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Abstract. In this paper it is shown that if an operator T satisfies ||p(T )|| ≤ ||p||σ(T ) for every
polynomial p and the polynomially convex hull of σ(T ) is a Carathéodory region whose acces-
sible boundary points lie in rectifiable Jordan arcs on its boundary, then T has a nontrivial
invariant subspace. As a corollary, it is also shown that if T is a hyponormal operator and the
outer boundary of σ(T ) has at most finitely many prime ends corresponding to singular points
on ∂D and has a tangent at almost every point on each Jordan arc, then T has a nontrivial
invariant subspace.
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1. Introduction

Let H be a separable infinite-dimensional complex Hilbert space and B(H) denote the algebra of
all bounded linear operators on H. A closed subspace L ⊂ H is called an invariant subspace for the
operator T ∈ B(H) if TL ⊂ L. The two trivial subspaces, the entire space and the space containing
only the zero vector, are invariant for every operator. The invariant subspace problem (due to J.
von Neumann) is stated as: Does every operator in B(H) have a nontrivial invariant subspace ?
This problem remains still open for separable infinite-dimensional complex Hilbert spaces. But
there were significant accomplishments on the invariant subspace problem. In 1950, P. Halmos
defined a subnormal operator as an operator having a normal extension to some Hilbert space
K containing H, and asked whether subnormal operators have nontrivial invariant subspaces. For
a long time many mathematicians have made many attempts towards this problem. Eventually,
S. Brown [Br1] found an ingenious proof that subnormal operators do have nontrivial invariant
subspaces. The proof relies upon an important paper of D. Sarason [Sa]. In 1979, S. Brown, B.
Chevreau and C. Pearcy [BCP1] showed that every contraction T (i.e., ‖T‖ ≤ 1) with rich spectrum
has invariant subspaces. In 1980, J. Agler [Ag] showed that every von Neumann operator T (i.e.,
‖f(T )‖ ≤ ‖f‖σ(T ), where f is a rational function with poles off the spectrum σ(T ) and ‖f‖σ(T ) is
the supremum of f on σ(T )) has a nontrivial invariant subspace. At the same year, J. Stampfli [St]
proved that an operator T whose spectrum is a k-spectral set (i.e., ‖f(T )‖ ≤ k‖f‖σ(T ) for every
rational function f with poles off σ(T ) and some k > 0) has a nontrivial invariant subspace. In 1987,
S. Brown [Br2] showed that every hyponormal operator T (i.e., T ∗T − TT ∗ ≥ 0) whose spectrum
has nonempty interior has a nontrivial invariant subspace. In 1988, S. Brown, B. Chevreau and
C. Pearcy [BCP2] showed that every contraction operator whose spectrum contains the unit circle
has a nontrivial invariant subspace. Very recently, C. Ambrozie and V. Müller [AM] showed that
every polynomially bounded operator T (i.e., ‖p(T )‖ ≤ k‖p‖D for every polynomial p and some
k > 0) whose spectrum contains the unit circle has a nontrivial invariant subspace.
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The result for the invariant subspaces of contraction operators T whose spectra contain the
unit circle can be interpreted as the result for the cases where T satisfies ‖p(T )‖ ≤ ‖p‖σ(T ) for
every polynomial p and the outer boundary of σ(T ) is the unit circle. However, if the outer bound-
ary of σ(T ) is not a Jordan curve then the existence of nontrivial invariant subspaces for such
operators seems to be very difficult even though it is interesting and challenging. This article is an
attempt towards the invariant subspaces for such operators. Our main result concerns the invariant
subspaces for an operator having the spectrum whose polynomially convex hull is a Carathéodory
region.

2. The main result

To prove the main theorem we first review some definitions and auxiliary lemmas.

Let K be a compact subset of C. Write ηK for the polynomially convex hull of K. The outer
boundary of K means ∂(ηK), i.e., the boundary of ηK. If Γ is a Jordan curve then int Γ means
the bounded component of C\Γ. If K is a compact subset of C then C(K) denotes the set of all
complex-valued continuous functions on K; P (K) for the uniform closure of all polynomials in
C(K); R(K) for the uniform closure of all rational functions with poles off K in C(K); and A(K)
for the set of all functions on K which are analytic on intK and continuous on K. A compact set
K is called a spectral set for an operator T if σ(T ) ⊂ K and ‖f(T )‖ ≤ ‖f‖K for any f ∈ R(K)
and is called a k-spectral set for an operator T if σ(T ) ⊂ K and there exists a constant k > 0 such
that

‖f(T )‖ ≤ k‖f‖K for any f ∈ R(K).

