements are equivalent for T € L(H):

(a) T is weakly subnormal;
(b) There is an extension T of T such that f*ff = ff*f for all f € H;

(¢) There is an extension T of T such that % C ker [T*, T].

Weakly subnormal operators possess the following invariance properties:

(i) (Unitary equivalence) if T' is weakly subnormal with a partially normal extension (% £) then
for every unitary U, (U'TUUA) (= (47 9) (T 4)(Y9)) is a partially normal extension of
U*TU, i.e., U*TU is also weakly subnormal.

(ii) (Translation) if T' € L£(H) is weakly subnormal then T'— X is also weakly subnormal for every

A € C: indeed if T has a partially normal extension T then T — A := T — X satisfies the
properties in Definition 3.2.5.

(iii) (Restriction) if T € L(H) is weakly subnormal and if 9t € Lat T then Ty is also weakly

subnormal because for a partially normal extension T of T, ﬂg\n ;= T still satisfies the
required properties.

How does one find partially normal extensions of weakly subnormal operators? Since weakly
subnormal operators are hyponormal, one possible solution of the equation AA* = [T*,T] is
A:=[T*,T)z. Indeed this is the case.

Theorem 3.2.6 ([Cul2)). If T € L(H) is weakly subnormal then T has a partially normal exten-
sion T on KC of the form

(3.2.6.1) T = (T [T, 7]

0 B ) on K:=H>H.
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The proof of Theorem 3.2.6 will make use of the following elementary fact.
Lemma 3.2.7. If T is weakly subnormal then
T(ker[T™,T]) C ker[T*,T).

Proof. By definition, there exist operators A and B such that [T*,T] = AA* and A*T = BA*. If
[T*,T)f =0 then AA*f =0 and hence A*f = 0. Therefore

[T*,T\Tf =AA"Tf = ABA"f =0,
as desired. 0

Definition 3.2.8. Let 7" be a weakly subnormal operator on H and let T be a partially normal
extension of 7" on K. We shall say that T'is a minimal partially normal extension of T' if K has no
proper subspace containing H to which the restriction of T is also a partially normal extension of
T. We write T := m.p.n.e.(T).

Lemma 3.2.9. Let T' be a_weakly subnormal operator on H and let T be a partially normal
extension of T on K. Then T = m.p.n.e.(T) if and only if

(3.2.9.1) K=\/{T""h: heH, n=0,1}.
Proof. See [Cul2]. O
It is well known (cf. [Con2, Proposition I1.2.4]) that if T' is a subnormal operator on H and N
is a normal extension of 7' then N is a minimal normal extension of T if and only if
K=\/{T""h: heH, n>0}

Thus if T is a subnormal operator then T' may have a partially normal extension different from
a normal extension. For, consider the unilateral (unweighted) shift U, acting on ¢?(Z,). Then
m.n.e. (Uy) = U, the bilateral shift acting on ¢?(Z), with orthonormal basis {e, }5° ___. It is easy
to verify that m.p.n.e. (U, ) = U|., where £ :=<e_; > ® (?(Zy).

—0o0

Theorem 3.2.10. Let T € L(H).
(i) If T is 2-hyponormal then [T*,T]%T[T*,T]*% |Ran[T+,1) 5 bounded;
(ii) T 4s (k + 1)-hyponormal if and only if T is weakly subnormal and T := m.p.n.e.(T) is k-
hyponormal.

Proof. See [CJP, Theorems 2.7 and 3.2]. O

In 1966, Stampfli [Sta] explicitly exhibited for a subnormal weighted shift A its minimal normal
extension
Ay Bi 0
A1 B2

(3.2.10.1) N := 4 |

0

where A,, is a weighted shift with weights {agn), a§"), <}, By = diag{bén), b(ln), .-+ }, and these
entries satisfy:
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(M) (af”)? = (af"”

j—1

)2 4+ (08)2 >0 (0 = 0 for all j);
(1) b =0 = {7, =0;

(III) there exists a constant M such that |a;”)| < M and |b§-n)| <M forn=0,1,--- and j =

0,1,---, where
(n+1) (n) (n) (n)y214 (nt1) . 4 >b('1+11)
bjn — [(aj" )2 - (ajvil)2 + (bj" 2]z and ajn = ajn bzn+1)
J

(if b;:) =0, then a%ﬂ is taken to be 0).

We will now discuss analogues of the preceding results for k-hyponormal operators. Our crite-
rion on k-hyponormality follows:

Theorem 3.2.11. An operator Ag € L(Ho) is k-hyponormal if and only if the following three
conditions hold for all n such that 0 <n <k —1:

(In) Dn >0;
(I1,) Ap—1(KerD,,_1) CKer D, 1 (n>1);

1 _1
(I1,) D; 1 An—1D, 2 |Ran (D,_1) (0 > 1) is bounded,

where
Dy :=[Ap, Aol, D1 := Dula, .y +[A511, Anti], Hnpr = Ran (D)

and A, 11 denotes the bounded extension of D,% AnD;% to Ran (D,,)(= Hny1) from Ran (D,,).

Proof. Suppose Ay is k-hyponormal. We now use induction on k. If k = 2 then Ag is 2-hyponormal,
1 1
and so Dy := [Af, Ao] > 0. By Theorem 3.2.10 (i), D§ AoDy ? |ran (Do) is bounded. Let A; be the

bounded extension of DO% AODO_% from Ran (D) to H; := Ran (Dy) and Dy := Doly, + [AF, A1].

1
Writing ;1\0 = /(1)0 1213>’ we have Ay = m.p.n.e.(A4p), which is hyponormal by Theorem
1

3.2.10(ii). Thus
0 0

Ay, A = > 0.
[4o ;A (0 D0|%1+[ATaA1])_

and hence D; > 0. Also by [Cul2, Lemma 2.2], Ao(KerDy) C Ker Dy whenever Ag is 2-
hyponormal. Thus (I,), (II,,), and (III,) hold for n = 0, 1. Assume now that if Ay is k-hyponormal
then (I,),(IL,) and (IIL,) hold for all 0 < n < k — 1. Suppose Ay is (k + 1)-hyponormal. We must
show that (I,),(IL,) and (III,) hold for n = k. Define

Ay DE 0
1
Ay Dl2 k—1 k—1
S = PHHi— P
1 i=0 i=0
Dy,
0 Ap_1

42



By our inductive assumption, Dy_; > 0. Writing T = m.p.n.e.(f(”*l)) when it exists, we can
—~(k—1
see by our assumption that S = Ao( ): indeed, if
1
Ao Dg 0
1
A D7
S =
1
i,
0 A

then since by assumption [S};, S)] = 06 D; and A; = Dl%_lAl_lD;_%ﬁRan (Dy_,)s it follows that S is

the minimal partially normal extension of S;_1 (1 <! <k —1). But since by our assumption Ay is

(k 4+ 1)-hyponormal, it follows from Lemma 3.2.10(ii) that S is 2-hyponormal. Thus by Theorem
1 1

3.2.10(i), [S*, S]2S[S*, S]”|Ran (js-,s)) i bounded, which says that D7 Ax_1D, 2 |[ran (p,_,) i

bounded, proving (IIL,,) for n = k. Observe that Ay, Hi and Dy are well-defined. Writing S =

(*g Dj—l , we can see that S = m.p.n.e.(S), which is hyponormal, again by Theorem 3.2.10(ii).
k
0 0

Thus, since [§*, §] = < ) > 0, we have Dy, > 0, proving (I,,) for n = k. On the other hand,

0 Dy
since S is 2-hyponormal, it follows that S(Ker[S*,S]) C Ker[S*, S]. Since [S*,S] = <8 DO >,
k—1
we have Ker [S*, 5] = @f:_g H; P Ker (Dg—1). Thus, since
1
A Df 0 Hy Ho
Al D12 Hl Hl
: - : :
D3 Hi—2 Hp—2
k=2 | \Ker (Dg_1) Ker (Dg—1)
0 Ap_1

we must have that Ap_q(Ker (Dg-1)) C Ker (Dg—_1), proving (II,,) for n = k. This proves the
necessity condition.