A function algebra on a compact space K is a closed subalgebra A of C(K) that contains the
constant functions and separates the points of K. A function algebra A on a set K is called
a Dirichlet algebra on K if ReA ≡ {Re f : f ∈ A} is dense in CR(K) which is the set of all
real-valued continuous functions on K.

The following lemma will be used for proving our main theorem.

Lemma 2.1. [Ag, Proposition 1] Let T ∈ B(H). Suppose that K is a spectral set for T and R(K) is
a Dirichlet algebra. If T has no nontrivial reducing subspaces then there exists a norm contractive
algebra homomorphism ϕ : H∞(intK) → B(H) such that ϕ(z) = T . Furthermore, ϕ is continuous
when domain and range have their weak∗ topologies.

We recall [Co] that a Carathéodory domain is an open connected subset of C whose boundary
coincides with its outer boundary. We can easily show that a Carathéodory domain G is a com-
ponent of int ηG and hence is simply connected. The notion of a Carathéodory domain was much
focused in giving an exact description of the functions in P 2(G) ≡ the closure of the polynomials
in L2(G): for example, P 2(G) is exactly the Bergman space L2

a(G) if G is a bounded Carathéodory
domain (cf. [Co, Theorem 8.15]). Throughout this paper, a Carathéodory region means a closed set
in C whose interior is a Carathéodory domain.

We note that the boundary of a bounded Carathéodory domain need not be a Jordan arc. A
simple example is a Cornucopia, which is an open ribbon G that winds about the unit circle so
that each point of ∂D belongs to ∂G. In this case, ∂G is not a Jordan curve because every point c
of ∂D is not an accessible boundary point, in the sense that it cannot be joined with an arbitrary
point of the domain G by a continuous curve that entirely lies in G except for the end point c. Of
course, ∂G \ ∂D is a Jordan arc. In particular, ∂D is called a prime end of a Cornucopia G (for
the definition of prime ends, see [Go, p.39]). We note that if ϕ is a conformal map from D onto G
then ϕ can be extended to a homeomorphism from clD \ {one point on ∂D} onto G ∪ (∂G \ ∂D)
(cf. [Go, pp.40-44]).



Invariant Subspaces for Operators 3

If f is a conformal mapping of D onto the inside of a Jordan curve Γ, then f has a continuous
one-to-one extension up to ∂ D and when thus extended takes ∂ D onto Γ. If Γ has a tangent at a
point, we have:

Lemma 2.2. (Lindelöf theorem)[Ko, p.40] Let G be a simply connected domain bounded by a Jordan
curve Γ and 0 ∈ Γ. Suppose that f maps D conformally onto G and f(1) = 0. If Γ has a tangent
at 0, then for a constant c,

arg f(z)− arg (1− z) → c for |z| < 1, z → 1.

Note that Lemma 2.2 says that the conformal images of sectors in D with their vertices at 1
are asymptotically like sectors in G of the same opening with their vertices at 0.

We can extend Lemma 2.2 slightly.

Lemma 2.3. (An extension of Lindelöf theorem) Let G be a simply connected domain and suppose
a conformal map ϕ : D→ G can be extended to a homeomorphism

ϕ̃ : clD \ {
zi ∈ ∂D : i ∈ N} → G ∪ {

Ji : i ∈ N}
,

where the Ji are Jordan arcs on ∂ G. If 0 ∈ J1, ϕ̃−1(0) = 1 /∈ cl {zi : i ∈ N}, and J1 has a tangent
at 0, then for a constant c,

arg ϕ(z)− arg (1− z) → c for |z| < 1, z → 1.