Toward sufficiency, suppose that conditions (I,,), (II,) and (III,,) hold for all n such that
0 <n <k —1. Define

Ay DE 0
1
A, D?
D},
0 Anfl
Then Si_o is weakly subnormal and Sk_; = m.p.n.e. (Si_3). Since, by assumption, Di_q1 > 0,
we have [S}_,,Sk—1] = 8 DO > 0. It thus follows from Theorem 3.2.10(ii) that Sk_o is
k—1

2-hyponormal. Note that S,, = m.p.n.e.(S,—1) forn=1,---  k —1 (Sy := Ap). Thus, again by
Theorem 3.2.10(ii), Si_3 is 3-hyponormal. Now repeating this argument, we can conclude that
So = Ay is k-hyponormal. This completes the proof. O
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Corollary 3.2.12. An operator Ay € L(Ho) is subnormal if and only if the conditions (1), (IL,),
and (IIL,) hold for all n > 0. In this case, the minimal normal extension N of Ag is given by

Ay Dg 0
1
Al D§ [e%e] [e’e]
V- | D - D
A " i=0 i=0
0
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3.3 Gaps between k-Hyponormality and Subnormality

We find gaps between subnormality and k-hyponormality for Toeplitz operators.

Theorem 3.3.1 ([Gu2],[CLL]). Let 0 < a < 1 and let ¢ be the conformal map of the unit
disk onto the interior of the ellipse with vertices +(1 + a)i and passing through +(1 — «). Let
@ =1+ M and let T,, be the corresponding Toeplitz operator on H?. Then T, is k-hyponormal if

27 J 2
and only if X is in the circle ‘z - (I(j;;;;) - ‘i:(i;j%) for j=0,1,--- k —2 or in the closed disk
a(l—a2*—1) a1 (1—a?
= 1—a?2k — 1—a?2k

For 0 < o < 1, let T = W3 be the weighted shift with weight sequence 8 = {5,}52,, where
(cf. [Cow2, Proposition 9))

n
(3.3.1.1) Bo= (Y a¥): forn=0,1,
7=0

Let D be the diagonal operator, D = diag(a™), and let Sy =T + AT* (A € C). Then we have
that
[T*,T) = D? = diag (&*) and [S5,S\] = (1 — |A\))[T*,T] = (1 — |\?)D?

Define )
A —aT+ T* (1=0,£1,%2,---).
It follows that Ag = Sy and
(3.3.1.2) DAy =Ai;nD and AjD=DA;, (1=0,%£1,£2,---).

Theorem 3.3.2. Let 0 < oo < 1 and T' = Wy be the weighted shift with weight sequence f =
{Bn}ee, where

n

Bn:(Za%)% forn=0,1,---.

Jj=0

Then Ao = T + XT* is k-hyponormal if and only if |\ < o' or || = o’ for some j =
0,1,--- k—2.

Proof. Observe that

(A7, A = [o'T* + 2T, a'T + XT7]

3.3.2.1
( ) a2l[T*’T] \/\I T T) = (azz _ \;\TI?) D2,

Since Ker D = {0} and DA,, = A,11D, it follows that H,, = H for all n; if we use A; for the
operator A,, in Theorem 3.2.11 then we have, by (3.3.2.1) and the definition of D;, that

Dj=Dj 1 +[A;,Aj] = Dj2 +[A]_1, Aj1] + [A], 4j] =

, A
:[A87Ao]+[AI7A1]+"'+[A;7AJ‘]:(1—|>\|2)D2+"'+(0‘2] |042|J>D
(Y (- B

1-a? a?i
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By Theorem 3.2.11, Ag is k-hyponormal if and only if Di_; > 0 or D; = 0 for some j such
that 0 < j < k — 2 (in this case Ap is subnormal). Note that D; = 0 if and only if |A\| = /. On
the other hand, if D; > 0 for j =0,1,--- ,k — 2, then

1— a2k A2 B
Dy_i = ( — ) (1— aQ(k_l)) D2 >0
if and only if |\| < a*~!. Therefore Ay is k-hyponormal if and only if || < a*~! or |\| = o/ for
some j, 7 =0,1,---  k—2. O

We are ready for:

Proof. of Theorem 3.3.1 1t was shown in [CoL] that T}, is unitarily equivalent to (1 — a?)5T,

where T is the weighted shift in Theorem 3.3.2. Thus Ty, is unitarily equivalent to (1 — a2)% (T -
aT™), so T, is unitarily equivalent to

A —
(1-— az)%(l —da)(T+ T )\a T*) (ct. [Cowl, Theorem 2.4]).
— Ao
Applying Theorem 3.3.2 with 1/\_’)\”; in place of A, we have that for k =0,1,2,---,

A —
<ot = A —al? <1 - Xa)?
1-)da
5 a(l-— a?k) . a? — o2k
’)\ ol - a?F) < af(1 - 042).
1— a2k+2 1— a2k+2
This completes the proof. O
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3.4 Miscellany

From Corollary 3.2.3 we can see that if T, is a 2-hyponormal operator such that ¢ or ¢ is of
bounded type then T, has a nontrivial invariant subspace. The following question is naturally
raised:

Problem G. Does every 2-hyponormal Toeplitz operator have a nontrivial invariant subspace ?
More generally, does every 2-hyponormal operator have a nontrivial invariant subspace 7

It is well known ([Bro]) that if T is a hyponormal operator such that R(o(T)) # C(o(T))
then T has a nontrivial invariant subspace. But it remains still open whether every hyponormal
operator with R(a(T")) = C(o(T)) (i-e., a thin spectrum) has a nontrivial invariant subspace. Recall
that T € L(H) is called a von-Neumann operator if o(T') is a spectral set for T, or equivalently,
f(T) is normaloid (i.e., norm equals spectral radius) for every rational function f with poles
off o(T). Recently, B. Prunaru [Pru] has proved that polynomially hyponormal operators have
nontrivial invariant subspaces. It was also known ([Ag]) that von-Neumann operators enjoy the
same property. The following is a sub-question of Problem G.

Problem H. Is every 2-hyponormal operator with thin spectrum a von-Neumann operator ?

Although the existence of a non-subnormal polynomially hyponormal weighted shift was es-
tablished in [CP1] and [CP2], it is still an open question whether the implication “polynomially
hyponormal = subnormal” can be disproved with a Toeplitz operator.

Problem I. Does there exist a Toeplitz operator which is polynomially hyponormal but not
subnormal ?

In [Cul.2] it was shown that every pure 2-hyponormal operator with rank-one self-commutator
is a linear function of the unilateral shift. McCarthy and Yang [McCYa] classified all rationally
cyclic subnormal operators with finite rank self-commutators. However it remains still open what
are the pure subnormal operators with finite rank self-commutators.

Now the following question comes up at once:

Problem J. If T, is a 2-hyponormal Toeplitz operator with nonzero finite rank self-commutator,
does it follow that T, is analytic?

For affirmativeness to Problem J we shall give a partial answer. To do this we recall Theorem
15 in [NaT] which states that if T, is subnormal and ¢ = ¢@, where ¢ is a finite Blaschke product
then T, is normal or analytic. But from a careful examination of the proof of the theorem we
can see that its proof uses subnormality assumption only for the fact that ker [T;, T, is invariant
under T,,. Thus in view of Proposition 3.2.2, the theorem is still valid for “2-hyponormal” in place
of “subnormal”. We thus have:

Theorem 3.4.1. If T, is 2-hyponormal and ¢ = qp, where q is a finite Blaschke product then T,
is normal or analytic.

We now give a partial answer to Problem J.

Theorem 3.4.2. Suppose log|p| is not integrable. If T,, is a 2-hyponormal operator with nonzero
finite rank self-commutator then T, is analytic.

Proof. It T,, is hyponormal such that log || is not integrable then by an argument of [NaT, Theorem
4], ¢ = qp for some inner function ¢. Also if T}, has a finite rank self-commutator then by [NaT,
Theorem 10], there exists a finite Blaschke product b € E(p). If ¢ # b, so that £(¢) contains at
least two elements, then by Corollary 3.2.4, T, is normal or analytic. If instead ¢ = b then by
Theorem 3.4.1, T, is also normal or analytic. O
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Theorem 3.4.2 reduces Problem J to the class of Toeplitz operators such that log || is integrable.
If log || is integrable then there exists an outer function e such that |p| = |e|. Thus we may write
¢ = ue, where u is a unimodular function. Since by the Douglas-Rudin theorem (cf. [Ga, p.192]),
every unimodular function can be approximated by quotients of inner functions, it follows that if
log|¢| is integrable then ¢ can be approximated by functions of bounded type. Therefore if we
could obtain such a sequence ,, converging to ¢ such that Ty, is 2-hyponormal with finite rank
self-commutator for each n, then we would answer Problem J affirmatively. On the other hand,
if T,, attains its norm then by a result of Brown and Douglas [BD], ¢ is of the form ¢ = )\%
with A > 0, ¥ and 6 inner. Thus ¢ is of bounded type. Therefore by Corollary 3.2.4, if T, is
2-hyponormal and attains its norm then T;, is normal or analytic. However we were not able to
decide that if T, is a 2-hyponormal operator with finite rank self-commutator then T;, attains its
norm.
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