Proof. Consider open disks Di = Di(zi, ri) (i = 1, 2, · · · ), where ri is chosen so that 1 6∈ clDi. Let
D = D\ ∪∞i=1 clDi. Then D is simply connected. So by Riemann’s mapping theorem there exists a
conformal map ψ from D onto D such that ψ(0) = 0 and ψ(1) = 1. Then ϕ ◦ψ is a conformal map
from D onto a simply connected domain bounded by a Jordan curve. Clearly, the Jordan curve has
a tangent at ϕ ◦ ψ(1) = ϕ(1) = 0. Note that 1 − ψ is a conformal map from D onto 1 −D. Also
∂(1−D) is a Jordan curve and ∂(1−D) has a tangent at 1−ψ(1) = 0. Now applying Lemma 2.2
with ϕ ◦ ψ and 1− ψ gives the result. ¤

Applying Lemma 2.2, we can show the following geometric property of a bounded Carathéodory
domain whose accessible boundary points lie in rectifiable Jordan arcs on its boundary. The follow-
ing property was proved for the open unit disk in [Ber]. But our case is little subtle. The following
lemma plays a key role in proving our main theorem.

Lemma 2.4. Let G be a bounded Carathéodory domain whose accessible boundary points lie in
rectifiable Jordan arcs on its boundary. If a subset Λ ⊂ G is not dominating for G, i.e., there exists
h ∈ H∞(G) such that ‖h‖G > sup

λ∈Λ
|h(λ)|, then we can construct two rectifiable simple closed curves

Γ and Γ′ satisfying
(i) Γ and Γ′ are exterior to each other;
(ii) Γ (resp. Γ′) meets a Jordan arc J (resp. J ′) at two points, where J ⊂ ∂G (resp. J ′ ⊂ ∂G);
(iii) Γ and Γ′ cross Jordan arcs along line segments which are orthogonal to the tangent lines of

the Jordan arcs;
(iv) Γ ∩ Λ = φ and Γ′ ∩ Λ = φ.

Proof. Let ϕ be a conformal map from D onto the domain G. Then it is well known (cf. [Go, pp.
41-42]) that there exists a one-one correspondence between points on ∂D and the prime ends of
the domain G and that every prime end of G contains no more than one accessible boundary point
of G. Since G is a simply connected domain, the map ϕ−1 can be extended to a homeomorphism
which maps a Jordan arc γ on ∂G, no interior point of which is a cluster point for ∂G \ γ, onto
an arc on ∂D (cf. [Go, p.44, Theorem 4’]). But since by our assumption, every accessible boundary
point of ∂G lies in a Jordan arc of ∂G and the set of all points on ∂D corresponding to accessible
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boundary points of ∂G is dense in ∂D (cf. [Go, p.37, Theorem 1]), it follows that every prime end
which contains no accessible boundary point of ∂G must be corresponded to an end point of an
arc on ∂D corresponding to a Jordan arc on ∂G or a limit point of a sequence of disjoint Jordan
arcs on ∂D. Thus the points on ∂D corresponding to the prime ends which contain no accessible
boundary points of ∂G form a countable set. Now let V be the set of ‘singular’ points, that is,
points on ∂D corresponding to the prime ends which contain no accessible boundary points of
∂G. Then V is countable and the map ϕ can be extended to a homeomorphism from clD \ V
onto G ∪ {

Ji : i = 1, 2, · · ·}, where the Ji are rectifiable Jordan arcs on ∂G. We denote this
homeomorphism by still ϕ. Then we claim that

(2.1) Λ′ = ϕ−1(Λ) is not dominating for D.

Indeed, by our assumption, ‖h‖G > supλ∈Λ |h(λ)| for some h ∈ H∞(G). Since ‖h‖G = ‖h ◦ ϕ‖D
and ϕ is conformal on D, we have that h ◦ ϕ ∈ H∞(D). Also, since

sup
λ∈Λ

|h(λ)| = sup
λ∈Λ′

|h(ϕ(λ))| = sup
λ∈Λ′

|(h ◦ ϕ)(λ)|,

it follows that
‖h ◦ ϕ‖D > sup

λ∈Λ′
|(h ◦ ϕ)(λ)|,

giving (2.1). Write

ω :=
{

λ ∈ ∂D : λ is not approached nontangentially by points in Λ′
}

.

Remember that S ≡ {αn} ⊂ D is dominating for D if and only if almost every point on ∂D is
approached nontangentially by points of S (cf. [BSZ, Theorem 3]). It thus follows that ω has a
positive measure. We put

W :=
{
x ∈ Ji : Ji does not have a tangent at x for i = 1, 2, · · ·}.

Then W has measure zero since the Ji are rectifiable and every rectifiable Jordan arc has a tangent
almost everywhere. Now let W ′ = ϕ−1(W ). Also W ′ has measure zero. Let θ be a fixed angle with
3
4π < θ < π and let Aλ be the sector whose vertex is λ and whose radius is rλ, of opening θ. Then
for each λ ∈ ω we can find a rational number rλ ∈ (0, 1) such that the sector Aλ contains no point
in Λ′. Write

ω̃ ≡ ω \ (V ∪W ′).
Since ω̃ has a positive measure and hence it is uncountable, there exist a rational number r ∈ (0, 1)
and an uncountable set ω′ ⊂ ω̃ such that r = rλ for all λ ∈ ω′. Clearly, we can find distinct points
λ1, λ2, λ3, λ4 in ω′ such that

Aλ1 ∩Aλ2 6= φ and Aλ3 ∩Aλ4 6= φ.

We can thus construct two rectifiable arcs Γ◦1 and Γ◦2 in clD such that

Γ◦1 ∩ D ⊂ Aλ1 ∪Aλ2 , Γ◦1 ∩ T = {λ1, λ2}
and

Γ◦2 ∩ D ⊂ Aλ3 ∪Aλ4 , Γ◦2 ∩ T = {λ3, λ4}.
Let ηi := ϕ(λi) for i = 1, . . . , 4. Then, since ϕ is a homeomorphism, ηi’s are distinct. Also, each ηi is
contained in a Jordan arc of ∂G. Let Bi := ϕ(Aλi). Then, since 3

4π < θ < π, we can, by Lemma 2.3,
find a line segment li ⊂ Bi which is orthogonal to the tangent line at ηi. Let Li := ϕ−1(li). Then,
by cutting off the end parts of Γ◦1 and Γ◦2 and joining Li’s, we can construct two new rectifiable
arcs Γ̃◦1 and Γ̃◦2. Let Γ̃ := ϕ(Γ̃◦1) and Γ̃′ := ϕ(Γ̃◦2). Since G is a Carathéodory domain and the
end parts of Γ̃ and Γ̃′ are line segments, by extending straightly the end parts of Γ̃ and Γ̃′ in the
unbounded component of C\clG, we can construct two Jordan curves Γ̂ and Γ̂′ whose end parts
cross the boundary of G through line segments. Therefore, by joining end points of Γ̂ (resp., the
end points of Γ̂′) by a rectifiable arc in the unbounded component, we can find a simple closed
rectifiable curve Γ (resp., Γ′) satisfying the given conditions. ¤
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We are ready for proving the main theorem.

Theorem 2.5. Let T ∈ B(H) be such that ‖p(T )‖ ≤ ‖p‖σ(T ) for every polynomial p. If ησ(T ) is a
Carathéodory region whose accessible boundary points lie in rectifiable Jordan arcs on its boundary,
then T has a nontrivial invariant subspace.

Proof. To investigate the invariant subspaces, we may assume that T has no nontrivial reducing
subspace and σ(T ) = σap(T ), where σap(T ) denotes the approximate point spectrum of T . Since the
complement of ησ(T ) is connected, we have that by Mergelyan’s theorem, R(ησ(T )) = P (ησ(T )).
We thus have

‖f(T )‖ ≤ ‖f‖ησ(T ) for any f ∈ R(ησ(T )),

which says that ησ(T ) is a spectral set for T . On the other hand, we note that R(ησ(T )) (=
P (ησ(T ))) is a Dirichlet algebra. Thus if σ(T ) 6⊂ cl (int ησ(T )), then it follows from a theorem of
J. Stampfli [St, Proposition 1] that T has a nontrivial invariant subspace. So we may, without loss
of generality, assume that σ(T ) ⊂ cl (int ησ(T )). In this case we have that ησ(T ) = cl (int ησ(T )).
Hence int ησ(T ) is a Carathéodory domain.

Now since ησ(T ) is a spectral set, R(ησ(T )) is a Dirichlet algebra, and T has no nontrivial
reducing subspaces, it follows from Lemma 2.1 that there exists an extension of the functional
calculus of T to a norm contractive algebra homomorphism

(2.2) φ : H∞(int ησ(T )) → B(H).

Moreover, φ is weak∗-weak∗ continuous. Let 0 < ε < 1
2 . Consider the following set:

Λ(ε) =
{

λ ∈ int ησ(T ) : ∃ a unit vector x such that ‖(T − λ)x‖ < ε dist
(
λ, ∂(ησ(T ))

)}
.

There are two cases to consider.

Case 1: Λ(ε) is not dominating for int ησ(T ). Since int ησ(T ) is a Carathéodory domain,
we can find two rectifiable simple closed curves Γ and Γ′ satisfying the conditions given in Lemma
2.4; in particular, Γ ∩ Λ(ε) = ∅ and Γ′ ∩ Λ(ε) = ∅. Let

Γ ∩ ∂(ησ(T )) = {λ1, λ2} and Γ′ ∩ ∂(ησ(T )) = {λ3, λ4}.
Since σ(T ) = σap(T ), it is clear that Λ(ε) ⊃ int ησ(T ) ∩ σ(T ). So T − λ is invertible for any
λ in Γ\{λ1, λ2} and Γ′\{λ3, λ4}. If λ ∈ Γ\ησ(T ), then since the functional calculus in (2.2) is
contractive, we have

‖(λ− T )−1‖ ≤ sup
{

1
|λ− µ| : µ ∈ int ησ(T )

}
=

1
dist(λ, ∂ (ησ(T ))

.

Let λ ∈ Γ ∩ int ησ(T ). Since Γ ∩ Λ(ε) = ∅, we have that for any unit vector x,

‖(T − λ)x‖ ≥ εdist (λ, ∂(ησ(T ))),

which implies that

‖(λ− T )−1‖ ≤ 1
εdist (λ, ∂(ησ(T )))

.

On the other hand, Since ∂(ησ(T )) has a tangent at λi, it follows that in a sufficiently small
neighborhood Ni of λi, ∂(ησ(T )) lies in a double-sector Ai of opening 2θi (0 < θi < π

2 ) for each
i = 1, 2. But since Γ is a line segment in a sufficiently small neighborhood of each λi (i = 1, 2), it
follows that if λ ∈ Ni ∩ Γ, then

|λ− λi|
dist (λ, ∂(ησ(T )))

≤ |λ− λi|
dist (λ, Ai)

=
1

cos θi
=: c.

We thus have
‖(λ− λ1)(λ− λ2)(λ− T )−1‖ ≤ c

ε
|λ− λ2| ≤ M on N1 ∩ Γ,
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which says that Sλ ≡ (λ− λ1)(λ− λ2)(λ− T )−1 is bounded on N1 ∩ Γ. Also Sλ has at most two
discontinuities on Γ. So the following operator A is well-defined ([Ap]):

A :=
1

2πi

∫

Γ

(λ− λ1)(λ− λ2)(λ− T )−1dλ.

Now, using the argument of [Ber, Lemma 3.1]), we can conclude that ker(A) is a nontrivial invariant
subspace for T .

Case 2: Λ(ε) is dominating for int ησ(T ). In this case, we can show that φ is isometric, i.e.,

‖h(T )‖ = ‖h‖int ησ(T ) for all h ∈ H∞(int ησ(T )),

by using the same argument as the well-known method due to Apostol (cf. [Ap]), in which it
was shown that the Sz.-Nagy-Foias calculus is isometric. Now consider a conformal map ϕ : D →
int ησ(T ) and then define the function ψ by

ψ = ϕ−1 : int ησ(T ) → D.

Then ψ ∈ H∞(int ησ(T )). Define A := ψ(T ). Then A is an absolutely continuous contraction with
norm 1. Thus we can easily show that

‖h(A)‖ = ‖h‖D for any h ∈ H∞(D).

Thus if λ0 ∈ T, then

lim
λ→λ0,|λ|>1

||(A− λ)−1|| = lim
λ→λ0,|λ|>1

||(z − λ)−1||D = ∞,

which implies that A − λ0 is not invertible, so that we get T ⊂ σ(A). Since every contraction
whose spectrum contains the unit circle has a nontrivial invariant subspace ([BCP2]), A has a
nontrivial invariant subspace. On the other hand, since T ∈ weak∗-cl {p(A) : p is a polynomial},
we can conclude that T has a nontrivial invariant subspace. ¤

A simple example for the set satisfying ||p(T )|| ≤ ||p||σ(T ) for every polynomial p is the set of
‘polynomially normaloid’ operators, in the sense that p(T ) is normaloid (i.e., norm equals spectral
radius) for every polynomial p. Indeed if p(T ) is normaloid then ||p(T )|| = supλ∈σ(p(T )) |λ| =
||p||σ(T ) by the spectral mapping theorem.

Remark. We were unable to decide whether in Theorem 2.5, the condition “||p(T )|| ≤ ||p||σ(T )”
can be relaxed to the condition “||p(T )|| ≤ k ||p||σ(T ) for some k > 0”. However we can prove
that if T ∈ B(H) is such that ||p(T )|| ≤ k ||p||σ(T ) for every polynomial p and some k > 0
and if the outer boundary of σ(T ) is a Jordan curve then T has a nontrivial invariant subspace.
This is a corollary of the theorem of C. Ambrozie and V. Müller [AM, Theorem A]. The proof
goes as follows. Since ∂ (ησ(T )) is a Jordan curve, then by Carathéodory’s theorem on extensions
of the conformal representations, a conformal map ϕ : int ησ(T ) → D can be extended to a
homeomorphism ψ : ησ(T ) → clD. Since C \ ησ(T ) is connected, we can find polynomials pn

such that pn → ψ uniformly on ησ(T ). Since the spectrum function σ : B(H) → C is upper
semi-continuous, it follows that

ψ(∂(ησ(T ))) ⊂ ψ(σ(T )) = lim sup pn(σ(T )) = lim supσ(pn(T )) ⊂ σ(ψ(T )).

But since ψ is a homeomorphism we have that ∂D ⊂ σ(ψ(T )). By our assumption we can also see
that

||(p ◦ ψ)(T )|| ≤ k ||p ◦ ψ||int ησ(T ) = k ||p||D for every polynomail p,

which says that ψ(T ) is a polynomially bounded operator. Therefore by the theorem of C. Ambrozie
and V. Müller[AM], ψ(T ) has a nontrivial invariant subspace. Hence we can conclude that T has
a nontrivial invariant subspace.

We conclude with a result on the invariant subspaces for hyponormal operators (this applies,
in particular, to the case when ησ(T ) is the closure of a Cornucopia).
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Corollary 2.6. Let T ∈ B(H) be a hyponormal operator. If the outer boundary of σ(T ) has at most
finitely many prime ends corresponding to singular points on ∂D and has a tangent at almost every
point on each Jordan arc, with respect to a conformal map from D onto int ησ(T ), then T has a
nontrivial invariant subspace.

Proof. Suppose that

‖h‖int ησ(T ) = sup
{|h(λ)| : λ ∈ σ(T ) ∩ int ησ(T )

}

for all h ∈ H∞(int ησ(T )). Then σ(T ) ∩ int ησ(T ) is dominating for int ησ(T ). Thus by the well-
known theorem due to S. Brown [Br2, Theorem 2], T has a nontrivial invariant subspace. Suppose
instead that

‖h‖int ησ(T ) > sup
{|h(λ)| : λ ∈ σ(T ) ∩ int ησ(T )

}

for some h ∈ H∞(int ησ(T )). By an analysis of the proof of Lemma 2.4, we can construct two
rectifiable curves Γ and Γ′ satisfying the conditions (i) - (iv). Let Γ ∩ ∂ησ(T ) = {λ1, λ2} and
Γ′ ∩ ∂ησ(T ) = {λ3, λ4}. Since T is a hyponormal operator, we have

‖(λ− T )−1‖ =
1

dist(λ, σ(T ))
on λ ∈ (

Γ\{λ1, λ2}
) ∪ (

Γ′\{λ3, λ4}
)
.

Now the same argument as in Case 1 of the proof of Theorem 2.5 shows that T has a nontrivial
invariant subspace. ¤
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